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ABSTRACT 

A review of the theory of MHD characteristics and shock 
waves is presented.   Primary emphasis is placed on a physical 
discussion of the three characteristic modes and the jump con- 
ditions for the two types of shock waves which can exist.    Brief 
discussions of shock structure, applications of the theory, and 
the range of applicability of the continuum equations are also 
given. 

Prepared as a chapter in a book on plasma physics to be edited 
by Wulf B. Kunkel. 
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SECTION I 

INTRODUCTION 

In ordinary gas dynamics the theory of nonlinear flows which are 
either time-dependent or involve supersonic velocities is well developed. 
Such flows tend to contain planes across which the significant changes in gas 
conditions occur almost discontinuously.    These discontinuities which are 
called shock waves,  become so thin (of the order of a few mean free paths) 
that the dissipation rates within them become extremely large.    One of the 
prime reasons for interest in shock waves is that they provide a mechanism 
for converting flow kinetic energy ahead of the wave into thermal energy be- 
hind the wave and thus provide a controlled means of producing high temper- 
ature gases.    Our ability to deal with flows containing shock waves is greatly 
facilitated by two facts.    First,  the changes in flow properties across a 
shock are independent of the detailed structure of the shock wave.    Thus,  the 
conservation laws yield algebraic relations which define conditions behind a 
shock in terms of its velocity and the conditions ahead.    Secondly,  the shock 
waves are usually (when the typical flow dimension is large compared to a 
mean free path) so thin compared to the overall flow field that they can be 
treated as sheets across which flow properties change discontinously. 

In the remainder of the flow field,  although the fluid properties may 
change by large amounts,  the gradients will be small.    These regions may 
be treated by a method which is essentially a generalization to the nonlinear 
case of concepts developed in the descriptio«. of linear wave propagation in 
nondispersive media.    In the propagation of electromagnetic signals in vacuum 
or in acoustics a disturbance of arbitrary shape at one instant of time will 
have the same shape at a later time but will be displaced by a distance equal 
to the product of the propagation speed and the time difference (Fig.   1(a)). 
Now,  if this disturbance propagated through a medium in which the propaga- 
tion speed varied with position,  due to gradual changes in the index of refrac- 
tion or gas temperature it would become distorted as it propagates.    For a 
nondispersive medium (i. e.,  a medium in which the propagation speed is 
independent of the wave length of the disturbance) the changes in shape could 
be obtained by considering the disturbance to be composed of a large number 
of small step functions and following each step on a distance-time diagram 
(Fig.   1(b)).    The slope of the trajectory of each step is equal to the local 
propagation speed.    This technique would not work for a dispersive medium 
since the different Fourier components of the step functions would be spread 
out in space.    It is significant to note,  however,  that the applicability of the 
above method is not restricted to small variations in the propagation speed. 
Thus,  arbitrarily large variations in propagation tpeed can be taken into 
account. 



For the nonlinear gas dynamic problem,  let us first remember that 
a monatomic gas is a nondispersive medium for wave lengths long compared 
to the mean free path. *   As an example, we imagine a long pipe containing 
an initially uniform gas,  in which a disturbance is generated by moving a 
piston at one end of the pipe.    This disturbance may be viewed as consisting 
of a large number of small amplitude step function waves all propagating 
away from the piston.    Each wave will propagate through the fluid at a ve- 
locity equal to the sound speed determined by the local fluid properties. 
Since the medium is nonlinear the propagation speed of a particular wave 
will depend upon the changes produced by the previous waves.    Thus different 
waves will propagate at different velocities and the disturbance will change 
its shape with time.    As lone as the waves do not cross,  the number of waves 
preceding any particular wave is independent of time.    This implies that 
conditions ahead of the wave and,  therefore,  its propagation speed are con- 
stant.    The distortion of the disturbance with time is,  therefore,  determined 
by following each point on the disturbance along a straight line in the distance- 
time plane.    (Fig.   1(c)).     Since the velocity for each point is different some 
of these lines will diverge while others converge.    Note that this is funda- 
mentally different from the linear case of wave propagation through a spatially 
varying medium.    In that case the trajectories of all the waves composing the 
disturbance are parallel at a particular point in space.    In the nonlinear case 
the converging lines can intersect.    They cannot, however,  cross one another 
since the wave from behind is only overtaking the previous wave because of 
the changes in fluid properties produced by the first wave.    Thus,  if the 
second wave did go ahead of the first wave it would then propagate more slowly. 
Thus, the converging waves tend to pile up and produce a large amplitude dis- 
continuity or shock wave. 

The concepts which have been described lead in the case of converging 
waves to a description of the formation of shock waves.    In the case of diverg- 
ing waves they can be used to describe flow changes of arbitrarily large 
amplitude.    Thus far, we have discussed only the situation in which all waves 
are propagating in one direction.    In the more general case,  for example, 
after the disturbance reflects from the far end of the pipe,  there will be 
waves propagating in both directions.    In this case the general concept of 
following the trajectories of small step function waves is still useful.    How- 
ever,  it usually requires numerical integration along a two-dimensional grid. 

Mathematically, this description of gas dynamics flows is a special 
case of the theory of characteristics which is applicable to certain types of 
hyperbolic partial differential equations.    It was first noticed by Friedrichs1 

that the mathematical theory was also applicable to the magnetohydr©dynamic 

•5  
For polyatomic gases we would have to restrict ourselves to time scales 

that are either very long or very short compared to the relaxation times for 
internal degrees of freedom. 
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equations.    Much of the basic work on the description of nonlinear wave 
propagation in magnetohydrodynamics was covered in his initial paper.    The 
purpose of the present chapter is to review the present status of this theory. 
In the presentation given here we will attempt to emphasize a physical de- 
scription of the subject.    In this way we hope that it may be somewhat easier 
for the reader who is not familiar with the formal mathematical theory of 
characteristics to become acquainted with its application to gasdynamics and 
magnetohydrodynamics.    Although we will not assume a knowledge of the 
theory of characteristics in ordinary gasdynamics,  the reader may wish to 
refer to some of the following discussions on the subject. 2 

Since the theory is an extension of the linear analysis we will begin 
by deriving the properties of the linear waves in Section II.    We may note at 
this point that the magnetohyirodynamic case will be considerably more 
complex than the ordinary gas dynamic case.    The presence of the magnetic 
field in the plasma defines a direction within a plasma.    Thus,  the wave 
propagation speed as well as its properties will depend upon the direction in 
which the wave is propagating relative to the magnetic field.    Furthermore, 
the presence of the magnetic field requires the existence of three distinct 
propagation modes of small amplitude waves,  as opposed to only one sound 
speed which exists in the absence of the field.    A simple explanation of this 
can be given if we imagine that the waves are produced by a piston which 
forms one boundary of the plasma.    The piston has three degrees of freedom 
and therefore we would expect that a wave mode is required for each degree 
of freedom.    However,  in the absence of a magnetic field motions of the piston 
parallel to its plane are not observed in the gas (except within a diffusion 
layer immediately adjacent to the piston).   Thus,  for an ordinary gas,  only 
motions of the piston normal to itself produce propagating waves which are 
observable at appreciable distances from the piston.    However,  in the case of 
a plasma if the magnetic field has a component normal to the plane of the 
piston and the piston is a conductor,  the motions of the piston in its plane re- 
quire a corresponding motion of the field lines.    Since the plasma is frozen 
to the field lines it must move with the piston.    As a result such motions also 
produce waves and therefore a wave exists for each degree of freedom of the 
piston motion. 

In Section III, we will discuss the extension from the linear to the 
nonlinear case.    In particular, we will show that cwo of the modes of linear 
propagation lead to the formation of shock waves.    The third mode on the 
other hand,   is linear even for large amplitude.    As a result this third mode 
does not steepen to form shock waves but even for large amplitude waves 
the shape is maintained as the wave moves through the plasma. 

In Section IV we will discuss the resulting two types of shock waves. 
We may note at this point that whereas ordinary gasdynamics shock waves 
represent an interchange of energy between flow kinetic energy and thermal 
energy,  in the plasma magnetic energy is also present.    Thus,  there are 
situations in which some of the flow kinetic energy is converted   into mag- 
netic energy reducing the amount of thermal energy which is produced.    On 
the other hand,  there are also shock waves for which the basic energy source 
is the magnetic field and thus the magnetic energy is converted into thermal 
energy and flow kinetic energy. 



In Section V, we will discuss briefly the internal structure of shock 
waves.    Finally, in Section VI we will discuss the application of the theory 
in two cases; first to the production of high temperature plasma samples in 
the laboratory» and second to the rate at which magnetic energy can be con- 
verted to plasma energy.    The latter case has possible interest in several 
astrophysical situations. 

Throughout the body of the text (with the exception of a portion in 
Section V) we will assume that the fluid can be described by the magnetohy- 
dr©dynamic equations.    The delineation of the range of plasma conditions 
over which this is a valid assumption is at present not clearly understood. 
Over an interesting but somewhat limited range of temperatures and densities 
the validity can be justified with reasonable certainty on the basis of rapid 
maxwellization by binary collisions.    There are, however,  theoretical argu- 
ments as well as some experimental evidence which strongly suggest that the 
actual range of validity is considerably larger, including very high tempera- 
ture plasma conditions in which binary collisions are rare provided only that 
the gyru radii of the ions and the Debye length of the plasma are small com- 
pared to the length in which the overall properties of the flow field change 
significantly.    Further remarks on the justification of the validity of the mag- 
netohydrodynamic equations are given in the Appendix. 

In the presentation which follows we will in general not give detailed 
references to the specific papers in which a particular conclusion was 
originally presented.    An extensive but far from complete bibliography is, 
however, included.    This chapter does not contain any concepts which have 
not been published elsewhere, however, the presentation may have been 
modified. 
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Fig. 1       Illustration of propagation of an arbitrary pulse in several cases, 
a) For linear waves in a uniform medium,  the pulse shape is 
retained,    b)   For linear waves in a medium of variable propaga- 
tion speed,  the pulse becomes somewhat distorted, however, 
discontinuities do not arise,    c)   For a nonlinear pulse in an 
initially uniform medium, changes in propagation speed can lead 
to the formation of discontinuities or shock waves. 

A24» 



THIS PAGE IS BLANK 

-6- 



SECTION II 

LINEAR WAVES 

The magnetohydrodynamic equations for a nondissipative medium 
|    (i.e. , infinite electrical conductivity, and vanishing viscosity and heat con- 
I    ductivity) are: 

Continuity |2.  + V . p v = 0 (II-l) 

av                                               (T7xB)xB 
Momentum p I~_  +pv V v + V  p-      -       ^-   =0      (11-2) 

a la 

Induction —ä.   - V  x (vxB) = 0 (II-3) 

a (P/PY) 
Entropy -^- + v • V (p/pY)= 0 (11-4) 

V •  B = 0 (II-5) 

where p is the density, x the fluid velocity,  p the plasma pressure,  g is the 
magnetic field intensity and y is the ratio of specific heats,  Cp/Cv    The 
neglect of dissipative terms requires that the gradients be small.    Thus, 
these equations will not apply to shock waves and for cases in which steepen- 
ing occurs the resulting Shockwaves must be isolated and treated separately. 

As indicated earlier,  the theory of characteristics describes the non- 
linear flow as composed of small amplitude step function waves.    We shall 
therefore begin by examining the small amplitude waves which result from 
Eqs.  (II-l) through (II-5).    vVe also noted that the scheme will only apply to 
a nondispersive medium.    It can be seen by examining the equations that it 
is impossible to form either a basic length or a basic time from the quantities 
in the equations.    Therefore,  if we examined the linear waves by the more 
usual method of assuming sinusoidally shaped waves, we would find that the 
phase velocity of these waves is independent of wavelength,  i. e. ,  the med- 
ium is nondispersive.    The extension to the nonlinear case is more direct 
if we begin by deriving the linear wave properties in terms of step functions. 



It is convenient to analyze the wave in a coordinate system in which 
the wave is stationary.    In this coordinate system the fluid will of course be 
moving on both sides of the wave.    The fluid velocity ahead of the wave must 
be equal and opposite to the propagation speed of the wave relative to the 
fluid in order for the wave to be stationary.    We will denote this velocity by 
c to indicate that it is the characteristic propagation speed of the wave.    Let 
us further orient our coordinate system such that the wave normal is in the 
x-direction, and such that the magnetic field ahead of the wave is in the x-y 
plane, i. e. , Bz = 0 ahead of the wave.    In our coordinate system the time 
derivatives are zero and the £ operator reduces to a derivative in the x- 
direction.    If we now integrate Eqs. (II-1) through (II-5) across the wave, 
we obtain relations for the changes in the flow properties across the wave. 
Keeping terms only to first order in the changes, we thus obtain for the con- 
tinuity equation 

Ö (pvx) = - cöp +pövx = 0 (II-6) 

the three components of the momentum equation become 

B    ÖB 
-p cö vx + öp+      y4y

y      = 0 (11-7) 

B    ÖB 

PCöV -V-y =0 (11-8) 

B    ÖB 

Pcövz+—TF—    =0 (11-9) 

The components of Eq.  (II-3) become 

Böv    -COB    -B    Öv    =0 y       x y        x       y (11-10) 

cöB    +B    Öv    -0 
Z X z (11-11) 
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where we have already made use of Eq.  (11-13) below. Equation (II-4) becomes 

c{öp - IE  6p) = 0 (11-12) 

and finally Eq.  (II-5) becomes 

ö B    = 0 (11-13) x 

The unknowns in the above equations are the speed of propagation of the wave, 
c, and the various quantities which change across the wave.    Counting equa- 
tions and unknowns in this manner we find one more unknown than equations. 
The equations are. however, homogeneous in the unknowns corresponding to 
the changes across the wave.    Therefore, as one would expect for the linear- 
ized case, the differential equations do not determine the amplitude of the 
wave.    We do. however, have the appropriate number of equations and un- 
knowns to determine the speed of propagation of the wave and the changes of 
flow properties across the wave in terms of the wave amplitude.    We shall 
proceed to do this in a somewhat disorderly fashion by observing that some 
of the equations form sub-sets whose solutions can be easily determined. 

Entropy Discontinuities 

We will first discuss a solution which is not really a wave,  since it 
corresponds to zero propagation speed.    We may observe by inspection that 
substituting c = 0 into Eqs.  (II-6) through (11-13) is a solution which allows 
a change In density but requires that there be no change in all of the other 
flow properties, i.e. , velocity, magnetic field, and gas pressure.    This is 
a hydrostatic equilibrium corresponding to having different density, entropy, 
and temperature on the two sides of the discontinuity, but maintaining the 
pressure constant.    Since there is no flow through the wave,  this result is 
of course,  consistent with our entropy conservation law Eq.  (II-4), which 
stated that following a fluid element,  the entropy was conserved.    Thus,  if 
initially adjacent elements of fluid have different entropies,  this discontin- 
uity in entropy will be maintained.    A practical case in which entropy dis- 
continuities are of importance is a flow situation in which shock waves 
exist whose strength is not constant.    The entropy changed across a shock 
depends upon its strength.    Thus, fluid elements going through the shock at 
slightly different times will have slightly different entropies. 

Since we have determined the only solution which can exist, for zero 
propagation speed, we may,  in looking for the other solutions,  assume that 
the propagation speed is nonzero.    Thus, we may take the bracket in Eq. (11-12) 
to be equal to zero.    This corresponds simply to the statement that if there is 
a flow through the wave and if entropy is conserved along a streamline,  then 
the entropy on both sides of the wave must be the same. 

-9- 



Intermediate Waves 

As noted earlier, we expect three propagating waves corresponding 
to the three degrees of freedom of motions of the boundary.   In this sub* 
section we will derive the properties and propagation speed of one of these 
modes.    It so happens that the three modes can be conveniently classified 
as fast, intermediate, and slow according to the magnitudes of their speeds 
of propagation.    The wave to be discussed in this sub-section corresponds, 
as will be shown later, to the intermediate propagation speed. 

The only equations which contain dvz and ÖBZ are Eqs. (II-9) and 
(II-ii).    Since these equations also do not contain the changes in any of the 
other properties, we may solve them separately.    Doing this, we obtain for 
the propagation speed 

v (11-14) 

where the subscript i indicates the intermediate wave.   Substituting this 
result back into the full set of equations, we obtain the following relations 
for the changes in flow properties across the wave. 

5 v   = + z     — 

6B. 

slA*p 
(11-15) 

Ö vx = op = öp = ÖBy = övy = 0 

The sign in the top equation depends upon whether the direction of propaga- 
tion is parallel or antiparallel to the normal component of magnetic field. 
Since dvx is zero this wave is purely transverse.    Also,  since the change in 
magnetic field is perpendicular to the original field, there is to first order 
only a change in the direction of the magnetic field, but no change in magni- 
tude.    (We shall see later that a large amplitude intermediate wave also 
changes only the direction and not the magnitude of the magnetic field.)   It 
is interesting to note that there are no changes in the thermodynamic vari- 
ables across such a wave.    The only changes are in the tangential velocity 
and the direction of the magnetic field. 

A simple physical explanation of this wave is frequently given in 
terms of a vibrating string.    Since the wave is purely transverse, one would 
expect that the wave propagation speed should be the square root of the ten- 
sion divided by the density.    Since the tension in the direction of the wave 
normal is Bx^/4v, we see that this description is in complete agreement 
with the result given in Eq.  (11-14).    It should, however, be emphasized that, 
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I whereas the vibrating string can vibrate in any direction perpendicular to the 
I string,  the intermediate wave corresponds to changes in magnetic field only 
I in the z-direction.    Thus,  the ordinary vibrating string really corresponds 
I to two modes which have the same propagation velocity.    In the plasma,  only 
I one of these modes corresponding to magnetic field changes perpendicular to 
1 the original magnetic field gives rise to the intermediate propagation speed. 
I Waves in which a change in By also exists will give rise to some longitudinal 
J   stresses, and as a result their propagation speed is modified.    Such waves 
|   are then either the fast or the slow mode. 
I 
|   Fast and Slow Waves 

The propagation speed of the remaining two modes can be obtained 
by eliminating the quantities which change across the wave from Eqs. 
(II-6, II-7, II-8. 11-10,  and 11-12).    The resulting relation for the propaga- 
tion speed may be written in the following two completely equivalent forms. 

l I 2         2        2           2          2     2 
| (c^ - **) (c^ - b ^ = c\                                    (11-16) 
i *            y 

(c2 - a2) (c2 - b2) = a2by
2 (11-17) 

where we have introduced shorthand notations for the ordinary sound speed 
and for a vector whose magnitude is equal to the Alfven speed and whose 
direction is parallel to the magnetic field. 

/ 
a   =    W JÜl      b   =    ~ (11-18) 

The above equation is seen to be bi-quadratic in the propagation speeds, and 
thus corresponds to two modes each of which can propagate in two directions. 
Let us first observe some of the properties of the propagation speeds result- 
ing from this relation.    We will return to physical interpretation of these re- 
sults somewhat later when we discuss the changes which occur across the 
wave s. 

Since,  in both forms of the dispersion relation which have been written, 
the right-hand sides are positive definite,  it follows that the quantities in 
parentheses on the left-hand side must either be both positive or both neg- 
ative.    It,  therefore, follows from Eq.  (11-16) that for one of the solutions, 
the square of the propagation speed must be greater than both a^ and bx  , and 
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for the other solution it must be less than both of these quantities.    Since, 
by definition, the slow speed (subscript s) is the slower of these, it follows 

c2<b2,        c2<a2 {11- 19) 
S X 8 

A somewhat more stringent condition on the fast propagation speed (sub- 
script f) is obtained from Eq.  (11-17). 

2.2 2        2 
cf   > b ,       c£   i a (11-20) 

Since, in the present notation the intermediate speed is bx, we note from the 
above relations that the wave which we have labelled fast always travels at 
a speed greater than or equal to the intermediate speed, while the one which 
has been labelled slow is always slower than or equal to the intermediate 
speed,  thus justifying naming the wave modes in terms of their relative pro- 
pagation speeds. 

The solutions of this dispersion relation have been plotted in Fig.  2 
for several ratios of a  to b.    These plots are given in the form suggested 
by Friedrichs.    The magnetic field direction is taken to be horizontal.    For 
any point on the lines, the distance from the origin is proportional to the 
velocity of the wave, and the angle which the line connecting the origin to the 
point makes with the axis corresponding to the magnetic field is the direction 
of the wave normal relative to the magnetic field.    For the fast mode,  the 
propagation speed is relatively insensitive to the direction of propagation. 
For propagation perpendicular to the magnetic field,  the propagation speed 
is ^/^u^'+a2 .    For propagation along the magnetic field,  the propagation 
speed is either a  or b depending upon which is larger.    The intermediate 
propagation speed is also shown and corresponds to two circles of radius 
b/2 whose line of centers lies in the magnetic field direction and are tan- 
gent at the origin.    Since the slow propagation speed is less than the inter- 
mediate speed,  the slow speed must be found inside of these circles.  Thus, 
we see that both the slow and the intermediate speeds are zero for propa- 
gation pet^endicular to the magnetic field.    For propagation along the mag- 
netic field,  the slow speed is either a  or b    depending upon which is smaller. 
We note from the above remarks that for propagation along the magnetic field, 
the intermediate speed is always equal to either the slow or the fast speed. 
Thus, for a < b,  the intermediate and fast speeds are equal for this direction 
of propagation, while for a > b,  the intermediate and slow speeds are equal. 

Let us examine briefly the limiting values of the solutions of the dis- 
persion relation for the cases of a » b and a « b. These correspond to gas 
pressure much larger than and much less than the magnetic pressure 
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respectively.    For a » b,  the fast propagation speed must also be much 
greater than b,  and therefore, from Eq.  (11-16) we conclude that the pro- 
pagation speed approaches a.    This conclusion is in accord with what one 
would expect,  since for weak magnetic fields one would not expect the mag- 
netic field to alter the sound speed appreciably.    In the same limit,  the 
slow speed will be very small compared to a, and therefore, from Eq. (11-17) 
we conclude that the propagation speed is equal to bx.    Thus, in this limit 
the slow speed approaches the intermediate speed.    In other words, as the 
ratio cf gas pressure to magnetic pressure is increased,  the slow and inter- 
mediate speeds come closer together. 

In the opposite limit, a « b,  the fast speed approaches b, while the 
slow speed approaches abx/b.    Thus, the fast propagation speed corresponds 
to two circles whose line of centers lies in the direction of the magnetic field, 
and are tangent at the origin. 

A certain degree of symmetry exists in the above dispersion relation, 
namely that the fast and slow propagation speeds are unchanged if the magni- 
tudes of a and b are interchanged.    This follows from Eq. (11-17) since the 
equation is unchanged when a and b are interchanged if one remembers that 
by is the product of the magnitude of b and the sine of the angle between the 
magnetic field and the wave normal.    This conclusion is somewhat surpris- 
ing since, as we shall see below,  the changes in flow properties across the 
waves are quite different depending upon whether a or b is larger.    One 
should, of course,  remember that as illustrated in Fig.  2, the intermediate 
propagation speed depends only upon b. 

Let us now examine the changes in flow properties which occur   across 
the waves.    These are obtained by substituting the solutions of the dispersion 
relation, Eqs.  (11-16) or (11-17), back into the equations for the changes, 
Eqs.  (II-6) through (11-12).    Doing this quantitatively in terms of the explicit 
expressions for the characteristic speeds which result from the dispersion 
relation is somewhat cumbersome.    However,   several interesting results 
about the wave modes can be obtained from the properties of the dispersion 
relation already enumerated. 

Equations (II-9) and (11-11) only permit solutions with nonzero changes 
in vz and Bz if the characteristic speed is equal to the intermediate speed. 
Since,  except for very special points, the fast and slow speeds always differ 
from the intermediate speed, we may conclude that across fast and slow waves 

övz = ÖBz = 0 (11-21) 

Thus,  for these modes the magnetic field stays in the plane determined by 
the magnetic field ahead of the wave and the wave normal.    The fast and 
slow waves,  therefore,  change only the magnitude of the tangential com- 
ponent of magnetic field but not its direction.    On the other hand, we con- 
cluded earlier that the intermediate wave changes only the direction but not 
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the magnitude of the tangential component of magnetic field.    The normal 
component of magnetic field from Eq. (11-13), is of course,  constant in all 
cases. 

For the fast and slow waves there are.  in general, finite changes in 
both vx and Vy.    These waves are therefore partially longitudinal and par- 
tially transverse.    Even though we cannot separate the wave modes into 
purely longitudinal and purely transverse,  some insight can be gained by ex- 
amining the longitudinal and transverse aspects of the waves separately. 
The longitudinal aspects are contained primarily in the x-component of the 
momentum equation,  Eq.  (II- 7).    Making use of the continuity and entropy 
equations (II-6) and (II-12), we can rewrite this equation as 

2 
c    = 

ö(p + ^) ST- 
OP 

- a2 +
ÖBy2/8ff 

- a   +-5^- (11-22) 

The propagation speed squared is therefore the change in the longitudinal 
stress,  resulting from both the gas pressure and the magnetic pressure 
divided by the change in density.    This equation may also be viewed as de- 
termining the ratio of the change in By to the change in density.    Since, by 
Eq. (11-20), the fast propagation speed is greater than the ordinary sound 
speed, it follows that the change in By^ is of the same sign as the change 
in density for a fast wave.    Conversely for a slow wave the changes are of 
opposite sign.   Thus the propagation speed of the fast wave is greater than 
the ordinary sound speed,  since the magnetic and gas pressures act together, 
while the propagation speed of the slow wave is slower than the ordinary 
speed,  since the magnetic and gas pressures counteract each other.    The 
fact that the gas and magnetic pressures support each other in the fast wave 
and counteract each other in the slow waves,  is an important distinguishing 
feature between the two modes. 

The transverse motions do not lead to as simply interpretable results. 
However, if we examine these by making use of the y-component of momen- 
tum conservation, Eq. (II-8), and use also Eqs.  (11-10) and (II-6), we can 
obtain the result 

2 c    =  5  (11-23) 

Thus, as one might expect, if there are no changes in the longitudinal velocity 
which implies no change in density, the propagation speed approaches the 
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intermediate  speed which is a purely transverse wave.     The departures 
from this  speed are  then given by the  correction term in the  denomina- 
tor of the above  expression.     This  expression is,   of course,   consistent 
with the  conclusions  reached earlier that for a fast wave,   i. e. , a wave 
in which the  gas and magnetic pressure  changes are  of the  same  sign, 
the propagation speed is  greater than the intermediate  speed and con- 
versely,   for a  slow wave  the propagation speed is  less  than the  inter- 
mediate   speed. 

It is also of some interest to examine the direction of the velocity 
change across a wave.    Using Eqs.  (II-6, II-7, II-8 and 11-12), we can ob- 
tain the result 

öv B 
X  =     *    /*     -ll (11-24) 7 a ■ •) v        "B 
X 

As can be seen from the quadratic expressions (11-16) or (11-17), the two 
roots of the dispersion relation are related by the following equations 

2 .       2 2  _ 2 c,    + c        =   a    + b f s 
(11-25) 

> 

f     "s "   "x 
2       2 2,2 c,     c        -ab 

Making use of these relations and Eq.  (11-24) one can show that 

(-:)/ m (11-26) 

which states that the changes in velocity across the fast and the slow waves 
are perpendicular to each other.    Remembering also that the change in ve- 
locity across the intermediate wave was in the z-direction, we reach the 
conclusion that the changes in velocity across the three waves are in mutu- 
ally perpendicular directions. 

If we imagine the waves to be produced by the motion in an arbitrary 
direction of a piston which forms one boundary of the gas,  the relative am- 
plitude of the three waves which are produced will depend upon the compon- 
ents of the piston velocity along the velocity vectors produced by each of the 
individual waves.    An attempt to illustrate this and some of the other prop- 
erties of the waves which we have derived is given in Fig.   3. 
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of magnetic field across an intermediate wave, the propagation speed for 
intermediate waves remains unchanged.    Thus, the second wave will move 
at precisely the same speed as the first wave.    We may now consider a 
third and fourth wave generated by the piston, and it follows from the same 
argument that the propagation speeds of all of these waves will be precisely 
equal.   Since we can consider an arbitrary pulse of intermediate waves to 
be composed of a series of step functions,  it follows that provided that the 
piston motion is constrained to produce only intermediate waves, the wave 
shape will be retained as the entire large amplitude disturbance propagates 
through the fluid.    Thus we obtain neither steepening to form a shock wave 
nor spreading out as in the case of expansion fans. 

The restriction on the piston motion which is required to produce a 
pure intermediate wave is easily seen from the condition that the change in 
velocity across a small amplitude intermediate wave must be perpendicular 
to the plane defined by the magnetic field and the wave or piston normals. 
Thus, the instantaneous changes in velocity or acceleration of the piston must 
always be perpendicular to the magnetic field at the surface of the piston. 

The changes in flow prope ties across a large amplitude intermediate 
wave are obtained by summing the changes across each of the component 
small step function waves, which in turn are considered as differential ele- 
ments.    It follows immediately from Eq.  (11-15) that across the large ampli- 
tude wave the changes in normal velocity,  density and pressure will be zero. 
In evaluating the change in magnetic field we must remember that our coordi- 
nate system was chosen such that Bz was zero ahead of each small amplitude 
wave.    Equation (11-15) therefore states that the differential change in magnetic 
field is in the plane of the wave front and perpendicular to the local field. 
Integrating a number of such changes gives the result that the magnitude of 
the magnetic field is unchanged across a large amplitude intermediate wave, 
however,  the magnetic field vector can be rotated through an arbitrary large 
angle about an axis perpendicular to the wave front.    The change in tangential 
velocity across the wave is from Eq.  (11-15) in the direction of the change in 
magnetic field and is equal to   Ag/v4^p7   Although such a wave produces no 
change in the thermodynamic quantities, the normal velocity,  or the mag- 
nitude of the magnetic field, it is still a large amplitude wave in the sense 
that the angle of rotation of the magnetic field and the change in tangential 
^velocity can be large, i.e.  of the order of radians and the propagation speed 
respectively. 

We may anticipate that,  since for small amplitude fast and slow waves 
the magnetic field remains in the plane defined by the wave normal and the 
magnetic field ahead of the wave,  it will also remain in this plane for large 
amplitude fast and slow waves.    The intermediate wave will therefore be re- 
quired in flow fields in which the boundary conditions require a rotation of 
the plane of the magnetic field.    The particular case of rotation through 180 
is frequently overlooked.    In this case the magnetic field appears to stay in 
the same plane but its tangential component changes sign.    As we shall see, 
neither fast or slow expansion waves or shock waves can change the sign of 
the tangential component thus the intermediate wave will also appear in cases 
where such a sign change is required by the boundary conditions. 
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It is also instructive to look at some of the wave properties in the 
limits of large and small ratios of a to b.    In the limit of a » b,  the fast 
propagation speed,  as well as the changes across the fast wave,   reduce to 
those for an ordinary sound wave.    This is to be expected since in this case 
the magnetic pressures are too small to play any role.    The fast wave,  there- 
fore, approaches a purely longitudinal wave.    In the same limit,  the slow 
wave becomes a purely transverse wave.    This can be seen most easily from 
Eq.  (11-24) which shows that the change in the y-component of velocity be- 
comes very large as compared with the change in the x-component of veloc- 
ity.    It follows physically from the fact that a very small change in the lon- 
gitudinal velocity produces a change in density and,  therefore, a change in 
gas pressure which is very large compared to the magnetic pressure.   Thus, 
only very small changes in the longitudinal velocity are required to balance 
the changes in the magnetic pressure.    For this wave and in this limit,  the 
fluid may therefore be considered as virtually incompressible.    It then fol- 
lows from Eq.  (11-23) and, as we have concluded earlier,  that the slow propa- 
gation speed approaches the intermediate speed. 

In the opposite limit,  i.e. , a « b,  the waves do not break up into 
purely longitudinal and purely transverse.    In this limit, the slow wave is 
most easily understood.    Since,  in this limit, both the gas pressure and the 
dynamic pressure p v^,  are small compared to the magnetic pressure, we 
cannot have appreciable changes in the magnetic field across the wave. Thus, 
the magnetic field lines will have virtually no change in direction across the 
wave.    The plasma flow, on the other hand,  is strongly coupled to these field 
lines.    Thus,  the plasma is constrained to flow in a direction parallel to the 
magnetic field lines.    We have already observed that the propagation speed 
of the slow wave in this limit is equal to the sound speed multiplied by the 
cosine of the angle between the magnetic field and the wave propagation dir- 
ection.    This then corresponds to a sound wave traveling along the magnetic 
field lines,  and therefore moving more slowly in the direction of the wave 
normal.    The slow wave therefore becomes purely transverse for propaga- 
tion perpendicualr to the magnetic field and purely longitudinal for propaga- 
tion along the magnetic field.    On the other hand,  since the velocity change 
across the fast wave is perpendicular to that across the slow wave, we con- 
clude that in this limit the fast wave is purely longitudinal for propagation 
perpendicular to the magnetic field, while it is purely transverse for propa- 
gation along the magnetic field. 

Summary 

We may summarize the major conclusions which have been reached 
concerning these waves as follows: 

1)   There are three distinct wave propagation modes which can be 
conveniently classified according to the magnitude of their propagation speed 
as fast,  intermediate and slow.    The velocity changes across the three waves 
are mutually perpendicular. 
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2) For fast and slow waves, both the velocity and the magnetic field 
remain in the plane defined by the magnetic field ahead of the wave and the 
wave normal.   On the other hand, for the intermediate wave both the veloc- 
ity and magnetic field changes are purely in the direction perpendicular to 
this plane. 

3) For the fast mode, the magnetic pressure increases when the den- 
sity increases.   For the slow mode, an increase in magnetic pressure cor- 
responds to a decrease in density.    Across an intermediate wave, neither 
the magnetic pressure nor the density change. 
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Fig. 2       Friedrichs Diagram.    Polar plot showing the dependence of the 
propagation speeds of the three linear wave modes on the angle 
between the wave normal and the magnetic field.    For several 
values of the ratio of sound speed   a   to Alfven speed   b.    Speeds 
have been normalized with respect to   ^/a^ + t>2   , 
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Fig. 3       Sketch of flow resulting from the instantaneous acceleration of a 
piston to a small velocity.    In general,  three waves will be emitted 
which separate with time as shown on the x-t diagram.    The pro- 
jections of the magnetic field lines on the x-y and x-z planes at 
a time t' are also shown for the case in which both the fast and 
slow waves are compressions.    The changes in velocity and mag- 
netic field across the three waves are illustrated in the vector 
diagrams.    The initial magnetic field, övs and öv, are in the x-y 
plane.    ÖV£ must lie within the acute angle between the magnetic 
field and the y-axis.    The three velocity changes are mutually 
perpendicular.    The signs of ÖBS and ÖBr were also chosen for 
compression waves. 
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SECTION III 

LARGE AMPLITUDE ISENTROPIC WAVES AND SHOCK FORMATION 

The solution to a nonlinear flow problem can be built up by considering 
it as a series of small amplitude waves,  each propagating through a medium 
which has been modified by previous waves.    In this manner,  it is possible to 
discuss problems with arbitrarily large amplitudes.    The concept of a large 
number of isentropic small amplitude waves describing the flow breaks down 
in the case where shock waves are formed.    However,  the nonlinear isentropic 
solutions can be used to predict when shock waves occur.    The shock waves 
themselves will be discussed in the next section.    In this section,  we will 
consider the nonlinear waves related to each of the linear wave propagation 
modes.    We will consider only the case in which the waves are all propagating 
in one direction,  i.e. , as though they were generated at the boundary of a 
semi-infinite plasma.    For the special case in which the boundary condition 
is changed suddenly,  the fact that the three propagation speeds are different 
separates the resulting nonlinear waves.    Thus,  for this case the nonlinear 
description of the individual modes can be used to obtain a general solution 
for an arbitrary instantaneous change in the boundary condition.    The more 
general case in which several wave modes exist at the same place or waves 
of the same mode exist in the same place propagating in opposite directions 
will not be considered.    Problems of this kind can also be treated by a gen- 
eralization of the procedures to be described; however,  in most cases,  they 
involve considerable labor. 

We shall show that compression waves for both the fast and the slow 
modes tend to steepen to form shock waves, whereas the expansion waves 
for these two modes tend to spread out with time so that the gradients become 
less steep.    The intermediate wave,  on the other hand,  has the rather sur- 
prising property that even for large amplitudes,  it remains a linear wave. 
Thus,  even for large amplitude,  an intermediate wave of arbitrary shape 
will retain its shape as it propagates through the medium. 

Intermediate Large Amplitude Waves 

Let us imagine a semi-finite uniform plasma bounded by a piston.    At 
time zero the piston is moved such as to produce a step function small ampli- 
tude intermediate wave.    A short time later the medium will still be undis- 
turbed ahead of the region to which the wave has propagated,  i.e. ,  for dis- 
tances greater than bxt from the piston.    In the region between the piston and 
the instantaneous location of the wave,  the medium will again be uniform,  but 
at a slightly different condition than the condition existing ahead of the wave. 
If at this time the piston velocity is again changed instantaneously so as to 
produce a second intermediate wave,  we may examine the propagation speed 
of this second wave.    In order to do this we must determine the conditions 
behind the first wave.    Since,  as we concluded in the previous section,  there 
is no change in density,  normal component of velocity,  or normal component 
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Fast and Slow Waves 

Let us now consider the case in which the piston motions are. such 
as to generate two successive small amplitude waves which are either both 
fast or both slow waves.    Differences in the propagation speeds of the two 
waves  result from two causes.     First,  there is a change in the propaga- 
tion speed of the wave relative to the fluid due to the changes in magnetic 
field and density across the wave.   Secondly, there is a change in fluid 
velocity across the first wave,  which means that the second wave is riding 
on a fluid which is already moving.    If the first wave is a compression wave, 
the fluid behind it is moving at a slow velocity in the direction of propagation 
of the wave.    Thus, the second wave, even if it had the same propagation 
speed relative to the fluid, would tend to catch up with the first wave.    In 
most cases, we will find that the change in fluid velocity is the predominant 
effect. 

A quantitative determination of the conditions under which the two 
waves will catch up with each other can be obtained by examining the expres- 

p       6 (vx + c) 

c "T5p ■ x 
wave relative to the first.    If this is of the same sign as the propagation 
speed of the first wave, the second wave will overtake the first.   Thus, 
6 (vx + c)/c positive implies steepening.    Therefore, if the above expression 
is positive steepening occurs for the positive Op,  i.e. compression waves. 
If it were negative,  steepening would occur for rarefaction waves.    Making 
use of the jump conditions across the wave and the dispersion relation, this 
quantity can, with some algebraic manipulation, be written as 

p    ö(v    + c) I      (Y- 1) a b      + (c  -a ) 
 =   1 + -    2    t        1    11  (III-1) 

c op 2 a b      + (c  -a ) 

It can easily be seen that this expression is always positive.    It is interesting 
to note that this quantity which describes the rate at which waves catch up 
with one another is insensitive to the gas conditions.    It is always between 

+ 1 

__ 
sion  -^—     »        .    Ö {vv + c) is the propagation speed of the second 

X+J    and 3/2. 

If we now extend this argument to a smooth pressure pulse which we 
consider to be made up of a large number of small amplitude waves,  we see 
that for both the fast and the slow mode, the compression parts of the pulse 
tend to steepen to form shock waves, while the rarefaction portions tend to 
separate.    Thus in terms of the illustration given in general terms in Fig. 
1 (c), we may now interpret the pulse shape which is shown as the density 
or pressure profile.    The maximum density point overtakes the lower den- 
sity regions ahead of it while it moves away from the ones behind.    As men- 
tioned earlier,  across the discontinuities which are formed we can no longer 
assume that the gradients are too small for viscous dissipation and Joule 
heating to be important.    Thus,  there will be an entropy change and we must 
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consider such shock waves separately.    For rarefaction waves on the other 
hand,  the lines of constant conditions spread apart and thus the gradients 
become less steep as time progresses.    The isentropic theory is therefore 
applicable to all rarefaction waves and to compression waves provided taat 
they have not yet steepened to form shocks. 

Nonlinear waves consisting only of one wave mode propagating in 
only one direction are generally referred to as simple waves.    In a simple 
wave,  plasma conditions are constant along lines moving at the propagation 
speed of the individual small amplitude waves,  vx + c.    (Such lines do not 
cross any waves. )   Thus,  if conditions are known along one boundary for 
example,   a piston which we imagine to be producing the flow,  then condi- 
tions at later time can be determined by projecting constant properties 
along these lines.    Since the relative changes in the flow properties across 
the component small amplitude waves are given by Eqs.  (II-6) through (11-13), 
integration of these equations allows one to express all of the flow properties 
in terms of one of them.    Thus,  the changes which can occur across simple 
waves can be determined independently of the piston motion.    The rate of 
change of velocity of the piston will determine at what point in the flow field 
these changes in flow properties actually occur. 

Although some of these relations can be integrated formally,  a some- 
what more surveyable graphical representation of the integrals was suggested 
by Shercliff. 3   For the case of one-dimensional time-dependent flows,   (Bx 

constant),  the differential equation relating By and p contains only these 
two variables.    This can easily be seen by eliminating c^ from Eqs.   (11-22) 
and (11-23) and remembering that sound speed is related to the density by 
the isentropic law.    Introducing nondimensional variables 

,     B 
R - y By-F- '        x 

p«    = 
4TrV P 

p =■ (HI-2) 

the resulting differential equation can be written in the form 
2 

d B' 

dp' 

I +B  '2-p,V \ dB' 
y      H       I       y 

p'B' f y dp' 
4,(Y-2)_ = 0 (III-3) 

The variable p1 is indeed proportional to the first power of the density since 
from the isentropic law PQ is a constant.    PQ may be regarded as the density 
to which the gas must be expanded or compressed isentropically in order to 

reach the condition a = bx.    The above equation is quadratic in Ip1 and 

therefore may be factored into two first order differential equations.    These 
two equations correspond to the trajectories in the By  - p' plane across fast 
and slow waves respectively.    The numerical solutions of these equations for 
the case \ = 5/3 are shown in Fig.  4(a).    As can be seen,  these solutions 
correspond to a one-parameter family of curves.    The parameter could be 
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expressed as the value of p' which occurs at By = 0.   An arbitrary initial gas 
condition determines a point in this plane.  Through each point there are two 
lines corresponding to the trajectories along fast and slow simple waves. The 
changes in the remaining flow properties along these trajectories can be 
obtained by first solving the dispersion relation Eq.  (n-16) for the speed 
of propagation,  c,  in terms of By and p*.    Then, integrating Eqs.  (II-6) 
and (II-8), the changes in the x and y components of velocity can be deter- 
mined.    These results are shown in Figs. 4(b),  (c), and (d) with the veloc- 
ities nondimensionalized with respect to the velocity Bx/^'po-    The equa- 
tions determining the change in velocity do not depend upon the magnitude 
of the velocity.    Thus, the integration gives only the change in velocity 
between two points along a trajectory and not the absolute magnitude.    In 
Figs. 4(c) and (d), the velocity coordinates are to be regarded as the change 
in that component of velocity which would occur between a given point on the 
trajectory and the point at which B'   is equal to zero. 

Figure 4 contains all of the information required to determine condi- 
tions across fast and slow simple waves.   If, for example, the variation of 
density with time is known at a fixed position, then the variation in By, vx, 
Vy and c can be determined from Fig.  4.    Conditions in the remainder of 
the flow field are then known to be constant along lines moving at a velocity 
of c + vx.    Thus, conditions in the whole flow field are determined. 

Across large amplitude fast and slow waves the change in Bz and vz 
is zero since it is zero across the small amplitude waves.    Remembering 
that our choice of the y and z directions was such as to make Bz zero,  it is 
appropriate to consider the By axis in Fig,  4(a) as representing the tangential 
component of magnetic field.    Thus if we chose our coordinate relative to a 
fixed direction in the plane of the wave front and defined the tangential mag- 

. B 
netic field in terms of its magnitude and the angle ^ = tan     «— ,  the tra- 

y 
jectories across fast and slow waves are confined to planes of constant ^ 
and have the shapes shown in Fig.  4 (a).    As mentioned earlier in order to 
go from one value of 0 to another, the intermediate wave is required.    From 
the properties of the intermediate wave enumerated above, the trajectories 
of intermediate waves on a three-dimensional extension of Fig.  4(a) corres- 
pond to the lines obtained by taking any point on the plane shown and rotating 
it about the p' axis. 

Several other features of the diagram shown in Fig.  4(a) are worth 
commenting on.    First,  as was apparent from the jump conditions across 
individual waves or,  what is equivalent, the differential equations which 
determined these curves,  for fast waves the density always increases as 
the magnitude of the magnetic field increases while for slow waves the 
density decreases as the magnitude of the magnetic field increases.    Ex- 
pansion to a vacuum, p = 0,  can only be achieved by means of a slow ex- 
pansion wave.    If we followed a fast trajectory toward decreasing densities 
we reach By = 0 at a finite value of p.    There is one exception to this which 
is somewhat disguised in our diagram by the nondimensionalization of the 
density.    For the case in which B   is equal to zero, it is possible to have a 
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fast expansion go to zero density.    It is also apparent from the diagram 
that By = 0 can only be reached by either a fast expansion or a slow com- 
pression.    Conversely it is only possible to go away from By = 0 with 
either a fast compression or a slow expansion.    Furthermore,  for a fast 
expansion, the point By = 0 is always reached at a value of p1 which is less 
than one.    And conversely,  the slow isentropic compressions would only 
reach B^ = 0 at p' greater than one.    This latter relation turns out also 
to be valid across the corresponding slow shock waves. 

In our discussion we have restricted ourselves to a considerable 
extent to the case of one-dimensional time-dependent flows.    Simple waves 
also exist in steady two-dimensional flows in which the flow velocity is 
larger than the wave propagation speed.    Such flows will not be discussed 
in detail here except to point out that the major conceptual difference be- 
tween the two cases lies in determining the trajectories of the elementary 
small amplitude waves.    In order to achieve a steady flow situation the 
waves must propagate relative to the fluid at the same speed at which they 
are blown back by the fluid velocity.    Thus, the angle which the wave normal 
makes with respect to the flow velocity is determined by the conditions that 
the normal component of velocity be equal to the propagation speed, c, of 
the wave.   Several references on two-dimensional flows are included in the 
bibliography. 

Instantaneous Piston Acceleration 

Two possible flow patterns which can occur when the boundary condi- 
tions are changed instantaneously to a different constant value are illustrated 
in Fig.  5.    In this case all of the waves are generated at the boundary at the 
time at which conditions there are changed.    Thus,  flow properties are con- 
stant along lines in the x-t plane emanating from this point.    Since the propa- 
gation speeds of the three wave modes are different, they will separate as 
time progresses.    Thus, the entire flow can be described as consisting of 
three simple waves corresponding to the three modes.    Since,  by definition, 
the fast mode has the fastest propagation speed,  a fluid element some dis- 
tance from the boundary will first experience a change corresponding to a 
fast simple expansion fan then an intermediate and finally a slow one.    The 
regions occupied by the fast and slow expansion fans widen as time progresses 
since the propagation speed at the back edge of a rarefaction wave is slower 
than that at the front edge.    Since in general,  there is a finite difference be- 
tween the propagation speeds of the different wave modes, there will be re- 
gions between the different waves which also spread with time in which con- 
ditions are completely uniform.    Since the propagation speed of the inter- 
mediate wave does not change as the fluid moves through the wave, the 
intermediate wave will remain a discontinuity. 

In case the boundary conditions are such that one of the waves cor- 
responds to a compression wave a shock will be formed.    For the case of 
instantaneous change of the boundary condition the shock will move at con- 
stant velocity and thus,  conditions behind it will be independent of time. 
The jump conditions across shock waves will be discussed in the next sec- 
tion.    If the other wave mode is a rarefaction wave the techniques of this 
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section can be applied to calculate the changes and flow property across 
the expansion wave.   A case of this type is sketched in Fig.  5(b).    We will 
return to a discussion of this diagram in Section VI when we consider the 
application of shock waves to the production of high temperature plasma 
samples for laboratory study. 
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SECTION IV 

SHOCK WAVES 

From our previous discussion compression waves of either the fast 
or the slow mode steepen to form discontinuities.    We may therefore expect 
to find two different types of shock waves depending upon which mode of small 
amplitude waves formed the shock. 

The changes in flow properties which occur across shock waves may 
be determined without reference to the specific dissipation processes occur- 
ring within the shock wave.    The dissipation processes are related only to 
the structure within the shock wave which will be discussed briefly in Section V. 
For the present discussion, we will consider the thickness of the shock wave 
to be infinitessimally small compared to the scaTc of the flow field. 

Let us go to a coordinate system moving with the instantaneous shock 
velocity and draw two planes parallel to the plane of the shock,  one on either 
side of the shock wave.    Since the shock wave itself is very thin,  these two 
planes can be very close together in terms of the scale of the overall flow 
field.    For a steady flow there can be no net rate of accumulation of either 
mass, momentum,  energy,  or magnetic field in the region between the two 
planes.    Thus if a shock wave is to exist between these two planes,  the con- 
ditions at the planes must satisfy the restrictions that the fluxes of the above 
quantities are the same across both planes.    The relations equating these two 
fluxes then determine the jump conditions which are allowed across shock 
waves.    If the planes are very close together the time that it takes the fluid 
to go from one plane to the other is very small compared to the time scale 
on which the overall flow field changes.    Thus,   even for an unsteady flow, 
we may consider this small portion of the flow as being steady.    The result- 
ing shock relations can therefore be used in unsteady flows. 

Let us denote the two planes by the subscripts 1 and 2. Further, let 
us choose a coordinate system such that the x-direction is the normal to the 
wave front and let us assume that the coordinate system is moving at a ve- 
locity such that Vyi = v^ = 0 and again orient our coordinate system such 
that Bzi - 0. The equations which we will obtain are in essence the nonlinear 
versions of the jump conditions across small amplitude waves which we dis- 
cussed earlier. One exception to this is that entropy is not conserved. This 
equation must be replaced by the conservation of energy flux. 

Let us consider first the conservation of flux of magnetic field.    The 
statement that no magnetic field is accumulated between the two planes is 
equivalent to the statement that for a steady state V x E = 0.    Thus,   the tt,n- 
gential components of electric field,   Ey and Ez,  must be the same on both 
sides of the shock front.       Since our two control planes   are  outside of the 
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shock,  the current density is small at these points and we may use the re- 
lation 

E + JCJLä   =   o 
~ c e 

(IV-1) 

where ce is the velocity of light.    Making use of this equation and the fact that 
Ey and Ez do not change across the shock, we obtain the equations 

vx2By2  -VBx=   VxlByl (IV-2) 

Vx2 Bz2 " vz2 Bx =  0 (IV-3) 

Note that no subscript is required on Bx since it must be the same on both 
sides of the shock. 

The requirement of the conservation of mass leads to the relation 

P2 vx2   ^   Pl vxl (IV-4) 

The momentum flux across a plane is composed of the flow of fluid momentum 
across the plane,  (i e. ,  the product of mass flow and velocity) the gas pressure 
and the magnetic stresses acting on the plane.    Thus, we obtain for the three 
components of the momentum equation 

B 
p2  vx2    + P2 + -£ «, v   , 1    xl 

+ PI+ -ir (IV-5) 

P2 vx2 vy2 

BE, x    yc _ 
4ir 

B   B   . x    yl 
4ir (IV-6) 

P2 vx2 vz2 

B   B  , x    z2 
"TIF— = 0 (IV-7) 

Finally,  the energy equation consists of the flow of thermal and kinetic 
energy of the fluid as well as the flow of electromagnetic energy which is 
given by the Poynting vector.       Making use of Eq.   (IV-1) we obtain the 

-30- 

V. 



relation 

=    P ivxi [TT 77+ 1 vxi y 
„ 2 

yi     xl 
4 JT 

(IV-8) 

The above equations are sufficient so that if all of the conditions on one side 
of the shock are known,  the conditions on the other side are determined.    Note 
that conditions ahead of the shock include the flow velocity relative to the shock. 
Thus the shock speed as well as the thermodynamic and magnetic field con- 
ditions must be specified. 

The solution of these equations results largely from straightforward, 
but somewhat tedious algebraic manipulation.    In the discussion which follows 
we will first describe,  but not necessarily prove,  some of the general results 
which apply to the jump conditions across shock waves.    Following this, we 
will discuss graphs of the jump conditions for various special cases.     These 
graphs have been chosen to give the reader some feeling for the changes 
which can occur across shock waves.    They are not intended to provide a com- 
plete summary of the shock relations for computational purposes. 

Shock waves are always compression waves.    This conclusion is to be 
expected from the shock formation arguments given in the previous section 
which showed that compression waves tended to steepen to form discontinuities 
while rarefaction waves spread apart.    It does not follow immediately from 
the equations written above since the sign of the velocity may be changed 
throughout without changing the equations.    Thus,   solutions of the above equa- 
tions could correspond to the flow going either from low to high density or 
from high density to low density.    If,  however,  one examines the entropy on 
the two sides of the shock it can be shown that the entropy is always higher on 
the higher density side. '   Since the entropy must increase with time,  it follows 
that the flow must go from the low density side toward the high density side. 

The physically realizable solutions of these equations can be divided 
into two categories which have been named fast and slow shocks.    The limit 
of weak fast and slow shock waves are the fast and slow small amplitude dis- 
turbances discussed in Section II.    The magnetic field changes across these 
shock waves are qualitatively the same as they would be for fast and slow 
small amplitude compression waves.    The tangential component of magnetic 
field increases across fast shocks and decreases across slow shocks.    Fur- 
thermore,  as will be shown below,  the magnetic field behind the shock is in 
the plane defined by the wave normal and the magnetic field ahead of the shock. 
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The fast disturbance speed ahead of a fast shock is always less than 
the normal component of flow velocity,  while the fast disturbance speed cor- 
responding to conditions behind the shock h always greater than the normal 
component of the flow velocity behind the shock.    The corresponding state- 
ment can also be made for slow shocks relative to the slow disturbance speed. 
The proof of this for weak shock waves follows directly from the arguments 
used to show that compression waves steepen.    Consider one of the waves 
used in the steepening argument to be a weak shock.    It was then shown that 
a small amplitude wave behind this wave would overtake it.  thus,  showing 
that the small amplitude disturbance speed behind the waves was greater than 
the flow velocity.    Correspondingly the wave under consideration would over- 
take a small amplitude wave ahead of it thus,  showing that its velocity relative 
to the fluid was larger than the propagation speed ahead of it.    A plausibility 
argument for this statement for stronger shock waves can also be given on 
the basis of the shock steepening analysis.    If we imagine a shock to be 
formed from the steepening of a gradual pressure pulse,  then as the first few 
sound waves cross, the shock will gradually become stronger.    Each increase 
in shock strength is then directly related to a small amplitude wave overtaking 
the shock.    Thus we would not expect to be able to produce shock waves in 
this manner for which small amplitude disturbances from behind cannot catch 
up.    If the flow velocity ahead of the shock were less than the disturbance 
speed then a wave coming from behind will not pile up at the shock,  but would 
go out ahead.    Thus, we also require that the flow velocity ahead be greater 
than the disturbance speed.    Direct verification of this restriction on the ve- 
locities ahead and behind shock waves can be obtained by examining the alge- 
braic solutions of the shock relations.       A further restriction on the flow 
speeds which will be discussed in more detail below is that for fast shocks 
the flow velocity must be greater than the intermediate speed on both sides 
of the shock while for slow shock waves the flow velocity must be less than 
the intermediate disturbance speed on both sides of the shock. 

The proof of the fact that the magnetic field behind the shock must lie 
in the plane defined by the magnetic field ahead and the wave normal proceeds 
as follows.    Eliminating v  7 between Eqs.  {IV-2 and IV-6) and eliminating 
vz2 between Eqs.   (IV-3 anaIV-7) we obtain the relations 

V Mr-ir -'   V (IV-9, 

(IV-10) 
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It follows from Eq.   (IV-10) that either the z-component of magnetic field be- 
hind the wave is zero or the flow velocity must be equal to intermediate 
propagation speed.    The latter case requires from Eq.   (IV-9) that either the 
flow velocity ahead be also equal to the intermediate speed ahead of the wave 
or that the y-component of magnetic field ahead of the wave be zero.    If B^j 
is zero then the plane of the magnetic field ahead of the wave is not defined 
and it does not make sense to distinguish between the  y and z  components of 
the magnetic field behind the wave.    If the flow velocity is equal to the inter- 
mediate speed both ahead and behind the wave,  this simply corresponds to 
the large amplitude intermediate wave discussed in the previous section. 
Since intermediate waves do not steepen to form discontinuities and since 
there is no entropy change across them it does not seem appropriate to refer 
to them as shock waves.    It should be remembered, however,  that an almost 
discontinuous rotation of the plane of the magnetic field can occur across 
such a wave,   if it is initiated sufficiently rapidly.    Thus,  excluding the dis- 
continuous intermediate wave,  a finite value of Bz2 cannot occur behind a 
shock wave.    Thus,  the magnetic field and the velocity are entirely in the 
x-y plane on both sides of the shock front and Eq.   (IV-3) and (IV-7) need not 
be considered in further discussion of the conservation equations. 

We shall now show that shock waves with velocities greater than the 
intermediate speed ahead and less than the intermediate speed behind cannot 
occur.    As can be seen from Eq.   (IV-9)   this statennent is completely equiva- 
lent to the statement that the sign of the tangential component of magnetic 
field cannot change across a shock wave.    There has been considerable con- 
fusion on this point in the literature since solutions of the conservation 
Eqs.   (IV-2) through (IV-8) which violate the above condition do exist.    These 
solutions,  however,  cannot occur in nature and should therefore be regarded 
as extraneous. *   A portion of the confusion is related to the fact that a num- 
ber of authors who have discussed solutions of the conservation equations did 
not recognize that some of these solutions were extraneous and discussed 
them at considerable length.    Since the extraneous solutions are considerably 
more complicated than the real ones this leaves the overall impression that 
the solution of the shock equations is much more complex than it actually is. 
Further confusion resulted from the fact that these extraneous solutions were 
originally referred to as unstable shock waves.    It was recognized that this 
was not an ordinary instability growing exponentially with time,   but rather 
that it corresponded to a sudden disentegration of the shock wave.    Numerous 
papers have been written on the waves produced when such a shock wave dis- 
integrated.    In the prest it discussion we shall use essentially the same 
arguments which were initially proposed as leading to the instability of these 
solutions.    The logical conclusion of the argument as presented here is, however, 
that these solutions cannot occur in nature even for very short times and thus 
that they are extraneous solutions of the mathematics which do not correspond 
to physical reality. 

In the literature these solutions are usually referred to as unstable or non- 
evolutionary shock waves.    We prefer the term extraneous since it implies 
more directly that these solutions cannot occur in nature even for very short 
times, 
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Let us imagine that a flow containing an extraneous shock does exist 
and focus our attention on a small region of this flow in the neighborhood of 
the shock wave.    This small region may be regarded as having been produced 
by the instantaneous acceleration of a piston to a velocity corresponding to 
conditions behind the shock wave.    Since for all solutions of the conservation 
equations Bz2 and vz2 are zero the required piston motion is purely in the 
x-y plane.    If we not consider a second case in which the boundary conditions 
arc changed slightly so as to require an arbitrarily small z component of ve- 
locity at the piston, we will find that no neighboring solutions of the flow prob- 
lem exist.    The only wave mode which can produce the required z component 
of velocity or magnetic field is the intermediate wave.    We would therefore 
expect that a small amplitude intermediate wave would also be emitted from 
the piston at the time at which it is accelerated.    There is, however, no 
place in the flow field where the intermediate wave can exist.    The velocity 
of the extraneous shock relative to the fluid ahead of it is greater than the in- 
termediate propagation speed.   Thus,  the intermediate wave cannot propagate 
ahead of the shock wave.    On the other hand,  the velocity of the extraneous 
shock wave relative to the fluid behind it is less than the intermediate propa- 
gation speed, thus the intermediate wave cannot remain behind the shock wave. 
Furthermore,  since the plane of the magnetic field cannot rotate across the 
shock wave the intermediate wave can also not exist in the middle of the 
shock wave.    Thus a flow containing an extraneous shock does not have any 
neighboring solutions corresponding to a small change in the boundary condi- 
tions which requires an arbitrarily small angle of rotation of the plane of the 
magnetic field. 

This difficulty does not occur for the allowed fast or slow shocks. For 
the fast shock the flow velocity is greater than the intermediate propagation 
speed on both sides of the shock and thus the required intermediate wave could 
exist behind the shock wave.    Correspondingly for the allowed slow shock solu- 
tions the flow velocity is less than the intermediate speed on both sides of the 
shock and thus the intermediate wave could exist ahead of the shock wave.  As 
has already been observed across the extraneous shock solutions the tangential 
component of magnetic field changes sign,  i. e. ,  rotates through 180°.    We 
shall now show that boundary conditions which require such a 180° rotation of 
the tangential component of magnetic field can always be satisfied by flows 
which contain allowed fast and slow waves and a 180° intermediate wave. 
Thus there is no consistent set of boundary conditions which would require the 
existence of an extraneous shock in the solution.    One might argue that for the 
case in which the rotation in the intermediate wave is precisely 180°,  the flow 
solution is not unique.    However,  since the lack of uniqueness exists only over 
an immeasurably small range of angles one would not expect to be able to pro- 
duce an extraneous shock in any physical situations. 

In order to show that an alternate solution always exists let us con- 
sider again a piston on which boundary conditions are changed instantaneously. 
For the present discussion,  it will be more convenient to consider the piston 
as an insulator.    In this case,  the tangential component of flow velocity at 
the surface is not necessarily the velocity of the piston.    Thus, the y and z 
components of velocity cannot be controlled directly by the piston motion. 
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However,  since the piston is an insulator it is possible to control the mag- 
netic field at the surface.    The appropriate boundary conditions are therefore 
the x component of velocity and the  y  and  z  components of magnetic field at 
the surface.    A one to one correspondence exists between flows specified by 
the above boundary conditions and the flows resulting from conducting piston 
boundary conditions which are the specification of the three components of 
velocity.    Let us consider first,  the set of cases in which Bz is zero at the 
piston and By is of the same sign as it is before the boundary conditions are 
changed.    Solutions must be possible for arbitrary values of vx and arbitrary 
positive values of By.    Furthermore,   since the sign of By is unchanged 
these solutions do not contain either an intermediate wave or an extraneous 
one.    The case of two extraneous shocks which would change the sign of By 
twice is also not possible since they would overtake one another.    The solu- 
tion in this case must therefore consist only of the allowed waves.    We now 
change the boundary conditions such that the magnitude of the tangential com- 
ponent of B at the piston remains the same,  but its direction is changed.   Then 
the flow solution remains identical except that an intermediate wave which 
rotates through the appropriate angle must be inserted between the fast and 
slow waves.    This follows from the fact that across the intermediate wave 
the magnitude of the magnetic field,  the normal component of the flow velocity 
and the density and pressure are all unchanged.    Thus,  the quantities which 
are relevant for determining the changes across the fast and slow waves are 
unchanged by the presence of the intermediate wave.    In terms of these quan- 
tities the flow solution for an arbitrary angle of rotation is known once it is 
known for a particular angle of rotation.    The magnitude of the tangential 
component of velocity is not given quite as directly since it can change across 
an intermediate wave.    We can,  however,  conclude that,  given a flow solution 
corresponding to no rotation of the magnetic field,  solutions also exist for all 
other angles of rotation of the magnetic field.    In particular the case of 180° 
rotation is included.    Thus boundary conditions which might suggest the ex- 
traneous shock can also be satisfied by a solution of the type just described. 

In the process of eliminating the extraneous solutions from considera- 
tion we have derived two restrictions on the allowed shock solutions.    These 
may be conveniently summarized as the statement that for fast shocks the 
flow velocity on both sides of the shock must be greater than the intermediate 
propagation speed while for slow shocks the flow velocity on both sides must 
be less than the intermediate propagation speed.    Using Eq.   (1V-9) this 
statement also shows that the sign of the tangential component of magnetic 
field is unchanged across either a fast or a slow shock wave.    It also follows 
immediately from the velocity restriction that a slow shock cannot overtake 
a fast shock while a fast shock necessarily overtakes a slow shock. 

Fast Shocks 

Let us now turn to a more quantitative description of the solution of 
the shock equations.    The conditions behind a shock are specified if conditions 
ahead including the flow velocity relative to the shock are known.    Even in 
non-dimensional terms there are four parameters which are required to de- 
fine a particular shock a.\/b\,  Mj, 61,   and y.    The subscript 1 will be used 
to define conditions in the low density stream ahead of the shock,    ^i/bi may 
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be regarded as defining the ratio of gas to magnetic pressure ahead of the 
wave.    The Mach number Mj specifies the shock strength and is defined as 
the flow velocity in shock coordinates divided by the appropriate (fast for 
fast shocks and slow for slow shocks)  small amplitude disturbance speed. 
Öj = tan **     Byi/Bx   defines the angle of the magnetic field relative to the 
shock normal.    The thermal properties of the gas can be defined in terms of 
the ratio of specific heats y.     A complete description of the shock relations 
for the entire range of these parameters clearly requires numerous graphs. 
We shall restrict ourselves to considering only y = 5/3 and shall only present 
graphs for selected values of other parameters.    The intent is to give the 
reader some impression of the significance of these parameters in determin- 
ing conditions behind the shock rather than to present a complete survey 
suitable for use in computation of flow fields. 

In Fig.  6 the conditions behind fast shocks propagating perpendicular 
to the magnetic field (Bx = 0) are plotted with a^/bi as a parameter.    The 
density ratio across the shock is relatively insensitive to aj/bj.    For weak 
shocks,  the density ratio must,  of course,  approach unity.    For strong shocks, 
all of the curves approach the limiting density ratio of four for the case of 
y = 5/3.    In the strong shock limit,  the curves must approach one another 
since the flow kinetic energy is large compared to either the thermal or the 
magnetic energy,  and thus,  the ratio becomes insignificant.    The temperature 
change across the shock has been normalized with respect to the flow kinetic 
energy ahead of the shock wave.    In the limit of strong shock waves,  virtually 
all (15/16) of the flow energy ahead of the shock becomes converted to thermal 
energy behind.    In the limit of weak shocks the temperature change must of 
course approach zero.    It is interesting to notice that for intermediate strength 
shocks-  the temperature change is significantly smaller for the case of a 
strong magnetic field ahead of the shock (aj/bj <  1)   than it is for the case of 
weak magnetic fields ahead of the shock.    This difference is accounted for by 
the fact that the magnetic energy density behind the shock is higher than it is 
ahead cf the shock,  thus,  in the case of strong magnetic fields,  some of the 
initial kinetic energy is converted into magnetic energy and a smaller amount 
remains for thermal energy.    It is a fairly general property of fast shock 
waves that the presence of the magnetic field tends to reduce the temperature 
change because of the energy which must go into the magnetic field. 

Figure 7 shows conditions behind fast shocks propagating along the 
magnetic field (Byi = 0).    Since ordinary hydrodynamic shock waves produce 
no transverse velocity one mi^ht expect that in this situation one would obtain 
only the ordinary hydrodynamic solutions.    This is,  however,  not necessarily 
the case.    If the magnetic field is sufficiently large,  the ordinary shock solu- 
tion may give a flow velocity behind the shock which is less than the interme- 
diate propagation speed.    In terms of our previous discussion, this would 
correspond to an extraneous solution and is thus not allowed.    Under these 
conditions,  the allowed fast shock solution has a tangential component of mag- 
netic field behind the shock although it is zero ahead of the shock.    Such shocks 
are referred to as switch-on shocks,  since the tangential field is switched on 
by the shock.    In this case,  it follows from Eq.   (IV-9) that the flow speed be- 
hind the shock is precisely equal to the intermediate speed.    This conclusion 
leads to an apparent paradox,   since it would seem to be perfectly reasonable 
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to accelerate a piston along magnetic field lines to a velocity which corresponds 
to such an extraneous ordinary shock solution.    In this case one might expect 
to find the ordinary shock rather than the switch-on shock.    This paradox can 
be resolved by the fact that there is also a slow switch-off shock wave.    For a 
switch-off shock wave,  the tangential component of magnetic field is finite 
ahead of the shock and zero behind it.    Again from Eq.   (IV-9),  the velocity 
ahead of a switch-off shock wave is equal to the intermediate speed ahead of 
the shock.    Thus,  for the particular case just given,  the switch-on and switch- 
off Shockwaves would travel at precisely the same speed.    If both are created 
at the same instant of time,  the net result of a switch-on shock followed im- 
mediately by a switch-off shock would be indistinguishable from the ordinary 
hydrodynamic shock solution.    Although the distinction between a composite 
shock,  made up of a switch-on and switch-off shock,  and an ordinary hydrody- 
namic shock seems somewhat artificial for the case in which the shock waves 
are propagating precisely along the magnetic field lines,  the distinction does 
have some significance if the wave propagation is at a slight angle to the mag- 
netic field.    In the latter case,  the fast shock will be not quite a switch-on 
shock and thus,  the flow velocity behind the shock will be slightly greater than 
the intermediate speed behind the shock.    Similarly,  the propagation speed of 
the almost switch-off shock will be slightly less than the intermediate propa- 
gation speed.    Thus,  the slow shock will move slightly more slowly than the 
fast shock and as time progresses,  the two shock waves will separate. 

For the case aj/bj = 0,  the ordinary shock solutions do apply for 
Mach numbers greater than two in the case y = 5/3.    However,  in the range 
of Mach numbers between 1 and 2,  the appropriate fast shock solutions are 
switch-on   Shockwaves.    For aj/bj =1,  the ordinary shock solutions are 
possible down to Mach number 1 without violating the condition of not cross- 
ing the intermediate speed.    Thus,  no switch-on shock waves exist for 
aj > bj.    For all of the curves on Fig.  7 with aj/bj <: 1,  the ordinary shock 
solution applies above some critical Mach number which lies between 1 and 
2.    Note that the Mach number which is used as abscissa in these curves is 
the ratio of the flow velocity ahead of the shock to the small amplitude dis- 
turbance speed and not the ordinary sound speed.    This difference in the def- 
inition of the Mach number accounts for the fact that the curves are not 
identical in the range in which they satisfy the ordinary shock equations.    In 
the range of the switch-on shock waves both the temperature and density be- 
hind the shock are lower than they would be for the corresponding ordinary 
shock.    As in the previous case this is due to the magnetic energy density 
and magnetic pressure behind the shock. 

The magnitude of the tangential component of magnetic field which is 
switched on in the shock wave must be zero both for weak shock waves M -♦ 1 
and for the critical Mach number at which the transition from the ordinary 
shock to the switch-on solution occurs.    Thus,  the magnitude of the tangential 
component of magnetic field behind the shock has a maximum at some inter- 
mediate shock Mach number.    It may be seen that the magnitude of the 
tangential component of magnetic field can in some cases be slightly larger 
than the normal component of magnetic field. 
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In order to give some feeling for the variation with initial angle of 
the magnetic field,  the properties behind fast shock waves have been plotted 
in Fig.   8 with the initial angle as a parameter for the special case,  ki/bj = 0. 
As can be seen there are no dramatic new effects occurring.    The various 
curves between 0 and 90° fall smoothly between these limiting cases which we 
have already discussed.    It is of some interest to note that the curves corres- 
ponding to large angles tend to bunch together.    Thus,  angles over a fairly 
wide range in the neighborhood of 90° can be approximated fairly well by the 
simpler 90° calculations.    The ratio of the magnitude of the magnetic field 
behind the shock to that ahead is also shown.    It can be seen by inspection 
that this is always less than the density ratio.    However,  as is obvious for 
switch-on shock waves,  the ratio of the tangential component may be larger 
than the density ratio.    In the limit of very strong shock waves the tangential 
component increases by the same ratio as the density.    However,  as the shock 
strength decreases the density ratio decreases while for small angles the ratio 
of the magnitude of magnetic field increases.    Thus the ratio of the tangential 
component must become larger than the density ratio. 

Slow Shocks 

Some of the properties of slow shock waves are shown in Figs.   9 and 
10.    In Fig.   9 the properties of switch-off shock waves are shown as a func- 
tion of the initial angle of the magnetic field relative to the wave normal for 
various values of aj/bj.    Since s'vitch-off shock waves propagate at the max- 
imum allowable speed for slow shocks,  namely the intermediate speed,  the 
switch-off shock may be regarded as the strongest possible slow shock for a 
particular plasma condition.    Since the limit of weak shocks was covered in 
the consideration of small amplitude disturbances,  it would seem instructive 
to examine the opposite limit of strong shocks.    For propagation along the 
magnetic field,  there is no tangential component of magnetic field to switch- 
off.    Thus,  for aj/bj less than unity,  the shock reduces to an ordinary hy- 
drodynamic shock with a Mach number equal to bj/aj.      For  aj/bj greater 
than unity,  the intermediate and slow speeds are equal for propagation along 
the magnetic field.    Thus,  the propagation speed of the switch-off shock must 
be equal to the slow small amplitude disturbance speed.    The shock wave is 
therefore weak and the temperature and density ratios must be equal to unity. 
For large angles between the wave normal and the magnetic field,  the propa- 
gation velocity becomes small since the intermediate speed depends on the 
normal component of magnetic field.    In this limit,  the pressure balance 
across  the  shock wave approaches  a hydrostatic  balance.       That is,   the 
dynamic pressure becomes small and thus,  the gas pressure change must 
balance the change in magnetic pressure associated with the change in tan- 
gential component of magnetic field.    As  aj/bj becomes large,  the gas 
pressure becomes large compared to the magnetic pressure.    Thus,  only 
small density changes are required to change the gas pressure by an amount 
equal to the magnetic pressure,  and the density ratio across the shock waves 
becomes small.    This is exhibited in Fig.   9 by the fact that for ai/b[ greater 
than about one the density ratio across the switch-off shock at all initial angles 
of the magnetic field is fairly small.    We may conclude that the switch-off 
shock and thus all slow shocks have a fairly small amplitude for a^/bi  greater 
than about one. 
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The change in thermal energy across the shock wave has been non- 
dimensionalized with respect to the available magnetic energy per particle. 
In the limit of propagation normal to the magnetic field for arbitrary values 
of ai/bi,  and in the limit of aj/bj —    <*> for all angles of propagation,  the 
change in thermal energy is precisely equal to one-half of the available mag- 
netic energy.    For other conditions,  the change in thermal energy is always 
greater.    This additional energy may be regarded as coming from the kinetic 
energy of the flow associated with the normal velocity ahead of the shock.    In 
the two limiting cases just mentioned,  the other half of the available magnetic 
energy goes into producing tangential velocity behind the shock wave. 

In Fig.   10,  the changes in flow properties across slow shocks for a 
range of shock velocities but all at an arbitrarily chosen angle of 45° between 
the direction of propagation and the initial magnetic field are plotted.    All of 
these curves stop abruptly when the switch-off shock is reached,  that is when 
By2/Bvl = 0.    In the discussion of small amplitude disturbances,  we mentioned 
that in tne limit of a^/bi much less than one,  the magnetic field is so stiff that 
the field lines remain straight,  and thus,  the disturbance may be considered 
as an ordinary sound wave which is constrained to move along the field lines. 
The same consideration applies to moderate strength shock waves.    As long 
as the shock velocity is small compared to the intermediate propagation speed 
the conditions behind the shock are the same as they would be for an ordinary 
shock propagating along the magnetic field lines at a velocity vxi/cos 0\.    As 
the shock speed approaches the intermediate speed,  the changes in magnetic 
field do become significant in changing the flow properties behind the shock. 
Thus,  for example,  the density ratio appears to reach a maximum somewhat 
before the limiting shock strength,  namely the switch-off shock,  is reached. 
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Fig. 6       Fast shocks propagating perpendicular to the magnetic field. 
a) density and magnetic field ratio;   b) change in enthalpy nor- 
malized with respect to tl.' flow kinetic energy ahead of the 
shock.    Both are plotted against the shock Mach number defined as 
the ratio of shock velocity to the fast disturbance speed ahead. 
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Fig. 7       Fast shocks propagating along the magnetic field,    a) density 
ratio,    b) ratio of tangential component of magnetic field behind 
the shock to normal component,    c) change in enthalpy all plotted 
against shock Mach number.    In this case the fast disturbance 
speed ahead is given by   c fl a,   for   a ll l/bl > 1   and 

fl 
b,   for    a./b, < 1.    (y - — ) 
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Fig. 8       Fast shocks propagating into a cold gas a./b. = 0 for arbitrary 
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ratio,  b) ratio of magnitude of magnetic field,  c) enthalpy behind 
shock all plotted against shock Mach number.   0, = tan"^ B  , . 

-42- 

kj4«5 



(a) <£!£ 

.5 - 

(b) 
1- 

1 e- 
M ^• 

1- \ 
"—» CM 
a. m o 

.3 

.2 - 

I 1       1       1 I ! 1 1 

- 
a'2      n 

% 
P W 

- 
r^ — 

r^^^ 

\)s    Ss r - 

- y/\*/j/S - 

- 

/ 

>^^W^ - 

z ̂  1                1                1 i 1 1 1 
10 20 30 40 50 60 70 80 90 

B, 
^tan-1-^ 

Fig. 9       Maximum strength slow shocks (switch off,  B  2 = 0) 
a) density ratio, b) change in enthalpy normalized with respect 
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SECTION V 

SHOCK STRUCTURE 

The structure of shock waves depends not only upon the various pa- 
rameters used to describe the macroscopic properties of the shock waves 
in the previous section, but also upon the plasma conditions,  such as degree 
of ionization and the ratio of the mean free path to the gyro-radius.    The 
entire subject,  therefore,  covers a vast range of phenomena,  many of which 
are not fully understood at the present time.   A complete discussion of the 
present state of knowledge on this subject is beyond the scope of this chapter. 
We shall restrict ourselves to a very brief and highly simplified discussion 
of some of the salient features. 

There are two predominant reasons for interest in the structure of 
shock waves.    On the one hand all of the theory described in the earlier part 
of this chapter depends upon the assumption that the shock waves which are 
formed in the flow can be considered as extremely thin.    We must therefore, 
have some estimate of the thickness of the shock wave in order to determine 
under what conditions this assumption is justified.    On the other hand,  there 
are many conditions in plasmas,  particularly when the mean free path be- 
comes large compared to the gyro-radius, where the basic dissipation mech- 
anisms which occur in the plasma are relatively poorly understood.    Since 
the conservation equations for shock waves require the existence of dissipa- 
tion,  the study of the shock structure can help to elucidate the basic dissipa- 
tion processes which occur. 

Collision-Dominated Shock Waves 

Let us consider first cases in which the transport coefficients are 
assumed to be known on the basis of the usual kinetic theory arguments. 
This assumption can be reasonably well justified in the case of high den- 
sities and low temperatures where the mean free path is small compared 
to the gyro-radius.    However,  as we shall see later when the mean free path 
becomes large the usual kinetic theory approximations are no longer justified 
f jr shock waves. 

The formal procedure for solving the shock structure when the trans- 
port coefficients are known involves writing down the steady flow equations 
including the transport terms.    Given a uniform flow of known conditions at 
minus infinity,  these equations allow a transition to only one other uniform 
flow condition,  corresponding to the other side of the Shockwave.    The solu- 
tion of the equations then determines the detailed shock structure.    For the 
present discussion we shall not elaborate on this procedure.    We shall re- 
strict ourselves to rough arguments which give an estimate of the overall 
thickness of the shock wave. 
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Since the total rate of dissipation per unit area of the shock front is 
specified by the conservation equations,  the shock structure must adjust to 
a thickness such that the required dissipation is produced.    The rate of dis- 
sipation per unit volume is usually proportional to the square of the gradient. 
For example,  viscous dissipation depends upon the square of the velocity 
gradient and joule heating depends upon the square of the current, which is 
equivalent to the square of the magnetic field gradient.    Since the changes in 
velocity and magnetic field across the shock are known,  the volume rate of 
dissipation varies inversely as the square of the shock thickness.    Since this 
dissipation exists over a region of the order of the shock thickness the total 
rate of dissipation within the shock front varies inversely as the first power 
of the shock thickness.  Thus, as a pressure pulse steepens to form a shock 
wave, the total dissipation rate is initially low and the steepening process con- 
tinues until a thickness is reached such that a sufficient dissipation is pro- 
duced.  On the other hand, if we imagined a very sharp discontinuity to be 
formed initially which is thinner than the required shock structure, then the 
dissipation would be too high and the discontinuity would spread out until the 
steady state shock structure is reached. 

Let us first obtain a very crude estimate of the shock thickness in the 
case in which viscosity is the predominant dissipation mechanism. If $ is the 
dissipation rateper unit area of the shock front divided by the rate of flow of kinetic 
energyaheadof the Shockwave, then the above remarks lead to the conclusion 

■(^' 
6 . .2 

7   ^lvxl v" ^xl Pv
v i Ö 2 

2 - (V-l) 
V xl 

where ß is the viscosity and ö the shock thickness.   Since both * and the 
bracket on the right-hand side are known in terms of the overall shock con- 
ditions,  the above relation gives the Reynolds number, Pvxiö/^, based on 
the shock thickness in terms of the overall shock properties.    This equation 
therefore gives an estimate of the shock thickness. 

For a strong fast shock,  the energy dissipated is essentially all of 
the thermal energy in the gas behind the shock.    This in turn is roughly equal 
to the kinetic energy of the flow ahead of the shock.    Since the change in ve- 
locity is of the order of the velocity ahead of the shock,  Eq.  (V-l) reduces 
to the statement that the Reynolds number based on the shock thickness is 
of the order of unity.    Using the kinetic theory formula for the viscosity the 
statement is equivalent to the statement that the shock thickness is of the 
order of the mean free path.    For weaker shock waves the energy dissipated 
decrease? more rapidly than the change in velocity across the shock wave. 
Thus,  the Reynolds number,  or the shock thickiess measured in mean Iree 
paths, becomes larger as the shock strength decreases. 
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The same argument applied to the case in which joule heating is the 
predominant dissipation process leads to the relation 

c B e y 

xl ^   xl      ^ yl 

»2 /wt 
v   ,2\      B   ,   "7 xl      ^ vl (V-Z) 

where ce  is  the  velocity of light and a the  electrical   conductivity. 
This relation specifies the order of magnitude of the magnetic  Reynolds 
number 4jr crvxiö/ce    > which would be required to provide the appropriate 
dissipation in terms of the macroscopic shock parameters.    The shock thick- 
ness can therefore be estimdted from Eq.  (V-2) if the predominant dissipa- 
tion process is joule heating. 

If both dissipation coefficients are finite,  one might expect that the 
appropriate shock thickness is simply given by choosing the larger of the 
two thicknesses given by Eqs.  (V-l) and (V-2).    While this view is correct 
under some conditions, in general it is somewhat oversimplified.    For ex- 
ample, in a strong fast shock propagating in a plasma with a low electrical 
conductivity {4iTa ti/pce^   « I),  there are actually two characteristic thick- 
nesses associated with the shock.    Near the front of the shock,  the magnetic 
field rises with very little change in flow velocity in a distance such that the 
magnetic Reynolds number is of the order of unity.    Following this there is 
a more abrupt change in the flow velocity with very little change in the mag- 
netic field.    The change in flow velocity occurs in a region whose thickness 
is such as to make the ordinary Reynolds number of the order of unity.    A 
rough criterion for the conditions under which both dissipation mechanisms 
are important in determining the shock structure may be obtained as follows. 
For a fast shock propagating perpendicular to the magnetic field the current 
at any point within the shock is proportional to the electric field in a coordin- 
ate system moving with the gas and may be written as 

j =          (v  . B   ,   - v    B   ) (V-3) •> c *  xl     yl        x    y' \*   -»/ 

Since the flow velocity decreases monotonically,  through the shock,  the cur- 
rent density will always be less than what is obtained by replacing vx by vxi. 
Since the current density is the curl of the magnetic field we may rewrite 
Eq.  {V-3) as 

u y     yl c 7 e 
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This equation then states that the minimum distance in which the magnetic 
field can rise is such that the magnetic Reynolds number based on that dis- 
tance be of the order of unity.    Returning to Eq,  (V-2),  we see that for strong 
shocks the thickness required to produce all of the dissipation in the shock 
wave is less than this minimum thickness.    Thus, for strong shock waves, 
joule heating alone is incapable of producing the required amount of dissipa- 
tion.    When this occurs,  there must also be a portion of the shock wave in 
which the velocity gradients are sufficiently steep so that viscous dissipa- 
tion can account for the remainder of the required dissipation. 

A somewhat more precise cirterion for when both dissipation mech- 
anisms are required in the shock structure can be obtained as follows.    Let 
us look at the shock structure from the viewpoint of the shock formation pro- 
cess.    We know that for a fast shock,  a small amplitude disturbance behind 
this shock propagating at the fast propagation speed will overtake the shock. 
However, as the gradients in the wave that is catching up increase,  the mag- 
netic field will no longer follow the density changes and the propagation speed 
of the wave will decrease until it becomes equal to   the ordinary hydrodynamic 
sound speed.   A wave with such a steep gradient may or may not be able to 
overtake the shock depending upon whether the flow velocity behind the shock 
is less than or greater than the ordinary sound speed.    For the case in which 
the flow velocity behind the shock is greater than the ordinary sound speed, 
the steepening process would stop when gradients are reached such that the 
propagation speed is reduced to the flow speed.    In this case one would not 
obtain gradients so steep that viscous dissipation is required within the shock 
structure.    On the other hand,  if the flow velocity is less than the ordinary 
sound speed» the steepening process can continue even when the gradients 
have a characteristic length so short that there is no change in magnetic field. 
The steepening would then continue until another dissipation mechanism,  such 
as viscosity, inhibits further steepening.    Thus,  in this case there would be 
two characteristic lengths associated with the shock structure as discussed 
above.   Applying this criterion to a Shockwave propagating perpendicular to 
the magnetic field into a plasma with a.lA>l = 0 we find that the shock struc- 
ture can be based purely on joule dissipation for Mach numbers less than 
about two while for larger Mach numbers viscous dissipation is also required. 
As aj/bj increases this critical Mach number is reduced. 

The above discussion has been extremely restricted.    We have con- 
sidered the competition between two dissipation processes only for the case 
of fast shocks.    Furthermore, we have considered only two possible dissipa- 
tion mechanisms; electrical conductivity and viscosity.    In general,  other 
dissipation processes such as heat conduction,  temperature relaxation be- 
tween electrons and ions,  collisions with neutrals, and ionization of neutrals 
may also be important.    Conditions such as Eqs.  (V-l) and (V-2) with the ap- 
propriate dissipation mechanism can be useful in giving an order of magnitude 
estimate of the shock thickness.    Caution should,  however, be used to insure 
that the dissipation process which is being considered can indeed provide all 
öf the required dissipation. 
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Collision Free Shock Waves 

Let us now turn to a case in which ordinary dissipation mechanisms 
associated with interparticle collisions cannot produce the required dissipa- 
tion in the shock wave.    Consider a plasma in which a/b « 1 but the tempera- 
ture is high enough so that the mean free path is very large compared to the 
ion-gyroradius.    For a fast wave propagating through such a medium the 
changes in gas pressure will be small as compared to the changes in dynamic 
pressure and magnetic pressure.    To a first approximation we may therefore 
neglect the plasma pressure entirely.    Within this approximation the relations 
determining the small amplitude wave propagation are independent of whether 
or not the length scale is larger or smaller than the mean free path.    For 
length scales in the flow field larger than the mean free path the distribution 
function of particle velocities will acutally be Isotropie and Eqs.  {II-1) through 
(II-5) will be valid in detail.    For lengths scales small compared to the mean 
free path the pressure in Eq.  (II-2) should become a tensor and Eq. (II-4) 
becomes invalid.    However,  if the pressure is sufficiently small it can be 
neglected in Eq.  (II-2) whether it is a tensor or a scalar.    Furthermore,  in 
this case Eq. (11-4) is no longer required.    Thus, the relations determining 
the propagation of fast waves are independent of whether the length scale is 
larger than or smaller than the mean free path.    It follows immediately that 
the arguments which were used to show that a compression pulse steepens 
towards a shock wave   are valid even when the length scale of the compres- 
sion pulse is small compared to the mean free path.    We may therefore ex- 
pect that the shock wave which forms will have a structure containing length 
scales much smaller than the mean free path.    As a result binary collisions 
will probably not provide the required dissipation in the shock. 

The length scale at which the above argument for steepening ceases 
to apply is the ion-gyroradius based on a velocity equal to the Alfven speed. 
We may therefore anticipate that the actual shock structure will contain 
length scales of this order of magnitude.    This limitation arises from the 
fact that Eq.  (II-3) becomes invalid when such steep gradients are reached. 
(See A-9 and A-10).     This  equation is based on the  assumption that 
E + X x B/ ce ~ 0'    In t^e absence of collisions this is merely the statement 
that individual particles drift at the EZB velocity.    This,  is however,  only 
valid as long as the gyro-radius is small compared to the length scale of the 
changes in the magnetic field, i.e. , when the ions move adiabatically.   Thus, 
when length scales comparable to the ion-gyroradius are reached the basic 
equations become invalid and a different dispersion relation is obtained.   The 
steepening process is therefore modified at this point. 

Several attempts at theoretical predictions of the structure of such 
shock waves have been made.    A clear-cut resolution of the differences be- 
tween these various theories and the range of plasma conditions over which 
they apply must await more detailed experimental evidence.    In all of these 
theories the shock wave contains a fine structure with scales of the order of 
the ion-gyroradius or less.    For weak shock waves it is possible to obtain a 
fairly regular solution consisting of a long train of large amplitude waves 
which are steady in a coordinate system moving with the shock wave.    In the 
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presence of any finite rate of damping due to either collisions or Landau 
damping these oscillations will eventually damp to the uniform conditions 
behind the shock wave.    The scale length of the individual waves is of the 
order of the ion-gyroradius for general directions of propagation of the 
shock wave relative to the magnetic field.    However, for the special case, 
which has received the most attention,  of propagation perpendicular to the 
magnetic field the scale length is smaller than this by the square root of 
the mass ratio between electrons and ions. 

For strong Shockwaves the microstructure is probably better charac- 
terized as a random turbulent structure.    In this case,  the flow energy goes 
initially into turbulent motions and later damps into actual thermal velocities 
of the ions and electrons.    For such a turbulent shock wave the changes in 
the average density,  average flow velocity and the average magnetic field 
strength can occur in a distance in which the energy which must be dissipated 
in the shock wave is put into some form of random energy.    Thus,  the thick- 
ness of the shock wave as defined by the average quantities does not have to 
be as long as the thickness required for the turbulent energy to damp into 
particle motions.    It is therefore possible to have a shock wave in which 
the major changes in density, flow velocity,  and magnetic field occur in a 
region in which the random energy goes into turbulent magnetic energy.   The 
region in which this turbulent energy is damped into particle motions may be 
significantly larger but have only small changes in density, flow velocity, 
and average magnetic field associated with it. 

The best experimental evidence for collision free shock waves at the 
present time has been obtained from recent measurements on the IMP sat- 
ellite. ^   The interplanetary plasma has a flow velocity which is of the order 
of 5 to 10 times the fast propagation speed.    The mean free path in this plas- 
ma is of the order of 10° kilometers.    The interaction of this wind with the 
earth's magnetic field is found to produce a bow shock wave with a thickness 
of the order of 1000 kilometers or less.    This thickness is, therefore, mauy 
orders of magnitude less than the mean free path and is not too different 
from the ion-gyroradius, which is of the order of 100 kilometers.    These 
results are fairly recent and it is not clear that the experiment has sufficient 
resolution to have observed a shock wave much thinner.    The shock wave is 
characterized by a sudden jump in the average magnetic field strength as 
well as an increase in the turbulent fluctuations in the magnetic field strength. 
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SECTION VI 

APPLICATIONS 

In this section we will cite briefly two examples which illustrate 
applications of the theory discussed in previous sections.    We shall also 
discuss briefly some experimental evidence which supports the theory.   Un- 
fortunately,  at the present time there is only very little experimental data 
available. 

Magnetic Shock Tubes 

The distance time diagram shown in Fig. 5(b) corresponds to a fast 
shock followed by a uniform region and a slow expansion fan.    If such a flow 
configuration can be produced in the laboratory,the uniform gas sample be- 
tween the fast and slow waves provides a possibility of achieving a high 
temperature plasma of known conditions for study in the laboratory.  Plasma 
conditions behind the shock are known in terms of the shock velocity and the 
conditions ahead of the shock.    Thus,  the relatively simple measurement of 
a shock velocity determines the average magnetic field,   enthalpy and density 
in the hot plasma sample. 

A schematic diagram of the magnetic annular shock tube in which 
such a flow has been achieved is shown in Fig. 11.    Initially a gas and a 
quasi-steady magnetic field are present in the thin annular region between 
the conducting cylinders.    When the condenser bank is discharged the mag- 
netic field at the insulator is changed and waves propagate along the device. 
If the condenser bank is arranged such that the current is essentially a step 
function then the diagram shown in Fig. 5(b) (with no intermediate wave) 
with plasma conditions a function of x/t only is appropriate.    The boundary 
conditions which must be applied are that for an ideal insulator there is no 
mass flow through the insulating surface and that the tangential component 
of magnetic field at the insulating surface is specified by the known current 
from the condenser bank.    The current from the condenser bank flows par- 
tially in the shock wave and partially in the slow expansion fan. 

It has been demonstrated that under appropriate conditions,  a shock 
wave is produced which travels at the calculated velocity,  that there is a 
region of uniform plasma flow behind the shock wave,   and that the density 
and magnetic field strength in this region corresponds to the calculated con- 
ditions behind the shock. "   Some uncertainties still exist as to the tempera- 
ture behind the shock and the expansion fan has not been clearly identified. 

It should be pointed out that a number of criteria must be satisfied 
in order to achieve such operation.    Most experiments which attempt to 
produce magnetically driven shock waves do not produce a   clean shock 
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with a uniform test sample behind it.    First the shock velocity must be suf- 
ficiently high so that the gas behind does in fact,  have a high electrical con- 
ductivity.    For low conductivity behind the shock the driving magnetic field 
will diffuse through the uniform test sample and thus disturb both the uniform 
region and the shock characteristics.    In the experiments mentioned above 
the gas ahead of the shock wave was at room temperature.    It was found that 
for sufficiently strong shock waves the electric field ahead of the shock was 
small enough to justify the assumption that g + v x ß/ce was zero ahead of 
the shock.    It has been found by several authors • that when one attempts to 
produce a slower shock the electric field ahead of the shock is no longer neg- 
ligible compared to the cross product of the flow velocity and magnetic field, 
ahead of the shock.    In this case,  other modes of operation are found.    It is 
for example,  no longer necessary that the initial disturhance travel at a 
speed greater than the fast propagation speed. 

A second criterion for reasonable operation of such a device,  is that 
ablation does not occur. °   Ablation which seems to be predominantly asso- 
ciated with the insulating wall adds mass to the region between the cylinders 
and thus can significantly slow down the resulting shock wave. 

A third criterion is that the annular region between the cylinders be 
sufficiently small compared to the radius of the cylinders. 9   The azimuthal 
component of magnetic field which is to be regarded as the y-component in 
our previous discussions will for a force-free field fall off inversely as the 
radius.    Thus, there is a difference between this field at the inner and the 
outer walls.    Unless the radius ratio is kept sufficiently close to unity this 
nonuniformity will destroy the one-dimensional nature of the flow. 

A series of experiments has also been conducted which have verified 
the linear propagation of the fast mode propagating along the magnetic field 
in a plasma with a/b small compared to one. 10   These experiments have 
recently been extended to a larger amplitude disturbance and have shown 
that such large amplitude pulses do indeed steepen towards Shockwaves. H 

Conversion of Magnetic to Plasma Energy 

It was mentioned in the discussion of slow shock waves that these shock 
waves tend to convert magnetic energy to plasma kinetic or t'-ermal energy. 
This may be a significant mechanism by which energy is converted in a num- 
ber of situations which may occur in nature.    Let us imagine an interface 
between two regions of plasma in which the magnetic field has significantly 
different orientation.    The overall pressure balance across the interface will 
be adjusted rapidly by the fast wave mode.    If there is no component of mag- 
netic field normal to the surface then the intermediate and slow propagation 
speeds are zero and one would expect the magnetic fields on the two sides 
to diffuse into one another at a speed determined by the conductivity of the 
medium.    If,  on the other hand,  a small component of magnetic field normal 
to the interface exists,then the propagation of intermediate and slow waves 
is possible.    It is always possible to find a combination of intermediate and 
slow waves of appropriate strengths propagating in both directions from the 
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boundary to satisfy the boundary conditions of appropriate change in direc- 
tion and magnitude of the magnetic field.    Furthermore,   since the compo- 
nents of magnetic field which are oppositely directed on the two sides of the 
boundary can cancel one another,the resulting configuration will have a lower 
magnetic energy.    For a high conductivity medium the wave propagation pro- 
cess will obviously convert the magnetic energy at a much higher rate than 
the diffusion process since the wave propagation speeds do not decrease with 
increasing conductivity.    In the example we are presently discussing the 
waves would propagate at a constant speed and the region in which the mag- 
netic energy has decreased would increase linearly with time. 

It has also been suggested^ that a steady two-dimensional configura- 
tion is possible in which the predominant mechanism for the conversion of 
magnetic energy to plasma energy is the existanct of standing intermediate 
and slow waves.    In this case an x-type neutral point is formed in the flow. 
The flow on both sides of the boundary is towards the boundary and leaves 
the region by flowing along the boundary,  in opposite directions on either 
side of the neutral point.    In such a configuration standing waves are pos- 
sible along the boundary with the exception of a small region in the immedi- 
ate vicinity of the neutral point.    In this region since the magnetic field is 
small the propagation speed vanishes and therefore diffusion must still be 
important.    However,  the region over which diffusion is important is sig- 
nificantly smaller than it would be if one had assumed no normal component 
of magnetic field anywhere along the boundary.    As a result,  the net rate 
at which flow goes towards the boundary and the rate at which magnetic en- 
ergy is converted to plasma energy decrease only logarithmically with in- 
creasing conductivity or magnetic Reynolds number.    Since pure diffusion 
would lead to an inverse square root dependence on conductivity,  the wave 
mechanism leads to significantly higher rates for high magnetic Reynolds 
number situations. 

This result is probably of particular significance in a number of 
astrophysical situations where the length scale is so larg3 that the magnetic 
Reynolds number is usually very large.    Several examples where such a 
flow configuration may be of interest can be given.    The origin of solar 
flares is believed to be a storage of magnetic energy above the photosphere 
of the sun which is then released suddenly.    A rapid mechanism for conver- 
sion of this magnetic energy such as the one just described seems to be 
required in order to account for the observed suddenness of solar flares. 
At the  boundary of  the  magnetosphere  the  magnetic field direction on 
the   solar wind  side  and on the  earth's   side  are significantly different. 
As  a   result one  may expect that the  boundary would  resolve  itself 
into a  combination of  intermediate  and  slow waves.      This  in turn would 
result, in a  significant  rate  of   reconnection of the  field lines  in the 
solar  wind to  the   dipole  field lines   on the  earth,   which,   in turn  can 
cause  motions within  the  magnetosphere.      Thus  far,   there  have been 
no  direct measurements  from  satellites  at boundary  crossings  to  in- 
dicate  this   resolution of the boundary.      However,   the flow rate observed 
indirectly inside the magnetosphere from ionspheric currents and auroral 
motions is in rough agreement with the predicted rate of reconnection at 
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the boundary.    Finally,  a dilemma is raised by the fact that the solar wind 
continually drags field lines away from the sun,  however,  the net field 
strength at the surface of the sun cannot increase indefinitely.    Thus,   these 
field lines must eventually be broken so that they may return to the sun. On 
the basis of simple diffusion arguments this rate of breaking would be much 
too slow.    It seems likely that a mechanism involving wave propagation such 
as the one just discussed could give a sufficiently rapid rate of breaking to 
avoid this increase in field strength at the solar surface. 
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Fig. 11     Schematic cross-sectional view of magnetic annular shock tube. 
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APPENDIX 

RANGE OF APPLICABILITY OF BASIC EQUATIONS 

The limitations on the validity of the basic Eqs.   (II-l) to (II-5) arise 
principally from two causes.    First,   since heat conduction and viscosity 
were neglected,  the process by which the particle distribution function is 
made Isotropie must be rapid compared to the typical time scale in the flow. 
Secondly,  the equations assume infinite conductivity thus,  implying that cur- 
rents can flow freely.    If the predominant process for the randomization of 
the particle distributions is scattering by binary collisions these two require- 
ments at first sight seem somewhat contradictory.    The requirement of rapid 
achievement of isotropy implies a mean free time for collisions short com- 
pared to the flow time, while the requirement of high conductivity implies a 
long mean free time.    As we shall see,  these two requirements are, however, 
not mutually exclusive.    Thus,  for a fully ionized plasma of a given density 
and with a given length scale to the flow field,  there exists a minimum tem- 
perature below which the conductivity becomes too low and a maximum tem- 
perature above which the mean free time becomes too large for isotropization 
to be achieved sufficiently rapidly by binary collrsions. 

These limits will be evaluate*   quantitatively below.    The actual range 
of validity of the equations is,  however, probably considerably larger than 
implied by these limits.    Several types of nonisotropic particle distributions 
in collision-free plasmas are known to be unstable.    As such an instability 
grows,  it must lead to the production of a more Isotropie particle distribution. 
Thus,  if the growth times of these instabilities is sufficiently short,  isotropy 
of the particle distribution may be achieved by this mechanism rather than by 
binary collisions.    This would imply that the above equations may be valid at 
temperatures or mean free times longer than the limits derived from assuming 
randomization by binary collisions. 

At the present time,  no concise and quantitative estimate of the limits 
to the validity of the equations based on randomization by the growth of insta- 
bilities has been given.    It should,  however,  be borne in mind that the limits 
which we will now derive based on particle collisions probably underestimate 
the region of validity. 

Let us now turn to discussion of the limitations on the individual 
equations.    Equations (II-l) and (II-5) are generally valid.    In the momentum 
equation,   Eq.   (II-2),   the relation 

V x B =     4n<i (A-l) 
e 
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has been used to eliminate the current density j.    As before, ce is the velocity 
of light.   Thus, the assumption has been made that the displacement current is 
negligible.  This implies that both the fluid velocities and the wave velocities 
must be small compared to the velocity of light.    Furthermore,  the body 
force due to the interaction of the electric field with any net charge density 
in the plasma has been neglected.    This assumption is valid if the Debye 
length is small compared to the length scale of the flow field.    Neither of 
the above assumptions are very restrictive for the range of plasma conditions 
which are usually of interest.    In writing the pressure as a scalar we have 
assumed that the gradients are sufficiently gentle so that viscous terms are 
not important.    Quantitatively,  this condition may be given as 

v 
X « p      or      X « L (A-2) 

where   u   is the viscosity of the plasma, L is a characteristic length of the 
flow field, and X   is the mean free path for particle collisions.    The second 
form of this restriction can be obtained from the first by making use of the 
ordinary kinetic theory formula for the viscosity in the absence of a magnetic 
field and making the assumption that the flow velocity is of the order of the 
thermal velocity of the ions.   It could also be obtained more directly from the 
condition that in order to maintain the particle distribution isotropic,  there 
must be frequent randomizing collisions and therefore the collision distance 
must be small compared with the distance in which the flow properties change 
appreciably. 

We may note in passing that there are the two limits in which the 
above condition is overly restrictive.    One of these occurs when the iongyro- 
radius is small compared to the mean free path,  and the gradients are 
primarily in a direction perpendicular to the magnetic field.    Under these 
conditions,  the particle orbits will be turned in a distance appreciably less 
than the mean free path.     The distribution function for motions perpendicular 
to the magnetic field then becomes isotropic in a smaller distance than the 
mean free path.    Alternatively, we could say that under these conditions,  the 
viscosity becomes a tensor whose components perpendicular to the magnetic 
field become appreciably reduced.    The second limit occurs when both the 
dynamic pressure pv^,  and the magnetic pressure B^/STT,  are large compared 
to the plasma pressure.    In this case,  the entire pressure tensor can be ne- 
glected in the momentum equation,  and the restriction (A-2) is irrelevant. 
For the sake of simplicity we shall assume throughout the remainder of the 
discussion in this section that the three pressures above are comparable, 

2 B2 
pv     «p « ^p (A.3) 

and that the tangent of the angle between the magnetic field and the direction 
of the gradients is of order unity. 
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Equation (II-3) is obtained from Maxwell's equation 

V x E = 1        d 
c. t (A-4) 

where the electric field E,   has been eliminated by making use of the Ohm's 
law 

(A-5) 

v xB . 
E +Z 1.   =     a'1    •    j   »   0 

ce ~ 

under the assumption that the conductivity tensor   a,  is so large that the 
right hand side may be taken to be negligibly smallT   If the electron gyro- 
frequency is small compared to the electron mean free time then the electrical 
conductivity is a scalar.    In this case the above assumption is justified if 

j v x B 
JL.    «        Z-Z (A-6) 

a ce 

Using Eq. (A-l)  to eliminate the current density this condition may be written 
roughly as 

4 TT o v L 
 r-   ^ 1 (A-?) 

ce 

On the other hand, if the electrons make many gyro orbits between 
collisions, then their motions are equivalent to motions of a free-electron 
in an electric and magnetic field. Thus, Ohm's law becomes equivalent to 
the statement 

v    x B 

E+— 1     =0 (A"8) 
~        ce 

where ve is the electron drift velocity.    This equation is equivalent to 
Eq.   (A-5) with the right hand side set equal to zero,   if the difference between 
the electron velocity and the fluid velocity is small compared to the fluid ve- 
locity.    Making use of the fact that the current density is the product of the 
particle density,   n,   the electronic charge e,   and the difference between the 
electron and ion velocities,  and that for a fully ionized gas the ion velocity is 
approximately the flow velocity we can write the above condition in the follow- 
ing form 

v    - v. , c„  B 
e        i J ^        ce  ^ ^      ^ice  v B^ (A-9) M.c     v i  e B2 

eBL 
47r pv 

fl^ 47rNevL      Ä eBL T" T    ^    1 
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where M. is the ion mass, 
i 

Using Eq.   {A-3) this reduces to 

M. c 

"BTT «   1 (A-10) 

which states that the ion-gyroradius must be small compared to the scale 
length of the flow field, 

Equation (II-4) is the statement that a fluid element changes its state 
isentropically.    This implies that dissipation must be negligible.    If we ex- 
amine the dissipation associated with viscous stresses and joule heating, we 
find that it is small if the conditions (A-2) and (A-7) are satisfied.    There is, 
however,  another and somewhat more restrictive condition associated with 
thermal conductivity.    The divergence of the heat flow vector corresponds to 
a heat addition to the fluid and therefore to an entropy change.    We must 
therefore require that the divergence of the heat flux multiplied by the char- 
acteristic flow time,  L/v be small compared to   the thermal energy of the 
plasma. 

T 
r 2 

_L_ 
v « pC   T 

(A-ll) 

where k is the heat conduction coefficient,  Cp is the specific heat at constant 
pressure and T is the temperature.    Making use of the kinetic theory formula 
for heat conduction in the absence of a magnetic field but remembering that 
the heat conduction is primarily due to the electrons because of their high 
thermal velocity, this equation can be written in the form 

L » (A-12) 

This equation differs from Eq.   (A-2) only by a numerical factor,  however, 
Eq,   (A-12) is the more restrictive one. 

The limitations on the range of validity of the basic equations is thus 
given by Eqs.   (A-7),  (A-10) and (A-12).    Making use of Eq.   (A-12) and the 
kinetic theory formula for the electrical conductivity of the plasma,   Eq. (A-7) 
may be written as 

2 

L » 
r. 

i 

rw. (A-13) 

where rj is the ion gyro-radius.    It is easily seen that if conditions (A-12) 
and (A-13) are satisfied Eq.   (A-10)  is automatically justified.       The two 
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remaining conditions are therefore Eqs.   (A-12) and (A-13).     Making use of 
the relation for the mean free path in a fully ionized plasma, ^ these equa- 
tions may be rewritten as 

14     2 
L»   3 x 10      T 

N 
(A-\4) 

L » 2 (A-15) 

where the length,   L,   is to be measured in centimeters,  the temperature is in 
electron volts and the partic'a density in particles per cubic centimeter. 
Equation (A-15) which results from the electrical conductivity is satisfied if 
we are dealing with length scales of several centimeters and temperatures 
greater than a few electron volts.    In using this condition for very large lengths, 
it should of course,  be borne in mind that we have discussed only fully-ionized 
plasmas and that complete ionization is not expected at temperatures below 
about one electron volt.    The condition (A-14) on the other hand,  is violated at 
very high temperatures or low densities.    Thus,  for a particular length scale 
and a sufficiently high density a temperature range exists in which the equa- 
tions are valid between temperature determined by Eq.   (A-15) and that deter- 
mined by Eq.   (A-14). 

As we have tried to indicate throughout this section the limitations 
given by Eqs.   (A-14) and (A-15) should be regarded as defining the minimum 
range of validity of the basic equations.    Several limiting cases corresponding 
to violation of the condition (A-3) and the assumption that the gradients are in 
a direct on which makes an angle of the order of one radian with the magnetic 
field exist in which the range of validity would be wider.    Furthermore the 
possibility that Isotropie particle distributions are achieved by the growth of 
instabilities rather than by binary collisions suggests that the restriction 
given by Eq.   (II-9) may in many cases by removed entirely. 

In particular recent satellite data gives clear evidence that the flow 
of the solar wind over the magnetic field of the earth exhibits several mag- 
netohydrodynamic phenomena in spite of the fact that the mean free path is 
several orders of magnitude larger than the scale of the region in which the 
interaction takes place. ^   The cata indicates clearly that a shock wave is 
formed some distance ahead of the actual boundary between the solar wind 
plasma and the earth's magnetic field.    The distance between the shock wave 
and the interface agrees with calculations based on a magnetohydrodynamic 
model.    This distance also expands as one would expect as one moves to 
points away from the stagnation point.    Within such a flow there are certainly 
phenomena occurring which cannot be explained directly by the magnetohydro- 
dynamic model; for example,  the existence of considerable turbulence which 
is presumably related directly to the dissipation in the shock and also the 
production of a non-Maxwellian tail of high energy particles.    The magneto- 
hydrodynamic theory does,  however,   seem capable of describing the gross 
properties of the flow field such as changes in average magnetic field, 
density and flow velocity. 
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It is also instructive to look at some of the wave properties in the 
limits of large and small ratios of a to b.    In the limit of a » b,  the fast 
propagation speed, as well as the changes across the fast wave,   reduce to 
those for an ordinary sound wave.    This is to be expected since in this case 
the magnetic pressures are too small to play any role.    The fast wave,  there- 
fore,  approaches a purely longitudinal wave.    In the same limit,  the slow 
wave becomes a purely transverse wave.    This can be seen most easily from 
Eq.  (11-24) which shows that the change in the y-component of velocity be- 
comes very large as compared with the change in the x-component of veloc- 
ity.    It follows physically from the fact that a very small change in the lon- 
gitudinal velocity produces a change in density and,  therefore, a change in 
gas pressure which is very large compared to the magnetic pressure.   Thus, 
only very small changes in the longitudinal velocity are required to balance 
the changes in the magnetic pressure.    For this wave and in this limit,  the 
fluid may therefore be considered as virtually incompressible.    It then fol- 
lows from Eq.  (11-23) and, as we have concluded earlier,  that the slow propa- 
gation speed approaches the intermediate speed. 

In the opposite limit, i. e. , a « b,  the waves do not break up into 
purely longitudinal and purely transverse.    In this limit, the slow wave is 
most easily understood.    Since, in this limit, both the gas pressure and the 
dynamic pressure p v-, are small compared to the magnetic pressure, we 
cannot have appreciable changes in the magnetic field across the wave. Thus, 
the magnetic field lines will have virtually no change in direction across the 
wave.    The plasma flow,  on the other hand,  is strongly coupled to these field 
lines.    Thus,  the plasma is constrained to flow in a direction parallel to the 
magnetic field lines.    We have already observed that the propagation speed 
of the slow wave in this limit is equal to the sound speed multiplied by the 
cosine of the angle between the magnetic field and the wave propagation dir- 
ection.    This then corresponds to a sound wave traveling along the magnetic 
field lines,  and therefore moving more slowly in the direction of the wave 
normal.    The slow wave therefore becomes purely transverse for propaga- 
tion perpendicualr to the magnetic field anr purely longitudinal for propaga- 
tion along the magnetic field.    On the other hand,  since the velocity change 
across the fast wave is perpendicular to that across the slow wave, we con- 
clude that in this limit the fast wave is purely longitudinal for propagation 
perpendicular to the magnetic field, while it is purely transverse for propa- 
gation along the magnetic field. 

Summary 

We may summarize the major conclusions which have been reached 
concerning these waves as follows: 

1)   There are three distinct wave propagation modes which can be 
conveniently classified according to the magnitude of their propagation speed 
as fast,  intermediate and slow.    The velocity changes across the three waves 
are mutually perpendicular. 
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2) For fast and slow waves, both the velocity and the magnetic field 
remain in the plane defined by the magnetic field ahead of the wave and the 
wave normal.    On the other hand, for the intermediate wave both the veloc- 
ity and magnetic field changes are purely in the direction perpendicular to 
this plane. 

3) For the fast mode, the magnetic pressure increases when the den- 
sity increases.    For the slow mode, an increase in magnetic pressure cor- 
responds to a decrease in density.   Across an intermediate wave, neither 
the magnetic pressure nor the density change. 
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Fig. 2       Friedrichs Diagram.    Polar plot showing the dependence of the 
propagation speeds of the three linear wave modes on the angle 
between the wave normal and the magnetic field.    For several 
values of the ratio of sound speed   a   to Alfven speed   b.    Speeds 
have been normalized with respect to   sfa?- + b2   . 
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Fig, 3       Sketch of flow resulting from the instantaneous acceleration o." a 
piston to a small velocity.    In general, three waves will be emitted 
which separate with time as shown on the x-t diagram.    The pro- 
jections of the magnetic field lines on the x-y and x-z planes at 
a time t' are also shown for the case in which both the fast and 
slow waves are compressions.    The changes in velocity and mag- 
netic field across the three waves are illustrated in the vector 
diagrams.    The initial magnetic field, övs and öv- are in the x-y 
plane.    öy£ must lie within the acute angle between the magnetic 
field and the y-axis.    The three velocity changes are mutually 
perpendicular.    The signs of ÖBS and ÖB£ were also chosen for 
compression waves. 
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SECTION III 

LARGE AMPLITUDE ISENTROPIC WAVES AND SHOCK FORMATION 

The solution to a nonlinear flow problem can be built up by considering 
it as a series of small amplitude waves,  each propagating through a medium 
which has been modified by previous waves.    In this manner,  it is possible to 
discuss problems with arbitrarily large amplitudes.    The concept of a large 
number of isentropic small amplitude waves describing the flow breaks down 
in the case where shock waves are formed.    However,  the nonlinear isentropic 
solutions can be used to predict when shock waves occur.    The shock waves 
themselves will be discussed in the next section.    In this section,  we will 
consider the nonlinear waves related to each of the linear wave propagation 
modes.    We will consider only the case in which the waves are all propagating 
in one direction,  i.e. ,  as though they were generated at the boundary of a 
semi-infinite plasma.    For the special case in which the boundary condition 
is changed suddenly, the fact that the three propagation speeds are different 
separates the resulting nonlinear waves.    Thus,  for this case the nonlinear 
description of the individual modes can be used to obtain a general solution 
for an arbitrary instantaneous change in the boundary condition.    The more 
general case in which several wav*» modes exist at the same place or waves 
of the same mode exist in the sarr    place propagating in opposite directions 
will not be considered.    Problems of this kind can also be treated by a gen- 
eralization of the procedures to be described; however,  in most cases,  they 
involve considerable labor. 

We shall show that compression waves for both the fast and the slow 
modes tend to steepen to form shock waves, whereas the expansion waves 
for these two modes tend to spread out with time so that the gradients become 
less steep.    The intermediate wave,  on the other hand,  has the rather sur- 
prising property that even for large amplitudes,  it remains a linear wave. 
Thus,  even for large amplitude,  an intermediate wave of arbitrary shape 
will retain its shape as it propagates through the medium. 

Intermediate Large Amplitude Waves 

Let us imagine a semi-finite uniform plasma bounded by a piston.    At 
time zero the piston is moved such as to produce a step function small ampli- 
tude intermediate wave,    A short time later the medium will still be undis- 
turbed ahead of the region to which the wave has propagated,  i. e. ,  for dis- 
tances greater than bxt from the piston.    In the region between the piston and 
the instantaneous location of the wave,  the medium will again be uniform,  but 
at a slightly different condition than the condition existing ahead of the wave. 
If at this time the piston velocity is again changed instantaneously so as to 
produce a second intermediate wave,  we may examine the propagation speed 
of this second wave.    In order to do this we must determine the conditions 
behind the first wave.    Since,  as we concluded in the previous section,  there 
is no change in density,  normal component of velocity,  or normal component 
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of magnetic field across an intermediate wave, the propagation speed for 
intermediate waves remains unchanged.    Thus, the second wave will move 
at precisely the same speed as the first wave.    We may now consider a 
third and fourth wave generated by the piston,  and it follows from the same 
argument that the propagation speeds of all of these waves will be precisely 
equal.   Since we can consider an arbitrary pulse of intermediate waves to 
be composed of a series of step functions,  it follows that provided that the 
piston motion is constrained to produce only intermediate waves, the v/ave 
shape will be retained as the entire large amplitude disturbance propagates 
through the fluid.    Thus we obtain neither steepening to form a shock wave 
nor spreading out as in the case of expansion fans. 

The restriction on the piston motion which is required to produce a 
pure intermediate wave is easily seen from the condition that the change in 
velocity across a small amplitude intermediate wave must be perpendicular 
to the plane defined by the magnetic field and the wave or piston normals. 
Thus, the instantaneous changes in velocity or acceleration of the piston must 
always be perpendicular to the magnetic field at the surface of the piston. 

The changes in flow properties across a large amplitude intermediate 
wave are obtained by summing the changes across each of the component 
small step function waves, which in turn are considered as differential ele- 
ments.    It follows immediately from Eq.  (11-15) that across the large ampli- 
tude wave the changes in normal velocity,  density and pressure will be zero. 
In evaluating the change in magnetic field we must remember that our coordi- 
nate system was chosen such that Bz was zero ahead of each small amplitude 
wave.    Equation (11-15) therefore states that the differential change in magnetic 
field is in the plane of the wave front and perpendicular to the local field. 
Integrating a number of such changes gives the result that the magnitude of 
the magnetic field is unchanged across a large amplitude intermediate wave, 
however,  the magnetic field vector can be rotated through an arbitrary large 
angle about an axis perpendicular to the wave front.    The change in tangential 
velocity across the wave is from Eq.  (11-15) in the direction of the change in 
magnetic field and is equal to   AQ/NArrp,   Although such a wave produces no 
change in the thermodynamic quantities,  the normal velocity,  or the mag- 
nitxide of the magnetic field, it is still a large amplitude wave in the sense 
that the angle of rotation of the magnetic field and the change in tangential 
^velocity can be large, i.e.  of the order of radians and the propagation speed 
respectively. 

We may anticipate that,   since for small amplitude fast and slow waves 
the magnetic field remains in the plane defined by the wave normal and the 
magnetic field ahead of the wave,  it will also remain in this plane for large 
amplitude fast and slow waves.    The intermediate wave will therefore be re- 
quired in flow fields in which the boundary conditions require a rotation of 
the plane of the magnetic field.    The particular case of rotation through 180 
is frequently overlooked.    In this case the magnetic field appears to stay in 
the same plane but its tangential component changes sign.    As we shall see, 
neither fast or slow expansion waves or shock waves can change the sign of 
the tangential component thus the intermediate wave will also appear in cases 
where such a sign change is required by the boundary conditions. 
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