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ON THE HITCHCOCK DISTRIBUTION PROBL94

Merrill M. Flood

1. Introduction

Frank L. Hitchcock [I11 has offered a mathematical

formriation of the problem of determining the most economical

marmer of distribition of a product from several sodrces of

supply to numerous localities of ise. He also suggests a corm-

putatlonal procedure for obtaining a solition of his system in

any particular case. L. Kantorovitch [2], TJalling C. Koopmans

[3], George B. Dantzig [4b], C. B. Tompkins [5J, Julia Robinson

[bi, Alex Orden [71 and others [4] have also discussed the

computational aspects of this problem.

The present paper is concerned only with the mathematical

Justification of computational procedure, and is limited to one

specific method of solution of general validity. No attempt is

igde to compare the various methods already proposed, either as

Lo their mathematical similarity or as to their relative effici-

ency in any particular case.'
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2. The Problem

The problem is to find a set of valies for the an variables

xlj, subject to the following conditions:

-0 n

(2.1) Z xZ - c z -r,

(2.2) xl ý 0o,

(2.3) Z Z x,1 d1 j - minimum.

f* WX, a .r n 6JD e MA 41 are z1ev "siM" latqm

with Zcj = Zri. The indices I and J are A*bderstood always to

range over these same integers. It is also assumed, for convenience,

that m 5 n. Any set of values xj, that satisfies all these condi-

lmS Is Oalled a riution or %" pi"s.-

It will sometimm be m oonvoe~nt to use an alternative

statement of the problem, in matrix notation, as follows:

(2.4) My ; b,

(2.5) y > 0,

(2.6) a'y - minimum.

It is easily seen that the two formulations are eqýivalent if y, a,

b, and N' are defined as follows:

n (&4-1)+J . xij

an(i-,)+j "alj
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In in I • n C

-In -In n b -
Mt-

J, J2 ... Jm r

-J' - "jm -r

where In is the identity matrix of order n, and Jt is the mxn matrix

with all elements zero except for the it-h row in vhich each element

is unity. Of course, y, a, c, and r are column matrices (or vectors)

with components yn(i-i)+j' an(l -)+J' cj and ri, respectively, and a

prime denotes the transpose of a matrix (or vector).

3. Fundamental Theorems

There are several fundamental theorems concerning systems of

linear inequalities that are useful for this paper. I reproduce

their statements here in a form due to A. W. Tucker. 4 The interested

reader can find proofs of these theorems, and of others of similar

type, in a paper by Gale, Kuhn, and Tucker [4c].

Fundamental Problems: (Here lower case roman letters denote

one coimn vectors, while capitals denote rectangular matrices; M,,

a, and b are givea but d ls to be detezilnecd.)

P-o~bn 1. bo sattiry the Gansteaints Nz < a, x 0 o, aid mako

b'x - d for d maximal in the sense that no x satisfytng

the constraints makes b'x > d.

Problem II. To Aatisfy the constraints M'y ; b, y ; 0, and make

a'y - d for d minimal in the sense that no y satisfying

the constraints makes a'y < d.



Problems I and II are said to be dual.

Fundamental Feasiblilty Theorem:

The c'nstraints in a problem are feasible (i.e., satisfied by

rome x or y) if and only if the dual problem in homogeneous form

(i.e., with b-O or aw'uia6 a null solution.

Fundamental Existence Theorem:

1. x and y are solutions of Problems I and IT If and only if

they satisfy their constraints in the two prolaaz and zaee 1 ,y

Such x and y exist if the constraints in both problems are feasible.

ii. A problem has a solution if and only if its constraints

are feasible and its homogeneous form has a null solution.

Fundamental Duality Theorem:

A problem hs a solution (or a uniqut d) if and only If the

dual problem nas a solution (for the same d).

4. The Dual and Combined Problems

We note that the problem,as stated in relations ( 2 .4)-( 2 .6),

is a fundamental problem of form II. The dual problem is;

(4.1) Rx < a,

(4l.2) 1 0

(4.3) b'x - maximum.

This can be rewritten in a more convenient form, for our present

purposes, as follows: 5

(.. 4 ) vj-Uj < d~j,

(4.5) Zcv - LrIuI - maxImu),

where vj -x -n+J and AI -- Xtn+l+Xtn+m+t.
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Theorem 1. The problem has a solution.

Proof: By the Fundamental Existence Theoremth•.re is a

solution if and only if the constraints are feasiL. ind • - 0 is

a sol~ution of the Wv'b~sw ~hm b 0. Qs 'rss

the only values that satisfy the oonstraints are x,- 0, and so

the theorem Is proved.

By the Fundamental Duality Theorem, we see

Corollary-IA. The dual problem has a solutlon.

Theorem 2. The numbers x and u,,v,, are solutions of the

".j,
* Pwoblut and tt duals1, m~poetiv~ly, *it WA 00a lt tinj 09I4LUCY4

kI(4.6) Zzz'4 j Xj Oe,

(4.7) dij +u1-vj >_ of

(4.8) xij(dij +ui-v j) -

Proof: Since (4.6) and (4.7) are simply the constraints for

the problem and the dual, respectively, it remains only to show

that (4.8) is equivalent to the condition a'y-b'x - 0. Now

a'y-b'x , I i xrid I zcv +ZrUI
i,J 4JJ I

iX dxx -+ z X + jui,j Ii l I ,j Ij

- ; X x ' (dij +U I-v j-
-Iii,J I

Since each term in this sum is non--negative, a'y-b'x - 0 if and

only if x 11(d 1 j4 U1 -vJ) = 0.
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We refer to the Pro.'em of finding valuies for xij,'u , and

that slaisfy (•.6)-('.L) as the "combinedi 1 ,roblem", and note that

tLie combined prollem always nas a sol"t'on.

5. Linear Gr'p.,s,

It w il be convenient, for some purposes, to associate linear

graphs j,.] wdtn certndn subsets of the elements of a matrlx

S -llshkl. I' I is a given subset of the elements of S, we define

the I-Zraph L of S as follows: the vertices of L are all the points

(h,K) In the Cartesian plane for wnlcn Shk E 1; the arcs of L are

ail Ane seLments Joining pairs of neigh93orin_ vertices with either

eqAlai abscissas or eqlai ordinates, where two vertices with equal

abscissas (ordinates) are neighboring if they are not se!;arated .y

another vertex w4th the same absclsf- (ordnate). For the moment,

denote the vertices of L by sy.nbols , and the arcs by

symbols sch as ab, ,c,.--, Cf (no distlncticn Is 2:ade between tne

arcs b ant -,a). Then a chair. is a set of one or more dstinct

arc': tcet can be arranged as ab, bc,-'', Je, ef, where vertIces

denote 1,,i ':fferent symbols are distiAnct. A sicce 18 a set ol

'q.t'.Cr L r.rc (at ie3St four are necessary) theft can be ordered as

ab, bc,-', ef, fa, the vertices being distinct as in the case of

a c-ain. A graph is connected If each peir of verttc! !'.! J4clned

by a chain. Ir.s* .s a graph contasning no zyczies, and a tree

is a connected forest.

If L contains v -ertices, a arcs, and p connected pieces,

the n. .- ber.- a-i-t '1r, rcnown as thc c£Lc.o !tic numter (or f'ret
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l etti number) of L. It follows from a well known theorem [8]

concerning linear graphs In general that; (i) L Is a forest if and

only if I- 0, and (ii) L contains jtist one cycle If and only If

Note that L contains a cycle if and only if there is a sabset

of I that can be arranged as a sequence

8 hk,' Sh 1k 2 ' Sh 2k 2 o shvk 3 ' 'h 0 y' Shakr

where the n's and k's are distinct among themselves;and L contains

a single cycle If and only if I contains Just one .oset that can

Sbe arranged In trne displayed form. We call such a subset of I an

I-circAut on S, and denote it by [So,. For a particular arrangement

0of [S7. , we shali a-so refer to the te--. sh•,w as odd-terms, the

others as even-terms.

In case I consists of all ahk > 0, as it frequently will, we

speak of the positive graph of S, positive circuits .n S, and

aLbreviate s ich statements aa "the positive graph of S Is a forest"

to "S is a forest".

*

6. The Method of Solution

In the met!iod of solition to be developed for the problem,

we start with a special Bet of values X° -xj that satisfy the

constra.Ints (-.;) ::e tVen test to deternm'ne -t•ether or not there

exist and v3 satisfying the re.attons (b.7) and (4.8) for tl.e

j-1ien X°. If so, then X° is a solution, otherwise not. The method

next ylelus i new tria. matrix X1 - i I I s not a solLtion,

ic (ao -XI ),I, > After a f'nlte ni.iner of steps this
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proces5 necessarily must terminate and it leads to an exact integral

solution of the problem.

The first trial matrix X is a forest of t trees, and has

m+n-t non-zero elements. According as t - I or t > 1, two essentially
6different cases may be met at each stage of the solution process.

At each stage when X - IxilJ is a tree, the equations (4.8)

have a general solution for ui and v with one freL parameter, say

u1 . However, the q-uantities d1 1 +u1 -v are unlq'ely determined In

this case, so it is sufficient to calculate them and note whether

or not they are all non-negative in order to decide whether or not

X is a solition. If some di +'-vu < 0, then there is a uniq e

I-circult FXs] on X, where I consists of xij and all positive xjj

that may be arranged with x as the second term, say. Let

g uenote the smallest odd-term of [Xa1. Then the new tria' matrix

X 0 is obtained from X by adding g to the even terms of [X5],

subtracting g from the odd-terms, and leaving the other elements

of X inchanged.

At each stage when X Is a forest of t>'k trees, the eqiatlons

(4.b) have a general sot tion tbr .i and v with t Independent

parameters, and ýhe quantities d,+ I-v i Involve t-1 independent

parameters. The rows and colamna of the matrix X are rearranged so

that It can be represented as a sq.iare matrix of order t whose t2

elements are abmatrices Xat sOch that Xf. - 0 If a yi L and Xaa

Is a tree with ma+na-1 non-zero elements and Is oO, order maXna,.

We can select Ul, w, , . to 1-e the t par&-eters.

If we assign these the valie zero and denote thls part'cular
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solution of (4.8) by q and v. then we may define numbers

?" d1 j +ui-v1 We partition the matrix P -Jjijjl into submatrtces

corresponding to the Xab and denote the.. T ab* Let pab te the

rsmallest element in 15 and define the sq.iare matrix F of order t

by P - 'Pab11* To designate the postlorn of p in the matrix

we may write pab alternatively as ra,'the subscrYpt8

referring to the s .bniatrix and the superscripts to the rows and

columns in the a-4boatrix.

The test ae t^ whether or not X is a sol -ition consists of

formln8 all sums paa''ah w Pa +asa3+aa aa for

n - 2,3,''',t , where (aiaas..ar) !s any permAtation of h different

positive inte-ers, none Vreater than t; X Is a so utlon if and on.'.

if all sac. s-ne are non-negatiie.
Ifn' pal•...a < 0, then there is a mnlque I-c:rc it [Xs]

on X, where I consists of all positive x14 together with al' x,

a 'a
that correspond to the ter Ps oPa

ak ak+' a
which can be arranged to involve a a. as

everb-terma. If g is be smallest od • term in [X thn (as In

The non-degenerate case) t.e new tria. matrix X* Is obta~ned .y

adding g to t1even-ter-s of [Xs , .btracting g from the o'ld--

temsn and leaving the other elements of X _nchanred.

7. T-.e Initial Tria Sol .tion

An X tnat satltflee (4.o) i tI. te cai.ed a trial so.tn

It wo.d be a..± rig:t- o take -he joUItlve wai .es rclZr, .r
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the initial trial solution X- liXj 0 . An alternative is to construct

an initial trial solution that is a forest. It is always possible

to do this in integral values. The following theorem certifies the

existence of such an integral trial solution. The method of proof

shows hew to construct one.

Theorem-. There Is a matrix X° -lxoj11 with integral elements

that satisfies (4.6) and is a forest.

Proof: The theorem is trivial for a-I. Assume the theorem is

true for m and consider the case m+l.

Let the notation be chosen so that r, > r2 > '" _> rm+, > O,

and c, > ca > "0e > cn > 0. if n < m+l, then c, > rm+,. If n - m+l

then c > rm+ unless ci - r -X (for all I and J3 in this latter

0case X - A satisfies the cond'lt-ns of t4i theorem. Hence, by the

inAiutton. hypothesis, there ti a set of non-negative integers x*

(000,M) such that , jrm X r,, and X-x

is a forest. Then Xl defined by Z U 0 , - Ojrm+a, satisfies

( N.6). Now since the (m+l)-tIrow, with only one positive element,

clearly cannot contribute te a to a positive circuit, X is also

a forest; and the theorem .s provell

ft opply this method, in the construction of a trial solution,

search for the smailest r and the largest cj, and then set
sti

x - r1 . In effect, this deletes the i,-- row, after c is

replaced by c 1, -r1 , and the process is repeated (interchanging

rows and columns at, necessary) until all x have been determined.

For Ltomatic machine calculatioi the procedure is easily made

unique, for any one starting order of rows and colxnns, by



specifying that the search 18 first on row-totals when the n-4mber

of* rows Is the same as the number of columns at any stage, and that

the row-total or colimn-total with the smallest index is chosen

whenever at any stage there are several equal values to choose from.

This initial trial solution will be called "preferred" for
7

Identification.

Theorem 4. A trial solition that Is a forest of t trees has

m+n-t non-zero elements.

Proof: Observe first that if the trial solution X Is a forest

of t trees, the rows and col mns of X can be rearranged so that X

has the form
X1 1 0 0.00

0 Xe2"'. 0

10 00 0 "'"Xtt

where each Xaa is a tree. Consequently, the theorem anounts to

proving that an mxn matrix with no zero rows or columns,whlch is a

tree, has m+n-i positive elements. If m+n - 2, this !s obvious, so

assume the statement to betnmlrallmatrices for which m+n - k and

consider one for which m+n - k+l. Since m > n, clearly some row

has only one positive element, as otherwise there would be a

positive circuit. Delete this row and apply the induction hypothesis.

In actual cases when m and n are relatively small, or when

there is other reason to believe that an initial trial solutilon

better than the preferred one can be found by trial and error, it

may be better to constrict the initial trial solition in some other
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way than the one given in the proof of Theorem 3, in order to

reduce the number of steps required In the Iterative process.

The methods developed in this paper apply directly for any

trial solation that is a forest, and are readily extended for other

cases. It is easy to see that there must be at least one solution

which is a forest.

8. Non-degenerate Case

We consider now the case of a trial solution X which is a

tree. Let the positive elements of X be x , a - l,...,m+n-l.

We shall need the following theorem.

Theorem 5. If X is a trial tree, the set of equations

d ii +ui-v - 0 for (i,j) - (I ,Ja),

has the general solution

I= Ui+z9 v V +z,

where (uiv*) is a particalar solution and z is arbitrary.

Proof: The theorem is apparent for m - 1, and we proceed by

induction.. Suppose the theorem is true for all trial trees of m

rows, and let X be an m+lxn trial tree. Obviously, there mtst be

at least one row of X that has exactly one non-zero element; we

may suppose it to be xm+inwithout loss of generality-also that

Im+n-a * m+l and Jm+n-, a n. Since X is a trial tree, the matrix

obtained from X by deleting the last row (or, if m+l a n, its

transpose) is also. The indiction hypothesis implies that the

general solution of (8.1), with the final equation omitted, Is of* *
the form ui = u1 +z, v, - v +z. We note next that this final equatton

becomes ur+m - (v -d ) + z - + z. The theorem follows easily. t
n m+in

It will oe convenient to call the partic~lar solution ii' v7

of (8.1) obtained by setting i, - 0 the preferred trial solition
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of the dual problem corresponding to the trial tree X. As an

obvious consequence of Theorem 5, we state

Corollary 5A. If X is a trial tree, then it is a solution of

the problem if and only if the corresponding preferred trial

solution ifj ) of the dual problem satisfies dij+uiI-j k 0

e'or all i and J I"

All that is needed now in order to establish the method for

the non-degenerate case is to show how to construct a new trial

matrix X , if X is not a solution, such that Z (xij--x*j)dij > I.

In this case, it follows by Corollar~y 5A that dki+uk-Vj < 0 for

at least one pair (k,t) and, of course, x - 0.

Theorem 6. If the trial solution X is a tree, and Xki - 0,

then there Is a unique I-circuit on X, where I consists of all

positive xij together with xkJ.

Proof: It suffices to show that the I-graph of X has cyclomatic

number A- 1. By assump.-ton, the positive gra,;h of X has cyclomatic

n-knber zero, and since X must have positive elements Xal and xb

for some a and b, the I-Yraph of X has two more arcs, one more vertex,

and the same number (one) of connected pieces. Hence,,- 1, and

the proof is complete.

Now arrarge this unIque I-clrc'it [X8] with x,k, as the second

term ýnd let i be the -inimum of the odd-terms of [Xý in this

arrangement. If we sbtract g from the odd-tsr~ie, add S to the

even terms, and leave the renatinEn, elements of X unchanged, we

get a matrix X* that satisftes (k4. i') and is a forest (since [xa]

was inique).
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Theorem 7. z (x i-xj)d ij k 1.
iii

Proof: Let Lxs] - L[XI 1 ', X113J,, XiZJ, X1j2J3 ... ,XI X ,sil I

where xj I Xkk" Then

E (Xi -xij)dij "g(d*ljl-di +di*j " +dss-di

-- (d1 00+u1 1-v3 ) • 1.

The theoram follows. j
It X* is a tree, then the whole process is repeated until at

some stage a trial matrix Is obtained that either:(I) is a solution,

or (ii) is not a solution and is a forest of t > 1 trees. We discuss
(ii) next.

9. The Degenerate Case

Let X be a trial matrix which is a forest of t > 1 trees. As

we have seen, we may suppese that the rows and columns of X are

ordered so that

XI, 0 .... ' j

0 Xaa OX-
. * **S@ O .@ *. . @ * *

0 0 X

where each submatrix X., of order maxna is a tree. We can apply I

the methods of the non-degenerate case to the subproblems corresponding

to the submatrices Xaa anO either obtain a solItIon to ea i subproblem

or further decompose the matrix X, so we may also assame that each

Xaa 's a solution to its sabproblem.
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By Corollary 5A, we know that
-a + a _a...

(9.1) aia + a - > , a - l,>,t; 1a - a,.t'm; Ja -

where da' Va is the preferred trial solution of the dual subproblem

corresponding to the solution Xaa . and that
-ala a -Ja I aia

(9.2) daaaa + a -va 0 f Xa a > 0.
a aJa

We recall also that the most general values for vaa a are given

by

-a 7a Ja--- 4 ?1a V8 a va +Z ,up - . a a

where the za are ar -trary parameters.

It follows from Theorem 2 that X Is a solution If and only If

there are values of za that satisfy ineqaalities corresponding to

(4.7), or in oar present notation:

(9~)~ uaa ~Jb

(9.3) diaJb +Ia - vb > 0 for all a, b, Ia, anda b +a b--Jb

But (9.3) has a solution for za if and only If the following

ineqialities have a solution for za:

(9.4) p e+Za-zb O,

where
a'~ -'a -Tb

Pa b daabb + a -aa

Pab a(iaJb b a

We have proved

Lemma A. X Is a soution if and only if there are real
n~munbers za sach that pab+Za-Zb - 0, a,b - 1,-'',t.
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In order to establish a criterion for the solvability of (9.4),

we consider a special case of the original problem, defined as

follows: dab " Pab' ra - Cb = 1, a,b - 1,**',t. We call this the

spacial problem, the corresponding dual the special dual, and now

consider the special combined problem:

b ab 'aab-, Yab k O,

Pab+Za -b k 0,

Yab(Pab+Za--b) -O

If we set yab " lab' then for this trial solution the codlticr

reduce to:

Pab+Za-b > 0 for a b,
Pab~za-wb - .0

Since paa = O, It follows that xa - Was and so these conditions

are equivalent to (9.4). Hence, by Theorem 2, (9.4) has a sol2tion

If and only If 1I5abltiB a solution of the special problem. U~sing

Lemma A, we now have

Lemma B. X is a sol.,t'on ;f the original problem If and only

if the Identity matrix is a solution of the special problem.

Theorem C. X Is a solution of the problem if and only if

Palaa-"ah 0 0, h - 2,3,'--,t, where (al,ae.*'',ah) is any permutation

of h different positive Integers, none greater than t, and

- Pa~as+Pasas+.-•+Pa • P

Proof: By 14ma B, It lufflees to *hog that the ooudition of

the theorem Is equivalent to the statement that "lbabli is a 8ol .tion

of the special problem.

First of all, It Is easy to see that at least one solution

Y - OyabI1 of the epecia. problem is a forest, and hence has less

than 2t non-zero elements. That the elements of Y are all either
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zero or unity can be seen by induction as follows. The basis of the

induction is obvious, and we consider the case t+l, assuming the

statemenm for t. There must be at least one element of Y that is

unity, as otherwise Y would have at least 2t non-zero elements. We

may suppose that this element is Yt+1 t÷1. But then the induction

hypothesis implies that each element Yab' a,b a l,-'',t, Is zero or

one. It follows that there are exactly t elements of Y that are

unity, whence Z YabPab can be written as Palbi+ Patb 3+..-+Patbt

where (alaa...at) and (blbs...bt) are permutations of the first t

integers. Then H5 ab H is a sol0tion of the special problem If and

only if always

Palbl÷Paaba+'+Patbt Pl 4 P2U+' tt " 0.

The proof is completed by noting that this sum can be written as

p alaa+pa2as+...+Pha , with (aasa...ah) as described In the theorem.

We now need to show how to construct an improved trial solution

Xt In the event that X is not a sol.tlon. In this case, oe know

from Theorem o that there ii a sum
to 1 o1 0 o

_a&'** _ asia3  an a,

Pal a 2  + Pal as +Pa a <0.

Let I consist of all positive elements xa a together with all

oaka÷ k+l of X. Then we assert:ka ak+t

Theorem 9. There is a unique I-circuit on X that can te
10 1
lak ak~

arranged to involve a&1 tne xa ak+a as even-terms.
k i
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Proof: The positive graph of X has m+n-t vertices, m+n-2t arcs,
o o~

and t connected pieces Also, for each xka k + there are non-zero
ji J jo k ak+5 k ak aakl

elements xak ak x a a k+t Hence In passing from the positive
k k k+i k+1

graph to the I-graph, h vertices and 2h aras are added, and the nuabwr

of Connected pieces Is decreaed from t to t-b+l. Thus the oo10o-

matic number of the I-graph is

.,A a (2h+m+n-2t) - (h+m+n-t) + (t-h+l) a 1,

so there is a inique I-circuit [X,] on X. Since the graph obtained
0 0

by omitting from I any x k -k+s clearly has no cycle, jX.] containsak ak+a

all of these.

Evidently rX] can be arranged, for example, as

0: j 0 0 a3 j 0toj 0a 3al &I, as Jasa s asa asasa lasa3a
[Xal a, 0 xal an t Xall as x "' as as 0 Xag &3 ""a13a, 1a a

to o

so tnat all xakak+i appear as even-terms.
taak ak &

As In the non-degenerate cce, let g be the smallest odd-'%erm

in [Xs] (hence g > 0) and define a new trial matrix X* by replacing

the elements of X that appear In [K.] by new ones Increased by g

for even-terms and decreased by g for odd terms; the other elements

of X are left unchanged. Again X" satisfies the conditions for a

trial matrix. To complete the discussion of the degenerate case, It

remains only tc prove

Theorem 10. 1Z (x j-X;J)d j 1.



Proof: Since X and X* differ only on

Dc8] a [XIJIxi~R xj1 , nit0 xi X 1 8 l3 # X1 3 3 * 1 4  oijIs

then

The proof in completed by noting that d i3 - T +v1-71 and

-j 0 If x >0,50o that I (x -x )da..h 1

ij itj~~ IJij ij U-(aa..a,

mec
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F)otnotes

1. Nu•*bers in brackets refer to bibliography at Lhe end of the paper.

2. Ny interest In the problem wus aroied by papera on transportation
theory presented by Koopmans [4aJ and Dantzit T4b) at a conference on

linear programming In Chicago during June 19 9, under the auspices of
the Cowles Commission for Research in Economics of the University of

Chicago. Several other papers presented at this conference are of
closely related Interest. Professor Koopmans, in his Introduction I
to the Conference Proceedings [4], also discusses the background and
interrelationship of the confere,,ce papers-incliding the bearing of

some of these on the Hitct.cock distribution problem. The resulti of

the present paper have been presented in three sem.inar lectires:
once In December 1949 at The RAND Corporation in Santa Monica, once
in July 1950 at the Instittite for N nerical Analysis of the National

Bureau of Standards in lios Angeles, and once in1 June 1951 at the

National Burea1 of Standards in Washington, P. C.

I am especially Indebted to Dr. D. R. Fulkerson, who has given

real assistance in simplifying notation and proofs of theorems, for
a careful reading of the maniscript.

3. There is no loss of generality in assevming that the d are
positive Integers, rather than rational numbers, since th protlem Is

essentially inchanged If d is replaced by ad +b where a and t are

any positive rational numb~bs. I have not examined the case in

which some of tne quantities r , c , and d are Irrational. The

only effect of irrationality oA thg resultsof the present paper is

a poss5ile lack of convergence of the iterative process of sol tion.

These considerations are not of importance in. the isual appllcations.

4. Unpblished note, December 1949.

5. We omit the condition (42), that x > 0, since this I•mposes no
limitation on • and vj.

6. These are the non-degenerate and degenerate cases In the work of
Dantzig [40]. I shall -se these terms also. The -iethod of solu"ion

developed by Dantz!g [4t] for the non-degenerate case Is essentially
the same as the one in thli paper, althoJgn the derlvatlons of the

resAlts are q•Jte different. Orden [7) has subsequently riven en

elegant metnod for reaicing the degenerate case *-n the non-degenerate

one, as an extension of the t-method proposed by Das,! [L4b]. I

believe that the treatment of the degenerate case provideb the only

resilts In the present paper that are new, or at least fresh for the

Hlitchcock jroýlem, and also of some mathe!emsatlcal Interest. It also

seems likeiy t~iat the method given here will often te more efflclent"

computationally, In the degenerate case, than the DantzIE-Orden
S-me thod.

7. Sometimes, as In t's8 instance, I Indicate how to make a -nlq.e

cho'ce &a.ou*o possible alternatives at each cc p-tational atep but

usually I do not. It is necessary to do t..15 in order conpletely tQ

routinize the comp.tlng steps, of co.roe, bAt the matter presents nc

difficity and I om.t it here.
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