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ON THE HITCHCOCK DISTRIBUTICN PROBLEM

Merrill M. Plood

1. Introduction

Prank L. Hitchecock [1]' has offered a mathematicsl
form.lation of the problem of determining the most economical
manner of distribution of a product from several sources of
supply to numercus localities of use. He also suggests a com—
puteational procedure for obtaining a sol.ition of his system in
any particular case. L. Kantorovitch [2], TJalling C. Kcopmans
[3], George B. Dantzig [4#b], C. B. Tompkins [5], Julia Robinacn
[€], Alex Orden [7] and others [4] have also discussed the
computational aspects of this protlem.

The present paper is concerned onliy with the mathematical
Justification of computational procedure, and is limited to one
specific method of solution of general validity. No attempt 1is
made to compare the various methode already prcposed, e&lther as
{0 their mathematical similarity or as to their relative effici-

ency in any particular case.®
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2. The Problem

The problem is to find & set of values for the mn variables

xiJ’ subject to the following conditions:

( ) 4 n
2«:1 2 X = C. Zx =TI,
e SR L F R

(2.2) X420,

(2.3) 1?undiJ = minimum,

'y

The mmbers m, n, r,, e, end d, , are given positive imtogers®
with ch - xri. The indicees i1 and J are understood always to
range over these same integers. It ie alao sssumed, for convenience,
that m > n. Any set of valuas X4y that satisfles all these condi-
tiems is oailed & gelution of tis prodiem.

18 will st-atiiﬁo be more sonvenisnt to use ar altasrnative

statement of the problem, in mabrix notation, as follows:

(2.4) M'y >0,
(2.5) y >0,

(2.6) a'y = minimum.

It is easily seen that the two formulations ars equivalent if y, a,

b, and M' are defined ae follows:

Tn{t—1)+y = 1y’

d

Bn(1-1)+y = %1y’
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where In is the identity matrix of order n, and Ji is the mxn matrix
with all elements zero except for the 139 row in which each element
18 unity. Of course, y, a, ¢, and r are column matrices (or vectors)
with components yn(1~x)+J' an(1~x)+1’ cJ and Ty respectively, and a

prime denctes the transpose of a matrix (or vector.

3. Fundamental Theorems

There are several fundamentai theoreme concerning systems of

linear inequalities that are useful for thie paper. I reproduce
their statements here in a.form due to A. W. Tucker.® The interested
reader can find proofs of these theorems, and of others of similar
type, in a paper by Gaie, Kuhn, and Tucker [&c].

Pundamenta. Problems: (Here lower case roman letters denote

one coiumn vectors, while capitals denote rectangular matrices; M,,

a, and b are givea but d is to be determined.)

-
o e T AR -

Problem 1. To satisfy the esnstreints Mx (s, x > O, and make
b'x = d for d maximal in the sense that no x satisfying
the constraints makes b'x > d.

Problem II. To :atisfy the constraints M'y > b, y > O, and make

a'y = d for d minimal in the sense that no y satisfying

the constraints makes a'y < d.




Problems I and II are asaid to be dual.

Fundamental Feasibility Theorem:

The constraints in a problem are feasibie (i.e., satisfied by

rome x or y) .f and only if the dual problem in homogeneous form

(1.e., with b=0 or a=yjias # null golution.

Fundamental Existence Theorem:

1. x and y are sclutions of Problems I and IT if and only if
they satisfy their constraints in the two prollsnme and wake o'y ~ h'y
Such x and y exist 1f the constralnts in both problems are feasible.
i11. A probiem has a solution if and only if its constraints

are feasible and its homogeneous form has a null solution. !!
{

Fundamental Duality Theorem:

A problem hes a solution (for a unique d) if and only if the

dual problem has a solution (for the same d).

4. The Dual and Combined Problems

We note that the problem,as stated in relations (2.4)-(2.6),
is & fundamental problemr of form II. The dual problem 1is;
(3.1) Mmx g a,
(4.2) x>0,
(3.3) b'x = maximum.
This can be rewritten in a more convenient form, for our present
purposes, as rollows:5
(4.4) vj_ui < dij’

(4.5) ECJVJ - Zriul = maximum,

where v, = x ”xn+J' and 4y = -X

+ .
gn+i xtn+m+1

J J
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Theorem 1. The problem has & sclution.
Proof: By the Pundamental Existence Theorem.thare is a
solution 1f and only if the constraints are feasil.. s«ad y = O is
~. & solution of the problem whem b = 0. Now m’ Iry, #o | ,: J'
X,y = ,0,/Ir, catisfise the constrefnte. Whem b =@ ebiagdly ., A}

the only values that satisfy the constraints are xiJ = 0, and so

the theorem is proved.

By the Pundamental Duality Theorem, we see

Corollary 1A. The dual problem has 2 solutiocu.

Theorem 2. The numbers x 14’ and ui,v,, are solutions of the

5 probl- and she dusl, respeetively, if and only 1f t&x utiltn = «
¢ - TR
(4.6) ?‘13 o, E Ix,, = o, X,20,

(4.7) d1J+u1-vJ > 0,

(4.8) xij(dlj+ui_vj) -,

Proof: Since (4.6) and (4.7) are simply the constraints for
the problem and the dual, respectively, it remains only to show

that (4.8) 18 equivalent vo the condition a'y-b'x = O. Now

aty-b'x = X xinij ?chJ + Zrlu1

1,J i
- 3 x, .d - Z X + z x
1,3 1371 1, 1J J 1, 1 Y4
] — ‘, *
1i’ljxij(du+u1 vy

Since sach term in this sum is non-negative, a'y-b'x = 0 1if and

only if x“(d14 Y ) - 0.
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we refer to tne prorvlem of finding values for xiJ’.ui’ and vJ
tnat satisfy (%#.5)=(%2.L) as the "combined provlem", and note that

tiie comblned protlem always has a solit’'on,

5. Linear Gruap..s

It wi'l be convenient, for some purposes, to associate linear
graphs [u] witn cert:in sitsets of the elements of a matrix
S = ﬂshkﬂ. If I 1s a given subset of the elements of S, we define
the I-graph L of S as follows: <the vertices of L are all the points

—————

(ti,k) in the Cartesian plane for wnien s, < I; the arcs of L are

hx
ail iine segments Joining palrs of nelghioring vertices with either
eq.ai aovscissas or eq:a. ordinates, where two vertices with equal
abscissas (ordinates) are neightoring if they are not serarated !ty
another vertex witn the same abscliss: (ordinate). Yor the momert,
denote the vertlces of L by synbois a,t,c¢,***,l and the arcs ly
symbois 8.ch as ab, be, -+, ¢f (no d!stincticn is nade between the
ares ib ana va)., Then a chalr. 18 a set of one or more distinct
arce that can be arranged as av, bve, -+, Jde, ef, where vertices
Jenoten 1y Jifferent symbols are distinct, A cyc.e 18 a set of
Gletinee treo (at ieast four are necessary) thot can Le ordered as
at, pbe,~*-, ef, fa, the vertices being distinct as in the case of
a chalne A graph is connected 1f esch pa'r of vertices !s lcined
by a chain. »~ ic¢r«8: ls a graph conta'ning no cycies, and a tree
is a connected forest.

If L contains v ertices, a arcs, and n connected pieces,

the n.moer 4 = a-/4- 't «nown as the cyc.ometic nudter (or flrst

“y
-~ S
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Bett!i number) of L. It follows from a well known theorem [£]
concerning linear grazhs in general that: (1) L is a forest if and
only if «= 0, and (11) L contains just one cvcle If and only if
M= ],

Note that L contains a cycle if and only if there is a subset
of 1 that can be arranged as a sequence

sh;k;' shzka’ shakg’ Bhgkg"..’shoﬁ(c—’ shgkl

where the n's and k's are distinct among themseives;andi L contains
a single cycie if and only if I contains just one .uvset that can
be arranzed in tne dispiayed form. We call such a subset of I an
I-clrcult on S, and denote it by [SOJ. For a particular arrangement

as n4d-terms, the

of [S&], we shali aiso refer to the ter-s s_
b A

otners as even-terms.

In case I consists of all LI > 0, as it frequently will, we

speak of the positive graph of S, positive circults cn £, and

atbreviate sich statements aa "the positive graph of S is a forest”

to "S 18 a forest".

A, Tne Method of Solution

In the met:iod of solution to bve developed for the problenm,

o] 0

we start with a special set of values X~ = !XIJ’ that satisfy the
constra!nts (4.4). we then test to determ'n= wrether or nct threre
exist ., and vJ satisfylnz the re.ations (4.7) and (4.8) for tre
iven 2. 1 sc, then X° s a solution, otherw!se not. The method

next ytelus 3 new tria. matrix X' = fx! ], ¢ X° 18 not a solutton,

sach tlat 12.(x2J-x;,)diq > .. After a f:nite nunter of steps this
v - [
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process necessarily must terminate and it leads to an exact integral
solution of the problem.
The first trial matrix X° is a forest of t trees, and has
m+n—~t non-zero elements. According as t = 1 or t > 1, two essentially
different cases may be met at each stage of the solution process.
At each stage when X = |x1Ju is a tree, the equations (4.3)

have a general solution for Uy and v, with one fre. parameter, 8say

J
U;. However, the quantities d11+u1‘v5 are uniquely determined in
this case, so it is sufficient to calculate them and note whether
or not they are all non-negative in order to decide whether or nct

X is a solition. 1If some d +u,
Lids

‘~vd‘ < 0, then there is a uniq.e

I-circuit {X_ ] on X, wnere I consists °t'xi,J, and all positive xij;.

that may be arranged with X4, 88 the second term, sa;. Let

g aenote the smaliest odd-term of [X,]. Then the new tria’ matrix
X* 1s obtained from X Ly adding g to the ever terms of (%],
subtracting g from the odd—-terms, and leaving the other elements
of X unchanged.

At each stage when X !s a forest of t)>. trees, the eq.at!ons
(4.8) have a general sol:tion dr ., and v, with t independen®
parameters, and the quantities dij*‘i'vj invo.ve t-i independent
parameters. The rows and columns of the matrix X are rearranged so
that it can be represented as a sq.are mairix of order t whose t?
elements are s.bmatrices X , s.ich that X . = 0 1f a A b and X.a

is a tree with m +na—l non—zero e.ements and is o order My XNy .

b T S r. ol 24
We can select u,, Uy a1t ’“m,*--'+mt_.+: to te the t paraneters.

If we assiyn these the value zero and dencte vhis part'cular

DA s

Wvalihs o B o
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golution of (4.8) by 71 and v, then we may define numbers
Y
Bij - dij*ui_vj' We partition the matrix P = uBiJ“ irnto submatrices
, ®
corresponding to the xab and denote thae.u “ab* Let Patb te the

'S

emallest element in Pab and define the sq.are matrix F of order t

by P = "pab“‘ To designate the positlon of p_ . 1in the matrix
T 1
- - of
P = "pi,u, we may write p , alternatively as paabb, the sutscripte

referring to the s .bmatrix and the superscripts to the rows and
columns in the s .bmatrix. .

The test aes to whether or not X 1s a solution consists of

- +C AARER 2 for
a 2g+ -8y, Pa,ag Pagas paha‘

n=2,3,+++,t , wnere (a,ag---a,) i{s any perm:tation of h different

forming all sums

rositive inte-ers, none greater than t; X 1s a so.ution if anc oniy

if all s.ch s.ms are non-negative.

If any < 0, then there is a unique I-cire .it [Xs)

pa‘a‘o [ oan
on X, where I consists of ail posi<ive Xy 4 together with al: x, ,

Y

a va.
— K e\
that correspond to the terms p of p. ’
o A, LEMA

. ing‘k+:
which can be arranged to involve a.: x as
‘k 3k+t

even—terns. If g ia' he aunllclt-bdx~tern in [xé), then {(as in

*r.e non-degenerate case) the new tria. matrix x* 1s ctta'ned Ly

adding & to the even—ter—s of {xsj, 8 Ltracting g from the odd--

termc, and Jeaving the other e.emen.s of X .nchangead.

7. Tre Initlal Tria. Soi.tion

An X tnat satisflea (4.0) w#i.. be czi.ed a trlal so..t'cn,

-

© wo:iid te a2.: rignt to teke -ne positive va, .es r,c,./&r, for

L




the initial trial solution X° = ngJﬂ. An alternative is to construct
an initlal trial solution that is a forest. It is always possible
to do this in integral values. The rollowing theorem certifies the
existence of such an integral trie! solution. The method of proof
shows hew to construct one.

Theorem 3. There ls a matrix X° = ngJH with integral elements
that satisfios {4#.6) and 1s a forest.

Proof: The theorem is trivial for m=l. Assume the theorem is
true for m and consider the case m+l.

let the nctation be chosen 80 that r, 2Ta> " >r > 0,

S m+

and ¢y > cg > *** > ¢, > 0. 1f n < m+l, then ¢, > Poere 1f 0= m+l

then ¢y > r_,, unless c, = r = A (for all 1 and J5 in this latter

case X° = A satisfies the cond't.cns of the theorem. Hence, by the

*

induction hypothesis, there 1s a set of non—negative integers xij

-

, |
(1 = 1,.++,m) such that fx?l =c8, ., ' =r, and X' Nx;Jl

o] .
is a2 forest. Then x° defined by xi‘1 - xw, ﬁ:“ J - O,erﬂ, satisfies
(4.6). Now since the (m+1)!5’row, with only one positive element,

clearly cannot contribute tc*na to a positive circuilt, x° 1s also

a forest; and the theorem is proved
Ta apply this method, in the construction of a trial solution,
search for the smallest ri, and the largest ch, and then set
x{ . =r, . Ineffect, this deletes the 1,3% row, after ¢, 1is
hhda 1y J
replaced by c11—r11, and the process 1s repeated (interchanging
rows and columns a. necessary) until all xgj have been determined.

For c.tomatic machine calculatio.n the procedure is easlly made

unique, for any one starting order of rows and colunns, by

., . Gy R gl A iie bR ‘,« R VR TN by
., TRV OB s L RIND i N A SR R P aliiads bl Sk RO LSRR s
St SRR Ve e A SN I

b R AR O S RS B € M i

e

N TV
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specifying that the search is {iret on row—-totals when the n.umver
of rows 18 the same as the numtér of columns at any stage, and that
the row-total or column-total with the smallest index is chosen
whenever at any stage there are several equal values to choose from.
This initial trial solution will ve called "preferred" for
1dent1r1cation.7

Theorem 4. A trial solution that is a fcrest of t trees has

m+n—-t non—-zerc elements.

Proof: Observe firast that if the trial solution X 1s a forest

of t trees, the rows and columns of X can be rearranged sc that X

has the form
Ix,,o eee 0|

O xaaooc O

O 0 LAY xtt

where each X,, 1s a tree. Consequently, the theorem amounts to

proving that an mxn matrix with no zero rows or columns,which 1s a

tree, nas m+n—: positive elements. If m+n = 2, this I!s obvious, so0

ass.me the statement to be trueforallmatrices for which m+n = k and

consider one f{or which m+n = k+l. Since m > n, clearly some row

has only one positive element, as otherwise there would be a

positive circuit. Delete this row anc apply the induactlon hypothesis.
In actual cases when m and n are relatively small, or when

there 1s other reason to telleve that an initlal trial solution

better than tne preferred one can be found by trial and error, it

may be better to constr:ict the initial trlal soluitlon in some cther
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way than the one given in the proof of Theorem 3, in ordcer to
reduce the number of steps required in the iterative process.

The methods developed in this paper apply directly for any
trial solution that is a forest, and are readily extended for other

cases. It is easy to se2 that there must be at least one solution

which 18 a forest.

8. Non-degenerate Case

We consider now the case of a trial aolution X which is a

tree. Let the positive elements of X be x , 8 ® 1, eee min-1.

1 4
a‘a
We shall need the following theorem.

Theorem 5. If X i8 a trial tree, the set of equations
(8.1) diJ+ui-—vJ =0 for (1,)) = (1a,Ja),

has the general soliution

* #*
Uy = Uz, vV, o= V,4zZ,

J J

where (u;,VB) is a particualar solution and z is arbitrary.

Proof: The theorem 18 apparent for m = 1, and we proceed by
induction.. Suppose the theorem 1is true for all trial trees of m
rows, and let X be an m+lxn trial tree. Obviously, there must bve
at least one row of X that has exactly one non-zerc element; we
may suppose 1t to be xm+lnw1thout loss of generality—alsoc that
1m+n—x = m+) and Jm+n—x = n, Since X is8 a trial tree, the matrix
obtained from X by deleting the last row (or, if m+l = n, its
transpose) is also. The ind.ction hypothesis implies that the
general solution of (8.1), with the final equation omitted, 1s of
the form u, = u;+z, vy = v3+z. We note next that this final equation
becomes u . = (v;-dm+‘n) + 2= u;+‘ + z. The theorem follows easily.

It will pbe convenient to call the partic:lar solution ﬁi, VJ

of (8.1) obtained by setting 1, = O the preferred trial solutlon

BN L AR S VAU eTH

FYTCTCIC NP N

o iR e

i i i A S AR, o R s

R o SR WD e e
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of the dual problem corresponding to the trial tree X. As an
obvicus consequence of Theorem 5, we state

Corollary BA. If X 1s a trial tree, then 1t is a sclution of
the problem if and only 1f the ccrresponding preferrsd trial

solution ﬁi"’,j) of the dual problem satisfies d”mi—vJ >0

for all 1 and j ‘
All that is needed now in order to establish the method for

the non-degenerate case 18 to show how to construct a new trial

matrix X', if X 1s not a solutlion, such that X (xu—xzj)dij > 1.
1,J
In this case, 1t follows by Coroliary 5A that d, ,+u,-v, < O for
kl "k 2

at least one pair (k,f) and, of course, x,, = O.

ki
Theorem 6. If the trial solution X i{s a tree, and Xp = o

then there i1s a unique I-circuit on X, where I consists of all

positive x together with Rype

1J
Proof: It suffices to show that the I-grapnh of X has cyclomatic

number 4= 1. By assunp.lon, the positive grash of X has cyclomatic
number zero, and since X must have positive elements Xa 1 and X0
for some 8 and b, the I-rrapn of X has two more arcs, one more vertex,
and the same number (one) of connected pieces. Hence w= 1, and

the proof 18 complete,

Now arrange this unigue I-circiit [xe] with x, , as the second

term nnd let g ve the minimum of the odd-terms of [X/] in this

arrangement. If we g.btract g from the odd-terne, add z to the
even terms, and leave the remaining elements of X unchanged, we
get a matrix X  that satisfles (4.>) and 1s a forest (since [Xg)

was iique).
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Theorem 7. 2 (x, .—-x;.)d 1.
oo D)8 ( 15714094 2

Proof: Let [an - [kixJ:’ 1102’ Mage’ Magatt xindl"tiaJt]’
where Xi. 99 ™ Xks° Then

(B Ry = eldy gt g, )

- -s(dilJl

wi‘-VJ') 2 1.
_'rho theorem foliows.

it x" 1s a tree, then the whole process is repeated until at

some stage a triai matrix is obtained that either:(1) is a solution,

or(11) is not a solution and 1s a forest of t > 1 trees. We discuss
(11) next.

9. The Degenerate Case

Let X be a trial matrix which is a forest of t > 1 trees. As

e

we have seen, we may suppcse that the rows and columns of X are

ordered so that

where each submatrix xa of order moXn, is a tree. We can aoply

the methods of the non-degenerate case to the subprobiems corresponding

to the submatrices X.a and elither obtain a solution to ea a1 subprovlem
or further decompose the matrix X, soc we may also ass'me that each

xaa is a solution to its s.ubproblem.
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By Corollary SA, we know that
1.J A _J
(9.1) daaaa‘"uaa‘-vaa?_o) a = 1,°°°,¢t; 1&-1’.0.’"‘8; Ja'lo"”pn

where Ea, Va is the preferred trial solution of the dual subprovlem

corresponding to the solution xaa' and that

1.J i J 1,J
a‘a . —a =‘'a _ . a‘a
(9.2) d,"g + U, Ve 0 if x,°.° >0
4

'

J
We recall also that the most general values for u“ and v“ are given

by

i b J J
a — a a -vYa
= + a4, v v +
4, a ~Va 2,

where the z, are arlitrary parameters.

It follows from Theorem 2 that X is a solution if and only 1if
there are values of zy that satisfy inequalities corresponding to
(4.7), or in our present notation:

13 1 3
abb +u? vbb >0 foralla,tb, 1

(9.3) d a > a

a , and Jb‘

But (9.3) has a solution for z, 1f and only If the following

inequalities nave a solution for Zy:

(9.4) p..+2 -z, > 0,

ab “a 4
where

1 3 1. 1 J
- avb ave —-"a -¥Db
Papb "dap tY —Vpo

4

Py =, mi {51 o)

ab (1a’3b) 0 a b’l

We have proved
lemma A, X 18 a so.ution if and only if there are real

nmbers z, 8 ich that Part2a=2p 2 0, a,b = 1,eee,t,

a’
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In order to establish a criterion for the solvability of (9.4),

we consider a special case of the original problem, defined as

follows: dab ® Dap? g ™ Cp ™ l, a,b = 1,***,t, We call this the

spacial problem, the corresponding dual the special dual, and now

consider the special combined problem:

Eyab “gp "1 Ve 20

Pap*tZa~—p 2 °,

yab(pabﬂa"b) = 0.

-

If we set Yap ™ bab' then for this trial solution the conditicn

reduce to:
PaptZaYp 2 O for a ¥ b,

p“+l.f¥. = 0,

Since Paa ™ 0, it follows that zZ, =V, and so these conditions
are equivalent to (9.4). Hence, by Theorem 2, (9.4) has a sol.:tion
1f and only 1r"bab"1s a solution of the special problem. Using
Lemma A, we now have

Lemma B. X is a sol.t'on >f the original problem if and only

if the identity matrix ‘s a solution of the special problem.

Theorem 8. X is a solution of the protlem if and only if

pa‘a.. [ cah 2
of h different positive integers, none greater than t, and

Pajag:ccap © Pajag'Pagey’  Page, , .
Proof: By Lemma B, it suffices to show that the condition of
the theorem is equivalent to the statement that ﬂ&abn is a sol:tion
of the special problem.
First of all, it is easy to see that at least one solution

¥ = |y |l of the epeciz. protlem is a forest, and hence has lass

than 2t non-zero eiements. That the elements of Y are all either

i

3
-~

-
L=

3
P
b
¥

O, h = 2,3,+¢¢+,t, where (a,,a.,---,ah) is any permutation
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zero or unity can be seen by induction as follows. The basis of the
induction 18 obvious, and we consider the case t+l, assuming the
statement for t. There must be at least one element of Y that 1is
unity, as otherwise Y would have at least 2t non-zero elements. We
may suppose that this element is Yeay ter But then the induction
hypothesis implies that each element Yab’ a,b = 1,°°°,t, is zero or
one. It follows that there are exactly t elements of Y that are

unityf whence aZbyabpab can bz written as Pa,b,* pagb.+"'+patbt

where (ajag---a;) and (b;bg---by) are permutations of the first t
integers. Then u&abﬂ 18 a sol.ition of the special problem if and

only if always

Payb,*Pagbe*’ ' " *Pa b, 2 Pr1*haate  *ret = 0.

Tne proof 1s completed by noting that this sum can be written as

+
paga,

We now need to show how to construct an improved trial solution

Paaq *et Py, With (a;ag-+-ap) as described in the theoren.

X" in the event “hat X 1s not a sol.tlon. 1In this case, we know

from Theorem © that there is a sum

-
-

o ,0 o .0 o ,0
_1a;”ag _183383 1ahJa,
Pa, ag Y Pagag YO0 Ya, a, < 0.
1a"a
Let I consist of all positive eiements Xa a together with all
0 ¢
1akJaK+x
X, a of X. Then we assert:
K "k+

Theorem 9. There i1s a unique I-—<circuit on X that can te
10 §°
8y .k+i
arranged to invclve sll tne Xa & as even-temms.
K  k+1
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Proof: The positive graph of X has m+n-t vertices, m+n-2t arcs,

and t connected pieces. Alao, for each x, ka K+ there are non-zero
a,
elements xaaka . Tty ak+'. Hence 1in passing from the positive
k 'k k+1 qk+s

graph to the I-graph, h vertices and 2h arcs are added, and the number
of connected pieces is decreased from t to t-h+l. Thus the eyclo-
matic number of the I-graph is

M= (2n#men-2t) — (h4men-t) + (t-h+l) = 1,

80 thore is a nique I—circuit [x,] on X. Since the graph obtained
17 .

% ak-n

8% %+

by omitting from I any x, cleariy has no cycle, [X,] contains
all of these.

Evidently [X‘] can be arranged, for example, as

o o ,0 o () o ,0
iaxdla a,Ja. anaa 1anaa laJas
‘a. a, ! xa; ag ’ xag &g r "0 xa, ¥ ’ xag as » 0 ] ]
o 40 |
1akJakM i
8o tnat all x appear as even-terms.
8y 2+

As in the non-degenerate cu.se, let g be the smallest odd-term

in [X.] (hence g > 0) and define a new trial matrix X" by replacing
the elements of X that appear in [X. ] by new ones increased by g
fcr even—terms and decreased by g for odd tems; the cother elements
of X are left unchanged. Again X° satisfies the conditions for a
trial matrix. To complete the discussion of the degenerate case, 1t

remains only tc prove q

Theoren 10. 8 (x )a 1.
oy T SYIUTD-




Pggy =0 1f x;,>0, 8o that 1?J(x15-xid)d1J - —z(p

A

Proof: Since X and X" differ only on

fx;] - [kixJz’ X122’ X10d2’ *ads’"" " xiaJs’ 8Y1

then

+----0<l1 -

1§J(31J-K1J)d1J - -S(dixJx_diuJa+diaJa_diaJs ist).

B"S

The proof 1s completed by noting that d1J - 51J+an§1 and

) > L.

a‘a'o ) .ah

me
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Porotnotes

1. Numbers in brackets refer to bibliography at Lhe end of the paper.

2. My interest ia the problem ﬁis arosed by iapera on transportation

theory presented by Koopmans [¥a] and Dantzig [%b] at a conference on
linear programming in Chicago curing June 1949, under the ausplces of
the Cowles Commission for Research in Economics of the University of
Chicago. Several other papers presented at this conference are of
closely related interest. Professor Koopmans, in his Introductlon

to the Conference Proceedings [3], also discusses the background and
interrelationship of the conference papers—incliding the bearing of
some of these on the Hitc:.cock distribution problem. The result: of
the present paper have been presented in three seminar lect .res:

once in December 1949 at The RAND Corporation in-Santa Monica, once
in July 1950 at the Institite for N merical Analysis of the National
Bureau of Standards in los Angeles, and once ir June 1951 at the
National Burea. of Standards in Washington, D. C.

1 am especially indebted to Dr. D. R. Pulkerson, who hae given
real assistance ‘n simplifying nctation and proofs of theoreme, for
a careful reading of the maniscript.

3, There is no loss of generality in ass.uming that the d,, are
positive integers, rather than rational numbers, since th&Jproblem is
essentially inchanged if d {s replaced by ad, ,+b where a and t are
any positive rational numbi#a. I have not exaﬁfned the case 1in ‘
which some of tne quantities r,, ¢,, and d are irraticnal. The
only effect of irrationality oﬁ thé resgltﬁjor the present pager is

a possitle lack of convergence of the iterative process of sol .tion.
Trese considerations are not of importance in the .sual applications.

4, Unpiblished note, December 1949.

5. We om!t the condition {(4.2), that x > O, since this Iimposes no
limitation on =, and vj.

6. These a the non—degenerate and degenerate cases in the work of
Dgntzig (&t]. I shall .se these terms also. The method of so:iution
developed by Dantz!y [st] for the non—degenerate case 1s essentially
the same as the one in this paper, altho.igh the derivations ol the
res.lts are q.ite different. Orden [?] has subsequently given en
elegant metnod for reaucing the degenerate case ‘o the non-degenerate
one, as an extension of the €-method proposed by Laiziy [av]. I
believe that the treatment of the degenerate case provides the only
resilts in the present paper that are new, or st iecast fres) for the
Hitcheock i rovlem, and also of some mathemstical interest. It also
seems 'ikely tiat the method given here wilil often te more efficlient
computationally, in the degenerate case, than the Dantzig-Orden

¢ -method.

7. Sometimes, as in t:1s instance, I indicate how tc make a niqg.:.e
choice amony possitle alternatives Gt each comp:tational step btut

usually I do not. It is necessary to do t..18 in order conmp.etely to
routinize the comp.ting steps, of co.rse, Dbt the master rresents nc

* difficiity and I om't it here.
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