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SYMBOLS

A = cross-section asreas
b = unit vector tanpgent to a circulesr parallel
C. = norma) force coefficient = N/q.nr:

Cy = local normal force coefficient = dC,/d(x/d,)
cC.=(p~— P,)/qo = pressure coefficient

C; = axial force coefficient = X/éonr:

C; = local axisl force coefficient = dCx/d(z/d.)
d = dismeter
4 = length

“o = free stream Mach number

-
]

rate of mass f{low

N = normal force — thst ia, force normal to longitudinal sxia of body
R = unit vector normsl tc surface, positive inward

p = atatic presaure

q = * p¥? = dynamic pressure

R = radius of normal curvature of s atreamline

r = radiva

S = surface area

t = unit vector tangent to a meridian

V = velocity

Vo = free atream velocity vector

V. = velocity of flow over the surface of the body

>e
"

axi1al force— that 1s, force in direction of jongitudinal axis of
body

x = distance along longitudinal axis of body

& = angle of sttack




]

]

angular position of a point on the surface of the body
upper limit of integration around a circular parallel
angle between body streamline and a meridian

thickness of body layer

angle between ¥V, and n

angle between t and the longitudinal axis of the body
semi-vertex angle of cone

mass density

density in body layer

SUESCRIPTS

based on maximum tody dimensions

centrifugal force values

converging or boattail section
nose or diverging section
refers to expansion flow

impact values

straight or cylindrical section

tased on free stream conditions
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SUMMARY

{

.'I'he importance of body lift lies in the fact that ot moderate
angles of attack and high Mach mmber 1t can constitute an appreciable
part of the total 1ift of a winged missile. In this papser an attempt
has been made to anslyze body 1ift in hypersonic flow by an approximate
method and, together with & correlation of existing experimental data,
to indicate the probable variation of body 1ift over a wide range of
Mach mumber extending from low supersonic to inypersonic. The method
of analysis of hypersonic flow over inclincd bodiss of rewolution
employed herein has been denoted as the Qypersopic approximation.

It is an improvement on the Newtonian corpuscular theory c¢f aero-
dynamics since it considers the centrifugal forces resulting from

the curved paths of the air particles in addition to the impact

(Newtonian) forces.

*Physical Scientist; now with the Jepartment of Defense, washington,
as Scientific warfare Advisor.

'Aerodynaaics Pngzineer

' Researoh Engineer
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I. INTROIRCTION

In the field of guided missiles, investigations of possible performance
will inevitably lead to the comsideration of flight at higher and highe. Mach
mwsbers., Although for soms missiles the Mach mmsber . = 5 might be considered
as the upper end of the speed range, for missiles of a different category the
high speed range of flight can conceivably extend to i/ = 20 or 25. As far
as wing serodynamics is concerned, for supersonic speeds up to ', = 5 the wing
117t may be obtained with satisfactory ascurscy by means of the linearired
supsrsonic wing theories, and at higher Mach numbers satiefactory results
are obtained on the dbasis of two-dimensional gas dynamic:. However, this
is not gt &ll the case for strictly three-dimensional flow such as that
over a yawed body o? revolution. In the usual application of linsarised theories
in two- and three-dimensional flow, wherein the higher order ‘erms are neg-
lected throughout for the sake of consistsncy, good solutions can be obtained
for supersonic wings vut not for body 1ift. Furthermors, these linearised
solutions are mbject to Mach mmber limitations. On the other hand, reliable
theoretical 1lift results exist for cones at the present timc.(l)' (2) This
yawed cons theory giﬁs the exact initial normal force slope which is prac-
tically independent of Mach mumber and in excellent agreemmt with the hyper-
sonic approximation or the present paper as shown by Fig. 1; agreement with
some experimental data is shown in Fig. 2. lLess is lmown about the 1lift of
an ogive, however, and still less about the 1ift of a cylinder following

either a cone or ogive,

In view of the fact that at the higher Mach mmbers body 1ift can con-
stitute an appreciable part of the total 1ift of a winged missile, an attempt
has been maie to analyre body 1ift in hypersonic flow by an approximate method
and, togethwr with am analysis of existing experimental data, to indicate the

probable variation of body iift over a wide range of Mach number extending from
low supersonis to hypersonic. First, the Newtonian analysis is preasented for




an arbitrary inclined body of revoluiion. The resulting forces or a cono and
¢ylinder are then given. Certrifwgal force effects reduce the cylinder normal
force resulting from the Newtonian aralysis by approxi=matsly ten psroent.
Correspending effects for slender comes and cgives are less for the angle of
attack range of gensral interest (a<2¢ ) so for practical purpssées ths Newtonian
analysis needs n» wodification for predicting the lift on the noee of a body of
revolution at very high Mach mmbers. A qualitative discussios of the pressures
on cons and cylinder vreas situited in regions of expanaion flow st hypersonic
speeds is then presented., It serves as a guide for extending the resalts of ths
followang correlation of experimental 1ift data through the Nypersonic region to
the hypersonic approximation values. A more detailed discussicn and analysis of
centrifugal force effects are givem in the Appendix,




II. THE NEWTONIAN (IMPACT) AERODYNAMIC FORCES
ON A YAWED BODY OF REVOLUTION

In view of the general lack of exasct gas dynamic results for three-dimsn-
sisnal flow it is important to realige that valusble results concerning the 1lift
¢a & pointed body of revolution can he ocbtained from the relatively simple theory
¢f Rewtonian serodynamics, At high supersonic Mash mmbers, particularly whem the
engle of attack is .ppreciable, the gas pressure forces on a body may be approx-
imated in o simple mammer on the basle of the oomoept of Newtenlsn flow, -5
In Newtonian fiow it is assumed that the gas stream maintains its speed and
direction wnchenged until it strikes the s0lid surface exposed to the flow,
wherewpon it loses the cemponent of momentum normal to the surface and moves
along the surface with the tangential component of momsntum unchanged. Thus,
in this consept the chock vave is assumed to lie on, or follow, ths surface of
the body. The Newtonian approximation does not specify the pressure cn surfaces
vwhich do not "see" the flow, that is, surfaces on which gas dynamice wmild predict
expansion flow. Por a flat plate ineclined at an anjls « to the flow, the New-
tonian pressure coefficient on ths lower surface is

(1)

c, L Po =y 4in? 4
9
whers p, denotes fres-stream pressure, andg, = 3o 17 45 the free—streem dynamic

pressure.

The ooncept of Newtomisn flow can also be approached from the sxact two-
dimensional gas dynsmical squations by letting ¥, + ® , Comsidering a flat plats
inclined to the flow, there will be shock flow over the lower surfase and expension
flow over the upper surface. As the Mach mmber increases, the shock wave approsches
closer and closer to the lower surface (leading to increasing pressures) and the

smount of expansion inoreases on the upper surface {leading to decreasing pressures),
In the limit wheny = = both the pressure and the pressure coefficient om the wpper
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* gurface becoms sere, &né the prsssure ccefficient n the lowsr surface becemes (O)

C, = [y +1) sin’a =, (2)
where Y is the ratio of the specific heats. 3ince the upper surface pressure cosffisisut
is noro, Eq.(2) 15 alse the expression for the normal foroe sceffiolemt C, . It ‘h indisated
in Ref. 4 that ¢y +1 as¥ -+ 3, which brings Bq.(2) into sgresment with the Newtomian recult,
BEq.(1)e It 48 worth pointing out ths* for a given Mach mmler end angle of attach the New-
temian thecry gives censiderably better results for a threo-dimensional body than fer a ted~
dimengiomal body. Thus, the Newtonisgn hypersenie appreximation for a pointed bedy of revel-
utien, suoh as a cone for sxample, is sarprisingly good and is much better than fer a twe-
dimengional fiat plste.

A, ARBITRARY BODY OF REWOLUTIOR

To dorive the Newtemian presceure forces om a body ¢f revelution of general shape,
consider the body showmn in Fig. 3 fer which the longitudipal axis of smymmetry is the pesitiwe
s —qxis. The engle of attask & is the angle in the r: —-plame betwesn the free-—stresm veleeity
veotor ¥ and the positive : -axis. The y-axis is perpsndicular te the ::-plane, ferming a
right-handed system of coordinates. Comsider a differential elememt of surfase area dSat
an arbitrary pednt U ' oo the surface of the body and letx ',y ,:' demote a local right-heafded
systam of ooordinates at the poimt U |, such that x, y, : are parallei respectively tex, y, z,
Let 7,7 be the polar ocooriinates in the y: —nlane of the peint U en the surface of the bedy.
Letn be a wnit veoter which is mormal to the surface element dSand poeitive in the imward
direction. Let tbe a writ vecto: which is tangemt to the elmmemt o, forming an mmgle ¢
.. WVith tbe positive. -axis.
Let p dencte a unit vecter whish together
withn and t forme & right—handed ccerdinate systam, suoh that b®n xt. For a body of re-
-:.r velution, which is the only ocase to be conszidsred here, iin tangent te a meridian and there-
fore lies in the plane formed Ly the lime :'end(: , and v 18 & tengemt Lo a eircular parallsl
end therefore lies in the, :'-plane. The angular positien v. the point (' (amd the veetern )
is glvar by the angle . , which 1s measured pesitive counterclecindse from the poeitive

y 'exis. The anglst betwsen( ':'and tis considered p.eitive in the




sense of a oomterslockwise retation about §.

The relatisms betwsen the n, t, b-ecordinate system and the x',y’' , 12 '-gystem
(Figeh) are givem by the following teble of direction cosines.

Table 1
DIRECTION COSINES

. ox ¥ 2!

+ + e
t 1 cos 8 ; sin 6 cos P sin 6 sin f
b g 0 f - sin B cos B
n isineE—coaﬁcosﬁi—cosﬁain{d
Y,  cos a . 0 l sin a
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TRANSVERSE SEGTION
(VIEWED FROM STERN)
r=RADIUS VECTOR IN yz-
: PLANE TO A POINT ON

: THE SURFAGE

o = FREE-STREAM VELOCITY VECTOR
n =UNIT VECTOR NORMAL TO A SURFACE ELEMENT

t =UNIT VECTOR TANGENT TO SURFACE ELEMENT AND
LYING IN A PLANE CONTAINING THE x-AXIS

dg = MAXIMUM DIAMETER OF BODY

[8 = TOTAL LENGTH OF BODY

[o = LENGTH OF DIVERGING PORTION OF BODY
8, = SEMI-VERTEX ANGLE AT THE NOSE

ELEMENT OF
SURFACE dS

[INDER NP TIPS NUUNTARE. S SRR b

i Mol (et

BODY OF REVOLUTION INCLINED AT AN ANGLE TO
NEWTONIAN FLOW

FIG.3
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DIAGRAM OF DIRECTIONS AND COMPONENTS
AT A LOCAL ELEMENT OF SURFACE AREA

FIG. 4
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The free-stream velocity veetor V, lies in thex’:’ -plane and makes an angle o

(angle of attack) with the positive x' -axis. The angle n between the velocity
vector Y, and the normal N 4s given by

cos 1) = cos (V,4n) = cos & sin 0 — sin X cos O sin P. . (3)

The condition for Newtonian flow is imposed by specifying that the gas
stream upon striking the surface loses all of its momentun in the direction normal
to the surface. Since the component of V, norsal to the surface element s is v, 0087
and the rate of mass flow striking the element is p .V, cosndS , the rete of change of
momentum on the surface element in the direction of its normal is

Vo cos T} X p¥V . cos ndS = pGV: cos naS. I

Thus, the excess local pressure force 9f produced by the momentum change is

df = (p = p,)dS = p ¥} cos?ndS = 29, cos?ndS, (8)
and the local pressure coefficient is

CP E—P—;.-—h,g 2 co.’n = 2(cos & gin 0 — sin & cos O sin ﬁ)’- (5)
0

With respect to body axes, the forces on the body may be separated into a
normal force N in the 2 -direction and an axial force ¥ Ja the x -direction, Fig. 3.

For an element of aresa which Msees" the flow, the foroe ocomponents are

dN = —g,C, sin £ cos K dS = =g C r sin §§ df dx. ' - (6)

since dS cos 6 = r df dx, and
dXx = qOCP sin 0 dS = qOCPr tan 8 dP dx (7)

The total foree is obtained by integration over the surface of the body. In generel
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SHIELOED PORTION OF SURFACE

DIAGRAM TO ILLUSTRATE SHIELDED PORTION OF BODY
IN NEWTONIAN FLOW
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C, will be a function of both* and £.

Consideration must now be given to those portiors of the body surface which
are inclined awvay from the free-stream directionV, , and which may therefore
be thought of as lying in the "shadow™ of the free stream. This situation is
1llustrated in Fig. 5. As the flow proceeds over the body there will exiat a
boundary ac detsrmined by the condition C, =0 (that 4s, p=p, ). ALl of .
the body surface situated upstream from oc is exposed to the onooming flow which,
upon striking the surface, undergoes compression according to Eq. (5). All of
the body surface downstream from ac is in a region of expansion flow for whioch
Bq. (5) has no meaning. Along the boundary ac the tangent vector t and the free-
stream vector V, both 1ie in the same plane, the tangent plane, and consequentlyn
andV, are perpendicular. This condition defines ac, and, from Eq. (3), leads

to the relation

ccs 7, = coa & sin 0 ~- sin & cos 6 sin B. =0,

or (8)
tan 6

sin B, tan @ '

where the subscript ( ), refers to conditious along the boundary ac which defines

the limit of the compression flow area.

For all transverse sections (sections normal to the s -axis) from the nose back
to the section ab , the limits of integraiion for § are from —=n /2 to +n /2.
Downatream from the section ob the upper limit for £ , £ , must correspond to the
points lying on the boundary ac and will be a function of x . The point . ,
designated by: = x, , is the last point on the body to intercept amy of the free-

stream flow, and at this point? = ~-n /2 --see Fig. 5. The extrems forward tip of

o~ i P




P=4\7

(3) if xlgxz,x-j’ooo'xn-l are in Sn,
and xl + 12 4o0et xn-l _<. 1’ then

fl(xl) ¢ fh(xz) - fl(x:) ¢+ f:l(xl)'
From (3), by replacing X,)X3peeesX, y by -1, and x; by x, we obtain:

() if x is in S,» and x=(n=2) <1,
then tl(x) + f2(-l) - fl(-l) + f2(x).

Since xeSn implies that x-(n-2) < 1, and since, by condition (i) of the hypothesis,
fl(-l) - f2(-l) = =1, we conclude from (4) that, if x is in 5, then fl(x) = £ (x):
that is to say, that the functions fl and f. are identical, In similar fashion

we see that f, and fj are identical, for all i oand j. To sinpll)fy the notation,

weoet f=f = fj’ We wish to show that, for every x in S , f(x) = x.

Denote the interval
-1<x<1
by S. We shall show first that the conclusion of cir lemrma nolds for every x in

Se First, since 0 is in Sn, we conclude that

Now if x is any point of 3, then =x is a point of 5, and of course x + =x = 0O;

thus, making use of (5), we see tiat, for every x ia 3,
(6) f(-x) = -i(x).

Now from (5) and (6) and coadition (B) of the hypothesis, we see that, if x, y, and
x + y are all in 5, then

f(x + y) = £f(x) « £(y).

Thus the hypothesis of Lemma 2.6 is satisfied, so we conclude that there exdsts a




and
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a pointed body may be assumed to be conical over a short distance. Let the semi-
vertex angles of the cone tip be denoted by 6 . Whena <6 , the point o« 1s
situated along the top meridian ( £ = = /2) at the point where € =a . When a > 0,,
the point o is situated at the beginning of the body ( x = n ). Thuaﬂ in integrat-
ing Eqs. (6) and (7) two cases must be distinguished: (1) « < 6, , some transverse
ssctions are completely exposed to the flow with £ « n/2; (2) a > 6 , the trans-
verse sections are only partially exposed to the flow with g, = sin'tan 6/tan o ).

Concerning the pressures on the shadowed or shielded portiocns of surface lying
in expension flow, which may po denoted by p, , 1little can be said except that
0<p, <p, « If it should be assumed that the flow is completely separated over
the shielded regions, it would then be appropriate to use P, = P,s Which gives LP =0

for the pressure coefficient. The general relation for the pressure coefficient is |

2 /p
€ o= (e = il
w1\, ) (9)

If it is assumed that separstion does not oceur, p, /bo becomes very small compared

to unity as ¥, increases, and when bk, = = , bothp, /p, and €, are zero. Since

L, =0 for either of these possible extremes, the shielded portions of the surface

wuld contribute nothing to the integrals of Eqs. (6) and (7).

Thus, for true Newtonian conditions corresponding to ¥ = », the total normal

and axial force on the body obtained from (6) and (7) are*

M \f'. )

T -qujo L g7 DR S (10)
Sl

A= quf f,, Lpr tan U Jdf dx, (u)
]

tThe valus y = 1.L should be used for expansion flow.

#Although no mention has been made of the base pressure coefficient, when ¥ = o
it vanishes in the same fashion as (|

*
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where C, 1s given by Eq. (5)c The Newtonian results (10) and (11) can be used as
“hypersonic approximations provided the Mach mumber is sufficiently large — ¥ =15 ,
for example. When separstion does not occur, C" increases with decreasing Mach
number, and as lower Mach mumbers are considered (¥, < 10 or 15, for example) it
would be necessary to allow for values of C" Gifferent from zero because the
pressures on the expansion areas begin to have an appreciable effect on the 1lift. On
the other hand, for decrsasing Mach mumbers the value of C,  given by Ea. (5) for
the pressure on compressio: arsas is less than the gas dynamic value and can therefore
still be used as a oconservative estimate for the compression flow. In this Mach

number range an approximation to the aerodyramic forces could be written in the form

/‘g. 5 ? §'
N:-qu-L ﬁC’r sin g dff d:—2q°£,‘_}; ('p'rsin g df dx, (1)

g -
s (Pa : (Vg
X = 2q.J. ﬁz’x C'r tan O dff dx + 2q=J° - C’ r ten € df dx, (13)

where it is understood that CP may be put equal to zero without introducing appreciable

error when the Mach number is high enough, or when separation occurs.

Before obtaining the integrels (10) and (11) for a particular body shape, it is
convenient to derive the genersl expressions for the local forces on & transverse
section. The normal force coefficient C, for the entire body is defined by
Cy = Mg, , where d; = 2r, is the maximum diamster of the body. Axial distance
along the x-axis will be expressed in units of /4, . Considering only the first
term in (10) corresponding to the surfaces in compression flow, the local normal force
coefficient per unit length, C, , is

et =96 ] av 4 [P

N 3 | .
aT) TR T J-%
dl

(14)
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whers r is a function of x only. Introducing C, = 2(cos & sin 6 —sin & cos Bsin B)? from

(5), the integration yields

4 r [ R .
C;, =;:— z\hu +.§\/ sin 2a sin26 \
(] % (15)

1
t+ cos f,[2 cos’a ain’(?“a} sin 20 sin 26 sin B, + 3 sin& cos?0(sin’%, ¢ ?._)},

Introducing an axial force coefficient® =X/q,mr;> |, the local axial force co-
efficient per unit length is written

dX i Ba - .
C; - dCy - 1 L :.-i - tan Gjrfcpdp, (16)
‘ﬁ.‘_) o7 g !f") Ry "2
a
B {/

where 0 is a fupction of x only. The integration yields

s
C, =i  tan © B +—)(2 cos? « san? 6 + sin? & cos? 0)
r x rs £ o2

+ cos b.(sin 20 cos 260 — sin? ® cos? O sin {:‘o“)] (17)

Distinction is now made between the two cases * < 6, , and 4 > 8,.
Case 1. o« < 6,
For this case § = n/2 and Eqs. (15) and (17) reduce to

18
C;, = 2-1 sin 2a sin26 (18)
and "8
(19)
r \
C; = 4 — tan 9[2 sin? 0 + sin? a1l — 3 ain? U}].
r
.
Case 2. o > Gy
In this case, Fq. (8),
ﬁ = sin'l t_a—n__eq
= tan &,
and _ \/i Lanz 5]
cos £, = V1 ~ Lanz-a' ‘
and Egs. (15) and (17) reduce to
; ‘\
=)
‘j +
r Y L oe | 2o+ (20)
Cy=4 — cos?B s1n 2a ‘;l‘“—" tan £ + 3 cos p,(cot a tan + 2 tan a){, a8
r DY
B

34— tan 0
X ra e iv

e
"

o |
3 :
i % [2 san? U + san? a1 - 3 sinl0)] + -4': cos ‘pu sin 2% sin 29l. (71)
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Eouations (18) through (?1) are the general expressions for the normal and
axial forces on local trinsverse sections of the body, assuming CP' = ( on the
shielded surfsces and neglecting centrifugal forces in the flow. The total normal
and axial forces are obtained by integrating these local values over the length of
the body. In order to apply the equations to a particular body of revolution, the
profile of the body shape is introduced by specifying ¢ as a function of x . Of
particular interest in missile aerodynamics is the body consisting of cone plus
cylinder. According to the Newtonian approximation which has been outlined, the
pressure forces on a body are determined entirely by the local value of § ; con-
sequently, the force on any portion of a body may be evaluated separately, and the

total force obtained by additioa.

B. CONE

For a right circular cone of length {D base radius Fo and semi-vertex angle 9,.

]

we have

X

;
n Y

]
I
&

i
|
i
[ee]
|
~
o]
=2
7]
|
D
!
- J ‘ﬁ
ilt

As before two cases must be distinguished corresponding to « < € , and u > 6 .
Case 1. a < 6 —f = =n/2.
From (185 it follows that

»
/é" . X 14

c, =) 2 ¢ df-=) = 2 sin 26, san 24,

: 0 dn dD

Since ¢ /d, = 1/(2 tan 0 ) this may be written

-

Gy 7 cos? Gv sin 2X, ( n)

Similarly, from (19) the axial coefficient is

Cx =2 sxn’ﬂ' + sain? a(l = 3 san? Cv)' (?1)




o.‘ —1}’

It is interesting to eramine the value of the initial lift curve slope for the cone.

dC} ?—(i% = 2 cos? 6, . (2h)
da /o dx / uo

For a very slender cone (6 — 0) this reduces to the slender body result, dC,/da = 2.

It is sinply

This gives the rather surprising result that at small angles of attack the 1lift co-
efficient. for a slender diverging body has very nearly the same value at very high
Mach numbers as at very low supersonic speeds. This indicates that for a body of
this type at small angles of attack the 1lift coefficient is essentially independent
of Mach number. This conclusion is complstely borne out by the Stone-Kopal values
for cone lift at small angle of at*tack shown in Fig. l.

Case 2. a > O —f, = sin”*(tan 0, /tan a).
For this case it follows from (20) that

-

B8 T
1
Cy = cos? 6, sin 2 S > -;gcos ﬁ“(tan 6, cot a + 2 cot 0, tan l)j, (25)
and from (21) that
n
@.. ' a“\/
Cx ="”“"—Y“""'"’ [2 sin? (J’ + sin? a(l - 3 sin? 6,)]
3 IR N
Ak 8, sin 20, sin 2a. (26)
The center of pressure on the cone may be found by taking moments about the vertex.
If a is the distance from the vertex to the center of pressure, this dietance is
)
determined by the relation F
J'p x|, x
4y] 70 5o 1
6 = o goment Gl dy T g (7)
) normal force C'
Using either (22) or (25), it is found that
(28)
a = g ’ﬂl)‘
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C. CYLINDER.

To determine the Newtonian pressures on a circular cylinder, consider == I
finite circular cylinder in a flow which is inclined at an angle a to the longitudinal
axis of the cylinder. 1In the case of a circular cylinder it is evident that only

the lower half of the cylindrical surface is exposed to the free-stream (case 2) and

therefors that £ =0 . Also, since 6 =0 and r = r, = const = r (the subscript

S 1is used to denote cylinder) for a circular cylinder, it follows from (20) that
- 16 .
Cy = o sin? a. (29)

If 4, is used to dencte the length of any portion of the infinite cylinder, the
normal force coefficient is

N 6 4 5.33 4
R OIS T (30)

qohiry 3n dg Toodg

where N is the normal force on the cylinder length és . The axial force on the

Cr

cylinder of oourse is zero. Also (d(,/Ju)_-, is zero.

When the effect of centrifugal forces as influenced by the boundary layer is
considered in addition to the impact (Newtonian) forces, the normal force on the

cylinder is reduced by ten percent (see Appandix). Thus (’9) and (30) become

48
Ci', = — 4in? q (31)
it
and ) (32)
484,
=N IR &
L nodg

The analysis including centrifugal forces indicates that such effects ars amsller
for conventional slender noses such as cones ard ogivee at moderate anglss of
attack and thus the pressure forces on such slender noses are satisfactorily approxi-
mated by the Newtonian (impact force) method. Consequently, the aerodynamic

characteristics of a cone as given by equations (-.) through (28) are not modifi«d.
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D. THE CONE AND CYLINDER ARRAS SITUATED IN EXPANSION F1LOW.

A1l of the expressions (14) through (32) can be interpreted in two ways. For
truly Newtonian conditions corresponding to ¥, = ©, 4t was pointed out previously
that ¢ =0and,/p, =0 . Inthis case the formulas (14) through (30) give the
total fo;coa on the entire body, including the surfaces situated in expansion flow.
If the formulas (14) through (30) are considered as hypersonic approximations, they
may be thought of as applying only to the forces on the surfaces in c;npresuion flow.
In this case——as discussed in connection with Eqs. (12) and (13)—it is aprropriate

to consider & non-zero value for the pressure coefficient (} wvhere
C =3./P¢._>'

corresponding to the surface areas situated in expansion flow. Although c} is

cortainly nagligible at very high Mach numbers, it would have to be given consideration

in any attempt to extrapolate the hypersonic approximations down toc lower Mach
numbers. In view of the extremely approximate nsture of such a procedurs, it would
probably be sufficient to use an average value P, which is independent of £ but

which may be different on the cone and on the cylinder. !

1. Cone
If an average pressure is used, from Eq. (12) the normal force N ,on the expansion

flow areas of the cone would be written

where ;‘n is the average pressure on the shielded ares of the cone, andP.=sin'Wtén0'/t.na>.

The corresponiing normal force coefficient ¢, is

Nt ;’_u) o
R S| 0L ~kot? 6 — cot? 4. 33
N' qonr; T.YT. ko 3 co [ ( )
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S8imilarly, the axial coefficient is found to be
2(."..? - )

¢ =~ ‘%’if— (12‘-- (:3) (34)

2, Cylinder
Por the gylinder, sinoe B, = 0, r = const, and it is assumed that p = p, =const,

the result is
o
Ty
c, =30l 2t \Py (35)
. K44 nors \LH

In order to use these equations approximate values for 5‘» and E,, mist be estimated
in any manner which appears feasible, possibly from two-dimensional gas dynamics and
low aspsct ratio supersonic wing theory. An indication of the maximum effect of the
expansion pressures on the lift of & yawed body is obtained by putting F,D = E,. =0,
This is shown in Pig. 7 for a typical body. The actual lift (normal force) oould be
expected to be somewhers between the two curves showa in Pig. 6.
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IIT. THE CORRELATION OF EXPERIMENTAL RESULTS FCR THE
SUPERSONIC LIFT ON BODIES OF REVOLUTION

The previous discussions have been concerned entirely with approximate methods
for predicting the 1ift of a body of revolution at Lypersonic Mach mumbers, of the
order of 10 or 15 and above. Since it is important to have values of body lift
throughout the complste Mach number range, this still leaves the problem of estimating
body lift at all lower Mach mumbers. Because of the lack of theoretical results
applicable to this range of Mach number (2 < ¥, < 10),a study has been made of avail-
able experimental data and an attempt made to use the indications of these results
to estimate (interpolate) the body 1lift in the intermediate range of Mach number.

For this purpose use is made of the hypersonic approximation for the upper end of
the Mach number range. This procedure is admittedly almost qualitative in some
respects, and it is expected that at least some of the results given hers will have

to be modified as mors theoreticasl and experimental data become available.

The amount of available systematic supersonic experimsntal data for yawed bodies
of revolution appears to be extremely limited. A survey of all supersonic data on
yawed bodies of revolution shows that there exists no complete systematic series of
tosts (at least with data in usable form) in which body 1lift is determined as a
function of angle of attack, Mach number, and body fineness ;ation—particularly for
varying lengths of cylinder behind ‘he same noso shape. Except for the very complete
tests on the AL(?) and the Wasserfall,(8) there is a great scarcity of pressure dis-
tribution data for yawed bodies. This type of information iv quite essential if
significant comparisons are to be made with any theoretical results. FEven for so
simple a shape as a oone there are but very frtgmontary'proanurc distribution data

for the yawed condition. (') Moreover, most of the systematic experimental work in

the past has been limited to body fineness ratios(4,/4,) of 7 or less. ' ) The
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importance of tests on bodies of large fineness ratio lies in the indications of the
discussion below that the lift on the cylindrical pn;t of the body behind the nose
not only becomes appreciable, Fig. 7, but also--at high enough speeds, Eq. (32)--
the 1ift is directly proportional to the cylinder length and to the square of the
angle of attack. While much ie to be desired by way of experimental data, by using
the hypersonic approximation as a guide together with available experimental results,
it has been possible to obtain a rether consistent correlation for body lift over

a wide range of conditions.

A. LIFT ON A CYLINDEK FOLLOWING A CONE OR OGIVE

From the close agreement in Fig. 1 betwsen the hypersonic approximation and
the Stone-Kopal values for cone 1lift, it is evident thit the hypersonic-approximation
values give a good approximation for cone lift even at low supersonis Mach rumbers.
It is instructive to compare, at low Mach numbers, the hypersonic approximation for
cylinder lift with the experimental values for the lift on & cylinder following a
cons or ogive. It is possible to extract some rather definite indications in thie

regard from the very complete pressure distribution data for the German AL missile

at angle of attack.(’) The A4 body has an ogival nose followed by a straight

cylindrical section which extends back to the beginning of tha tail surfaces, beyond
which there is a boattail. If x is the distance msasured from the forward tip of

the nose and d, denotes the maximm body diameter (d, = 4, , the diameter of the
cylindrical section), the straight cylindrical section extends from x/d,=3.5 to z/d,= 6.0

giving a cylinder length of 2.5 calibers.

The data in Ref. 7 give the local normal force coefficients C, as a function
of position z/d, along the body, for & rangs of Mach number and angle of attack.
These local values of ¢, have been integrated over the cylinder section and give

the cylinder 1ift values shown in Fig. 7. These results show that at supersonic
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speeds the cylindrical portion of a body contributes very appreciable lift—which
is rether strongly dependent on angle of attaeck and Mach number, and emphesize the
extremely poor approximacion given by the slender body (O-order) theory—which pre-
dicts sero 1lift on the cylinder, and by the linearized (lst-order) theories which
predict cnly very limited cylinder lift. Pigure 7 also indicates that for low
supsreonic speeds the 1lift on the cylinder has already exceeded the hypersouic-
approximation valus and is inocreasing rapidly with Mach number. At high emough
Mach nmbers, yst to be determined, these curves must decrease to the hypersonic-
approximation values. In view of the constant value of the normal force coefficient
for a oone, for example, this suggests that the normal force coefficient for a oc;nn
plus cylinder body must go through a maximum with respect to Mach number. It will
be seen later that this is exactly what is indicated by the analysis of available

expsrimsntal data.

The qualitative notions concerning the lift distribution on a cylinder following
an ogive iro indicated by Pig. 8. At low supersonic Mach numbers (i, = 2 to 3) the
local norml force coefficientC, decreases with distance downstream along the axis
of the eylinder but gives and integrated 1ift coefficientC, which is greater than
the hypsrsonic-approximation value. At some higher Mach mmber, probadbly in the
range 3 < ¥, < 6,c, reaches it;a highest value. At still higher Mach numbers the
variation of C, along the cylinder axis becomes smaller and smaller, approaching a
oonstant oondition, and C, approaches the hypersonic-spproximstion value. The Mach
muber at which the total body lift becomes approximately equal to the hypersonic-

spproximation value will be discussed below on the basis of the indicaticns of the

experinental data.
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B. THE INITIAL FORMAL FORCE SLOPE FOR MISSILES
WITH CYLINDRICAL AFTERBADIES

A typical missile body is shown Schematically in Pig. 9. It consists of a
diverging section (nose) of length 4, , which may be either a cone or an ogive, a
straight (cylindrical section) of length 4, and a converging (boattail) asction of
length 4, . The semi-vertex angle of the nose cone, or of the inscribed cone when
the noss is ogivel, is denoted by 6 . The total body length is 1, » the maxissm
body diameter d, , the maxumum cross-section area A;=(f/4 dl)and the diameter of
the base 9. All of the body aft of the nose, or forebody, may be referred to as
the afterbody, and its length denoted by 4,(= 4, + 4.) . The afterbody may consist
of all oylinder, pert cylinder and part boattail, or all boattail. In general, the
variables upon which the normal forcs coefficient will depend may be indicated by

the relation
C' Elll‘lll force — 9"h ' :i.‘ “,. 2\ (36)
T9hy dy  d,

For the case in which the entire afterbody iw cylindrical (no boattail), it follows

that 4, = 4., d, = d,and the dependency of C, becomes

y 1
= C, B nerwsll tocc = func U';J , Mg, Q). (37)
G4, dg

Since most of the available 1ift data are ¥estricted to small angles of attack, such

results are employed to greatest advantage when they are used to evaluate(d(,/da) -,.
From equation (24) and Figs. 1 and 2 it appears that the normai force on the conical
nose varies approximately as co.’ei‘and thie -uggostq.?_u of the parametere(—;l)a: /:o, :6'.
However, most of the test data fall within the nng‘i% 0, <15°80 the variation oof
cos ’6' from its median value is less than 4 porcont; md within the acouracy of the

experimental data. Furthermore, an investigation of the 1lift on the cylinder

it
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immediately following a cone (using yawsd cone data (2) and Prandtl-Meysr expansions)
indicates that the cylinder 1ift may vary with cone semi-vertex angls so as %o
counteract the variation of cone lift with 6 . For these reasons 6, is eliminated
and the experimsntal correlation is reduced to the form
(;g!, e funcC—fﬁ : b)i (38)
- s s

This correlatior has been carried out and yields the results* shown in Fig. 10.
While the experimental points (not indicated) show considerable scatter, the correla-
tion is suffiociently good to define individual curves for cone and ogive nose shapes
gnd is considered fairly satisfactory, at least for preliminary purposes. It is
found tha* when the length of the afterbody exceeds about 3 diameters (calibers), as
far as total lift is concerned it makes 1littls difference whether the nose 1l.un
ogive or s cone. At the lower Mach numbers, the curvee go threugh a2 maximm
with respect to both afterbody fineness ratio and Mach mumber. As 1,/d; becomes
large (> 9), the initial normal force slope becomes sssentially independent of after-
body length. At the higher Mach numbers, ¥, > 9, the initial slope becomes equal to
that given by the hypersanic-approximetion for a cone. This follows from the fact
that a cylindrical afterbody contributes nothing to the initial normal force slope
in hypersonic flow—Eq. (30). At hypersonic speeds the ogive normal force is approxi-
mately equal to the normal force on its inscribed oone, as has been assumed in

Fig. 10.

#7t will ba noted that the abacissa in Fig. 10 is labeled 41,/d, , and therefore not
limited to missiles without boattail. It is pointed out in Section D that the effect
of boattail may be accounted for as an increment in initial normal force slope (see
Pig. 15) which must be added to the values obtained from Fig. 10. When there is no

boattail, 4 /a, = 4,/u,, and the values of Fig. 10 apply directlv.
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C. ADDITIONAL NORMAL FORCE RESULTING FROM ANGLE OF ATTACK

If the normal force curve slope were independent of a , the normal force could
then bs obtained immediately from Fig. 10. However, ompt." for very smll angles
of attack and missiles with no afterbody, the normal force is found to depart widely
from a linear variation witha , and to vary in a manner which is more nearly a
quadretic funotion of a. This effect of angle of attack on normel force can be

studied by imtroducirg an increment in normal forece coefficient, AC defined by

N »

_ /4c, (39)
Cy (’T)a-o Xa+ &,

This 4s 11lustrated in Fig. 11. PFormula (39) is the relation used to correlate
angle of attack oconditions, including the effects of Mach-gumber and afterbody length
at sngle of attack. It appears that, within the accurscy of the data, AC, varies
as sin’a 80 the results of the correlation are presented in the form JC,/sin’a.
Before ;}v:lng the results of this ocorrelation, it is worthwhile to point out how the
hypersonic approximations may be used to extrapolate from the limited range of con-
ditions covered by the experimpntal results to conditions of higher Mach number and
angle of attack.

By using the experimernt 1 correlation results such as those of Figs. 10 and 11,
it is possible to ~btain experimentally-based estimates of C, up to N, 6 = L, over a

nm of values of 4,/d;, and & . Thesse Aare shown by. the loft-hmd end of the curves

o S 4.0) in Fxp.lZ nnd 13. At the high Mach number end (¥,
15 or 20, and higher) we have the hypersonic-approximation nlneo which are independent

of Mach mmber. As explained in Part II-D, by extending the hypersonic-approximation
to lower Mach mumbers using p, = 0 for the surfaces in expansion flow, an indication
is obtained of the limits within which the actual value of C, must lie. These limits
are shown as curvee 1 and 2 in Pig. 12, for example. Since there is no experimental

data for ¥, > 4.31, and most of the experimental data does r~% extend beyord y = 3,

Lt s
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these lixit curves may be used as a guide for extending the low Mach mumber range
into the hypersonic range. This is the procedure whish has been followed to Ob- . *
tain the rssults shown in Pigs. 12 and 13. While this proocedure admittedly ecn-
tains oertain alements of arbitrariness, it is believed to yleld fairly vealimtic
Mltsmatmnmmummmmtornnmrnmof

oonditions for which no other information existe. |

By employing results of the type shown in Fige. 12 and 13, the correlated
values of AC, (Fig. 11) from test data have been extended into the hypersonie

region as shown !r» Pig. 4. The hypersonic-eapproximation for cones gives C, as

for the lov angle of gtta
practically a linear funetion of angle of attagl/Tange (a<20,) ¥ich is of most

interest. The mpager experimsntal oone dats indicate that this 1o also true at

low supsrsonic speeds. Thus the additional normal force ecefficient #f, for a
ocone is sero, at least to the same degree of acecuracy as can be expected fmtbo
experimental dats. Consequemtly, it follows that the AC, values in Fig. i refer

Lol BB MM e e ey o adel o o

to the cylinder only, and for 4, = = are given Wy formls' (32)s

D. EFFECT OF BOATTAIL ﬁ

A prelininary correlation of available data have shown the effect of boattall

e SR T AT . i DPlIRE: VI ol gyl s b

on normal force to be limited to the initial normal foree slope,(dC,/du).., .

Ro consistent, pronounced effect on the additional normal forece, AC

, , wvas found -

within the angle of attaek range of the tests (u s» 10°). It is likely, however,

that data at higher angles of attack (x >109 wowld show some effect of boattail :

S L T A

on 4&C, . It appsars that the initial normal force slops decrsases linearly with ;

1
~
.

. decreasing base ratio,d /d, , over the normal range of base retios—0.4 < d,/d, 51.0. '
[ The effeats of boattail angle and type (conical or ogival) and the body preceding
o the boattail appear to be small compared with the effect of the base ratio. The f




-
2 fuse-din e A e aag

= L e i S 4

ey

<=2

:LOCAL NORMAL FORCE COEFFICIENT, C'y

AY

\\ — C'n FOR CONE APPROXIMATELY INDEPENDENY
\\ ) OF MACH NUMBER

\\‘ s— HYPERGONIC APPROXIMATION

- HIGH Mg

I
CYULINDE R I
= .._,._.H
1
|
|

FOR CONGTANY ANGE OF ATTA 7w a

SCHEMATIC DIAGRAM TO ILLUSTRATE THE EFFECT
OF INCREASING MACH NUMBER ON THE
DISTRIBUTION OF C’x ALONG A
CYLINDRICAL SECTION BEHIND
A CONE

F'G. 8 S

L4




Mg
N
N
]
o
d
po
S ep—

—— o = — A ,.{
!

\ ‘ o A_i(_ .
|

3 95 d =d L - o ‘ D db
‘N.-- ]

1 e | f
- /U - Va = —— [ —
| G |
e A 54

6, = SEMI- VERTEX ANGLE OF INSCRIBED CONE
dg = MAXIMUM DIAMETER OF BODY

Aq = 4 d,=MAXIMUM CROSS SECTION AREA OF BOOY
€ = BOATTAIL ANGLE

d, = BASE DIAMETER

£y = TOTAL LENGTH OF BODY

/, = LENGTH OF NOSE, OR DIVERGING SECTION

J, = LENGTH OF STRAIGHT OR CYLINDRICAL SECTION

c{\

LENGTH OF CONVERGING SECTION

DIAGRAM OF TYPICAL MISSILE BODY - SCHEMATIC

FIG. 9 P-87-17
P-87-i7a




T 9¥i-8 4 o1 ‘914

081-18 d
S31408Y31L4V IVOIMANITAD HLIIM
S3TISSIN 404 3d401S 30404 TYWHON IVILINI

/%) ‘011vYd SS3IN3INI4 ACOBY3L4V

9\ ! 21 o] 8 9 b 2 0
| | | °
E it 3 % - 4 : - - H : : 1100
. i | _
| S = .8
| i _
w o ! 200
! |
n%. _Y e ik - +- moo ~
) _ ala
o~N a a &
_ * ! L
_ : Q
_ ;
— + - 100 *
| o6 _
02 : :
_. o”q B |
a 0'g r—————o = S0'0
‘H3IBWNN
: HOVIWN
|
B (R - A --{900
S3SON H108 — | __
S3SON TTVAI90 ------ |
S3SON 1VIINOD) — - — .
1 i il U e =GR 2 e e . - - ool NOO

¢
i
[ 4
’

3d071S LN3101434300 32404 TVANYHON IVILINI

—..‘»l.'..v.i et e i i . it Bt . POV TR oW . S ST PRIer W 2 el = N o baante.




M oaamma 4 oo o

NORMAL FORCE COEFFICIENT, Cy

.4

i:2

o

o
@

o
o)

o
S

0.2

22-d4

[ ] ]
| i
| | / l
| = seoodl |
| o | | |
I | |
| £s . |
| B 5.0 i |
Mo :4.0 E : + _J
p _ ]
I | |
! ACy* E
i ADDITIONAL
TOTAL Cy~ . AMOUNT

SO .
| .

a8
l
'r

dC
- h) X a:
da 1 o .

INITIAL SLOPE |
VALUE '

ANGLE OF ATTACK a, DEGREES

DIAGRAM TO ILLUSTRATE TYPICAL VARIATION OF

NORMAL FORCE COEFFICIENT WITH ANGLE

OF ATTACK-SCHEMATIC

FIG. 1] P-87-19
P-87-190




-
4 22-e
20 177
CONE PLUS CYLINDER P |
° i ! i !
8,1 5% £y fo: 5 ol i
(® FROM EXPER'™MENTAL CORRELATIONS |
=z
o |, === HYPERSONIC APPROXIMATION, Cpq * O
1.5 — —_—
> 2 ==e==HYPERSONIC APPROXIMATION ON COMPRESSION
i ) __2 :
= | SURFACES AND Cpe ° " (re,p,:0) ON |
e | EXPANSION SURFACES =~ ° | !
w 5T * % :
O ! | N ;
(& ' \ i
i.Q + . Vel s S 4 —
Y] i : ! i .
Q i . ) i !
a ’ ' ' . ]
(@) i :: f l l
3 "‘<>_ Ny \S\\~“'-.. ! s
< (P, a e i ——=a:10"
>3 | | l i
x 05 ¢ - 3 . e 3 + —am = - e— i
= : Q <P ' ~ |
Q‘- l - — ‘\- .
! ! a:5s
| | | |
S o
2 3 4 5 & 7 8910 20 30

MACH NUMBER M,

VARIATION OF NORMAL FORCE COEFFICIENT
WITH MACH NUMBER AND ANGLE OF ATTACK

FIG. 12

P-87-20a

- v




PR egur

o pata—
- =y

NORMAL FORCE COEFFICIENT, K Cy

25

N
o

wn

o

05

22-1

CONE PLUS CYLINDER | | T 7T

I
. | |
8y: 5% &y fa.: 10 A

O FROM EXPERIMENTAL CORRELATIONS
|| eme—me HYPERSONIC APPROXIMATION, Cpe ® 0

2/wes==HYPERSONIC APPROXIMATION ON COMPRESSION
SURFACES AND Cpe © —%5— (18.,py* 0) ON
M

| EXPANSION SURFACES =

' L 1
| | :
. I |
+ 4 = | = ' PO T

—

1
|
i
R—— 1
|
|

i : ‘\?
-
. | N
|l| lE | | | \\ |
+ * e S S . - . = - ey
i | -ﬁ \
| - ? b -
: ”O’ | — \Hh_— —~a:10°
TN
| I N
| !
_.._._T =" - p———g— - - \.* _— » i
”?Q—:-‘* S — a: 50 1
| L i i | !
2 3 4 5 6 T8 910 20 30

MACH NUMBER, M,

VARIATION OF NORMAL FORCE COEFFICIENT
WITH MACH NUMBER AND ANGLE OF ATTACK

FIG. 13

P-87-2lo




ﬁ.!!.flni!|..-.i!§. -‘nl.sil,..u.:.:...,1-.;..‘r-..,|..o!.
1
“ _ |
e L i (I
1 x o\ S\\8 |m _
wl ) :
@ i " .
>IN . _
2 < : |
SR (S \ . ; o
| | !
p o ! W
| C ! _
i A y #
= ] :
i ﬁ [
! O
! | e
. vi
; | | I Vs
o | } f
o~ P e —— ——— * - - v +- Pse— * e ————
| _ ~
‘ i
._ _ »
. . NN - o cpg 11m m = B _‘;!!lf
! | m ]
g
| = A W SR N - N
A\
w < o w o o8] < o
N N o - -
D ,uls

vy ‘4313NVHVd 30803 TVNHEON TVYNOILIOGY

4

12

A

lOQ

8

AFTERBODY FINENESS RANO,d

ADDITIONAL NORMAL FORCE PARAMETER

FIG. 14

P87-28a




-23-

The r!mltl of this correlation are shown by Fig. 15. It will be noted that the
boattail effect is a maximm at low speeds, and decreases to zsro at about ¥, = 9.
This is in agreemsnt with the slender-body theories (!!) which predict sero lift
whend,/d, = O, and with the hypersonic-spproximation which indicates mo boattail
effect on the initial slope parameter. It should be mentioned, however, that the
kypsrsonic-epproximation would show an effeot of boattail onSC, , simce the boattail
portion of the body would be completely shielded at angles of attack less than the
boattail angle.

3. CENTER OF PRESSURE

By using the normal forces which have been estimated for any cone-cylinder or
ogive—cylinder combinition, it is possible to estimate the oorresponding center of
pressure. PFigurvs )0 and 14 give the normal foroe on a cone or ogive and the normal
foree distribution along's cylinder following the cone or ogive. The center of
Jressure of the oone and ogive are approximately 0.674, and 0.534, , respsctively,
aft of the nose. Figure 15 gives the insremsnt in normal force due to boattail.
It appears satisfactory to assume that this foree acts at the mid-point of the
boattail. The location of the wissils ocenter of pressure afi. of the nose tip, e pt
is obtained by forming the summation of the various componsnts 2acording to the
formila

S Cn, s
" (80)

z 0
c.p Z C,‘

Preliminary checks of this method have shown satisfactory agresment with experimental

v

data.
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APPENDIX
ANALYS1IS OF THE CENTRIFUGAL FOPCE EFFECTS

GENERAL DISCUSSION

The simpls annlysis of Newtonian flow is incomplote inasmich as the effects of
centrifugal foroes in the flow around the body have been neglecteu. In the flow
over plane surfasss at angle of attack and on cones at sero angle of attack, since
the paths of the air particles over such surfaces (that is, the streamlines on
the surfaces) are straight lines, no oentrifugal forces are present. However,
when the surface stresmlines are curved--as is the cass for bodies of revolution
at angls of attack, for example-—centrifugal forces will be present in the flow.
Por these flow probim, the total surface pressure coefficient at any point on the
body is equal to the impact pressure coefficient minus the centrifugal pressure
offect. (19, (*M) ¢ C""(p‘.“ P, )/ q, 1 the pressure coefficient due to the Newtonian
impact pressure p. , and p, is the pressurs relief dus to centrifugal forces, then
the net pressure coefficient C, is simply

e
c mc -Pe=lPiTP) " Po (41)
A TRy %

where the net pressure p is specified by p = p,~p, . Also, when centrifugal forces
are present the limit angle £, denotss the point of zero net pressure coefficient,

and not. the point of gero impiact pressure coefficient as in the earlier discussion.

The Newtonian impact pressures are evaluated according to the methods given
in Part II. The pressure relief p. resulting from centrifugal forces is evaluated

from the formla

Pc = ‘_““'. s (1‘2)
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where a = rate of mass flow through a streamtube at any point on the
surface
V, = effective velocity in a sireamtube at any point on the surface
; = radius of normal curvature of the streamtube at any point on the
surface.

AC = width of the streamtube (the height of streamtube is the body laysr

thicinmess which is described below)

In order to evaluate ¥ and R for a body of revolution at angle of attack, the
particls paths, or streamtubes, on the body surface must be determined. In the
hype.sonic approximation the shock wave may be imagined to wrap itself around the
portions of the body which are subject, or exposed, to compression flow. On these
portions of the body the flow is confined to & thin, high density layer which liss
on the surface of the body and which, therefore, may be referred to as "the body
layer." Neglecting friction, the total reaction of the body layer fluid on the
surface, and of the forces acting on the fluid, must be normal to the surface.
Hence, the principel normal (normal radius of curvature) and therefore the osculating
plane at every pcint on a streamline must be normal to the surface. Thus the
streamtubes are similar to the geodesic paths obtained for the constrained aotion
of a particle on a curved surface. ‘'*’ At each point along a streamtube the radius
of zurvature is directed slong the inward normel to the surface—that is, along the
vector N . The rate of mass flow & at any point on s body layer streamtube is
obtained by finding the sum of all th.e particles which have previously sntered the

body layer along the particular streamtube.

Let the curve ( Fig. 16, dsnote a streamtube lying on tha surface of ths body

ard let the radius of normal curvature of the streamtube st the point ¢/ on the

surface be denoted by 8 . Let the lines of curvature at /' have the directions
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given by the unit vectors t (maximum radius of normel curvature) and b (minimun
redius of normal curvaturs), and let the curve C (that is, the streamtube) at
this point make the angle y with t —Fig. 16. According to Euler's theorem ('%

it follows that
. 2 (43)

where R, is the radius of principal normal curvature in the t —direction, and £, that
in the - b -direction. For a body of revolution, which will be the case treated here,

t is tangent to a meridian and b is tangent to a circular parallel; and the
meridians and parallels are ths lines of curvature or. the surface. R, 1is the
radius of curvature of the normal (meridian) section obtained by passing a plane
normal to the surface and containing the axis of symmetry. £,is known immediately
when the profile shape of the body of revolution is specified. £, may be determined

by means of Meusnier's theorem (see page 505, Reference 15) which shows that

R = r (M)

4
2 cos §

where r is the redius of curvature of a circular parallel and ¢ is the angle be-
tween n and r (that is, O is the direction of the tangent along a mericdian).

From (43) and (44) it follows that

1_ = sin? y cos O (45)
k R r

is the relation for the radius of curvature of the streamline at any point on the

surface of a body of recvelution.

Consideration must next be given to the velocity V. of the flow over the sur-
faces of the ovody which are exposed to compression flow. When a free stream par-
ticle strikes the body layer at a local point P (see Fig. 16), it loses its com-
ponent of velocity normal to the surface at this point, while the velocity components

in the tangent plane remain unchanged. Letting 7, denote the angle batween Y, and n

TR R T AP VP SRR - AT (Y &M

e

g R
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(n, 1is identical with 7 in Eq. (3)), 1t follows from (3) that cos n, = cos & sind =
sin & cos © sin £ . The normal component of velocity ¥, s 7, 1s lost upon
impact, and the fluid perticle after impact at the point P i3 left with the

velocity oomponents along t ;nd > unchanged. If the angle between Y, and t 1is
denoted by 1, and tho‘nngln between Y, and b by 7, , it follows from (3) tﬁnt

cos N, = cos & cos 8 + sin @ sin 6 sin B, (46)

and (47)

cos M, = sin & cos f.

After impact the particle is lsft with the instantanecus velocity ocomponents V, oos 7,
along t and ¥V  cos 7, along b . The resultant velocity vector is of magnitude

i 1
V.‘ =} (coa’n, + cou’n‘)Tc (18)
It lies in the tb-plane and makes the angle Y with the vector t , where
14
cos Y = _.0.....;3_5.__{11 =i 1 % 4
£, [; + COO nb (59)
cos R,

From the relation tan Y = cos 7,/cos?, it follows that

1 (50)

cot & cos 6 sec § + sin 6 tun P

tan Y =

Although a single particle after striking the body would continme its motion in the
tangential plane formed by t and ® , the actual flow of a continmuous medium con-

ltrain; the particles to follow a streamtube on the surface. In order to evaluate

the effective body layer streamtube velocity, V;‘ , & relationship mst be found

between ¥V and ¥V or V. Five postulations have been scrutinized:

Case 1. ¥, =V,
This is the most simple assumption and would overestimate the

osntrifugdl foroe effects.

C“. 2‘ V" = V"

This ylelds the result that each particls does sccelerate along the
body layer but the postulation does not give a velcoity gradient in the

body layer at easch point.
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Case 3. V"i

= fV“dS/ IeN

iooording to this method the veloecity of a particle remains constant
after impact, and results in the existence of a velocity gradient

in the body layer (ses Refs. 12, 13, 17, 18, and 19).

Ceass 4. V,‘ = V.‘/z

This relation is the result of the aseumption that the thickness of

the body layer is of the order of megnitude of that of the boundary
layer. The velocity distribution normal to tbe body surface is
considered as & linear function of the distancs from the surface

throughout the hody layer.

Case 5.V, = fle.g,0)v, /2

Upon examination of the pressure distribution as obtained by Sauer (29
using the method of characteristics for the A-4 nose at Mach mumbers
of 3.2 and 8,00 (see Pig. 17), it appsers that the local pressure
coefficisnt should decrease slower than any of the above four cases
and that the location of sero pressurs cosfficient should occur at

the position where the surface tangent is parallsl to the fres stream
direction. 8ince Case 4 yields reasonable pressure variation szt the
start of the body layer it is used as a starting point for a fifth
case. The present fifth case is then a modificstion of Case 4, where
f(0,g,c) must be unity at the origin of the body layer, variss e

s quadretic along the body layer, and approaches sero at the position
where the surfice tangent is parallel to the axis of the free sirsam.
As an additional check on the validity of Case 5, 2ll five cazsz are
applied to flow over spheres (see Fig. 18). The asrodynamic dregs ars
shown in Pig. 19 as the limiting valnes for the experimental dats of
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Charters.®!’ Sincc the skin frietion and base drags for spheres-at

high velocities are negligibly small, Case 5 appears best.

EXAMPIE OF APPLICATION--CYLINDER, CASE 5

The treatment of the hypersonic forces on a cylinder will be based on the
assumption that the cylinder is infinite. In the case of an infinite cylinder the
surface streamlines are all parallel. This condition makes unnecessery the de-
termination of the individual streamlines in the calculation of the centrifugal
pressure effects. The rate of mass flow in tte body layer at any perticular posi-
tion on the surface of the cylinder, where the centrifugal pressure is desired, 1is

(51)

R = PoVoA = p°V°r£3 sin a cos B = p,é.V..{s sin Yy,

cap

where {. is a specified length of the infinite cylinder. From Eq. (45) the radius

-

of curvature R of a streamline on a cylinder is (since K, = and =0 for a

cylirder)

.l = (52)

The expressionfor the centrifugal pressure at a point on a c¢ylinder is

aV
P, . m (53)

Combining (51), (52), and (53), the centrifugal pressure relation may be written

PeVorty sin 4 cos sin? y

Z 7= poi’ot"t sin o cos B sin Y. (54)

#1n Yy r ‘

P, =
s

Employing Case 5, the effective surface velocity for a cylinder is

cos

3 = 1 .2
" *nn & by e
¢ cos 1

since V¥, < Vo_ﬁ:.fl.. as given by ILq. L9
U cos Y

(55) .

B A e W e sy
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Now Bq. (54) may be written

P, = Po¥s 8in & cos § sin y;-.in’ﬁ S = 5.p.v: sin & cos B sin’f ten Y cos a. (56)
Por a cylinder (6 = 0) REq. (50) yields
tan Y = tan & cos B, (57)
and (56) becomes
P, = §P,V2 sin?& con?B sin?p = F, sin’a cos’p sin’p. (58)

For a eylinder the impact pressure coeffisiecnt given by Bg. (5) is

C. =2 sin’a sin?p, (s9)

Py

]
H

and the net pressure coefficient is

c,eC, - Pe = sin?P sin’a (2 = cos?f). (60)

B . S S

The equation defining f, 48 C, = 0 , or sin’f, =0 . Thus, for a eylinder f, = 0°
for &1.1 q o

R e

From £q. (6) the normal foroe coefficient corresponding to the surface of the

eylinder sxposed to compression flow is

. N ° 72 4

= = 2 { 3 1 d =  emam -s- in?
i M qqmrs n ri $ G win b P 151 dg me (61)
t

whers r 1is the aylinder radius and d, =2r, is ths cylinder diameter.

By comparing this result with formula (30) for the case in which the cemtrifugal

forces are neglscted it is found that

(Lﬁ)vith coatrifugal fozce (62)

= 0,900
Eﬂﬁcvtonhn

In Pig. 20 the effect of the various postulated ¥V, on ths normal force for & cylinder

£ is given.
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NORMAL FORCE COEFFICIENT PER UNIT

CYLINDER LENGTH,c, /(4 /4,)
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e ——

NEWTONIAN FLOW - | |

| | |

CASE 1,V = V, — : . |

#
CASE 3, Vg :J V., ds/ ds .,_\__.‘ \/

| \-.\“\ I

CASE 4, Vge= 5 Vg ~———— " / |

o Vs ‘ |

1.2 |- CASE 5, V= sin?f 3t ~ / ’
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———— e b — e e o
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EFFECT OF V,.ON THE NORMAL FORCE

FOR A CYLINDER
FIG. 20
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