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UNSTEADY LOADS ON HYDROFOILS
INCLUDING FREE SURFACE EFFECTS AND CAVITATION

by

Sheila Evans Widnail

ABSTRACT

Linearized three-dimensional lifting surface theory
is applied to a variety of problems of interest in hydrofoil
application. The resulting integral equations are solved by
numerical techniques on a high-speed digital computor to
predict steady and oscillatory loads.

The following cases are discussed: thin non-planar
hydrofoils at infinite Proude number, the effect of gravity
waves on the forces on an oscillating hydrofolil near the
free surface, supercavitating hydrofoils of finite span in
steady and oscillatory motion. Numerical results for lift
and moment are presented and comparison with experiment
is made whenever possible.

Results of these calculations indicate that this
numerical solution is a very practical and efficient way
to obtain accurate prediction of unsteady loads for
flutter calculations,
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CHAPTER I

LIFTING SURFACE THEORY FOR
NONPLANAR SURFACES

1.1 Introduction

Before the availibility of high speed digital computors,
methods based on linearized theory for calculating loads on
three dimensional 1ifting surfaces in incompressible fluids
were restricted to special plan form shapes which could be
handled analytically or to approximate methods suitable for
hand calculation.

In steady flow, a lifting surface is represented by a
vortex sheet, or by the horseshoe vortices which make up the
vortex sheet. The boundary value problem is formulated
using the velocity potential. By the principle of super-
position, the upwash velocity an the wing is written as an
integral of the upwash velocities from each element of
the vortex sheet. This boundary value problem, together
with auxiliary conditions such as the Kutta condition, is
solved for the distribution of vortex strength and thus
the distribution of 1ift on the surface.

Unfortunately this integral equation cannot be solved
analytically for wings of arbitrary planform. For two
limiting cases, wings of large aspect ratio and wings of
small aspect ratio, analytical results have been obtained.
For wings of arbitrary planform, approximate techniques
have been used. For example, the wing is represented by

a finite number of horseshoe vortices located on the surface




of the wing; their strength 1s determined by satisfying
the known upwash condition at control points on the wing.
A discussion of some of these techniques, as well as
numerical and experimental results, is given by Thwaltes,
Ref. (1).

For planar lifting surfaces in oscillatory motion
in an infinite uncompressible fluid, analytical solutions
have been given for wings of infinite aspect ratio
(Ref. (2)), and for wings of circular planform, (Ref. (3),
(4)). Some of the approximate techniques for finite wings
described in Ref. (1), such as those of Falkner and
Multhopp, have been modified for oscillating wings. A
discussion of the numerical techniques for oscillating
finite wings developed before the age of high speed comput-
ing machines is given in Ref. (7). These methods were
always a compromise between "accuracy of results and
computing labor required". (Ref. (7))

Taking advantage of high-speed stored program
computing equipment, Watkins and his assoclates (ﬁef. (6),
(7» have developed a most satisfactory numerical method for
calculation of the 1ift distribution on a finite planar wing
in steady or oscillatory motion in an infinite subsonic
flow. This me..nod makes a direct attack on the integral
equation relating upwash to 1ift distribution on the

wing by assuming a set of modes for the 1lift distribution




with unknown coefficlents. The coefficients of these 1ift
modes are found by satisfying the boundary condition of a
known upwash at suitably selected control points on the
surface. The integratlions required for this method would
be completely impractical to do analytically but are quite
straight forward numerically.

Muzh of the present work is an extension of these
ideas to problems of interest in hydrofoil applications.
Governing integral equations are derived for the following
cagses: 1in Chapter 1, three-dimensional nonplanar oscillating
1lifting surfaces in an infinite fluid or beneath a free
surface at infinite PFroude number; in Chapter 2, two- and
three-dimensional oscillating folls beneath a free surface
including the effects of gravity waves generated by the
motion, (finite Proude number); in Chapter 3, three-
dimensional steady and oscillating supercavitating hydro-
folls in an infinite fluid. Numerical results are presented
for most of these cases and comparisons are made with
experiments where possible.

These integral equations are derived by taking advantage
of the fact that in linearized theory for an incompressible
fluid, the perturbation pressure satisfies Laplace's

equation. As an introduction to these techniques we
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shall discuss the integral equation for a nonplanar 1ifting

surface in an infinite fluid.

1.2 The Integral Equation for a Nonplanar Lifting Surface

In the linearized theory for the flow of an incompress-
ible fluid with free stream velocity L/ in the positive X<
direction about a thin 1ifting surface in steady or unsteady
motion, the perturbation pressure is given by a linear

operation on the perturbation velocity potential, namely by

4
R St * Uax (1.1)
We consider simple harmonic motion with frequency w
4 X,
P = po ¥F (1.2)
cwe 1.
& = e (1.3)

If we nondimensionalize all physical quantities with respect
to free stream velocity a , density (D , and root

A
semichord bo > the complex amplitudes ofP and 45

are related by equation (1.4)

- P - ik 28 (1.4)

where P, F , %{ﬁ are now dimensionless variables, k
is the reduced frequency 5

Equation (1.3) is solved for %7 as a function of
p with the boundary condition (J-e2) = O .
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In the literature it is common to define an acceleration

potential HV .

(?(/:L-’é{/“g_f (1.6)

]

@ = /2 (1.7)
For convenlence, however, we will work with pressure
directly.
In the linearized theory for an incompressible
irrotational flow, both p and %7 are potential functions

satisfying Laplace's equation,
2
VP =0 (1.8)

\VAL”,

Green's theorem (for a potential function) 1is written

Il

O (1.9)

for a closed surface surrounding the fluid, ir this case,
a closed inner boundary plus the surface at infinity which
does not contribute to the integrals (See reference (5) for

a discussion of Green's Theorem). In standard notation




the normal vector would point out of the fluid; in

aeronautical applications it is often written with the
normal pointing into the fluid.

_Plx,y,2) =;;—7.//,0(3,”7,f) V//—é—)ﬁ a(,S'
57

s // VRl T S
- 4 //S A

where /) is the outward normal to S into the

(1.10)

fluid at the point %, 7 7,

x)})z, are coordinates of a point in the
fluid. _3;/7,;f are coordinates of a point on the
closed surface S.

The surface S is taken to be the "upper" and "lower"
surfaces of a zero thickness wing, given by some function
f = ]’(}[,§> . In linearized theory for thin wing-

like configurations, (i.e. for g << 1 )
we satisfy the upwash boundary condition on the mean position
of the nonplanar surface, f = f/»;/ 0) =f(4/) .

We rewrite equation (1.10) as an integral of the Jjump

in p and ;%D across an open surface JP-‘J°57) .
e

(1.11)

Ply.y2) =¢‘7L]'_,,//A,0(3,47,f/1/);$;7 /-/-é/-)c/f 4_7; //@-f %:
-~ e




pT—p
3P 2PT
- o 2

S8t 18 the "top" of the surface
S” 18 the "bottom"™ of the surface
n is the normal to the surface j’= F%) positive “upwara®,
With an extremely nonplanar surface it is often quite
arbitrary which 1s the top surface and which is the bottom
surface; for planar wings the top and boctom are more easily
defined.
Pig. (1.1) shows a typical nonplanar lifting surface
configuration.
The nondimensional linearized momentum equation for the

direction normal to S is

for st

(1.12)




/‘ Tz/f

A Z/:f
Zly)
s
ST r»},q

Figure 1.1 Configuration of a Nonplanar Surface




If we consider a zero-thickness surface in fully wetted

flow the normal velocity Vh is continuous across the surface.
Therefore, for fully wetted flow the function < gg(g/);/f/q)
13 zero on the surface.

Equation (1.8) then becomes

(1.13)

,D(y%z.) = "#_,J//Ap@/%f/q))a%/-é—)a/;

The singularity _;JLF g—n /-/-2/—) is calle”? a pressure
doublet. This singularity causes a unit pressure jump
across the surface at the point x =%, y = Al 5
Z/?)=f/’7); /1 1s the normal at that point.

The position of a nonplanar surface performing unsteady

motions 1s given by some ‘unction of 32, Y, j’ ana T .

famzt) =0 ot

For small perturbations, the upwash velocity, normal to

the mean position of the surface is formed from

Vi (3,4, 204) =Df = 2f+ 24 (1.15)

5} 3t X




1C

The velocity at a point x, y, Z in the direction

n(y, z (y)) is given by

V»(xd« L)- Q("“/z’)

(1.16)
The velocity potential o(x, ¥y, z) may be found by the
operation indicated in equation (1.5)
kA - (x-9) J
W(:ty,z) AP(S/%J’(“I)) -L'/ ( )8 ) ) 7
My P\ M)
(1.17)

-3 HUE (x-2)
""’“/Yf’)‘/"?”f%f ””)(er aafw, Zi( 7 em) )#
~ . 7 (1.18)

where

R(p) = [ )2+(y-9)*+a- )"

The velocity boundary condition (1.15) is satisfied in the

limit as the point x, y, z approaches the surface
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x, ¥, z (y)-
The kernel function for this problem is

X(DL-%/ 7—47/2—3")

rd ﬁr'Z:/?/)

X=$ y
: o 1) CEO~(x=)
(‘7;7-' gnly,z;) /97/»7,]’) //Q/A)/ = d A
- 0o

(1.19)

Referring to Fig. 1.1, we write the following expressions

for 2 and -=-
an/%z) 2n (7, %)

;%/%z) (05 %/7) j,,, %7/52 (1.20)

J —
é—ﬂ/’y/f) = (05 ¢/”7/a‘&-f— j;H géffﬂé!; (1.21)
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Since

;;}/Z‘QL/\' - m,);)% //Z//) (1.22)
and
5_7_ //-é)a ) ’i‘; ///2. (1.23)
then

2
9/1(4; 8/4/*' *’/

/Qs%{y)(os 4,/2. +I %/ﬂ%/dz

(1.24)

~ (L1 Cos oy # S ) o %;)) %—294

The complete form for this kernel function is given in
Ref. (8).

It is reproduced in Appendix 1ii

. For a planar
lifting surface, the kernel function becomes

. X=2 htr-ix-3)
/_?(34-3, 7—%0) = -_i /e )
2%/ BN

(1.25)
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which agrees with references (6) and (7). With the
kernel function defined by equation (1.19), the upwash
velocity ncrmal to the mean position of the nonplanar

surface becomes

(1.26)

Va ./x,j, 2(y)) = //Ap /"‘, ", f@))/{//*’i,?‘% z.//f)-f.’a,,‘} F 24
</
P

This integral equation, relating the complex amplitude

of the unsteady load on the surface to the complex amplitude
of the upwash veliocity normal to the mean surface, is

solved numerically by a technique of assumed 45[353,0/7”?L)
modes. This method 1s discussed in section (1.4), and a

few numerical results are given.

1.3 The Kernel Function for a Nonplanar Hydrofoil at

Infinite Froude Number

For a hydrofoil traveling beneath a free surface at
high velocities such that the Froude number F = Laﬂ?z%
can be taken equal to infinity, the free surface becomes a
surface of zero perturbation pressure. The infinite Froude
number approximation neglects the effects of gravity waves

induced by the motion of the foil. 1In Chapter 2, these
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effects are included and numerical results show that, at
least for foils of infinite aspect ratic, a Froude number of
10 is essentially equivalent to infinity for the
prediction of loads due to unsteady motlon.

The singularity which causes a unit 1ift at the point
3N, f in the :(%f(;’) direction as well as
causing no perturbation pressure on the free surface, located

at z = 0, has the following form:

/

;(K"3 % 67/Z‘f) = -fﬂu ‘;”(7/7) (Tx 3) *@ ’) *(2.')’)
(1.27)

L 2 / 4
T4 Sn'(yP V(x—s)’v(g—y)tﬁ?—f)‘ )

where
._a. (OS f//7) 9 - \)"‘ (’0/7) (1.28)
9”/’7,1') 2f 27

2 = Cj,s 94( ;é -+ ;' <}/ 2
an/(%f) ° 7)3_)9 /" /’7)9
(1.29)
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It 18 convenient to think of this singularity as a
pressure doublet with axis in the normal direction on the
foll it elf and a pressure doublet, of the same strength
located at the image point with axis in the image normal
direction. Thus a foll traveling beneath a free surface
at infinite PFroude number is represented by a foii and
its image, equally loaded.

The kernel function for this problem representing
the upwash normal to the foll at the point x, y, 2z, due

to this doublet pair, is given by

-2
p; Ar-(x-2Y

)C(x-sla(—ylz-f)=j"" L =2 [-3-. = dA
272/4) &Y {7}) H1ly,y) /@(A’"z—f)
x-3 ) == BoZ0)
;s 2 / /-e‘wé/,\_(x-!
1) /R, 2t f) ]

O

For completeness, the final expression for this kernel
function 1is given in Appendix ii. The expression for the
kernel function 18 singular only at the line y = n, 2 =
on the folil; the singular behavior of this kernel function

is the same as that of the kernel function for a
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nonplanar surface in an infinite fluid. The numerical
integration can be handled by the same technique as

those developed by Watkins (Ref. (7)) for the planar wing
in an infinite fluid.

1.4 The Singularity in the Kernel Punction

The kernel functions in equations (1.19), (1.25) and
(1.30) become singular on the line y = % z(y) = ¥ (2)
on the surface S. This 1is, of course, a familiar situation
and the solution to the apparent problem is to find the
proper definition of the improper integral. A full
treatment of improper integrals which appear in two-
dimensional theory was given by Mangler, Ref. (11).
Mangler gives definitions for improper integrals which
arise when the 1limit of a potential function is taken.
For example, the Cauchy principal value integral is the
l1imit of the following potential function.

b b
glt) = /m// _{Cﬁ‘({'r)dr’? = | //r)c/r
4 w0 ¢-Mtrnz | (¢-77)
o a
‘-€ b
tedr g Lerdr (1.31)
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+-17
The function (¢-T72)4n< is a solution

of Laplace's equation. Taking the t derivative of

(1.31) defines the improper integral

Og’(t) / (r) 0/7" /= 2(¢-7)° ) (232
e (‘6-"‘)’+n7 (t -T)nt

Mangler shows that the proper definition of this
integral 1is

| (1.33)
/ / /(z-)o/r»« frdr _ 24
£ »0

(=% &
€4 €

In order to apply Mangler's results which are valid
for functions which satisfy the two-dimensional Laplace's
equation, we must show that as we approach the singularity,
the flow becomes a locally two-dimensional potential flow

in the cross flow plane.

We isolate the region near the line y =% , z = ¥

~
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by a strip ¢ of width 2« , along the chord. In this
region we express the kernel function in coordinates
normal and tangential to the surface at that point.

(See fig. 1.2)

z/
’ ¥ /

Figure 1.2 The Neighborhood of the Singular
Point.

For € small compared to the radius of curvature

of the surface the kernel function is approximately

xX-3 ‘[
X = -L 9% _e,_‘df“’"”) (1.34)
moapz SV ERY 4

For small n and t, equation (1.34) can be written
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‘L'Lc’x—.!)
_ = - € ( -3)) = =
)((X 3, y)/t’) 4’7’ //7“/:-5/ / LY s (” 2+f7’

= K (x-2) / (1.35)
h3r7* (b‘f?"’)
(See Appendix 11).

Other singularities are present but are of lower order.
The upwash boundary condition is expressed as the
limit of the normal velocity as the control point approaches

the surface.

/x,;)zfy)) /&'m.é -'0///4/%!,4,9%)/2(;«-3 7Y ¥yl f{.) d;/

(1.36)

h-ro ///’7 7% s (ntfrl)l) C/T‘/AP@’)K{(.;) J_S

In the narrow region U , the pressure Jjump Affs,»;, f/q))

can be expressed by the firast term in the Taylor series.

(1.37)

AP(s,y) = AP (3, 4) » OC)
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The form of equation (1.36) shows that as we approach
the 1ine y =% , z = jP , the kernel function becomes
a two-dimensional potential function in the cross flow
direction.

The integral of this function over 7~ and the lim‘t
as n 4 0 has been shown by Mangler to be properly defined
by equation (1.33). Thus in three-dimensional potential
flow, the singularity of the kernel function for the upwash
due to a pressure doublet is properly handled as a Mangler

integral. The standard notation for this integral is

V,,(;;y,z/,)) = //X/X-';/»y—"j/Z/;/'f/"l))A/D 57
S

&E ¥0

_ /////,Z/x-s, Y-, 2’?”f/”y‘d/° O’/'(/(1.38)
S-r

- 22_ /A/D(s,;// K lc-3) 0/3/)
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1.5 Numerical Method for a Nonplanar Pully Wetted Lifting

Surface.

The integral equation for a nonplanar 1lifting surface
(1.38) 1s solved by essentially the method develop 4 by
Watkins et al. Ref. (7), for the planar wing. The unknown
load distribution L P (S, 05, £(%) on
the surface is represented by a series of assumed modes with
unknown coefficients. These coefficients are determined
by satisfying the upwash velocity, equation (1.38), at

control points on the surface.

Volde, Yo 2.) = th//A/D‘ )((X,l-ét, :/n"f, Z,e(—f(«r)) c/,f(

where x,, ¥,, 2z, are coordinates of the kth point and
2pc ( 3/AZ/JQL%U 1s the 1th assumed mode.

The integrals in equation (1.39) are evaluated numerically
by Gaussian quadrature except for a thin strip of width 2 &
about the line y =‘¢Z , 2 = 7 on the surface. If the
width 2& 1s small compared to the radius of curvature
of the surface at this point, the method developed by
Watkins to account for the singularity can be applied
directly. The neighborhood of the point y = 1: , Z f]’
is shown in figure 1.2. We define a coordinate 77 to
be arc length measure from y = 47 y Z =~jf. The result of the

intergrations in this strip which are done by Gaussian quadrature
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is expanded in powers of S.

(1.40)
7c M
///44/35 7t /e//?-S,TJ ={; = ;é; (fioi 7J”1
then ¢¢ mee
[/ o
T / / AP /( 0’,( (1.41)
S-z . _
> = ~-—'«~-“7" a5
Le M=c 7=

If the surface is symmetric in y and if the upwash
velocity is purely symmetric or purely antisymmetric
in y, the function LpC =17, f/"ﬂ/ will be
symmetric or antisymmetric in z. The boundary condition
in this case need be satisfied at control points on
only half of the surface.

The assumed load series used by Watkins for a plane

wing 1is

M W
Apls,y) = ‘,2,2 Enretm-1) 7{.3/"/)/4/*/ (1.42)

The surface 18 located such that the root semichord is
between 3 = -1, the leading edge, and S = +1, the
trailing edge.
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The % functions are chosen in the following way.
Let

. 1.43
s=—bw) Goe +3,-1ly) (1:43)

where b(n) 1s the semichord at span7 and 3,(#/ 18 the
leading edge coordinate at span ”.

As) = Lot (60 /2)

s = zﬁ'z'n Son b 5(’))

(1.44)

The ,["(3) functions satisfy the Kutta conditicn at
the trailing edge and the 133) function has a square root
singularity at the leading edge. Analytical results feor
a flat plate in two-dimensional flow, and for & wing of
circular plan form in three demensions, show & square
root singularity at the leading edge.

The }i@r) functions for symmetric upwash are

W o ——— (1.45)
j(q/a/) = ("’/5)2 V /- (w/s)*

The 4307) functions for antisymmetric upwash are

2nt)
/»/7/=(’?/s) Vi-tys)© (1.46)

where s is the semispan. The %;(7) functions satisfy
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the condition that the lift drops to zero at the wing
tips. They also are the functions used in 1lifting lire
theory. In general, one should pick a set of functions
to have properties as close as possible to the actual
11ft distribution. In this case, control point location
is less critical and convergence 1s possible with fewer
modes.

For a nonplanar surface, we could use this set of
functions or replace the spanwise functions with a set
more appropriate to a particuvlar configuration. For
surface plercing folls, it is not likely that the 1ift
drops to zero at the water sur.ace with infinite slope.
For intersecting surfaces the load dces not drop to zero
at the corner and there is the additional constraint that
the sum of the pressure jumrs at the intersection is zero.

The result of these techniques give a set of complex
linear algebraic equations for the unknown coefficients

of the AP modes.

[Vz = | Ve

- [

I
.

} (1.47)
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Cnce the A;IS have been found, the pressure Jjump
distribution cn the surface 1s known. From this, force
and moment coefficients for the configuration may be
calculated.

The numerical technique has been programmed for the
IMB 7090. In practlce, for simple configurations, calculations
with 9, 16, and 25 control points have given good results.
Time required for a calculation is under five minutes.

As an example of the method, calculations were done
to compare with the experiments of Abramson and Ransleben,
Ref. (12). For these, the unsteady 1ift and moment
coefficlents at several chordwise sections on the span
of an aspect ratio 5 foll in bending and torsion
oscillations were measured. Fig. 1.3 to 1.7 show numerical
results for unsteady 1lift coefficient, magnitude and
phase, along the span due to bending at reduced frequencies
K= .6, .8, 1.2, 2.0. These calculations were carried
out with 9, 16 and 25 control points. Results are in fair
agreement at low reduced frequency; agreement 1s poor at
higher reduced frequencie..

This i3 perhaps due to a fallure of the Kutta
condition at high reduced frequencies. This 1s discussed
by Ashley, Widnall and Landahl in Ref. (9) and some
empirical modifications to the numerical method are suggested.
Calculations were also performed for a planar wing below

the free surface. These results were presented in Ref. (8).
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CHAPTER 11

THE EFFECT OF GRAVITY WAVES ON THE UNSTEADY LIFT AND

MOMENT ON AN OSCILLATING HYDROFOIL

2.1 Introduction

An intriguing question in the study of unsteady hydro-
foll motions is whether the gravity waves induced by the motion
influence the loading to any great extent. To answer this ques-
tion we formulate the "exact linearized" integral equation rela-
ting the loading »n an oscillating foll near the free surface
to the upwash on the fcill. 1In this problem, we represent the
loading by a distribution of singularities on the foll surface
which, in addition to producing a unlt 1ift at a point, have a
perturbation pressure field which satisfies the free surface
boundary condition. The integral equation will then be solved

by a method of assumed modes similar to that described in Chap-

ter 1.
We locate our coordinate system so that the mean posi-
tion of the free gsurface 1s the x,y plane at z = 0. The free

stream velocity 18 in the positive x direction. As seen in

this coordinate system, the free surface will take somne shape

P =/ (x,y,t). The boundary condition on the free surface is

that the perturbation pressure is equal to zero. (See ref.{l4)).
The linearized Bernculli equation for an incompressible

irrotational flow 1n a gravity field is
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34,28 + P+ 2. =¢
°t ‘X F? (2.1)

#here the variables have been nondimensionalized with respect
to free stream velocity U, densityp, and root semichord b,.

F 18 the Froude number (F = W/”I,)

¢ is the perturbation velocity potential

A
P 18 the perturbation pressure

Applied at the free surface u> (x,y,t) this equation becomes

L (x,%¢)
§¥§*J§ﬁ T TEr =9 (2.2)

The vertical velocity of a fluid particle on the free surface

is related to the velocity potential by

22, 2P = 2of
>t X =¥ (2.3)
A combination of equation (2.2) and (2.3) gives the

free-surface boundary condition

> 2 \* /
5%"3%) # *Fa §%>=‘9 (2.4)

In the linearized problem, this boundary condition 1s
applied on the mean position of the free surface, z = 0.
The same boundary condition -must also be satisfied by

the perturbation pressure.

A A
‘/Sb'c*}x)’:'*%’%::o @z-0 (2.5)

ror simple harmonic motion with reduced frequency k

A Ckt¢
p.‘-‘ PC (2.6)
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The complex amplitude of F satisfies

ke = f + SF L. = o £ o
(cé-»‘”)‘-/p I F e o  2=0 (2.7)

If the Froude number 1s infinite, this boundary con-
dition reduces to zero pressure perturbation on the free surface.
As was discussed in Chapter I, the singularity which causes a
unit 11ift at a point and causes no perturbation pressure at
Z = C, is a pressure doublet plus its image.

To find the singularity which causes a unit 1ift at a
point on the foil and in addltion produces a pressure field which
satisfies the full free surface boundary condition is more com-
plicated. For two-dimensional flow, 2analytical expressions for
the kernel function can be found using Fourier transform tech-
niques. The problem in three dimensions can be reduced tc a
single integral which could be done numerically.

When the upwash on the foll due to these singularities

has been found, the problem may be expressed as

/ K £ X4
= ' : (x-3, y- 4
V(x,;x.) /r[’/ ap(39) x ; v) 7 (2.8)
where the integration is over the surface of the foll. All

effects due to the free surface are contained in the kernel

function.

2.2 The Kernel Function for Two D!nensional Flow at Arbltrary

Froude Number

The complex amplitude of the perturbation pressure

fields for a 1ifting element at z - -d satisfies Laplaces
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equation (2.9) with boundary conditions (2.10) - (2.13)
Vip=o (2.9)
(if(ﬂ' g—x)lp4 ,-f_-, g.f =0 @ ;&'0 (2.10)
plx;d") = plx,-d*) = dx-5) (2.11)
2£ (x,-o")-;)f(,,,-a/*) =0 (2.12)

Pl(x,-o°) =0 (2.13)
The complex amplitude of the upwash velocity due to
this pressure field is given by

){(,-5,_6/) - %ﬁﬁ(uﬁ!;d} = f:_a,/gi&/%)ecbj(g.lu)

In addition to these conditions, we must impose a
radiation oom‘iition requiring that all waves we consider
have been gerierated by the motion of the foil. This may be
done by letting the reduced frequency k have an infinitessimal
negative imaginary part so that at time t = -o0e, there was no
motion. |

The derivation of the kernel function is similar to
that of ref. (8). We apply Fourier transforms in x according

to the definitions

(S*
P(a‘/z) - EL_;./,? (sc)@ Js (2.15)
Blsa e A / prre " dy 0
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(2.17)

(2.18)

Equations (2.8) to (2.13), in the transform variables and

become

dzf_s.zf -0

A o (2.19)
..(é*g)zf,;;é;_ C_'_/__Z -0 at z=o (2.20)
dz
. ~¢s32
Z /S/-a/)—E+(5/‘°/)=§, (2.21)
Vo
= +

?{ﬁ? /s,~d_)— Cj_/f (<, -d) -~ (2.22)
A7 1z

F (s, -e2) =0 (2.23)
IP = L dP (2.28)
Jz ,('45) J4Z

- +
where;E 18 the solution for 2¢-dand P is the solution for
z7-d,

The solutions to equation (2.12) are

/siZ -/8/12

PT= Ae + L e (2.25)

sl z - -7/5/2

F : Ae + B e (2.26)
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- + +
Condition (2.23) requires /3 = 0. The functions A B A

are found from equation (2.20 - 2.22). The resulting expressions

— t Vo'

for £ and f: are
~ -(2+d)/s/ -CSg
L =-1 e e
2737 (2.27)
' (:—d)/S/ -¢53 .
r L. € e /F'/S*t)"v /5)
2135 Fisoh)i=15/
- -is
f e 4 ;(zm/)/S/Q 2
>l fT 53
s QTN T pae ) s
2127 = Fitssk)=rs1/ (2.28)

The kernel function can be found from either (2.27) or (2.28)

by using equation (2.24) and (2.17)
|

Oe
: + 'S X
Kovs = (i [ s (22°) e T ) o9
- O 2

or

Oo
=~/ {/ f / / -" J»E CJCC;X
/\:(x'i.‘ﬁ/) S a~d Z/Tar-o.[i—f (J} )f(z 30)
The first term in equations (2.27) and (2.28) gives the kernel

function for a pressure doublet in an infinite fluid. Thus

~Gls] +cs5(x-3)

.‘__/_EL e =
/C("" - = 4’//’" & _,a/ s+h > }(2-31)

We us2 the fact that k has a small negative imaginary
part to move the pole off the axis of integration. Hence

there results

. o . -3 (2.32)
K (x=3,-3/ = ;2::/517‘ (x-g)'ué] "

- k ~(CKk (x-3) -
e [Ec’/t'ﬂ’s-.?)) ’ 77'4 (1+ (/Lx._.%j >]

.

|




where
w

€
Elw) = / e dt
Lt (2.33)

is the complex exponential integrail with branch line along the
positive real axis.
The prop-.* definition of an integral over the general-

ized function Lim 3 i8 the Cauchy principel value.
€ ro X‘&f*é

o (x 3))[(3)0/3] _ /bﬁg d3

€ »o a (x-32+€% (x-3)
(2.34)

The first term in equation (2.32) contains the strongest singu-
larity in the kernel function. The second term has only a

logarithmic singularity and the additional terms due to free

surface effects are not singular.

Por infinite Proude number, the kernel function 1s Jjust

—€ls)4isx=3) u ~2d/s/ + (5(x-3)
);- -L Z,m[/us/e.ds /*/_‘___/2/6 ds
=z € 9?0 Ss
7 ol (2.35)/
which gives

*
= - Mim x—g X—3 L Fe -
K Z# € ~0 é’x—aj‘fé ’-j 02/7“ ((X°3) *4(24)% ;677«'! e £ [go*)

Fzoe
-u((x-g /X=3
+?_.¢77: - chﬁbx—s))*ﬂ//* /E (g) 4,0(//,«-“_3

(2.36)
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2d 4i (x-3)
?o k(2d +0 (x 3) (2.97)
2o=k 2d-crx-2)) (2.38)

It 48 interesting to note the asymptotic form of
the kernel function for large values of x - 3. The asymp-
totic representation of the complex exponential integral is

w

W)~ £
£ (v) o (2.39)

The lowest order terms in equation (2.34) are thus

) : - K/x-3%)
K~ »—7—,[¢7(//+(”‘ ;’))/a (2.40)
o —2kd = hixx)
oik [ Rl )] <

The behavior far downstream from the disturbance 1is
that of a wave moving in the positive x direction with unit
veloclty.

kit

o° (x—’)) <
<
./ ~ //7‘ S x-37 (e.ul)

No wave exists upstream, This represents, of course, the shed

wake vorticity, which is carried downstream by the free stream,

Later on, we shall use these same ideas to find the gravity

37

waves produced hy the motion. At this point, we will note that

tnhe poles infinitessimally ciose to the axis of integraticn in

(2.33) give rise to waves which travel upstream or down-
stirream, If the poles had been located at a finite distance

A from the real axis, the waves would be damped,
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°<- e (x-!) Y . t/{,{x—g)/‘ ,_(,._t/,
T ; - --
k o / (2.42)

The complete expression for the kernel for finite Froude

number 1is

oo F ¢S %=/ —2515,
-3 -7) = K -J-/( / Ciel Js
Kix-3-9) K ‘“(‘W“ L .

oo
s> -3) = 2d/S]
. /Ze (/-:/ /f_:‘(srk)z.f Is] \gs
4 Lo (st k) Fi(stk)?-/s/ (2.43)

where £ 18 the kernel function for a pressure doublet in an
F 4
infinite fluid and K 18 the correction term due to free surface

effects. This correction term may be expressed as

\ O

)
-3
o F f— Tun / FZ(S+()Z—S)E—-‘SG'*LS(*

K F ZF () h) CFig)es
d-is5(x-3)
4 S ds Fz(SrII-»g 625 ’
/,. ) T j (2.““)
k 2(5-,() +S

The first integral has poles at

I

/‘ (¥}

!

So 7 7K 2. 45)
s, = ré\ /+ —’—{ 2{ i/—-{"/ / 2, 46)

S :-k[/.}. JJ/ /_./_{—_} (2..;‘7)

ra
where fEkf:. These are all located infinitesimally close
L0 the real axis along the path of integration.,

ne second integral has polea at

5, =k (2.48)

vw k(1= S Sef) @
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Sq4~ A’//'f?'f B 51;{ V144 ) (2.50)

The location of these poles depends on the value of ., Thus,
for {<5@, they are located infinitesimally close to the
real positive axis., Por )ﬁ.<§’\2i, they are complex conjugates
in the second and third quadrants. In the case of-i'ff, they
are complex conjugates in the firet and fourth quadrants. These
poles, and their significance for the gravity waves generated
by the motion, have been discussed by Tan, Ref. (12), and
Kaplan, Ref. (13) and (14),

A root locus diagram is shown in fig. 2.1 for constant

F, and increasing k.

Fig. 2.1 Location of the poles of equation (2.44) for
constant P, increasing k. (f = kF2)

|
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The integrands in equation (2.44) may be separated into

partial fractions

Do _2/sid+iS(x-13)
//;: <. / 15—— e ds
. 97 J_
2sd +ds(x-3)
* ///7 —é;- r @+ 4= ) < :j;S
477 k S"S, 5'51..
o 2sd - s(x-3)
/ - £ r 23+ a1 ) < ds }
- oo 5 S-'SJ S"S*
(2.51)
wnere
-/ ~/ =
L k(1S e (307N 9 0) (2.5
l -1 ~1 “/2_

s k(1-f £ 0040
k)

The first integral in equation {2.51) 18 the kernel function
for a simple steady pressure doublet at the image point. The
remaining integrals can be expressed as complex exponential
integrals with or without a correction term depending on whether
the path of integration of equation (2.5l1), after transfbrmation
into the exponential integral form,equation (2.33), crosses
the branch line of this function,

This depends on the position of the poles in the complex
plane which 48 a function of f. (f = sz)
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For 7<'4 , the kernel function 1is

vFo (x-g\ L [~ S, (-3
~ .7."( d 477'e [tc/go) +Tre /f/";:",).]
g % /. (x-3)
‘/—% [Ez (8/)* 7“‘(/4 /,-a/)]* LhE [é‘(g’)fm(“m ://
o2 Efga) pivi ( " [ei(ga)-
sias @ i (1 <=3/ ey e ((24)-Tri{1+ x-9
r g /.7-5/)] 5‘7; 5 / “‘"')j
X
- it eb® Eil-gr
4,,:_? g’) (2.50)
where
%o = k(2d+i(x-2)) (2.57)
§,2 -5 (2d¢(x-3) (2.58)
f2= -Sa(2d+i(x-3)) (2.59)
5}:‘5;(2 d- {(x-3) (2.60)
54:- Sl 24~ (x~2), (2.61)

For large values of (r =f), the asymptotic form of the kernel

for t‘<'/c is

-4,4‘3 ] "L/('/)( t) S,Zd ( ) t-gi (k*é‘t,
& 2i¢ /40 ]
k [ ! (l’)(( f)/ c 4,C' /%-5/ <

§22d /' —) (‘gg\/if_k 1{)
-, < L/.J/__:?,’Je =9

4 (x-%)
Sead - -
_._d:) e : d[ - /X "/]g (;,(X 74“
8 ¢ x-%)
) Sg1d _554(x_£é
e [).xs]e =t
4 {x-F)

(2.62)
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Since for < ,8, to s, are real and negative, we
can draw the conclusion that the disturbance produces four
gravity waves, in addition to the wake. The 8, and 8, waves
travel downstream behind the disturbance, the 83 wave travels
upstream ahead of the disturbance, and the 8, wave travels
upstream behind the disturbance,

In the 1imit as '§vﬁ, the 84 and s, waves have a
group velocity which 18 equal to the velocity of the foil
relative to the stationary fluid. (see Ref, 14) This is a
singular point for the linearized problem, in some ways analo-
gous to the Mach number unity problem for iinearized compres-
sible flow,

For f;>74; the kernel function differs only 1in the

contribution from the poles, Thus for % -~ {<’V3

y

Fo. Ix23) L (e (x-3) )]
K= i -2t ld’) 47" Eolge s (/ L/ﬂ“”)

: ‘5'[ s (e -8z .
$ca, € Eo(q, ) Tl (x28) +4dze Eclo)eire (1453

!y -8/

'fL_Q"le '[zf /83) f-//'(//f-Ip{&}_) y -,L./'e e Fc'l{gpl.)

47 /L. ”61)/ 7
-/1'34.8 [Et (&,) i (/- I.P(%s) ’_]
'Y 17.P.(34)/

(2.63)
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1
whereas for f > 2 the kernel function is

X ) - "50
sz 27r(((i 5T+ 4d%) ‘;’f‘e [Ez/g,)fm'//f(:_';)’)]
+ E.( i (1 2
477_ 5[ ¢) +mi ( )]
¢ 2 ; E{, Wvg (X-J)
+ 9_!_;7_1‘ [ (9.)+ {1+ /x—g/)]
rias e B Eig,) iy 7 Futgy)
e - +T
Fik et Eigd)
4%r

(2.64)
The asymptotic form of the kernel function for % &£ f shows that

the gravity waves from the s, and 8), poles are damped far from

3
the origin. Only the gravity waves due to the sl and 82 poles,

plus the unsteady wake, extend downstream from the disturbance.

2.3 Numerical Solution and Results for Arbitrary Proude Number

The integral equation relating the complex amplitude
of the upwash and the load distribution on a two-dimensional

oscillating hydrofoll, traveling beneath a free surface is

+1
vix) = }'{ A (x-3) A/OC’) o3 (2.65)

where K(x—s) = K° + KF as derived in section 2.2. As in the
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three-dimensional case, the kernel function is the upwash at
a point x due to an oscillating pressure doublet at a point §.
This function contains the effects of the unsteady wake, the
surface waves generated by the motion, and the depth of the
foll below the free surface.

A numerical solution of this equation has tzen pro-
grammed for the IBM 7090. The method which was used involves
a series of assumed modes, in a manner similar to that described
in Chapter I. One assumes a series of pressure modes, each
of which satisfies the Kutta condition, and solves for the co-
efficients of these modes from the inown upwash distribution.
Once the coefficients of the pressure modes are known, the
unsteady 1ift and moment can easily be calculated.

The foil is located on the % axis from § = +1 to § = -1,
the semichord thus being adopted as a reference length. The

assumed 1i1ft functions are chosen as follows:

N
AP(3) = by Coton + Z by Sne (2.66)
7 2.6€7
C»,C(Q)f é bn /p,(@(!)) ( )
wnere ' n=¢
£= - co8O (2.68)

The t%@'are the unknown complex coefficients, With this assump-
tion for the 1ift distribution, equation (1,1) becomes

™ N5
vix) = {(50 b, »ﬂnfej )K(x-x(o))j/no do (2.69)
Define a function

/
Con = 4 bndyio) Kir.-30)me do (270
o
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/
In terms of the (/,5 , the integral equation becomes a com-

plex matrix equation

R

where vy 18 the known complex upwash evaluated at a preassigned
set of control points Xy It would be possible to solve for
N bn's by fitting the upwash at N points. Then {c] would
be a square matrix. Instead, the upwash is "fit" by a mini-
mum mean-square error criterion at more points than the number
of assumed modes., This device makes control-point location
less critical.

Results of an analysic to choose the complex coefficients
for a "best" fit have led to the following procedure: One

writes a linear set of equations

Vo) ® FC’ — {bn}

v | xM

; 4 2.72
M XN (2.72)

XN

where M < N.
Then premultiply both sides by the complex-conjugate transpose

o (Con] - .
|
I

/ J (2.73)

The result 1s an Mth order set of linear equations for the M

|

~—
of
<
——
]
—
Ol

.

unknown complex coefficients. This procedure minimizes the dot
product of the error and the conjugate of the error. This

method 18 used in the program to fit the complex upwash v(x) by




46

the sum of complex upwashes "% due to the assumed 11ft modes.
In the present program, nineteen downwash points are

chosen and a "best fit" is made with four or five pressure

modes. When the complex coefficients have been found, unsteady

1ift and moment coefficients are computed tythe familiar formulae

Co=am (bot b /2) (2.74)

~ /
Cu = T4 ( bz=b) (2.75)
The program for infinite depth reproduced the Theodorsen

results, Ref, (1), to four significant figures,

Results for ‘« and ;»1 for & two-dimensional hydro-
foil oscillating in heave and pitch beneath a free surface
are shown in Pig. 2.2.to 2.5.

Definitions of 1ift and moment coefficients are

CL L g . Idft due to heave
by Y% e plrick b, <
- (2.76)
— [ Moment due to heave
thr + ¢ MA‘ .()___UlféAo cg_
2- a
(2.77)
where the nondimensional motion of the foil is
"kt
hix- = hee’ (2.78)
and
T G _ Lift due to pitch
s " pUlol, @

=+ (2.79)
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C;74 + ¢ C, Moment due to pitch
xr Mo(('— - U? ~ 12
z T

(2.80)

where the nondimensional motion of the foil is

ki
hixt) ==ole [ x+4 )€ (2.81)

(x = 4 18 the quarter chord.)

By these definitions, (, has a quasi-steady value
of 27 at infinite depth.

Results are shown for 1ift and moment coefficients
vs. reduced frequency for various Froude numbers and depth
below the free surface,

These results indicate that the coefficients predicted
for Froude numbers of about 10 are equivalent to those predicted
for infinite Froude numbers, Thus for hydrofoll operation in
typical ranges of F, the effects of free surface waves are not
significant,

The behavior of these coefficlents near the singular
point kF2 = 1/4 1s interesting from a mathematical point of
view but seems to be of limited practical importance in prob-

lems of hydrofoil flutter,

2.4 The Kernel Function in Three Dimensions

To determine the form of the kernel Ifunction, we make

use of Fourier transforms in the x and y direction., Definitions
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of these transforms are

¥ > X S X+ (./@‘ﬂ.
@x,g,z.)z 27/-// J(;,;,.z;k/ C ds J?B‘” -

é(-(-, ‘ I;l/\: :TL ..‘CP('T‘,' k) = s —(‘ﬂ(’ ¥ 9/
£ *"'// A g ‘7(2.81;)

Pl gzt 2 // Lrspz-bre o
(2.85)
. ’ -c'SX—i/dy.
Flpzit) =4 // Pixy,z:k) € /x dy.
== (2.86)

The relation between the ¢ and p transforms is

iﬁ = ¢ ,ZD
(s+ k) (2.87)
Laplace's equation for q&‘ and P becomes an ordinary second-

order differential equation for f and P , with z as the

independent variable. The transform variables appear as

parameters
i 2, 05)
adz? (s */g)j*' =1 (2.88)
:/zf F4 z C{.’:O
2 X (s )9 (2.89)

g =z*
The free surface boundary condition fer 2 is

2z
—'//4*5) /-Z)?" '.-‘—Lz. 522 o @z-C (2.90)
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Also, a8

 —v-o° ,2 -» O
(2.91)

The basic equations, as just derived, hold for general
surfaces at arbitrary orientations below the free surface. To

achieve clarity in presentation, we shall now restrict our-

selves to lifting surfaces oriented parallel to the free surface.

We located the planar 1lifting surface at z = -d below
the free surface. The kernel function for this surface has the
property that across z = -d, P(x,y,z) experiences a jump of

unit strength.

p(x,;,-d-) —,D('l,y,-o/ ') = J(x-S, 4-7)

(2.92)

The jump conditions on the transform of P(x,y,z) are

f-ésj(sj-d'> - E*(SJP/-J*) = g:csa-bfst

27
- (2.93)

where f is the Fourier transform for z< -d and _2) is the
Pourier transform for z > -d.
For a zero thickness 1lifting surface, the upwash 1is

continuous across z = -d. This condition becomes a condition on

je(%dzﬁ) of

3_‘_3-(11/3/—:1-) - c—;J—‘-Ef(S)ﬁJ'd*) =0
2
(2.94)




The two solutions to equation {2.80) are
S’WQZL <

+
P =Ae r Ke (2.95)
(2.96)

To solve for A,B and C we apply the boundary conditions
(2.90) at z = O, and the Jjump conditions (2.93) an¢ (2.94) at
Z = -d. In order to insure that 2:'0 » 88 2 —» -~ 0o , the
real part of the radical:hml? must be taken as positive. Appli-

cation of these conditions gives
«?+= - e)(p(-—[ss-c'ﬂa{ = VS‘*/Gz(Zf'c/))
T
+ g]p(.[jg-(;/}ry-f Id"yjé"fz—o/))[ Fz('sfk) +V<z,¢/
R s k)%= Jotr e, 5 e~

(2.97)

D= eypliss-ipqifsope(z+d)

7
+expl-is3-ifys s Vsaz (2-d)) | Flphis Vs fﬂ’j
27T FsH)*- IsZ,an

(2.98)

For an oscillating pressure jump at z = -d in an infiinite fluid
equation (2.97) reduces to:

f+= ) %((asg—-ﬁ? r_%z(ud)) (2.99)
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- -[$3-—(.'(341 YS’*,BZ(ZfJ,)

Z) = C c (2.100)

v

For an oscillating pressure jump at z = -d in a fluid at
ay ypO
infinite Froude number, we have (2.99), (210) plus a correc-

tion term due to a positive image located at z = +d,

-(s3 —-c'ﬂof_

E*:: - e /e"r’_{*_f“("i) € -@1/2-3(2.101)
7T
2"‘ _‘.53—4/347 "/5—;7/—91 {zfc/) —/g—‘:p?('z—o/)
- e € re
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The normal upwash on the planar surface is

(2.102)

(2.103)
Ax,o) = %3{; (7{/“;4/"{3.(/)

The expression for the velocity potential transform is

Y
§ [[:;‘) (2.104)

The upwash due to a unit oscillating 1ift located at x - §,

Yy -4, z = ~d on a planar surface parallel to the free sur-

face is
oo (.‘.’(1'(/3?_,
' rf 4L
- e I~ Js I

The resulting kernel function valid for z > -d is found by

applying equation (2.105) to the form of BY in equation (2.97)




frj /677‘ //d$¢[éxlo :s(x-s)*cfs(? )+(z+d)}’?;)
+ L s Fis /) + Vo7 E° |e
(Sf s ﬁ dﬁ P L rﬁ‘p—']

exp (;S(x-s) ff@{#—q)+(z‘o/)@9 /;'i—;;)
S+

(2.106)

The first integral in equaticn (2.106) 18 a well known expres-
sion for the upwash cdue to an oscillating pressure doublet
(see Chapter I).

We will discuss the second integral and propose a method

for numerical evaluation and an interpretation of the results.
The complete correction including the image 1is

X, = 8—%"- //exp ((2-d) (546 + S (x-3)* (B(y-y)) o

( L/?{T_’:)(F?‘/‘*U;* s 73 dso?g
s+£ Fr(set)*= /s2:3= (2.107)

A change of variables which gives a striking comparison between
the two and three-dimensional kernel functions is 8 =8, B = 78
where T 18 a real number. Properties of this transformation
are worked out in Appendix iii. General results are that if

cp(:z,;,z) = _2";7: //_Cf(s,p/-z) ecs.zv*cﬂéto/scp/a (2.108)

Then
(s (:ury)

(pfz,g,z) = ):-/-77, /é_(s)?‘s}-z.) C /s/dsd™ (2.109)
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With this transformation, the expression for the kernel due to
a pressure jump in an 1nf1n1te fluid is )

Ny /S] /7;7/“—“
){w 2-:2 ///( Sf})
ex,o(fs(x-s) +¢@(7-7)-»/s/ V7+7* (Z*°’)> 45477 (2.110)

This may also be written

){a‘ = / (fs] e
74 z--a J (576)

Exp (JS()(-S) J-’/"/?-'y)) - IS VTF/:"(Z*J)) ‘/5417/] (2.111)

The expression for the equivalent two-dimensior.l kernel
function for a pressure jump in an infinite fluid is

So

eo d,
_ , . ¢ /5! e xp(cs(x-3)-15/ (z+9) ds/)
)‘/ZD - /ZZ"‘_'.:/+ 477“0‘/‘ 3*;2 )

(2.112)
Comparing XO" and ){m we notice that

Koo = - _—m« / [Xw (/x—;)#”fy-?)) a7

(2.113)

We may write a similar expression for the upwash contribution
of the free surface 1nc1ud1ng the image. Equation (2.107) becomes

87/’ / /S/ Fits+k) ™+ /51 V117
2" d 52 (S* FZ(s+/<)'~—/s/r-7'-a

cexp( g_s(x-_;) + sr(y —y)+/8/(2-d) "/Tryq’s Jf(a-llu)
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As discussed in section 2.2, the equivalent expression for the
two-dimensional kernel is

o
cs(x-3) £ Is)l2-d)

~ -
Yop = = | L& < szSf/‘-)z‘*/s/)
20
77 L (54 (szﬁnf)l /57

The expression for the three-~dimensional Rernel becomes

(2.115)

e (2.116)

An analytic closed form expression for K2D was de-
rived in section 2.2. The advantage of an expression like
(2.116) is that radiation conditions carefully worked out for
the two-dimensional kernel can be applied to this form of the
threemdimensionél kernel., This gives a unique definition to
the various contour integrals which are evaluated in solving
for this three-dimensional kernel function., Equation (2.1&6»
in addition to settling questions of lncoming and outgoing
waves, also gives a numerical technique for evaluating the
three dimensional kernel function, Convergence properties
can be checxed by examining the asymptotic expansions of
;%/(z: for large 7.

The final result for the three--iimensional kernel
function is reminiscent of an expansion in plane waves. First
we note that the "apparent depth'" of the equivalent two-di-

mensional disturbance grows as ckwp.= Lacriat * VI1+7 7,
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The apparent Froude number of the individual two-dimensional

contributions decreases as

E S :RCTML
" IO N (2.118)

For a given value of /7/, waves come from both the
/—T;( and xfrOz/ directions, A better form to demonstrate the
equivalence of the x*ﬁy and X-Q; directions would be

oo
F ' £

Xiwngor 2 [ 3 [ o onsty) I

5 [, F 0 |

fﬁ'z[ Kep (X-3)=T1g-9) 7 f (2.119)

For hydrofoils operating at practical ranges of Froude numbers,
it 18 felt that the numerical evaluation of these integrals
would not be practical. In the two-dimensional finite Froude
number solution, results of F = 10 were indistinguishable from
infinite Froude number results for all practical purposes.
The computation time required to carry out the evaluations of
the kernel function necessary for a determination of the loads
of a three-dimensional hydrofoil at finite Froude number couid
not be justified.

Extension to non-planar lifting surfaces can be made
by noting that the nature of the singularity which gives a
pressure jump acrosa a surface is the normal derivative of
a pressure source, the pressure doublet, Takling advantage
of this, we derive the expression for a pressure source below

a free surface and the expression for the  upwash it produces.
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We then take a derivative in any direction we choose to find
the kernel function for an arbitrary nonplanar lifting surface.
The problem statement 18 essentially that for the
planar kernel function. The Jump conditions will be those
associated with a pressure source which when differeatiated in
the P direction gives the unit pressure jump for a planar
foll parallel to the free surface.

The jump conditions on pressure across this pressure
source located at z -f y X = , ¥ -Z are

p-(g/zf) —/Drfs_;%f) =0 (2.120)
227 13,9, - 2£'(3,9,1) = dix-9 dtyg) .1,

In the transform variable 7 the jump conditions are

(2.122)

2-27 =0
AR Y- 4

_ #
g_g - g/_; = (2.123)

These equations together with equations (2.88) to (2.91) give
the solution for PY and P~ for this pressure source located

atz-f

4
= - -(S%-¢ - Lot (2= /
T'= -cxpl-iss-igy -Va74a ( f))mz

- c)zf(—c’sg—éfst,f-@"(uf)) Fr(sih) 2+ sTra*
27 Vsze= FsrR )™ V5082

(2.124)
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L= - eYP(-"S‘é-f/St*(z-f)W‘)
i/ 7’?;7;52

» expl-csz—ipy+(zr9) V3 )’;;521)22-»‘//5‘_2}
KA AR

(2.125)

The velocity potential due to a pressure source under a free
surface 1is

* o L2 [fexplisx-3) riply-w - (F1E>(==FY) ; s
¢ 8”-,.//—“5“,3*:7;.. (Z+£) 3

Shffapexp (030 + by ) Fr b ipe
e GO A

(2.126)

g= -ég,/exf{csu-s)ﬂﬁ/g -9 +V5%+8% (z =) (dsds
~oe [sz 1A= (s+ k)

*5#%)‘,’ (cs(x-9 +(Aly-1)t @2/ z-tf) [ Flah)% yfa,lg s %5
e Ysrk)T fTp>(27127)

To tind the normal upwash at a point x )¥y2 of a surface
due to a unit pressure jump at a point §)Lf of a surface,
we follow a procedure similar to that of Chapter I for non-
pianar wings in an infinite fluid or at infinite PFroude number
below a free surface,

We derlve the kernel function for three-dimensional
finite Proude number by the following operation on the velocity
potential due to the pressure source.

Xop g nz) = ;9-59- Plesy-9, 2L

(2.128)




%

/

where as 1n (Chapter I-

~ D - (2.129)
.5;,_7, = Cos 9”[;7) = S“” %/?)3?—
39’—12 = = '-/&5’ ¢/’7);§—'2 1 -5/:4 W/'y)g. (2.130)

The configuration f{or a nonplanar surface 18 sketched .in Fig. 1.l
If the kernel function described in equation (2.123)

could be evaluated either analytically or numerically, it would

replace the kernel function used in Chapter I if free surface

effects were desired. When the Froude number F 18 infinity,

the kernel function described by equation (2.128) reduces to the

simple pressure doublet plus image doublet,
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FIG.2.4 MOMENT COEFFICENT (1/4C) DUE TO HEAVE VS k
FOR A TWO DIMENSIONAL HYDROFOIL
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CHAPTER III
UNSTEADY LOADS ON SUPERCAVITATING
THREE DIMENSIONAL HYDROFOILS

3.1 Introduction

A hydrofoil traveling at high speed will experience
cavitation if the pressure on the foll falls below some
critical value. If the cavity extends over the complete
upper surface of the foil, the foil is said to be
supercavitating. The pressure in the cavity may be the
vapor pressure or in the case of operation close to the
free surface, it may be atmospheric pressure. The latter
condition is often called ventllation. If a cavitation
bubble forms, it will have a constant pressure on its
surface equal to this critical value. To solve math-
ematical problems of cavity flows, it 1s usually assumed
that this critical pressure is given.

Problems of finite cavitating bodies such as vertical
flat plates in two-dimensional steady flow have been solved
using complex variable techniques. A review of these
problems and the mathematical techniques used is given by
Gilbarg, Ref. (26). Some new developments in two
dimensional cavitation theory are contalned in papers

of Ref. (27).

For thin, two-dimensional hydrofoils in steady and
unsteady motion, linearized theories have been studied
by Tulin (28),Woods (29), Parkin (30), Timman (31)
and Guerst (32).
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In his doctoral desertation, Guerst has discussed
the relation between the two-dimensional linearized theory
for a cavitating wedge and the nonlinear models for a
cavitating wedge, the Riabouchinsky model and the re-
entrant Jjet model. He shows that "linearized cavity
theory 1s a first order approximation to both nonlinear
models for small wedge angle."

The two-dimensional linearized theory for steady
flow have shown good agreement with experiment for thin
supercavitating hydrofolls. Therefore, we feel that
a three-dimensional linearized theory will give accurate
predictions for the loads on steady and unsteady super-

cavitating foils of finite span.

3.2 Linearized Theory for Three-dimensional Supercavitating
Hydrofoils

The coupled linearized integral equations for

cavitating hydrofoils can be put into the general frame-
work of lifting surface theory uaing the pressure or
acceleration potential and Green's theorem. For linearized
incompressible irrotational flow, the nondimensional
perturbation pressure and the perturbation velocity

potentials satisfy Laplaces equation.
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o (3.1)

VP

Vig=0© (3.2)
In the application of Green's theorem to the present
problem we will use as the surface S enclosing the fluid,
the wetted surface of the foil and the cavity surface
plus a surface at infinity. Defining the unit normal
T as pointing into the fluid from the closed surface we
then obtain

Plxy2) =7ﬁ}///5 7%)-7 Q/{}i«//v’%ﬂ) s (3.3)

where
R = radius vector from field point x, y, z to point
3,7,¥ on 8.
The surface at infinity does not ciontribute to the
value of P(xyz), since one of the boundary conditions is
that the perturbation pressure must vanish at infinity.

For the velocity potential, Green's theorem gives

- ‘A i) dS - L B JS (3.4)
qbfn,z) ‘7%,///?/"/” 5 77/ v;_z}é__

We shall consider both steady flow and simple harmonic
time-dependent perturbations. The steady flow case can

be found by setting the reduced frequency k equal to
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zero. The linearized relationship between the complex

amplitude of P(xyz) and qf (xyz) for simple harmonic

motion 1s
-P = /.'/éW*% (3.5)
The inverse relation is
X [,é/A—X)
W”’Y%Z) = - A'D/A/ﬂ/?) e Jda (3.6)

A sketch of the foll-cavity surface S is shown in
fig. 2.1.

-

N
k..s

Fig. 3.1 Closed Surface of Cavity and PFoll
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As in the linearized theory for fully wetted flow, we
satisfy boundary condition not S but on the projection
of S in the x, y plane.

The boundary condition on the cavity surface 1is
that the perturbation pressure is a constant. The

cavitation number IO 1is defined

Fg= P -/ (3.7)
e T

Pc= pressure in the cavity

P = free stream pressure
The nondimensional perturbation pressure on the cavity

surface 1is

(3.8)

Linearized theory 1s valid only 1if o << 1,

On the wetted sufface of the foll the boundary condition is
that there is no flow through the surface.

The to'l-cavity surface collapses to become a region
in the x, y plane as sketched in fig. 3.2. The projection
of the foll surface 18 denoted as Sw’ the projection of
the cavity surface as Sc. When 1t 1s necessary to
distinguish between the top and bottom of Sc or Sw’ we

+

+ - -
will use the notation Sc , Sc » Sy and Sw .
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Fig. 3.2 The projection of 3 on to the x,y plane

The linearized boundary conditions are

A

sy =78 (3.9)
' - . G

F.s, =-3 (3.10)
-, 3.1k

24 = vix,y) ( )

(;szV\ Sw‘

where v(x,y) = upwash on th2 wetted surface.
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2 [L)=--8 /L
Using the relation 92(2) = :—.}:(E ), the closed
surface in eq. (3.3) and (3.4) are rewritten as open surface
integrals over Sw and Sc. The pressure perturbation at any

point xyz 18 given by

/s/xyz) // <‘)’D(3,4r)) d%cl"’

SwtSe (3.12)
A D3 q) L) (/g )
w7 //_w P 2,/ 9297
where < é%;(é'”)/) is the notation for the jump
in 21’ across S and A fS dei;otes the Jjump in ﬁ
F
across S.

( m) aP/;f,) _ ?_/57;’3,@) (3.13)
oF %%

8pcsm = Play) - P37 (3.14)

The 1/R singularities are called pressure sources. It

can be seen from the z momentun equation that their strength

is related to the local curvature of the streamlines. The
éaf'(25/> singularities are called pressure doublets.

A pressure doublet causes 8 unit 1lift to act at the point
9110JP » in the » direction. For this reason, no

pressure doublets can appear off the soiid foll surface.
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The expression for the upwash velocity perturbation

caused by this distribution of pressure sources and
doublets is found by the application of eq. {(3.6) which

upon interchanging of the order of integration gives

oSO Ak ()- (-3)
Crigz) = // -.:e.e‘ = sty

E/A)
Jﬁbf

s Ar-rx-3))
- L //d J € d) oy dey (3:15)
741 f_m 52 ,2/,\)) ey

The expression for the upwash on the wetted foil surface

is

| ) ) 4 )%

.S-w* Ied
.16
ks 10-3Y o
kA= x-8)
_ 2 ¢ A=lx-%
s el (LS e ) s 4
Jﬁy —-an‘é?/))
The 1imit as Z»0 of the expressions under the

integral sign are the Kernel functions of the problen.




Physically they represent the upwash at a point X,y on the

folil wetted surface caused by a pressure source or pressure
doublet of oscillating strength located at 3,4 . The
analytical expressions for these kernel functions are evaluated

in Appendix 1. Starting from the definitions

2 i kO-(x=8)
- - dA
X 0-3;-7) //m Aéz/m) e /

(3.17)

2 AO-(x-3)
}’,_(x-;y 1)3...1. g di e /
7 290" Bl (3.18)

The results of appendix 1 give

ch(x=3) /
X =-%e¢e ” cf(y—y) Hx-3)

-cl(x-3) (3.19)
Xi = 2 . . fekip kgl Klkiy-a)
t'k/X‘B)
i kgl T higm)=L i (4] 4/4 y-3) €
- 77 4 Wx-30"y-9)~

- 41/7—7/// 7/ Le Lé(x_g:/r ] (3-20)




72

The kernel function K, is used for fully wetted

2
flow. A discussion of the singularities of K2 is given
in Chapter 1.

For steady flow it becomes

(3.21)

/
K., = — [ V____-—-—_ﬁ::“']
‘Hry-0)t L x4 -1).
The boundary condition on perturbation pressure is applied

by taking suitable limits of eq. (3.12).

dady
E - Pl + 4’7’// <3f Tx-5)*+4 -4

o Sh-

* #{f?dﬁ S ,zé_::«# /é% /V&Tg_)%?—;ﬂz‘} (3-22)

We define a third kernel function

- (3.23)
Xs = /é"“-; 2z (V(x—!“»%; 7427 )

& -0

In appendix 1 this is shown to be

Xy = -2 §eg-n) d0x%-2)




7>

With this substitution eq. (3.22) simplifies to

g: // z’_’—_r_d—fs—-:é—:!_ ;)’) ( "
Tz T4y > - ) 3.24)
4 s >f / C-2X" + (4~

The second integral equation, for the complex amplitude of the
upwash distribution on the wetted fcil surface becomes
_LAx
Vixy) = /( ) e
(3.25)
/
j(/ A/D(soz) X(X ”1[ Z) 0/30’4&
where /)A_._/oetéé , 'V-- Vet,é{'
These two equations must be solved for a complete description
of the linearized supercavitating hydrofoil. The un%?owns
are the distribution of pressure source strength (é%i) on
the foll and cavity surfaces, and the 1ift distribution Aﬁ
on the foll surface.
For steady flow at a given cavitation number ¢, we

obtain the following equations:
X

V(xy = *‘L/ ‘a;) Jd3
" i 7[/(; 7/,7) /L2 “%s.26)

(x—s)’-fg —7)

'{" 19 // (af)/(x s)i+( -7) (3.27)

Shf*




T4

"For calculation of forces and mmerts, we assume
that the unsteady motion is of small amplitude so that
the cavity pressure remains unchanged from its steady
value. The following integral equations for the complex
amplitude of the unsteady perturbation then result:

_¢£X' WLJ
V(X/,):_% /< (!,7)) e & c(s

+ ){/A,(,,,,)Zz (x-3, 4-%) o5 /o

(3.28)

(3.29)

- ﬁ// (éP(gq)ﬁ;%),_‘A%[‘ﬁ/
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3.3 Numerical Method lor three-dimensional supercavitating

Hydrofoils

The coupled integral equation for the flow around a
three-dimensional supercavitating hydrofoll were discussed in
section 3.1. 1In the present section, we shall describe a
numerical method similar to that used for fully wetted foils,
to determine the lift distribution for steady and unsteady
motion for cavities longer than the chord.

Equation (3.26) and (3.27) on (3.28) and (3.29) will be
solved approximately by assuming a series of functions for both

LF and <§’5) The unknown coefficients are found by
satisfying the upwash and cavity pressure boundary conditions at
collocation points on the foil-cavity surface, For fully
wetted flows as discussed in Chapter 1, the assumed chordwise
functions for £C° were solutions to two-dimensional linearized
thin airfoil problems including the solution for a flat plate
in steady flow with a square roct leading edge singularity. The
assumed spanwise functions were elliptical with Ap going to
zero at the tip. For an accurate determination of the l1lift
distribution, it ie important to choose a set of functions for

AAVD +hich approximate the physical behavior as closely as
possible, The solution by linearized two-dimensional theory for
supercavitating flow past a flat plate has a quarter root leading
edge singularity in the distribution of @£ ., We choose this

function as one of the modes of 4P , in place of the function




for a fully wetted flat plate, The integrations of these
assumed modes time the kernel function relating upwash to 4/°
are preformed numerically.

Because of the very simple foru of the kernel function
relating pressure in the cavity to the piressure source strength
distribution, we chose functions for (3P ) for which the
integrals in eq. (3.27) and (3.29) can ;: evaluated analytically.

Since the 4p distribution is affected by the <:‘~;.fy )
distribution only through the coupled integral equations, we
should be able to obtain an accurate prediction of lift and
moment with only an approximate pressure source strength
distribution. Rather than select as streamwise modes of
the distributions of (aF) from linearized two-dimensional solutions
for supercavitating flows, we use a simpler set of functions
which replaces the actual singularities of these solutions
with simple delta functions and gives a plecewise linear
approximation to <§£>.

The two-dimensional linearized soiution for a supercavitating
fiat plate has a 5/U root leading edge singularity. The |
correct definition of integrals over this singularity is the ‘
Hadamar "finite part" (ref. (11)). Since the velocities and
pressures produced by this non-integrable singularity have only ’
a quarter root leading edge singularity, we feel that the
boundary conditions can be satisfied and an accurate prediction
of &/ obtained by approximating the effect of this singularity
of (3};) with a plecewise linear function plus a delta function.
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Both the supercavitating flat plate and symmetric wedge
solutions have a square root singularity in <%§) at the
trailing edge. We hope to approximate the effect of these
singularities of <§'—}) on the 1ift distribution by locating
delta function of arbitrary strength at the leading and
trailling edges. Although this is admittedly a very crude
procedure, it is felt that it would be sufficiently accurate
at the present exploratory stage.

In the two-dimensional non-linear theories of finite
cavity flows, various: artifices ha.e been used to account for
the trailing edge of the cavity. The constant pressure
condition on the cavity prevents the occurence of a stagnation
point with smooth flow off the traliling edge. :

Two models which have been used for finite cavities are
the re-entrant jet model and the modified Riabouchinsky model
which terminates the cavity with a fictitious vertical flat plate,

Re-entrant jet model

)

et i s

Modified Riabouchinsky model
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Linearized theory derived from both of these models
replaces the tralling edge of the cavity with a singularity
and imposes a cavity closure condition.

Another non-linear model which has been studied is

the smooth wake termination model.

Pf((‘N’)T
\ e PQ__}

“\[""“

=
————— F "

—
—

~—
Smooth wake termination model

The linearized theory based on this model does not require
cavity closure, but only that the vertical velocity is
continuous in the wake.

Fabula (ref. (35)) has compared the 1ift and moment
computed by these linearized theories derived from these two
types of cavity models. PFor cavities at least twice as long

as the chord, that is for 7 < 1, the numerical results

differ by less that 2%.

In terms of pressure source strength, the cavity closure

condition would require

X, b ,
[ [ <srany da =0
- _ 4

The smooth wake termination would require

/ (BP(;) J3 =0
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Bither of these conditions couid be incorporated into
the numerical method by adding a cavity termination constraint.
Further research should be done to determine the effect of
closure conditions at the trailing edge. It is not expected
that the actual conditions used will effect the prediction
of 1ift and moment for cavities longer than thé chord,

In the present method, we terminate the cavity by
requiring the pressure source strength to go to zero beyond
the cavity trailing edge.

Further refinements could be made to account for the
actual singularities by choosing as the chordwise modes of
<§§> the solutions from linearized two-dimensional theory.
The integrations would then be performed by by numerical
quadrature. The present discussion merely suggests a simple
numerical technique for three-dimensional supercavitating foils,
The success of the approximations can be judged by the accuracy
of the prediction of 1lift and moment on the foil.
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3.3a Numerical Calsulations for a Steady Symmetric Wedge

We shall begin our discussion of numerical techniques for
thrz2e-dimensional supercavitating flows by 2onaidering the spesial
case Of a symmetric wedge.

For this special case, the integral equations (3.26) and
(%.27), uncouple. Since AP is gzero for symmetric wedge

flcw, equation (3.20} becomes simply

vixg) =L (gjf Qg}){s

onS.,— - %7 (5030)
The solution for a wedge of half angle o« 18
{%F(a,;/)) = 2 {(3+1)
“f (3.31)
The second integral equation, (3.27) becomes
N R TN
= 27 Vesey)® s (xrs)®  ~(574]
(3.32)

- L / JPry,dz dy _
v / <<9f Vi 374 9 - 3 )<

The only unknown 1s the distribution of <g;,/ »w) on S,.

One additional problem in cavity flows is that the shape and
length of the cavity 18 not known in advance. To proceed with a
nunmericial method, however, we must make some assumptions about cavity
length and shape. We then test'our numerical results to determine
the sensitivity to these assumptions. For a valid linearized

theory we require the cavivation number to be snall, In the exact




linearized solution for two dimensional cavity flows, long cavities
are consistent with small cavitation numbers, Thus, any effects
due to cavity length and end conditions should produce minor
effects on the foll itself,

We assume that the cavity surface is a rectangle equal in
span to the foil and of some length Xg. For a given foll and a
given cavitation number U , we would test the numerical results
for sensitivity to the assumed value of XE. Fig. 3.3 shows the
configuration for the linearized solution of a supercavitating
symmetric wedge of constant chord equal to two, and of aspect ratio
S. In the linearized problem, both the .oil and cavity surfaces

are located in the x,y plane (z = 0),

1; z/f

Pig. 3.3 Model for a supercavitating wedge

For this problem, the source distribution <%E> is a symmetric
!
function about the 4& axis,

A8 in the numerical solution for fully wetted three dimensional
flows, we pick a set of n functions for the source distribution with
unknown coefficients, These functions will De symmetric in m
The n coefficients are found by satisfying eq. (3.37) at oollocation
points on the cavity surface,
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We define a set of spanwise functions .h(q,nq,,m) to have
the following properties:
SR 7
Aln, n, m,)=" Tt <y < <
AT R R AR

W) = 1 [ < <4<
“Ys e =Wy, Ly, S <42

(3.38)

The function /(s #f, ~,) 18 sketched in Pig. 3.h

Q L\(‘i,'"l,‘h)

 SSUEERES

b)) o e &

-, ;"1, "‘\“, "lz "'L

Fig. 3.4 The function h(«,M, 4,) vs ~

The rectangular cavity area, sc, is divided into «m rectangles
of width &% and length ~2 , We let I be the number of
rectangles in the 3 direction and & be the number of rectangles
in the OC direction, Then

A = ( Xeg - ‘) / I

ary= s /7T (3.39)

The following set of functions for <§ff\,q> are chosen:
°F

A

J
< gf(?,“)) = 2;’ ’J_') \\(N‘Mj ’M‘,'fb'ﬂ) p 4(:(3) (}.uo) ‘

A N A L A A
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where
Tra {
(
by = da-p 4 £ L 3D
(=2
(3.41)
The functions 433) are sketched in Pig. 3.5,
‘}2(3—) 4
1.00—
0 1.0 Xg 3
b &
2<(<JA2
1.0 |
—+ 5 =
0 1.0 3-ey 3. 30te3 Xe 3
)(_ml
142
1.07
+ >
0 1.0 X K3

FPig. 3.5 The Set of Punctions «&ch)




The function 4’ has the following properties:
l. Unit delta function behavior at the trailing edge.
where the two dimensional linearized solution has a
square root singularity.
2., Plecewise linear and continuous variation in 3 from

the tralling edge to the end of the cavity.

For a typical set of a;'S » the function s(x) is sketched in
Fig. 3.6. \ |
s(ﬂ

1.0
Pig. 3.6  Typlcal 4

The assumed set of functions for <%?f(’.~)> has the
following properties.
l. Symmetric in ﬁ( , constant in each zw( rectangle,
2. Symmetric delta function rows of unknown strength at
the trailing edge in each am rectangle.

3« Plecewise linear and continuous in 3 .

The total number of unknown coefficients is (1+2)* )
which 18 also the number of collocation points required. We put
two control points in each rectangle closest to the trailling edge
to allow for accurate determination of the delta function strength
and to satisfy boundary conditions close to the trailing edge. The
remaining control points are located at the <. coordinates in the

center of the A»( rectangles.

~ (see Pig. 3.T )
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3,7 Control peint locations on 8 for a symmetric
wedge solution
These simple assumed distributions allow the integral
in (3.37) to be evaluated analytically., For the n collocation
points, we thus obtain:
_e\ _ - ) s
3 wk F KN n
(3.42)

where

o ﬂv\ < - \3 +\f‘s 45‘() +(\(.,_t\) \

= fargorts Gy - (SH)

K:

Xe .y,  are coordinates of the Kth control point and P,
18 the pressure at the kth control point caused by the niy

assumed <é_P> mode,

Solution of equation (3.42) gives the a,’s , the coefficients of

the source distribution modes. The pressure at any point on the

wedge may be found from .
px.y) = % ) (5,9) En T wix,4)
where Pn (xy) is the pressure at a point x,y due to the nth source

mode, and W (xy) is the pressure at a point x,y due to the leading

edge delta function source of strength 2,




5«20  Numerical Results for Symmetric Wedge

The numerical method has been programmed for the IBM 7090,
We will present a few numerical results. A useful comparison can
be made between numerical results obtained for pressure and
source strength distributions on the center section of a large
aspect ratio wedge and results of two dimensional linearized
theory for cavitating wedges.

Two dimensional linearized theory for supercavitating
wedges at zero cavitation number gives the following results
(see Guerst ref. (32))

The pressure distribution along a symmetric wedge of

semichord unity 1is:

b /J Ay
IZV 2R dhet A VT (3.43)
where X = =1 18 the leading edge

X = +1 18 the trailing edge
and o is the wedge half angle in radians.
The pressure source distribution 1s zero on the wedge
except for a delta function of strength 22 at the leading edge.
In the cavity the distribution of source strength is

9P = - () - D /[
<af(ﬂ> (&x / 7/ (v;_/*/)‘/ \("_J:_/)l/z-— (}'lm)

Results were computed for an aspect ratic 6 wedge with half
angle o = ,1 radians, The calculations were done for cavity

lengths, X¢, of 11, 7, 5 and 3 at a cavitation number of zero.
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FIG.39 COMPARISON OF PRESSURE SOURCE DISTRIBUTION
IN THE CAVITY BEMIND A SYMMETRIC WEDGE BY
TWO - DIMENSIONAL THEORY AND THREE-DIMZNSIONAL

NUMERICAL RESULTS c=0 a=0.l
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Fig. 3.8 shows a comparison between the pressure distribution on
the center section and the two dimensional theoretical result.
The numerically calculated curves for various cavity lengths fall
on top of one another, and thus are very insensitive to assumed
cavity length.

Fig. 3..9 gives a comparison between the source strength
on the cavity surface of the center section as calculated
numerically for various assumed cavity lengths and the two

dimensional result,

J.3¢c Numerical Method for a Supercavitating Flat Plate

The numerical approach to the supercavitating flat plate
is similar to that described for the symmetric wedge. In this
case, however, the integral equations do not uncouple and must be
solved simultaneously.

The cavity shape 1s again taken as a rectangle on the Z = 0
plane of some length xE and of span equal to that of the foil.

In this problem, there are two unknown distribution of
singularities, a pressure doublet distribution on the foil only
and a pressure source distribution on the foil and cavity surfaces.,
For each of these distributions, we pick a set of functions with
unknown coefficients. The boundary conditions on both upwash and
cavity pressure are then satisfied at an equivalent number of
apprcpriate control points on foil and cavity surface, Results will
yield 1ift distribution on the foil and pressure source distribution
of foil and cavity.
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The aasumed series for 4/ ‘*4) was that used for fully
wetted flow, This series allows the possibility of a square root
singularity at the leading edge. Two aimensional solutions for
supercavitating flat plates show a quarter root singularity at the
leading edge. PFrom the numerical standpoint, it is a simple
matter to substitutz this function for the square root singularity.
For steady flow solutions, we consider only functions which are
symmetric in .7 o« Por oscillation about a steady cavity solution,
we consider both symmetric and antisymmetric solutions. The form
of 4/-3,7) , as in chapter 1, is taken to be

N .
, ‘-f - Q / )
| 0 e (3.45)
where £ = - Cose

7/

Y.
Moy = [ 82

-

_./._2/.)-.//-: (3.46)
/KI(GGU = .ﬁa” S-m (m&) (3.47)
the symmetric functions are
f3(n) = AN (3.43)

the antisymmetric functions are

en 4/ o

{*'“t? = Vi-g2 (3.49)




The integrals in equation (3.33) and (3.35) involving
4/0(5/ 1) are treated numerically by the same technique
used in the numerical method of chapter 1 for fully wetted flow,

The assumed set of functions for the pressure source
distribution <%fe(’;7)) on the foil and cavity surfaces 1s
similar to that chosen for the symmetric wedge solution. Both the
foil and the cavity surfaces are divided into rectangular areas
of width a? and length 45,( on the foil and 4%, on the cavity.
43§ and <3 are not necessarily equal in length. The
form of <§:€(),q)> is chosen as follows:

For steady flow cavity solutions 6r for-a symmetric
osciliation about a steady flow solution <3€ @,Q) is symmetric

in /,/ .

N
@ov) = 3 & hnn, geon) £
(3.50)

where h (n(” G A ) was defined in equation (3.38).

~J

For antisymmetric oscillations about a steady cavity flow,
p \ 1s antisymmetric in ‘7 . We therefore set
(§1395 {

<q‘j’;(3’?)/\ - Z CJ S;ﬂ(/.z/ A_{"’y/ 7},}/7}-#&2/‘/} (5051)

where

/9 /
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Since the two dimensional linearized solution for a super-
cavitating flat plate has singularities in ¢ %f) at
both the leading and trailing edges, the function (3 ) is
chosen to have the following properties:
l. unit delta function at the leading edge
2., arbitrary strength deita function at tralling edge
3., plecewise linear and continuous on both foil and
cavity surfaces, mhay be discontinuous at the
trailing edge.
If the number of reotangles in the X direction 1is.I,
on the foil and I, on ‘the cavity, the. total number of
modes in £(s) 18 (I, + 2) « (I, + 2). These modes of
£(3) are sketched in Pig. 3.1l

T4+ § .
Jir = S +0) + dJ“SS(;-a) + lZl di ¥ %) (3.52)

I-}* Ict+4
4 {?jp 4 i b
For a set of 4,'s,.a typical £(<) 1s sketched in Pig. 3.10.
{a) \ ‘
d W\\ :\~
‘ J“a ST \!a\-
o 1dq dy : 8 \F:_ AT lJ” -
3
\{

Pig. 3.10 Typical £{%) for supercavitating plate.
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The integrals of <%Pf> in equations (3.33) to (3.35)
can be done analytically for this set of moder.

The total number of rectangular areas on Sc and Sw is
2N * (I, + I ). The total number of unknown coefficlents for the
pregsure source modes 18 N * (Ir +2+ I, 4 2). Por numerical
simplicity, we choose N spanwise modes end Ir + 2 chordwise modes
for f~ on the foll surface. We then satisfy both the upwash
condition and the cavity pressure condition at the same control points
on the foil. We need N * (I + 2) control points on the foil for
elther the symmetric or Antisymmetric case, The condition on cavity
pressure behind the foil on 8, is satisfied at N * (Ic +2) control
points. This collocation gives a complete set of linear algebralic
equations whose unknowns are the coefficients of the |- modes and
the <33f7 modes.

Tg; set of control points ured in the numerical method is
sketched in Pig. 3. 12 . The philosophy on control point locatlion
is to select an even distribution with special ~emphasis on sensitive
areas such as leading or trailing edges. For elther symmetric or

antisymmetric cases, control points are located on only half of Sw

and Sc'
‘.\ﬁ'"k
T T ;
b x % < x| % x x " x £
!
X % x »” i N % »x x ,{
-\ [6) -\ X R

Pig. 3.12 Configuration for numerical sclution for super-
cavitating flat plate showing control point
locations, X, .y,



In matrix notation, equations (3.33) and (3.34) on
(3.35) and (3.36) take the following form after the integrals
have been evaluated either numerically or analytically for the
assumed set of APp(249) and <%€f3,7)> modes.,

r -l — ﬂ - V -y
Vi Dw | DWW O b
: Ky K "
g | = |pPM 2a| on tol
2 KA g
2 P ||
' on cayit
=t \
b o L - e -
(3.53)
where b, 18 the coefficient of the nth &P mode on
the foil and  a 18 the coefficlent of the nth < %‘Ea mode.

The matrix has been partitioned to show the relation-
ship to equations (3.33) and (3.34) or (3.35) ané (3.36). PFor
the latter set of equations (i.e., in unsteady flow) this matrix
set 18 complex. The elements of the partition DW are the

upwash at the kth control point from the nth stD mode.
Por a fully wetted flow, an inversion of this matrix alone gives
the complete solution for the 1lift distribution.

I
Ve | = DWKh bn
L (3. 54)
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The elements of the DIN matrix are found from the integral
on (J.[: (&1)} in equation (3.33) or (3.35)

/x —ék(xn°§)

= - (s) €
POW,T T3 )_,}” ’ s (3.55)

Only those 3 points directly ahead of the control
point contribute to the elements of DDW. The elements of the
DPM are just ths 2ap modes evaluated at the control points of the
foil.

DPM -'AP(XK,YJ

Kkn o

(3.56)

where 4f, denotes the nith pressure mode.
The elements of the P matrix are the pressures at the
control points on both the cavity and foil surface due to the

varicus assumed modes of (2—‘;(5,@.

Eon =i JJ (3om) =i

7(';-33 4(7 4)2 (3.57)

where g){’ (r,ayn denotes the nth source mode and § 1s the
appropriate area for the ntj} source mode.

The two matrices with zero elements appear in the complete
matrix for two reasons: first the pressure source distribution on
the cavity surface does not affect the upwash . on the foil
surface, second the function Ap(s,q) is zero on the cavity
surface,

The matrix in eq. (3.53)1s inverted to give the

coefficients bn's and uh's for a given cavitation number 7




and upwash distribution v(xy) on the wetted surface of the

foil, Hence:

b,

| H
<

x|

=

L A L 4 L _
(3.58)

where the [C] matrix is the inverse of the square matrix in

(3.53). Por a flat plate, the upwash, v(x,y) is equal to

g

- X , We rewrite equation (3.58) to show the dependence of

the an's and bn'a on o and T

’

RSN T

}+[- E_HJ)('T(
2 S0 (3.60)

denote the partitions of the C matrix, PFor a

&
-
fe
]
O
4
—
TN
2

Cr,11,111,1V
given assumed cavity length, xg, the coefficients are linear

€ in X and T with coefficients proportional to the sum of

- row elements of [CJ .

(3.61)
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where Aot © é(‘(mm"}
J

a.na- T Jé /‘ %'”J)

bn,;( - é/- CI.,‘-)

o/
60)7‘ = 45/— %H.'J.)

he 1ift and moment on the foil may be obtained from

a linear operation on the bn'o as in the case for a fully
wetted surface,

C.= L G, J{b"j (3.62)

Con= L G, _//5”]

where (C and C ars. row matrices; C C are the
Ln mn » Lnl mn

(3.63)

contributions to tiie 1lift and moment coefficients of the nth
A0 mode., The 1ift and moment coefficients are then linear

in both of and o,

CL :CL‘(.o( + C;a.-f

C,,, '—’-’(mx“q + C”)g-.a.- (}.6“
where

!’C‘-:. C"'j - [l C.,, | " | -
L(n“ (un-_j l[ CM.. | bﬁd\; bJ

(3.65




For any given foil, the coeéfficents C and C

L A L
may be calculated for various values of the assumed cavity
length XE to determine the sensitivity of the predicted loads
to cavity length. As in the case of the non-1lifting wedge,
the results for the 1lifting flows considered below were,
fortunately, found to be very insensitive to cavity length,
provided xE is longer than about twice the foll chord.
Results of two dimensional linearized theory and the experiments
of Kermeen (ref (20)) indicate that the cavity 1is long compared to
the chord for 9/, < 1 . This must be kept in mind when
applying the numerical method.

The numerical method described im this section has
been programmed for the IBM 7090 for both steady and unsteady

3) flow., We will present a few numerical results and comparisons

with both theory and avallable experiments,

3.3d Comparison with Steady Two Dimensional Linearized Theory

A useful comparison can be made between two dimensional
linearized theory and some numerical results for the center
section of a large aspect ratio supercavitating foil, in this

64) case an aspect ratio 6 foil.

Two dimensional linearized theory gives the following
results for 1lift distribution on a steady supercavitating flat
plate at a cavitation number of zero (Ref. 32).

2

ey 2
Lpix) = ) - (%)
(x2r)"

,65)

(3.66)




where °¢ 1is the angle of attack
X = =1 18 the leading edge
and X = 41 18 the tralling edge

The expression for the pressure source strength on

this foil is:

®|R

P
QJ‘Q/
% 1I—g
\/
[
}

| -
(( I+(‘f%s ).'"-)V‘ (\.(_:{_i) 5 >

where the "finite part" must be taken of integrals over

(3.67)

the 5/“ root singularity.

The source strength on the cavity is

(3.68)

These expreasions are plotted in Pig. 3.13 and 3.14 for
X = .1,

Calculations using the present method were made for a
rectangular flat-plate folil of aspect ratio 6 at T = O,
Results for the chordwise 1lift and pressure source distribution
at the center section are included in Figures 3.13 and 3,14
For these calculations, a cavity length equal to 3 times
the chord was chosen.

Calculations were done with both a square root and
quarter root leading edge singularity in tne assumed form
of &f(t.4), Pig. 3.13 and 3.14 also compare the results
from these two methods, The difference-in prediocted 1ift
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