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UNSTEADY LOADS ON HYDROFOILS 

INCLUDING FREE SURFACE EFFECTS AND CAVITATION 

by 

Sheila Evans Wldnall 

ABSTRACT 

Linearized three-dimensional lifting surface theory 
is applied to a variety of problems of interest in hydrofoil 
application. The resulting integral equations are solved by 
numerical techniques on a high-speed digital computer to 
predict steady and oscillatory loads. 

The following cases are discussed: thin non-planar 
hydrofoils at infinite Froude number, the effect of gravity 
waves on the forces on an oscillating hydrofoil near the 
free surface, supercavitating hydrofoils of finite span in 
steady and oscillatory motion. Numerical results for lift 
and moment are presented and comparison with experiment 
is made whenever possible. 

Results of these calculations indicate that this 
numerical solution is a very practical and efficient way 
to obtain accurate prediction of unsteady loads for 
flutter calculations. 
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CHAPTER I 

LIPTINQ SURFACE IHEORy FOR 

NONFLANAR SURFACES 

1.1 Introduction 

Before the availlbility of high speed digital computers, 

methods based on linearized theory for calculating loads on 

three dimensional lifting surfaces in incompressible fluids 

were restricted to special plan form shapes which could be 

handled analytically or to approximate methods suitable for 

hand calculation. 

In steady flow, a lifting surface is represented by a 

vortex sheet, or by the horseshoe vortices which make up the 

vortex sheet. The boundary value problem is formulated 

using the velocity potential. By the principle of super- 

position, the upwash velocity on the wing is written as an 

integral of the upwash velocities from each element of 

the vortex sheet. This boundary value problem, together 

with auxiliary conditions such as the Kutta condition, is 

solved for the distribution of vortex strength and thus 

the distribution of lift on the surface. 

Unfortunately this integral equation cannot be solved 

analytically for wings of arbitrary planform. For two 

limiting cases, wings of large aspect ratio and wings of 

small aspect ratio, analytical results have been obtained. 

For wings of arbitrary planform, approximate techniques 

have been used. For example, the wing is represented by 

a finite number of horseshoe vortices located on the surface 



of the wing; their strength is determined by satisfying 

the known upwash condition at control points on the wing. 

A discussion of some of these techniques, as well as 

numerical and experimental results, is given by Thwaites, 

Ref. (1). 

For planar lifting surfaces in oscillatory motion 

in an infinite uncompressible fluid, analytical solutions 

have been given for wings of infinite aspect ratio 

(Ref. (2)), and for wings of circular planform, (Ref. (3), 

(4)). Some of the approximate techniques for finite wings 

described in Ref. (1), such as those of Falkner and 

Multhopp, have been modified for oscillating wings. A 

discussion of the numerical techniques for oscillating 

finite wings developed before the age of high speed comput- 

ing machines is given in Ref. (7). These methods were 

always a compromise between "accuracy of results and 

computing labor required".  (Ref. (7)) 

Taking advantage of high-speed stored program 

computing equipment, Watkins and his associates (kef. (6), 

(7j) have developed a most satisfactory numerical method for 

calculation of the lift distribution on a finite planar wing 

in steady or oscillatory motion in an infinite subsonic 

flow. This me,aod makes a direct attack on the integral 

equation relating upwash to lift distribution on the 

wing by assuming a set of modes for the lift distribution 



with unknown coefficients. The coefficients of these lift 

modes are found by satisfying the boundary condition of a 

known upwash at suitably selected control points on the 

surface. The Integrations required for this method would 

be completely Impractical to do analytically but are quite 

straightforward numerically. 

Much of the present work Is an extension of these 

Ideas to problems of Interest In hydrofoil applications. 

Governing Integral equations are derived for the following 

cases: In Chapter 1, three-dimensional nonplanar oscillating 

lifting surfaces In an Infinite fluid or beneath a free 

surface at Infinite Proude number; In Chapter 2,  two- and 

three-dimensional oscillating foils beneath a free surface 

including the effects of gravity waves generated by the 

motion, (finite Proude number); in Chapter 3* three- 

dimensional steady and oscillating supercavltating hydro- 

foils in an infinite fluid. Numerical results are presented 

for most of these cases and comparisons are made with 

experiments where possible. 

These Integral equations are derived by taking advantage 

of the fact that in linearized theory for an Incompressible 

fluid, the perturbation pressure satisfies Laplace's 

equation. As an Introduction to these techniques we 



shall discuss the Integral equation for a nonplanar lifting 

surface in an infinite fluid. 

1.2 The Integral Equation for a Nonplanar Lifting Surface 

In the linearized theory for the flow of an incompress- 

ible fluid with free stream velocity If in the positive X- 

dlrection about a thin lifting surface in steady or unsteady 

motion, the perturbation pressure is given by a linear 

operation on the perturbation velocity potential, namely by 

-i-H+v^ (x.x, 
We consider simple harmonic motion with frequency CD 

<£  = ^e '^ (1-3) 

If we nondlmensionalize all physical quantities with respect 

to free stream velocity  U      ,  density /O    ,  and root 

semichord bo    ,  the complex amplitudes of P and f> 

are related by equation (1»4) 

-Z3 = ^^|^ (1.4) 

where yP, ^    ,  g^ are now dlmensionless variables, k 

is the reduced frequency 

Equation (1.3) is solved for  (j^  as a function of 

p with the boundary condition  ffl-vt») - O 



iJkfx- 
■^•-s,: = / pr*\ &  b *     J/      C1^) 

- cc 

In the literature it la common to define an acceleration 

potential ^ • 

^ - ^ ^ ^ |^ (1-6) 

'^     =    - P (1.7) 

For convenience, however, we will work with pressure 

directly. 

In the linearized theory for an Incompressible 

irrotational flow, both p and if are potential functions 

satisfying Laplace's equation, 

VV = 0 (1-9) 
Qreen's theorem (for a potential function) is written 

for a closed surface surrounding the fluid, ir this case, 

a closed inner boundary plus the surface at infinity which 

does not contribute to the integrals (See reference (5) for 

a discussion of Green's Theorem). In standard notation 



the normal vector would point out of the fluid; In 

aeronautical applications it is often written with the 

normal pointing into the fluid. 

Js (1.10) 

_ -J-  If vEJindll? ^s' 
where fl is the outward normal to S into the 

fluid at the point  S^/» 

■^.^u^    are coordinates of a point in the 

fluid.    Jv, V> S    are coordinates of a point on the 

closed surface S. 

The surface S is taken to be the "upper" and "lower" 

surfaces of a zero thickness wing, given by some function 

"f * f^'t''^''     • In linearized theory for thin wing- 

like configurations, (i.e. for   j~f << 1 ) 
A3 

we satisfy the upwash boundary condition on the mean position 

of the nonplanar surface, j*7- f ^o) = f(^) . 

We rewrite equation (1.10) as an integral of the Jump 

in p and  —    across an open surface   -f* ffy) 

(1.11) 

0 o" 



Ap ' P'-P 

/hi-) = W- pr 

S+ 18 the "top" of the surface 

S~ Is the "bottom" of the surface 

n is the normal to the surface  ^f* Tty     positive "tipward". 

With an extremely nonplanar surface It Is often quite 

arbitrary which is the top surface and which is the bottom 

surface; for planar wings the top and bottom are more easily 

defined. 

Pig. (1.1) shows a typical nonplanar lifting surface 

configuration. 

The nondimensional linearized momentum equation for the 

direction normal to S is 

for S+ 

(1.12) 

for S 

57?    (^ X    ^ t 
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Figure 1.1  Configuration of a Nonplanar Surface 



If we consider a zero-thickness surface In fully wetted 

flow the normal velocity V is continuous across the surface. 

Therefore, for fully wetted flow the function  \ S~j (%,%f(*i) 

Is zero on the surface. 

Equation (1.8) then becomes 

P'^ = -Jirff^Af^ili]^ 
f> <* (1.13) 

-X A /JL) The singularity ~-^-*- /-ir/  Is calld a pressure 

doublet. This singularity causes a unit pressure Jump 

across the surface at the point x =^, y = ^f , 
Zty)= ffy)'}     H      Is the normal at that point. 

The position of a nonplanar surface performing unsteady 

motions Is given by some function of 3 >/)f j f   ILn<*  ^* 

Jfi^f,*) - o (i-w 
For small perturbations, the upwash velocity, normal to 

the mean position of the surface Is formed from 

'      Mr      Zt     »x 



IC 

The  velocity at a point x, y, z In the direction 

n(y, z (y)) is given by 

(1.16) 

The velocity potential (p{x, y, z) may be found by the 

operation Indicated In equation (1.5) 

(1.17) 

ik(X-CXrSÜ 

S .J        7 (1.18) 

where 

£60 = nF+Jr^^f} 

The velocity boundary condition (1.15) Is satisfied In the 

limit as the point x, y, z approaches the surface 
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x, y, z (y). 

The kernel function for this problem la 

X-J 1, v4 (1.19) 

fir fe(*& J^hf)(^)e     d* 

Referring to Pig. 1.1, we write the following expressions 
■\ 

for z. and  -2L_ 

art  (f> I-) 
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Since 

<=*    1 ..1.      1   — 

9f I /€ / ~   J   ( + ) (1.22) 

and 

^ f^/    p^/ //a/ (1.23) 

then 

(1.24) 

The complete form for this kernel function is given in 

Ref. (8). It is reproduced in Appendix ii. For a planar 

lifting surface, the kernel function becomes 

2/ 1 ji     /'J     cU\-(*-v) 
/((■ii-*..y-->iJo)    --jL.    /  /  e    (/^      (i-25) 
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which agrees with references (6) and (7). With the 

kernel function defined by equation (1.19), the upwash 

velocity normal to the mean position of the nonplanar 

surface becomes 

(1.26) // i \s ^1*2' 

r' 

This Integral equation, relating the complex amplitude 

of the unsteady load on the surface to the complex amplitude 

of the upwash velocity normal to the mean surface. Is 

solved numerically by a technique of assumed Ap^i^jf^O 

modes. This method Is discussed In section (1.4), and a 

few numerical results are given. 

1.3 The Kernel Function for a Nonplanar Hydrofoil at 

Infinite Froude Number 

For a hydrofoil traveling beneath a free surface at 

high velocities such that the Froude number r  •»   ^ßr ^ 

can be taken equal to Infinity, the free purface becomes a 

surface of zero perturbation pressure. The Infinite Froude 

number approximation neglects the effects of gravity waves 

induced by the motion of the foil. In Chapter 2, these 
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effect» are Included and numerical reaulte show that, at 

leaet for foils of infinite aspect ratio, a Proude number of 

10 is essentially equivalent to infinity for the 

prediction of loads due to unsteady motion. 

The singularity which causes a unit lift at the point 

3>
/
M. -^f    in the O (f f(*j)       direction as well as 

causing no perturbation pressure on the free surface, located 

at z «0, has the following form: 

(1.27) 

tr zH'tfjf) hiK-ti^+fy-yT+fr-ff 

where 

1     = Gs^)i- ^ %)l- (1-28) 

jL -   Cos tij )£. + $>„%) I 
(1.29) 



r) 
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It Is convenient to think of this singularity as a 

pressure doublet with axis In the normal direction on the 

foil it elf and a pressure doublet, of the same strength 

located at the image point with axis in the image normal 

direction. Thus a foil traveling beneath a free surface 

at infinite Proude number is represented by a foil and 

its image, equally loaded. 

The kernel function for this problem representing 

the upwash normal to the foil at the point x, y, 2, due 

to this doublet pair, is given by 

1/ a f T /    ik(X-L*-3}> 
K-Cx-^f-v i~f) = -&* JJ- 2-        M   / e JA 

x-s ***       :J        (1.30) 

anfc^ 1) J £_(X) ^tf)     J j 
- o» 

For  completeness, the final expression for this kernel 

function is given in Appendix 11. The expression for the 

kernel function is singular only at the line y « TJ, z m f 

on  the foil; the singular behavior of this kernel function 

is the same as that of  the kernel function for a 
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nonplanar surface In an Infinite fluid. The numerical 

integration can be handled by the same technique as 

those developed by Watkins (Ref. (7)) for the planar wing 

in an infinite fluid. 

1.4 The Singularity in the Kernel Function 

The kernel functions in equations (1.19), (1»25) and 

(1.30) become singular on the line y = -y  z(y) " j9 (o) 

on the surface S. This is, of course, a familiar situation 

and the solution to the apparent problem is to find the 

proper definition of the improper integral. A full 

treatment of improper Integrals which appear in two- 

dimensional theory was given by Mangier, Ref. (11). 

Mangier gives definitions for improper Integrals which 

arise when the limit of a potential function is taken. 

For example, the Cauchy principal value integral is the 

limit of the following potential function. 

(1.31) 
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The function  /^_'}-2)^^2-    Is a solution 

of Laplace's equation. Taking the t derivative of 

(1.31) defines the Improper integral 

I '(t)*^.f/ilL> V'- ?-1^ '    <1"32> r) 

Mangier shows that the proper definition of this 

Integral is 

h 

r /"/ A r ^  (1-33) 
/ / i(V)dr + I +(r)<iT ~2£ct)/ 

•6¥ e 

In order to apply Mangier's results which are valid 

for functions which satisfy the two-dimensional Laplace's 

equation, we must show that as we approach the singularity, 

the flow becomes a locally two-dimensional potential flow 

in the cross flow plane. 

We Isolate the region near the line y = ^ , 2 = -f 
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by a atrip ö" of width 2£  , along the chord. In this 

region we express the kernel function in coordinates 

normal and tangential to the surface at that point. 

(See fig. 1.2) 

* 

-?,i 

Figure 1.2 The Neighborhood of the Singular 
Point. 

For 6 small compared to the radius of curvature 

of the surface the kernel function is approximately 

'I'tt'*'^      (1-34) 

For small n and t, equation (1.3^) can be written 
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- /??*-%)     /_L_  - EJ^       )     (1-35) 

(See Appendix 11). 

Other singularities are present but are of lower order. 

The upwash boundary condition Is expressed as the 

limit of the normal velocity as the control point approaches 

the surface. 

S~r (1.36) 

In the narrow region CT , the pressure Jump ApC^,^^^)} 

can be expressed by the first term In the Taylor series. 

(1*37) 
&pf%y) - Ap(*<f) + OC6) 
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The form of equation (I.36) shows that as we approach 

the line y « ^  , z « j" , the kernel function becomes 

a two-dimensional potential function In the cross flow 

direction. 

The integral of this function over 7^  and the limit 

as n -^ 0 has been shown by Mangier to be properly defined 

by equation (1.33)• Thus in three-dimensional potential 

flow, the singularity of the kernel function for the upwash 

due to a pressure doublet is properly handled as a Mangier 

Integral. The standard notation for this integral is 

**»//] (1-38) 
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1.5 Numerical Method for a Nonplanar Fully Wetted Lifting 

Surface. 

The integral equation for a nonplanar lifting surface 

(I.38) is solved by essentially the method develop d by 

Watkins et al. Ref. (7h for the planar wing. The unknown 

load distrihjution     Zl P C% /% ffoO on 

the surface is represented by a series of assumed modes with 

unknown coefficients.  These coefficients are determined 

by satisfying the upwash velocity, equation (I.38), at 

control points on the surface. 

•■"-'"- Jl  * '   - <, (ld39) 

where x., y,, z. are coordinates of the kth point and 

gxp/ C 3,^   pCi*)) l3 the ith assumed mode. 

The integrals in equation (1.39) are evaluated numerically 

by Gaussian quadrature except for a thin strip of width 2 £ 

about the line y = ^  , z = Y  on the surface.  If the 

width 2 6 is small compared to the radius of curvature 

of the surface at this point, the method developed by 

Watkins to account for the singularity can be applied 

directly. The neighborhood of the point y * y ,  z "* f 

is shown in figure 1.2. We define a coordinate f    to 

be arc length measure from y = ^y  , z » -V , The result of the 

intergrations in this strip which are done by Gaussian quadrature 
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la expanded in powers of S. 

(1.40) 

then      ^ 

/ 

Vki    * ^c   )C    d? 

& M 

If the surface Is symmetric in y and If the upwash 

(1.41) 

A df 

velocity Is purely symmetric or purely antisymmetric 

In y, the function    t\p c =. *?> ftyj        will be 

symmetric or antisymmetric In «f. The boundary condition 

in this case need be satisfied at control points on 

only half of the surface. 

The assumed load series used by Watklns for a plane 

wing is 

H v 
Ape,,,)* 21 ^lni.,w ih}lN    <1-*2' 

The surface is located such that the root semlchord is 

between Jf « -1, the leading edge, and ^    = +1, the 

trailing edge. 
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The .i functions are chosen in the following way. 

Let 

where  b(n) Is the semlchord at span*« and 3^^ Is the 

leading edge coordinate at span ^f. 

J?c(%)= Cot (et*)/*) 
(1.44) 

/(B) The/(J) functions satisfy the Kutta condition at 

the trailing edge and the /(J) function has a square root 

singularity at the leading edge. Analytical results for 

a flat plate In two-dimensional flow, and for a wing of 

circular plan form In three demenslons, show a square 

root singularity at the leading edge. 

The jAy)  functions for symmetric upwash are 

lh)  *(*/*)** V/~(*,M 
(1.45) 

The kf functions for antisymmetric upwash are 
Z*+i 

where s  Is the seralspan. The f^)  functions satisfy 

(1.46) 



the condition that the lift drops to zero at the wing 

tips. They also are the functions used In lifting line 

theory. In general, one should pick a set of functions 

to have properties as close as possible to the actual 

lift distribution. In this case, control point location 

is less critical and convergence la possible with fewer 

modes. 

For a nonplanar surface, we could use this set of 

functions or replace the spanwise functions with a set 

more appropriate to a particular configuration. For 

surface piercing foils, it is not likely that the lift 

drops to zero at the water surface with infinite slope. 

For intersecting surfaces the load does not drop to zero 

at the comer and there is the additional constraint that 

the sum of the pressure Jumps at the intersection is zero. 

The result of these techniques give a set of complex 

linear algebraic equations for the unknown coefficients 

of the &p   modes. 

V.!. 

k(= I   V   /    {**, „.,„ L 
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Once the o;s have been found, the pressure Jimp 

distribution on the surface Is known. Prom this, force 

and moment coefficients for the configuration may be 

calculated. 

The numerical technique has been programmed for the 

1MB 7090. In practice, for simple configurations, calculations 

with 9, 16, and 25 control points have given good results. 

Time required for a calculation Is under five minutes. 

As an example of the method, calculations were done 

to compare with the experiments of Abramson and Ransleben, 

Ref. (12).   For these, the unsteady lift and moment 

coefficients at several chordwlse sections on the span 

of an aspect ratio 3 foil In bending  and torsion 

oscillations were measured. Pig. 1.3 to 1.7 show numerical 

results for unsteady lift coefficient, magnitude and 

phase, along the span due to bending at reduced frequencies 

K «= .6, .8, 1.2, 2.0. These calculations were carried 

out with 9, 16 and 25 control points. Results are in fair 

agreement at low reduced frequency; agreement is poor at 

higher reduced frequencies. 

This is perhaps due to a failure of the Kutta 

condition at high reduced frequencies. This is discussed 

by Ashley, Widnall and Landahl in Ref. (9) and some 

empirical modifications to the numerical method are suggested. 

Calculations were also performed for a planar wing below 

the free surface. These results were presented in Ref. (8). 
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CHAPTER II 

THE EFFECT OF GRAVITY WAVES ON THE UNSTEADY LIFT AND 

MOMENT ON AN OSCILLATING HYDROFOIL 

2.1 Introduction 

An intriguing question In the study of unsteady hydro- 

foil motions Is whether the gravity waves Induced by the motion 

Influence the loading to any great extent. To answer this ques- 

tion we formulate the "exact linearized" Integral equation rela- 

ting the loading on an oscillating foil near the free surface 

to the upwash on the foil. In this problem, we represent the 

loading by a distribution of singularities on the foil surface 

which, in addition to producing a unit lift at a point, have a 

perturbation pressure field which satisfies the free surface 

boundary condition. The integral equation will then be solved 

by a method of assumed modes similar to that described in Chap- 

ter I. 

V'e locate our coordinate system so that the mean posi- 

tion of the free surface is the x,y plane at z = 0. The free 

stream velocity is in the positive x direction. As seen in 

this coordinate system, the free surface will take some shape 

K =^{x,y,t). The boundary condition on the free surface is 

that the perturbation pressure is equal to zero,  (See ref.(#)). 

The linearized Bemculli equation for an incompressible 

irrotational flow in a gravity field is 



31 

*t       ** F* (2.1) 

where the variables have been nondlmenslonalized with respect 

to free stream velocity^, density p, and root semlchord ^#. 

P Is the Froude number (P « ^nlt) 

$  Is the perturbation velocity potential 

P  Is the perturbation pressure 

Applied at the free surface v   (x,y,t)  this equation becomes 

The vertical velocity of a fluid particle on the free surface 

is related to the velocity potential by 

zt      *x        £1 (2.3) 

A combination of equation (^.2) and (2.3) gives the 

free-surface boundary condition 

In the linearized problem, this boundary condition is 

applied on the mean position of the free surface, z » 0. 

The same boundary condition must also be satisfied by 

the perturbation pressure. 

F* *z (2.5) 

For single harmonic motion with reduced frequency k 

P z Ft (2.6) 
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The complex amplitude of r satisfies 

o *•. / -? = ^ 
o-X'       «y-l ^ - (2.7) 

If the Froude number is infinite, this boundary con- 

dition reduces to zero pressure perturbation on the free surface. 

As was discussed in Chapter I, the singularity which causes a 

unit lift at a point and causes no perturbation pressure at 

Z = 0, is a pressure doublet plus its image. 

To find the singularity which causes a unit lift at a 

point on the foil and in addition produces a pressure field which 

satisfies the full free surface boundary condition is more com- 

plicated. For two-dimensional flow, analytical expressions for 

the kernel function can be found using Fourier transform tech- 

niques. The problem in three dimensions can be reduced to a 

single integral which could be done numerically. 

When the upwash on the foil due to these singularities 

has been found, the problem may be expressed as 

v(*tf) -    if^f(\i) £(*-%$-<,)4*^ (2.8) 

where the integration is over the surface of the foil. All 

effects due to the free surface are contained in the kernel 

function. 

2.2 The Kernel Function for Two Dimensional Flow at Arbitrary 

Froude Number 

The complex amplitude of the perturbation pressure 

fields for a lifting element at z - -d satisfies Laplaces 
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equation (2.9) with boundary conditions (2.10) - (2.13) 

Vy-Ö (2.9) 

6'^tS?*£*}%z0     @**0 (2-10) 

(2.12) 

PCX,-**)    xzQ (2.13) 

The complex amplitude of the upwash velocity due to 

this pressure field Is given by 

In addition to these conditions, we must Impose a 

radiation condition requiring that all waves we consider 

have been generated by the motion of the foil, "mis may be 

done by letting the reduced frequency k have an Inflnltesslmal 

negative imaginary part so that at time t - -©•, there was no 

motion. 

The derivation of the kernel function is similar to 

that of ref. (8), We apply Fourier transforms in x according 

to the definitions 

pt*,*)*   j^J 2'*,*)& ds (2.15) 

-*sv      (a. i6) 

'?^7)'^# / PU'*)e- <** 
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ciX 

f'*'^       tt (£(*,'-) C Js (2.17) 
^ if 

Equations  (2.8)  to  (2.13),  In the    transform variables    and 

become 

77"-         ^   -0 f2-^) 

-Ck + sf£ + -h   ^   =0 <vt    2.0      (2.20) 
' or Z 

Z~^-d)-  ZUt,^)-^^* (2.21) 

JJ~fs,~c/)~     ^P^f-s-J)            r> (2.22) 

^    fs,-^)     ^  O (2.23) 

O^/    =   X     ^ (2.24) 

where J? Is the solution for ^and,? Is the solution for 

T^e solutions to equation (2.12) are 

- I sir. ^+       -/HZ. 
£* ^    A   6              +    ß    & (2.25) 

£    -   A   e         +   ß   e (2.26) 
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Condition (2.23) requires ß  * 0.    The functions ABA 

are found from equation (2.20 - 2.22). The resulting expressions 

for £   and £   are 

zttr (2.27) ^2.27 

' FYs*A)z~/s/ / 

.V J-^%-''7^^"/) (2 28. 
The kernel function can be found from either (2.27) or (2.28) 

by using equation (2,24) and (2.1") 

or 

A(*-i-j} '- ^J-   I fTir .Lfc (ji) Q ^ } (2.30) 
The first term In equations (2.27) and (2.28) gives the kernel 

function for a pressure doublet In an Infinite fluid. Thus 

£(x~irJ) -  4^ t+eU^s+i / (2.31) 
We us3 the fact that k has a small negative Imaginary 

part to move the pole off the axis of Integration.     Hence 

there results 

X^-t.-^f^l^^s] (2.32) 

[£l-(a(..3)y%t('fCr£>y. 
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where 

Joo     t ^'^ 
is the complex exponential Integral with branch line along the 

positive real axis. 

The prop'v definition of an Integral over the general- 

ized function ßjmJ    ~^-, I   l8 the Cauchy principal value. f^Ä-j " 

^ (2.34) 

The first term in equation (2.32) contains the strongest singu- 

larity in the kernel function. The second term has only a 

logarithmic singularity and the additional terms due to free 

surface effects are not singular. 

For infinite Proude number, the kernel function is Just 

-oo -*• (2.35)/ 

which gives 

(2.36) 
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waere 

(2.37) 

(2.38) 

It Is interesting to note the asymptotic form of 

the kernel function for large values of x - 3. 'Hie asynp- 

totic representation of the complex exponential integral is 

w 

The lowest order terms in equation (2,3^) are thus 

(2.39) 

K : < 

ZTT i ->   ( r xr-^) 

, ij  j^Zfn  'jzU)] 

-c ^r^v-s) 

-ik* - c'<(*-*) 

(2.MO) 

The behavior far downstream from the disturbance Is 

that of a wave moving in the positive x direction with unit 

velocity. 

A:   ^ { i t ,—- e 
'kfy-t) 

{2M) 

No wave exists upstream. This represents, of course, the shed 

wake vorticlty, which is carried downstream by the free stream. 

Later on, we shall use these same ideas to find the gravity 

waves produced by the motion. At this point, we will note that 

the poles inflnitessimally close to the axis of integration in 

eq. (2.33) give rise to waves which travel upstream or down- 

stream. If the poles had been located at a finite distance 

p  from the real axis, the waves would be damped. 
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u j    ' , + dill ) e - c 

The complete expression for the kernel for finite Proude 

number is 

A) 

^      c's(*~2)~ 2d/S/ 

^r  '.**     (s+fi) \ F^rs+k)*- isi /  ~    (2.^3) 
where  K   is the kernel fianctlon    for a pressure doublet in am 

ß 
infinite fluid and ^   is the correction term due to free surface 

effects.    This correction term may be expressed as 

&        '   ITT   l     J ßik)   < FV^XJS S /  ^ 

2sJ^'5^>-0 

> u*     f    F   (St K) +£ J (C 
{2.hh) 

The first integral has poles at 

where fr^f . Iliese are all located inflnitesimally close 

to  the real axis along the path of Integration, 

The second integral has poles at 
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The location of these poles depends on the value of f. Thus, 

for T<^t    th^y are located inflnlteslmally close to the 

real positive axis. For /v^)  ^* they are complex conjugates 

in the second and third quadrants. In the case of ^^J , they 

are complex conjugates in the first and fourth quadrants. These 

poles, and their significance for the gravity waves generated 

by the motion, have been discussed by Tan, Ref. (12), and 

Kaplan, Ref. (13) and (14). 

A root locus diagram Is shown in fig. 2,1 for constant 

F, and increasing k. 

^(SMS 

Flg. 2.1   Location of the poles of equation (2,U4) for 

constant P, increasing k.  (f « kP^) 
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The Integrands In equation (2,M) may be separated into 

partial fractions 

/xP_     .       f    111   ^ ds 

7//     /oo 

V- 

(2.51) 

where 
.-'A 

(2.52) 

(2.53) 

(2.5U) 

(2.55) 

The first Integral in equation (2,51) is the kernel function 

for a simple steady pressure doublet at the image point. The 

remaining integrals can be expressed as complex exponential 

integrals with or without a correction term depending on whether 

the path of integration of equation (2.5l)i after transformation 

into the exponential integral form,equation (2,33)# crosses 

the branch line of this function. 

This depends on the position of the poles in the complex 

plane which is a function of f.  (f = kP^) 
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^♦1 

For f * V^. , the kernel function Is 

-* '[^(^'rriftr^l)] 

(2.'» 

where 

(2.57) 

(2.58) 

(2.59) 

(2.60) 

(2.61) 

For large    values of  (y -5)»   the asyntptotlc form of the kernel 

for    f ^ '4   Is 

~Ck(*~t) s.iJ, ^("U, 
1/    *■   - If-yr-     -—   *■ 

U-t-) 
J<2 

S5 2 j - c i-5r V-A. t; 

f L       OFJ) J 

(2.62) 
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Since for jr < $  , s1 to 8^ are real and negative, we 

can draw the conclusion that the disturbance produces four 

Gravity waves. In addition to the wake. The a-^  and s« waves 

travel downstream behind the disturbance, the 8~ wave travels 

upstream ahead of the disturbance, and the s^ wave travels 

upstream behind the disturbance. 

In the limit as T*»/^ the s^ and s^ waves have a 

group velocity which Is equal to the velocity of the foil 

relative to the stationary fluid,  (see Ref. Ik)    This Is a 

singular point for the linearized problem. In some ways analo- 

gous to the Mach number unity problem for linearized compres- 

sible flow. 

For (?■ '/j- , the kernel function differs only in the 

contribution from the poles. Thus for ^ ' \ *  ':. 

-LLoS 

** 0 fX-*<U    ATT u        0 (7-3 nt J '*-*'     w 

*T u.p.tf,*)1 fir 0 

fir °f 11./>.&>/ 
(2.63) 
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)] 

1 
whereas for f > 2 the kernel function is 

irr M      *        fW W 

rik      e*' £U<L*) 

(2.64) 

The asymptotic form of the kernel function for ^ <. f shows that 

the gravity waves from the s and s^. poles are damped far from 

the origin. Only the gravity waves due to the s1 and s2 poles, 

plus the unsteady wake, extend downstream from the disturbance. 

20 Numerical Solution and Results for Arbitrary Proude Number 

The Integral equation relating the complex amplitude 

of the upwash and the load distribution on a two-dimensional 

oscillating hydrofoJl, traveling beneath a free surface Is 

VU)  = / k<*-*>  V^; J% (2.65) 

where K(x-^) « K* + KP as derived In section 2.2. As In the 
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three-dimensional case, the kernel function Is the upwash at 

a point x due to an oscillating pressure doublet at a point %. 

This function contains the effects of the unsteady wake, the 

surface waves generated by the motion, and the depth of the 

foil below the free surface. 

A numerical solution of this equation has tsen pro- 

grammed for the IBM 7090, The method which was used involves 

a series of assumed modes, in a manner similar to that described 

in Chapter I, One assumes a series of pressure modes, each 

of which satisfies the Kutta condition, and solves for the co- 

efficients of these modes from the known upwash  distribution. 

Once the coefficients of the pressure modes are known, the 

unsteady lift and moment can easily be calculated. 

The foil is located on the 5 axis from 3 = +1 to S = -1» 

the semichord thus being adopted as a reference length. The 

assumed lift functions are chosen as follows: 

Ap(t) = bo Coie/2^ ^ £ t>* dnihQ (2.66) 

wnere  '       "'^ 

^ =. - cos e (2.68) 

The bft are the unknown complex coefficients. With this assump- 

tion for the lift distribution, equation (1.1) becomes 

vU)- j(^„l>H  Afe)) Ku-Ke^iHtKto       (2.69) 
* &      n ~ Q 

Define a function 
T 

( h* A '<>) iUyt - ?^)) ^© </©       '2-70) 
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In terms of the Gin* »  the integral equation becomes a com- 

plex matrix equation 

[.HC"]W (2.71) 

where v. Is the known complex upwash evaluated at a preasslgned 

set of control points xi. It would be possible to solve for 

N b 's by fitting the upwash at N points. Then I CJ would 

be a square matrix. Instead, the upwash Is "fit" by a mini- 

mum mesm-square error criterion at more points than the number 

of assumed modes. This device makes control-point location 

less critical. 

Results of an analyslr to choose the complex coefficients 

for a "best" fit have led to the following procedure: One 

writes a linear set of equations 

^ 

Vt 

IxN 
Cn w 

/xM 

HxW 
(2.72) 

where M < N. 

Then premultlply both sides by the complex-conjugate transpose 

of fcu] . 

r  _ \ 
CL, v.-i = L Ci t^ 

1 

] c 
\ 

w 
(2.73) 

The result Is an Mth order set of linear equations for the N 

unknown complex coefficients. This procedure minimizes the dot 

product of the error and the conjugate of the error. This 

method Is used In the program to fit the complex upwash v(x) by 
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the sum of complex upwaahes -j.'* due to the assumed lift modes. 

In the present program, nineteen downwash points are 

chosen and a "best fit" is made with four or five pressure 

modes. When the complex coefficients have been found, unsteady 

lift and moment coefficients are computed lythe familiar formulae 

The program for infinite depth reproduced the 'Hieodorsen 

results, Ref. (1), to four significant figures. 

Results for '^ and -M for a two-dimensional hydro- 

foil oscillating in heave and pitch beneath a frf^e surface 

are shown in Pig. 2.2.to 2.5. 

Definitions of lift and moment coefficients are 

r / r Lift due to he< 

(2.76) 

u f    (■    ("M 
Moment due to heave 

(2.77) 

where the nondimensional motion of the foil is 

hi*,~'=   k< ^^ (2*78) 

and 

r,     * ,   C Lift due to pitch 

(2.79) 
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'*>  ^ *-   ^M^c 
'^t*    *■ c CKA   - Moment due to pitch  

(2.80) 

PV1 v.    ^i 

■   2 

where the nondlmensional motion of the foil Is 

(x = ^ 1B the quarter chord.) 

(2.81) 

By these definitions, CL has a quasi-steady value 

of 2^r at Infinite depth. 

Results are shown for lift and moment coefficients 

vs. reduced frequency for various Proude numbers and depth 

below the free surface. 

These results Indicate that the coefficients predicted 

for Proude numbers of about 10 are equivalent to those predicted 

for Infinite Froude numbers. Thus for hydrofoil operation in 

typical ranges of F, the effects of free surface waves are not 

significant. 

The behavior of these coefficients near the singular 

point kF2 = 1/4 is Interesting from a mathematical point of 

view but seems to be of limited practical importance In prob- 

lems of hydrofoil flutter, 

2.4 The Kernel Function in Three Dimensions 

To determine the form of the kernel function, we make 

use of Fourier transforms In the x and y direction. Definitions 
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of these transforms are 

/ryc; (2.83) 
WD 

^ ^^-^ (2.85) 

"^ (2.86) 

The relation between the (f and P transforms is 

5 = LzL 
*       (771) (2.87) 

Laplace's equation for (V   and p becomes an ordinary second- 

order differential equation for ^ and JJJ , with i as the 

independent variable. The transform variables appear as 

parameters 

£?" fs^£ ~0 (a.88) 

u^r- - ' (2.89) 
Tne free surface boundary condition for ,£ is 

-(k^FZ <-   ^'j-Z ^O      &*-c    (2-90) 
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Also, as 

(2.91) 

The basic equations, as just derived, hold for general 

surfaces at arbitrary orientations below the free surface. To 

achieve clarity in presentation, we shall now restrict our- 

selves to lifting surfaces oriented parallel to the free surface. 

We located the planar lifting surface at 2 » -d below 

the free surface. The kernel function for this surface has the 

property that across z « -d, P(x,y,2) experiences a Jump of 

unit strength. 

* (2.92) 

The jump conditions on the transform of P(x,y,z) are 

+    (2.95) 

where £   is the Fourier transform for z< -d and £   is the 

Fourier transform for z > -d. 

For a zero thickness lifting surfact, the upwash is 

continuous across z ■ -d. This condition becomes a condition on 

%(>#$   of 

(2.94) 
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The two solutions to equation (2.80) are 

/iV/e* ^ 

r = C T^Iflä ^ 
^ 

(2.95) 

(2.96) 

To solve for A,B and C we apply the boundary conditions 

(2.90) at z « 0, and the Jump conditions (2.93) and (2.9^) at 

z ■ -d. In order to insure that Z~^0  , as z -r « c» , the 

real part of the radical in £  must be taken as positive. Appli- 

cation of these conditions gives 

2*=  -   ew(~L$l-iß*i -/s^ifzt-jj) 
frr (2.97) 

Irr 

4r / F2^)*~l&ZtA'J 

For  an oscillating pressure jump at z « 

equation (2.97) reduces to: 

(2.98) 

-d In an infinite fluid 

(2.99) 
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X = e 
-fr 

L 

<L (2,100) 

For an oscillating preaaure jump at z = -d in a fluid at 

infinite Froude number, we have (2.99)» (2J.0Q) plus a correc- 

tion term due to a positive image located at z = +d. 

101) 

^ I y (2.102) 

The normal upwaah on the planar aurface la 

(2.103) 

az. 
The expression for the velocity potential transform is 

- "P 

&' ffTj {2.1011) 

The upwash due to a unit oscillating lift located at x - S, 

y -^ , z = -d on a planar surface parallel to the free sur- 

face is 

The resulting kernel function valid for z .> -d is found by 

applying equation (2,105) to the form of X*" in equation (2.9?) 



52 

X' f"j fs^ ff^f^pM^^r^^1^^ 
Co 

-Ü^I]   +1.     fc^Jf FYsitf* fry-1. 

~ oo 

(2.106) 

The first Integral In equation (2.106) is a well known expres- 

sion for the upwaeh due to an oscillating pressure doublet 

(see Chapter I), 

We will discuss the second integral and propose a method 

for numerical evaluation and an interpretation of the results. 

The complete correction including the image is 

1   S/*   J {/='■{*■'k)*- /?*7ßZ/ ~   (2.107) 

A change of variables which gives a striking comparison between 

the two and three-dimensional kernel functions is s > s, ß » TS 

where  T  is a real number. Properties of this transformation 

are worked out in A-ppendix iii. General results are that if 

q^x.) = ^j/§(^ß;i) e-'**'^^c/s^s (2.108) 

Then 

fr*,^)  - irrl/§{*'r*''0 e   's'^^    (2.io9) 
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With this transformation, the expression for the kernel due to 

a pressure Jump In an Infinite fluid Is 
Oo 

sir   g*.sl Jj (stA) 

e)tp( rs(K-i) +>(3(y-y)-~/s/ fiTr^iz^)) ^</^/(2#uo) 
This may also be written 

ey,p fcsfa-s) +r(yi)) - isi rTPFH^d)) Jsdrj (g.m) 
The esqpresslon for the equivalent two-dlraenslorul kernel 

function for a pressure Jump In an Infinite fluid is 

^ ' Ä^' / W ^ (2.u2) ■/ 
Comparing    V00       and     V'        we notice that 

«A^2n SLoo 

y - ~ M 
/Loo -) ft 

-^?0 (2e 

We may write a similar expression for the upwash contribution 

of the free surface including the image. Equation (2,107) becomes 

— *o     -<?• 
fTPn-J 

e.%p( CsU.i>+sr(v-i) + '*'r*-d)^)<Jsirh'^) 



^ 

As discussed In section 2.2, the equivalent expression for the 

two-dimensional kernel is 

(StA) (  friert)*-/5/ J (2.115) 

The expression for the three-dimensional kernel becomes 

_oo (2.116) 

An analytic closed fom expression for X^JJ was de- 

rived in section 2.2. The advantage of an expression like 

(2.116) is that radiation conditions carefully worked out for 

the two-dimensional kernel can be applied to this form of the 

three-dimensional kernel. This gives a unique definition to 

the various contour integrals which are evaluated in solving 

for this three-dimensional kernel function. Equation (2.116) 

in addition to settling questions of incoming and outgoing 

waves, also gives a numerical technique for evaluating the 

three dimensional kernel function. Convergence properties 

can be checked by examining the asymptotic expansions of 

^z KM for large T, 

The final result for the three-limensional kernel 

function is reminiscent of an expansion in plane waves. First 

we note that the "apparent depth" of the equivalent two-di- 

mensional disturbance grows as  o«^. = d^Tv+j * V f+T^. 
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The apparent Fronde number of the individual two-dimensional 

contributions decreases as 

PF       (J^rTy/t (2.118) 

For a given value of \T\ ,  waves come from both the 

/-r-y and Xfr^ directions, A better form to demonstrate the 

equivalence of the x+m  and *-r^ directions would be 

X '*■■-. f-*)* ^ j 4/^ Ot-V. + T/y*,)) JT- 

For hydrofoils operating at practical ranges of Froude numbers, 

it 16 felt that the numerical evaluation of these integrals 

would not be practical. In the two-dimensional finite Froude 

number solution, results of P « 10 were indistinguiahable from 

infinite Froude number results for all practical purposes. 

The computation time required to carry out the evaluations of 

the kernel function necessary for a determination of the loads 

of a three-dimensional hydrofoil at finite Froude number could 

not be Justified. 

Extension to non-planar lifting surfaces can be made 

by noting that the nature of the singularity which gives a 

pressure Jump across a surface is the normal derivative of 

a pressure source, the pressure doublet. Taking advantage 

of this, we derive the expression for a pressure source below 

a free surface and the expression for the upwash it produces. 
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We then take a derivative in an/ direction we choose to find 
the kernel function for an arbitrary nonplanar lifting aurface. 

The problem statement is essentially that for the 
planar kernel function. The Jump conditions will be those 
associated with a pressure source which when differentiated in 
the jf   direction gives the unit pressure Jump for a planar 
foil parallel to the free surface. 

The Jump conditions on pressure across this pressure 
source located atz«^,x»^ t y m /*    are 

P'CSyfiP -pi'^Vf> ' 0 (2-120) 

In the transform variable   ^jp    the Jump conditions are 

2' - 2 + 'O ,Q,^ ^ (2,122) 

These equations together with equations (2.88) to (2.91) give 
the solution for p4- and P~ for this pressure source located 
at z .f 

$** -CXp(~.-s5,- iß* - K^vT- (z-f))    I 

i£ j^ß*——Lrwr- ^J 
(2.124) 
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2~=  - e yp (~c'^- cpx. *(*~ß) (ttp3-) 
lir 

, ^(-^-mc 'nil ^)[£0£^j 
" (2.125) 

The velocity potential due to a pressure source under a free 
surface is 

6« 

ex» 

. . (2.126)  ^ 

f7 = -^//e//cSO(-Vi-^-r^<^^^ -/)) /V^ 

To find the normal upwash at a point x^z of a surface 
due to a unit pressure jump at a point S^fyf of a surface, 
we follow a procedure similar to that of Chapter I for non- 
planar wings in an infinite fluid or at infinite Proude number 
below a free surface. 

We derive the kernel function for three-dimensional 
finite Proude number by the following operation on the velocity 
potential due to the pressure source. 

^SJä t* 

YJ*~^%'r) *i, i„. P(^ri> ^ L*P 24, ^ (2.128) 
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7 

where as In   Chapter I 

S     = - Ccsfr*,).£-   -t    S/» ty?) I (2.130) 

The configuration ror a nonpianar surface la sketched in Fig. 1.1 

If the kernel function described In equation (2.123) 

could be evaluated either analytically or numerically, It would 

replace the kernel function used In Chapter I If free surface 

effects were desired. When the Proude number P Is Infinity, 

the kernel function described by equation (2.128) reduces to the 

simple pressure doublet plus image doublet. 
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CHAPTER III 

UNSTEADY LOADS ON SUPERCAVITATINQ 

THREE DIMENSIONAL HYDROFOILS 

3.1 Introduction 

A hydrofoil traveling at high speed will experience 

cavltatlon If the pressure on the foil falls below some 

critical value. If the cavity extends over the complete 

upper surface of the foil, the foil Is said to be 

supercavltating. The pressure In the cavity may be the 

vapor pressure or in the case of operation close to the 

free surface, it may be atmospheric pressure. The latter 

condition is often called ventilation. If a cavltatlon 

bubble forms, it will have a constant pressure on its 

surface equal to this critical value. To solve math- 

ematical problems of cavity flows, it is usually assumed 

that this critical pressure is given. 

Problems of finite cavitating bodies such as vertical 

flat plates in two-dimensional steady flow have been solved 

using complex variable techniques. A review of these 

problems and the mathematical techniques used is given by 

Ollbarg, Ref. (26). Some new developments in two 

dimensional cavltatlon theory are contained in papers 

of Ref. (27). 

For thin, two-dimensional hydrofoils in steady and 

unsteady motion, linearized theories have been studied 

by Tulln (28),Woods (29), Parkin (30), Timman (31) 

and Guerst (32). 
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In his doctoral desertatlon, Guerst has discussed 

the relation between the two-dimensional linearized theory 

for a cavltatlng wedge and the nonlinear models for a 

cavltatlng wedge, the Riabouchlnsky model and the re- 

entrant Jet model. He shows that "linearized cavity 

theory Is a first order approximation to both nonlinear 

models for small wedge angle," 

The two-dimensional linearized theory for steady 

flow have shown good agreement with experiment for thin 

supercavltatlng hydrofoils. Therefore, we feel that 

a three-dimensional linearized theory will give accurate 

predictions for the loads on steady and unsteady super- 

cavltatlng foils of finite spam. 

3»2 Linearized Theory for Three-dimensional Supercavltatlng 

Hydrofoils 

The coupled linearized integral equations for 

cavltatlng hydrofoils can be put into the general frame- 

work of lifting surface theory ujing the pressure or 

acceleration potential and Green's theorem. For linearized 

incompressible irrotational flow, the nondiraenslonal 

perturbation pressure and the perturbation velocity 

potentials satisfy Laplaces equation. 



65 

Yzp   =<D (3.1) 

7"^-° (3.2) 
In the application of Qreen's theorem to the present 

problem we will use as the surface S enclosing the fluid, 

the wetted surface of the foil and the cavity surface 

plus a surface at infinity. Defining the unit normal 

n as pointing into the fluid from the closed surface we 

then obtain 

P^--,jrff^fi)-*J^//*k*^   (3-3) 

where 

R « radius vector from field point x, y, z to point 

^^f on S. 

The surface at infinity does not contribute to the 

value of P(xyz), since one of the boundary conditions Is 

that the perturbation pressure must vanish at infinity. 

For the velocity potential. Green's theorem gives 

^ /  IK 11        tJ 17IJ    £ 
We shall consider both steady flow and simple harmonic 

time-dependent perturbations. The steady flow case can 

be found by setting the reduced frequency k equal to 
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zero. The linearized relationship between the complex 

amplitude of P(xyz) and (t  (xyz) for simple harmonic 

motion Is 

-f - ^^y If (3.5) 

The Inverse relation Is 

(3.6) 

A sketch of the foil-cavity surface S Is shown In 

fig. 3.1. 

^f 

*t\ 

Fig. 5*1  Closed Surface of Cavity and Poll 
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As In the linearized theory for fully wetted flow, we 

satisfy boundary condition not S but on the projection 

of 3 in the x, y plane. 

The boundary condition on the cavity surface is 

that the perturbation pressure is a constant. The 

cavltatlon number o~ is defined 

T = P^. - P^ (3-7) 

P « pressure in the cavity 

P^ « free stream pressure 

The nondimensional perturbation pressure on the cavity 

surface Is 

A 

P = _ cr (3.8) 

Linearized theory is valid only if  cr <<~  1. 

On the wetted surface of the foil the boundary condition is 

that there is no flow through the surface. 

The toll-cavity surface collapses to become a region 

in the x, y plane as sketched in fig. 12..    The projection 

of the foil surface is denoted as S . the projection of 

the cavity surface as S . When it is necessary to 

distinguish between the top and bottom of S or S , we 

will use the notation S +. S ", C  and S ~. c   c   w     w 
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*,J 

V^ 

Pig, 5.2 The projection of S on to the x,y plane 

The llnearlxed boundary condition8 are 

(3.9) 

P^Sc 
(5.10) 

^J *   *(*,]) 
^ r~o* S* 

where v(xfy) « upwaah on th«j wetted eurface. 

(5.11) 
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Using the relation   Jkf'Je ) ~ ^Jg)*  the closed 

surface in eq. (3.3) and (2.4) are rewritten-as open surface 

integrals over S^ and S . The pressure perturbation at any 
w       C 

point xyz is given by 

SHS + ^Z (3.12) 

where   N ^f / is the notation for the Jump 

in  ^z    across S and A P demotes the Jump in /D 

across S. 

^Pat) - 1£fi^^)   (3-i3) ifM = 1?^ 5/   /    3jP .5/ 

Apa,*?) = ^^.t; -p*^)      (3-1U) 

The 1/R singularities are called pressure sources. It 

can be seen from the z momentum equation that their strength 

Is related to the local curvature of the streamlines. The 

iz.   f JL j        singularities are called pressure doublets. 

A pressure doublet causes a unit lift to act at the point 

^'"Jj^f       *  in tiie J*  direction' Por this reason, no 

pressure doublets can appear off the solid foil surface. 
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The expression for the upwash velocity perturbation 

caused by this distribution of pressure sources and 

doublets Is found by the application of eq. (3.6) which 

upon Interchanging of the order of Integration gives 

v*^ ■ -£//<%) 
*-3 ck (A- r*-*)) 

c/3 o^ 

177 

SvfZi 

<-5 

— oc 
£(X) 

7 

S*/ 

*P   /Ä   f± e   d*      c/sc/*  (3.15) 
o*> 

The expression for the upwash on the wetted foil surface 

Is 

/-^ 
(3.16) 

The limit as    x-rö of the expressions under the 

Integral sign are the Kernel functions of the problem. 
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Physically they represent the upwash at a point x^ on the 

foil wetted surface caused by a pressure source or pressure 

doublet of oscillating strength located at 3>'(_  . The 

analytical expressions for these kernel functions are evaluated 

in Appendix i. Starting from the definitions 

*'''-v7) - -^t-jhM» 
(5.17) 

Ä» J       (5.18) 
The results of appendix i give 

(5.19) 

firCf-y)    I    * 
ik(*-3) 

-LI        I   /^'W ^   ^^   ^        (5-20) 

W  •     T^ 
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The kernel function K« Is used for fully wetted 

flow. A discussion of the singularities of K2 is given 

In Chapter 1. 

For steady flow it becomes 

K,*.-f-^..      I  + -, r - /    \  I   ^     *-* —   1 (3-21) 

V^-t/ L.      *(**>)*Hy-l)J 

The boundary condition on perturbation pressure is applied 

by taking suitable llirdts of eq. (3.12). 

* £. fh*?^") ■&— (^ l, ( -J. 3 (3-22) 

We define a third kernel function 

In appendix 1 this is shown to be 

(3.23) 



With this substitution eq. (3.22) simplifies to 
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The second Integral equation, for the complex amplitude of the 

upwash distribution on the wetted foil surface becomes 

-ck ^=-1 _yripe cL 
Vfxj) ^3 

+     /./ ApCi^)   Xjx-Sjj-f) ci3ai4£_ 
(5-25) 

where 'It 

These two equations must be solved for a complete description 

of the linearized supercavltating hydrofoil. The unknowns 

are the distribution of pressure source strength (**)  on 

the foil and cavity surfaces, and the lift distribution y\p 

on the foil surface. 

For steady flow at a given cavitatlon number o, we 

obtain the following equations: 

^ -~kl <¥,) ^ 
-/ 

+  J-   If  4£i^Y 
^ f]   (fi)^   ( ' 

JL 

(3.27) 



74 

"For calculation of forces and iKneit«f we assume 

that the unsteady motion is of small amplitude so that 

the cavity pressure remains unchanged from its steady 

value. The following integral equations for the coopXex 

amplitude of the unsteady perturbation then result: 

-<*•* f J ID . \ ^ 

(3.28) 

(3.29) 

o  = 
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5.3  Numerical Method for three-dimenalonal Bupercavitating 

Hydrofoils 

The coupled integral equation for the flow around a 

three'dimensional Bupercavitating hydrofoil were discussed in 

section 5.1.  In the present section, we shall describe a 

numerical method similar to that used for fully wetted foils, 

to determine the lift distribution for steady and unsteady 

motion for cavities longer than the chord. 

Equation (5.26) and (5.27) on (5.28) and (5.29) will be 

solved approximately by assuming a series of functions for both 

^p    and {?0 • The unknown coefficients are found by 

satisfying the upwash and cavity pressure boundary conditions at 

collocation points on the foil-cavity surface.  For fully 

wetted flows as discussed in Chapter 1, the assumed chordwise 

functions for Ap     were solutions to two-dimensional linearized 

thin airfoil problems including the solution for a flat plate 

in steady flow with a square root leading edge singularity. The 

assumed spanwise functions were elliptical with ^p    going to 

zero at the tip. For an accurate determination of the lift 

distribution, it is important to choose a set of functions for 

4^/3   ,hich approximate the physical behavior as closely as 

possible. The solution by linearized two-dimensional theory for 

supercavitating flow past a flat plate has a quarter root leading 

edge singularity in the distribution of Ap   , we choose this 

function as one of the modes of ^P , in place of the function 
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for a fully wetted flat plate. Hie integrations of these 

assumed modes time the kernel function relating upwash to ap 

are preformed numerically. 

Because of the very simple for«» of the kernel function 

relating pressure in the cavity to the pressure source strength 

distribution, we chose functions for ^^P) for which the 

integrals in eq. (5.27) and (3.29) can be evaluated analytically. 

Since the *p distribution is affected by the <^r ^ 

distribution only through the coupled integral equations, we 

should be able to obtain an accurate prediction of lift and 

moment with only an approximate pressure source strength 

distribution. Rather than select as streamwise modes of 

the distributions of (^f^ from linearized two-dimensional solutions 

for supercavitating flows, we use a simpler set of functions 

which replaces the actual singularities of these solutions 

with simple delta functions and gives a piecewise linear 

approximation to \zl). 

The two-dimensional linearized solution for a supercavitating 

flat plate has a 5/U root leading edge singularity. The 

correct definition of integrals over this singularity is the 

Hadamar "finite part" (ref. (11)). Since the velocities and 

pressures produced by this non-integrable singularity have only 

a quarter root leading edge singularity, we feel that the 

boundary conditions can be satisfied and an accurate prediction 

of &p     obtained by approximating the effect of this singularity 

of <?-?) wiW» * piecewise linear function plus a delta function. 
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Both the eupercavitating flat plate and symmetric wedge 

solutions have a square root singularity In ^^O at the 

trailing edge. We hope to approximate the effect of these 

singularities of \2L£) on the lift distribution by locating 

delta function of arbitrary strength at the leading and 

trailing edges. Although this is admittedly a very crude 

procedure, it is felt that it would be sufficiently accurate 

at the present exploratory stage. 

In the two-dimensional non-linear theories of finite 

cavity flows, various artifices ha.e been used to account for 

the trailing edge of the cavity. The constant pressure 

condition on the cavity prevents the occurence of a stagnation 

point with smooth flow off the trailing edge. 

Two models which have been used for finite cavities are 

the re-entrant Jet model and the modified Riabouchinsky nsodel 

which terminates the cavity with a fictitious vertical flat plate. 

Re-entrant jet model 

Modified Riabouchinsky model 
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Linearized theory derived from both of these models 

replaces the trailing edge of the cavity with a singularity 

and imposes a cavity closure condition. 

Another non-linear model which has been studied is 

the smooth wake termination model. 

Smooth wake termination model 

The linearized theory based on this model does not require 

cavity closure, but only that the vertical velocity is 

continuous in the wake. 

Pabula (ref. (35)) has compared the lift and moment 

computed by these linearized theories derived from these two 

types of cavity models. For cavities at least twice as long 

as the chord, that is for 9o< "^ 1* the numerical results 

differ by less that 2jt. 

In terms of pressure source strength, the cavity closure 

condition would require 

o fhj <-^'>)^' 
The smooth wake termination would require 

(Iffv) 'Jl 
~f J 
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Either of these conditions could be incorporated into 

the numerical method by adding a cavity termination constraint. 

Further research should be done to detemine the effect of 

closure conditions at the trailing edge.  It is not expected 

that the actual conditions used will effect the prediction 

of lift and moment for cavities longer than the chord. 

In the present method, we terminate the cavity by 

requiring the pressure source strength to go to zero beyond 

the cavity trailing edge. 

Further refinements could be made to account for the 

actual singularities by choosing as the chordvrise modes of 

\^LS the solutions from linearized two-dimensional theory. 

The integrations would then be performed by by numerical 

quadrature. The present discussion merely suggests a simple 

numerical technique for three-dimensional supercavitating foils. 

The success of the approximations can be judged by the accuracy 

of the prediction of lift and moment on the foil. 
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3.5a Numerical Calculations for a Steady Symmetric Wedge 

¥e shall begin our discussion of numerical techniques for 

thrse-dlmensional supercavitatlng flows by considering the epeolal 

case of a symmetric wedge. 

For this special case, the integral equations (3.26) and 

(2.27), uncouple. Since &p is sero for symmetric «edge 

flew, equation (3*26) becomes simply 

on 

{£{*.*))} Jl 
sj- " /'   x (3.30) 

The solution for a wedge of half angle s. Is 

(±P{z,'0)   =   2*  [Ci + O 

The second integral equation, (3.27) becomes 

(3.31) 

T _ . _> .     ■ -■ 

(3.32) 

// (j^^i^J^   

The only unknown is the distribution of  ^y/; V on sc' 

One additional problem in cavity flows is that the shape and 

length of the cavity is not known in advance. To proceed with a 

numerical method, however, we must make some assumptions about cavity 

length and shape. We then test our numerical results to determine 

the sensitivity to these assumptions. For a valid linearized 

theory we require the caviration number to be small. In the exact 
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linearized solution for two dimensional cavity flows, long cavities 

are consistent with small cavitation numbers. Thus, any effects 

due to cavity length and end conditions should produce minor 

effects on the foil itself. 

We assume that the cavity surface is a rectangle equal in 

span to the foil and of some length Xg. For a given foil and a 

given cavitation number c?- , we would test the numerical results 

for sensitivity to the assumed value of ]U. Fig. 2.2 shows the 

configuration for the linearized solution of a supercavitating 

symmetric wedge of constant chord equal to two, and of aspect ratio 

S, In the linearized problem, both the Voil and cavity surfaces 

are located in the x,y plane (z ■ 0). 

Fig. 2.2     Model for a supercavitating wedge 

For this problem, the source distribution  v^) i-B a symmetric 

function about the <# axis. 

As in the numerical solution for fully wetted three dimensional 

flows, we pick a set of n functions for the source distribution with 

unknown coefficients. These functions will be symmetric in m   . 

The n coefficients are found by satisfying eq. (3*57) at oollocation 

points on the cavity surface. 



82 

Ve define a set of spanwise functions M*|, ^/O  to have 

the following properties: 

(3.38) 

The function h(*h*f,)
/*ij  1» sketched in Fig. 3.4 

n  Mlj^l^t) 

^ , 1' n^ \ 

Pig. M  The function h(^,^(^2) vs ^ 

The rectangular cavity area, S_, is divided into km rectangles 

of width ^Y and length A^, , Ve let X be the nmber of 

rectangles in the S direction and SKTbe the nusber of rectangles 

in the 'V   direction« ttien 

i xc - i) /x 
t 

A"? 

T-   s /^ (3.39) 

The following set of functions for    OLx«ii; are chosem 
3f   / 

I r 
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where 
XtÄ. 

The  functions 4t^)  are sketched In Pi«, 5.5. 

\&    4 

1.0 - 

1.0 

i 1+2 
1.0 

0 

1.0 

1.0 

1.0 

x-ö^ $1    ^'+^ 

(3.41) 

^ 

^    ^ 

Pig. 5.5     The Set of Punctiona \iCi) 
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The function &  has the following properties: 

1. Unit delta function behavior at the trailing edge, 

where the two dimensional linearized solution has a 

square root singularity• 

2, Piecewise linear and continuous variation in 3 fro« 

the trailing edge to the end of the cavity. 

For a typical set of ct:^ , the function 1^) i» sketched In 

Pig. 3.6. 

W 
ax 

Pig. 5.6 

M    *7| 
Xe 

(€4 •1 
has the 

Typical 

i 

The assumed set of functions for 

following properties. 

1. Symmetric In ¥ , constant in each A^ rectangle. 

2. Symmetric delta function rows of unknown strength at 

the trailing edge in each ^ rectangle. 

5» Piecewise linear and continuous in 3 . 

The total number of unknown coefficients is (J ^^ 1 

which Is also the number of collocation points required. We put 

two control points in each rectangle closest to the trailing edge 

to allow for accurate determination of the delta function strength 

and to satisfy boundary conditions close to the trailing edge. The 

remaining control points are located at the ' coordinates in the 

center of the s^V     reotanglea« 

(See Pig. J.7 ) 
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5,7 Control point locations on Sc for a Bymetrlc 
wedge solution 

These slaple assumed distributions allow the Integral 

in (5.37) to be evaluated analytically. For the n collocation 

points, we thus obtain: 

r 
F 

KKi 
(5.42) 

where 

^ic v/^  arc coordinates of the Jcth control point and P^ 

is the pressure at the kth control point caused by the n^a 

assumed \ÄP)  node. 

Solution of equation (3.42) gives the a^s     , the coefficients of 

the source distribution modes. The preaaure at any point on the 

wedge may be found from 

where Pn (xy) is the pressure at a point x,y due to the nth source 

mode, and W (xy) is the pressure at a point x,y due to the leading 

edge delta function source of strength 2o{, 
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5, Jb  Numeric ail Result a for Symmetric Wedge 

The numerical method has been programmed for the IBM 7090» 

Ve will present a few numerical results. A useful comparison can 

be made between numerical results obtained for pressure and 

source strength distributions on the center section of a large 

aspect ratio wedge and results of two dimensional linearized 

theory for cavltatlng wedges. 

Two dimensional linearized theory for supercavltatlng 

wedges at zero cavltatlon number gives the following results 

(see Cuerst ref• p2) ) 

The pressure distribution along a symmetric wedge of 

semlchord unity Is: 

pr/)  - ^ ^ 
I -/ /z/ 

/ (3.45) 

where   x • -1 Is the leading edge 

x » +1 Is the trailing edge 

and      -<    Is the wedge half angle In radians. 

The pressure source distribution Is zero on the wedge 

except for a delta function of strength 2°^ at the leading edge. 

In the cavity the distribution of source strength Is 

5^»  /        c? x / 
<2i 
TT 

/ 

-'a)! \^' (3.44) 

Results were computed for an aspect ratio 6 wedge with half 

angle <X » «1 radians» The calculations were done for cavity 

lengths, X^, of 11, 7» 5 and 3 at a cavltatlon number of zero. 
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Fig. 5.8 shows a comparison between the pressure distribution on 

the center section and the two dimensional theoretical result. 

The numerically calculated curves for various cavity lengths fall 

on top of one another, and thus are very insensitive to assumed 

cavity length. 

Fig. 3« 9 gives a comparison between the source strength 

on the cavity surface of the center section as calculated 

numerically for various assumed cavity lengths and the two 

dimensional result. 

3»3c Numerical Method for a Supercavitating Flat Plate 

The numerical approach to the supercavitating flat plate 

is similar to that described for the symmetric wedge. In this 

case, however, the integral equations do not uncouple and must be 

solved simultaneously. 

The cavity shape is again taken as a rectangle on the Z * 0 

plane of some length X- and of span equal to that of the foil. 

In this problem, there are two unknown distribution of 

singularities, a pressure doublet distribution on the foil only 

and a pressure source distribution on the foil and cavity surfaces. 

For each of these distributions, we pick a set of functions with 

unknown coefficients. The boundary conditions on both upwash and 

cavity pressure are then satisfied at an equivalent nvnber of 

appropriate control points on foil and cavity surface« Results will 

yield lift distribution on the foil and pressure source distribution 

of foil and cavity. 
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The assumed series for &I  fx ))   was that used for fully 

wetted flow. This series allows the possibility of a square root 

singularity at the leading edge. Two dimensional solutions for 

supercavitating flat plates show a quarter root singularity at the 

leading edge. Prom the numerical standpoint, it is a simple 

matter to substitute this function for the square root singularity. 

For steady flow solutions, we consider only functions which are 

symmetric in y • For oscillation about a steady cavity solution, 

we consider both symmetric and antisymmetric solutions« Ttie form 

of  Af'f>,il)  ,  as in chapter 1, is taken to be 

V M 

where S ~   " C<2S& 

OM) 

/ 5*' ) ^ 

^ 

(3.46) 

-A (9(3))  =   4   S'*!™*) (3.47) 

the symmetric functions are 

jqil)   =      /^ y'/'t1 (3.48) 

the antisymmetric functions are 

/. 

I P 4 I 

hi\) - /?i_      y/-y2- (3.49) 



90 

The integrals in equation (3-?5) and (3.55) involving 

&pi3,*[)        are treated numerically by the sane technique 

used in the numerical method of chapter 1 for fully wetted flow. 

The assumed set of functions for the pressure source 

distribution  V57H?/ on the foil and cavity surfaces is 

aimilar to that chosen for the syimetric «edge solution. Both the 

foil and the cavity surfaces are divided into rectangular areas 

of width &y    and length Alt   on the foil and 43c on the cavity. 

43^   and <-^ are not necessarily equal in length. The 

form of  XJ^M/ iB chosen as follows: 

For steady flow cavity solutions,6r for a symmetric 

oscillation about a steady flow solution K^laAv  i8 symmetric 

in A; , 7 
A/ 

(3.50) 

where h { rf   /?  ^r. •< A *    ) was defined in equation (3.36). 

For antisymmetric oscillations about a steady cavity flow, 

(V^^ \   is antisymmetric in 7- We therefore set 

where 

{i£($^))   =• ^ Cj Spf't) h-hjljj'fj+f)    (3.51) 
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Since the two dinenfiional linearized solution for a super- 

cavitating flat plate has singularities in (IP )      At 

both the leading and trailing edges, the function f(3 ) i8 

chosen to have the following properties: 

!• unit delta function at the leading edge 

2. arbitrary strength delta function at trailing edge 

3. piecewise linear and continuous on both foil and 

cavity surfaces, taay be discontinuous at the 

trailing edge« 

If the number of rectangles in the  3  direction is If 

on the foil and Ic on the cavity, the. total nunber of 

modes in f(^) is (lf + 2) ♦ (lc + 2), These modes of 

f (3) are sketched in Fig« 2*11« 

I^lc + 4 

For a set of d/8> a typical fC"^) is sketched in Fig. 5.10. 

Fig. 5.10   Typical f(<)) for supercavitatins plate. 
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The integral» of \^JP )  in equation» (3.33) to (3.33) 

can be done analytically for this »et of modep. 

The total number of rectangular area» on S and S is 

2N » (I- + I ). The total number of unknown coefficient» for the 
i   c 

pressure source mode» is N ♦ (If +2+1+2). For numerical 

simplicity, we choose N spanwise mode» pnd l- + 2  chordwise modes 

for ^p on the foil surface* We then satisfy both the upwash 

condition and the cavity pressure condition at the same control point» 

on the foil. We need N ♦ (If + 2) control points on the foil for 

either the symmetric or antiayraraetric ca»e. The condition on cavity 

pressure behind the foil on S,, i» »atisfied at N ♦ (I +2) control 

point». Thi» collocation give» a complete set of linear algebraic 

equations whose unknown» are the coefficient» of the ^j-  modes and 

the  SJLP) ,node8« 

The »et of control point» ui^ed in the numerical method is 

sketched in Pig. 3. 12  . The philo»ophy on control point location 

is to »elect an even dietrlbution with »pecial •raphaeis on sensitive 

areas such as leading or trailing edges. For either symmetric or 

antisymmetric cases, control points are located on only half of S^ 

and S . c 
♦ ^ 

X * 

y x 

_ \ O 

K* 

H j« 

—r- 

■M 
■*•  X - 

Fig.  3,12 Configuration for numerical aoiution for super- 
cavitating flat plate showing control point 
location», \»y^ 
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In matrix notation, equations (j5»55) and (5.5^) on 

(5.35) and (3.56) take the following form after the integral» 

have been evaluated either numerically or analytically for the 

assumed set of &p(i.i)     and \Lt(*y)\      modes. 

8 
"              — 

v< 
DV 

« 

-a 
2. 

c 
»              m Urn 

DWW 

p 

0 

k/s 

b. 

Cc» 

a, 

on \cn\ 

ow cavity 

(^.53) 

where    b  is  the coefficient of the n^i ^^P   mode on 

the foil and    a^  Is  the coefficient of the n^U  ^^"L/ »ode. 

The matrix has been partitioned to show the relation- 

ship to equations 0,35)  and (3.^) or (3.35) and (3.36). For 

the latter set of equations (i.e., in unsteady flow) this matrix 

set is complex. The elements of the partition DW are the 

upwash  at the kth control point from the ntlj .^p mode. 

For a fully wetted flow, an Inversion of this matrix alone gives 

the complete solution for the lift distribution. 

- 1 ML                                                                                          *»■ "*                ** 

^ =s DW K 
J - v            — 

(3.54) 
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The element» of the DDK aatrix are found fro« the integral 

on  <JL£fv^)) in equation (3.55) or (5.55) 

k.    S J  ^^' ^^ (5.55) 
- t 

Only those 3 points directly ahead of the control 

point contribute to the elenents of ISM,    The elements of the 

DPM are Just the ^p   nodes evaluated at the control points of the 

foil. 

«here £f*    denotes the n^h pressure node. 

The elements of the P matrix are the pressures at the 

control points on both the cavity and foil surface due to the 

various assumed modes of  ^M^V* 

where (gb*^     denote» the nUj TOurce node and ^ 1. the 

appropriate area for the n^ source mode. 

The two matrices with zero elements appear in the complete 

matrix for two reasons: first the pressure source distribution on 

the cavity surface does not affect the upwash . on the foil 

surface! second the function Ap(%^)    is sero on the cavity 

surface. 

The matrix in eq, (5.55) i» inverted to give the 

coefficients b •s and    a »s for a given cavitation number T 
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>) 

and upwash distribution v(xy) on the wetted eurface of the 

foil. Hence< 

a. 

IT 

c 
UL 137 -1 

(3.58) 

where the [C] matrix is the inverse of the square matrix in 

(3*33)* For a flat plate, the upwash, v(xfy) is equal to 

- <x • Me rewrite equation (3*58) to show th* dependence of 

the a ' s and b • s on o( and CT 
n      n 

«a, =  f-Qs.jK 
] 4 -C jn 

(3.59) 

'hf 
L 

-Cj ^  + -CM 
r 

J L 2L  I / J (3.60) 

C- IT III ~y denote the partitions of the C matrix« For a 

given assumed cavity length, Xg, the coefficients are linear 

in ^ and T  with coefficients proportional to the sum of 

row elements of [Cj • 

a„ =   -.^ 
(3.61) 
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where ^*c m* ;) 

^W   r 2 (- 
J 

Cjy, -v 
c>"f/ ■  *(• 

- cx -J 
0')T  -" -  *(- -a. v) 

The lift and aonent on the foil «ay be obtained from 

a linear operation on the b^e as in the case for a fully 

wetted surface• 

Q- I-   ^   J[L (3.62) 

u ^. r L    (-ry, »vl '['■] (5.63) 

where CT  and C-^  ar«. row matrices; CT_# C»  are the 

contributions to Uie lift and moment coefficients of the nth 

^p    mode« The lift and moment coefficients are then linear 

in both o< and <r- • 

wher« 

C »a,^ * ^<r
,ir (3.64 

CLt 

L-^J 

J 
(3.65 
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For any given foil, the coefficents C. , and cT 

tnay be calculated for various values of the assumed cavity 

length Xg to determine the sensitivity of the predicted loads 

to cavity length. As in the case of the non-lifting wedge, 

the results for the lifting flows considered below were, 

fortunately, found to be very insensitive to cavity length, 

provided 7U  is longer than about twice the foil chord. 

Results of two dimensional linearized theory and the experiments 

of Kerraeen (ref (20)) indicate that the cavity is long compared to 

the chord for ^/^  ^ i  , This must be kept in mind when 

applying the numerical method. 

The numerical method described in this section has 

been programmed for the IBM 7090 for both steady and unsteady 

flow. We will present a few numerical results and comparisons 

with both theory and available experiments. 

5.3d Comparison with Steady Two Dimensional Linearized Theory 

A useful comparison can be made between two dimensional 

linearized theory and some numerical results for the center 

section of a large aspect ratio supercavitating foil, in this 

case an aspect ratio 6 foil. 

Two dimensional linearized theory gives the following 

results for lift distribution on a steady supercavitating flat 

plate at a cavitation number of zero (Ref. 32). 

ApCv)   -    o< i - (*-J) 
'/. 2. '4 

(3.66) 
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where ^ is the angle of attack 

x ■> -I la the leading edge 

and  x - +1 is the trailing edge 

The expression for the pressure source strength on 

this foil isi 

(5.67) 

where the "finite part" must be taken of integrals over 

the 5/^ root singularity. 

The source strength on the cavity is 

^  / "2V'z 

* (3.68) 

These expreaeions are plotted in Pig« 5,15 and 3,i4 for 

X - .1. 

Calculations using the present method were made for a 

rectangular flat-plate foil of aspect ratio 6 at ^ » 0. 

Results for the chordwise lift and pressure source distribution 

at the center section are included in Figures 3.13 and 3.14 

For these calculations, a cavity length equal to 3 times 

the chord was chosen* 

Calculations were done with both a square root and 

quarter root leading edge singularity in the assumed form 

of Ap^.i) • Fig. 3*13 and 3.14 also oonpare the results 

from these two methods* The difference-in predl6t#d lift 
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FIG. 3.13     NUMERICAL  RESULTS  FOR THE   PRESSURE   SOURCE 
DISTRIBUTION ON THE CENTER SECTION OF AN ASPECT 
RATIO 6 SUPERCAVITÄTING FLAT PLATE, COMPARISON 
WITH  TWO-D'MENSIONAL   LINEAR THEORY. 
a = O.I , cr = 0, XE = 5 
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AP(C) 

0.1 

2-D ^heory 

NUMERICAL RESULTS 
1/4 ROOT LEADING 
EDGE  SINGULARITY 

1/2 ROOT LEADING 
EDGE SINGULARITY 

FIG 3 14 NUMERICAL RESULTS FOR THE LIFT DISTRIBUTION ON THE CENTER 
SECTION OF AN ASPECT RATIO 6 FLAT PLATE , COMPARISON 
WITH   TWO-DIMENSIONAL THEORY     a=O.I,   o-=0.XE = 5.0 

TABLE  3.1      NUMERICAL RESULTS  FOR THE CENTER   SECTION OF 
AR = 6 FLAT PLATE, COMPARISON" WITH  2-D THEORY 

2-D NUMERICAL 
1/4 root sing. 

NUMERICAL 
1/2 root sing. 

XCP 

1.5707 

032 

1.52 

0, 29 

I   6055 

0.275 
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poefficlent la about 5£« The variation in the center of 

pressure location i* also about 5£. The prediction of 

source atrength i» very crude^ but see«« adequate for load caloulatiom 

Two dimensional linearised (Ref. 32)  theory gives 

the following results for lift and aosent coefficient and cavity 

length. 

(5.69) 

Cl = *jr (Cos%)   (l + Cc* re) 
-/ 

20 

(5.70) 

C*-- tr* f     i + Cosfo 
8     I  CcsYc (/f,rcsK)z, 

(5.71) 

(5.72) 

K    1 where Oo     is a parameter 

The expressions for CT and C for CK • ,1 are plotted vs. ^T 
L    m 

in Pig, 3,15 .. The mmerical results obtained for the C, 

and C on the center section of the aspect ratio 6 foil are m 

also plotted vs. <X • As discussed in section 3*3c» the 

numerical technique gives a linear relation for C. and C 
Li      In 

*-£ - c^ ■* ■> cL <r 
(T 

(5.75) 

CM  = C^'*    +   C^r  r<r 

(5.7^) 
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The non-linear character of the CT  and C    vs   <?-   curves 
'ab 

predicted by two dimensional theory comes from the 

dependence of cavity length on o" , 

The three dimensional results have shown a very small '. 

variation of these coefficients with assumed cavity length 

Table 3,2 gives CT  C,,  C„  and cT _ tabulated vs. L»(    m^    m g- LV 

assumed cavity length X^* 
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CAVITATION NUM6ER-<T 

FIG.3I5      LIFT AND   MOMENT COEFFICENTS VS a. (a = 0 1) 
NUMERICAL  RESULTS FOR THE CENTER  SECTION OF 
AN   AR = 6 FOIL; TWO-DIMENSIONAL   THEORY 

TABLE 3.2   NUMERICAL RESULTS, TABULATED  FOR ASSUMED 
CAVITY   LENGTH   X.. 

i XE C
L CL C-a CMo- 

5.0 

7.0 

9 0 

1 .5131 

1.5097 

I   5080 

.4019 

.3783 

.3629 

~   44159 

- 44058 

- 4300 

- , 1485   1 

- .1385   j 

-.1337 

-I 0 
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3.3e Cotaparison with Other Three-Dimenaional Theories and 

Experiment 

Johnson (ref. (21), (22)) has developed a method for 

calculating lift and drag on a supercavitatlng hydrofoil at a 

cavltatlon number of zero. This theory is based on the 

assumption tha: the "Influence of finite span on the two- 

dimensional lift coefficient is due to the effects of the 

trailing vorticity". For fully wetted flow, this assumption 

forms the basis of lifting line theory and its various refine- 

ments. 

The results of this assumption in fully wetted flow give 

the following form for the lift coefficient, (see; e.g., Jones 

Ref. (24)). 

(3.74) 

where a, is the induced angle due to the trailing vorticity. 

Johnson assumes that for a supercavitatlng hydrofoil, the lift 

coefficient takes the same form with 2Tr , the lift curve slope 

for two-dimensional fully wetted flow replaces by ir/2, the 

lift curve slope for supercavitatlng two-dimensional flow at 

a cavltatlon number of zero. 

^     ^ (3.75) 

a.  evaluated from lifting line theory for elliptical loading is 
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dauert & modification  (Ref.   (25))  to  o<K(    is used for 

rectangular planfoms* 

*V ^L    (// T) 

where ^is a planform correction. A correction for lift due 

to crossflow around the tips is also included 

/C^/ (3.78) 

The second theory for steady supercavitating foils was 

developed by Cumberbatch Ref. (25). This theory is valid for 

large aspect ratio foils at cavitation numbers for which the 

cavity length is of the order of the chord.  (-1 - %£  1.5). 

The model developed for this theory is a large aspect ratio foil 

with two-dimensional supercavitating flo* over the foil except 

at the tips. At the tips, the wing tip vortices cause 

conical wing tip cavities. These wing tip cavities are treated 

by slender-body theory. The effect of the wing tip vortices 

or. the flow away from the tips is handled by an induced angle 

correction. 

where v^ is the induced angle created by the two trailing 

cavitating vortices. W ^"Vis the two-dimensional lift 
in / 

coefficient at cavitation number cr and local angle of attack 
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A few steady flow calculations were performed to 

cotapare with the experiments of Scheibe and Veteel (Ref. 19) 

and with those of Kermeen (Ref. 20). Rie first set of 

experiments measured lift coefficients on flat plate 

supercavitating foils of aspect ratio 2.5, 4.0, and 6.0. 

The cavities were artifically created by injecting air on 

to the upper surface of the foil. The reuige of CT obtained 

in these tests was from about .03 to .3* In th* second 

set of experiments, lift coefficients were measured for 

supercavitating flat plate foils of aspect ratio 4,2,1 

and 1/2. The cavities on the foils were obtained naturally 

by pumping down the ambient tunnel pressure. Two values 

of CT were obtained for each test, <7V calculated from the 

vapor pressure of water at the test conditions and the 

actual ^ measured in the test. 

Photographs included in both of these references 

reinforce our choice of a model for the cavity. The cavities 

are rectangular in shape, bounded by the cavities created 

by the trailing vortices. The trailing edge of the cavity 

is not sharply defined, but disappears in a region of 

turbulence and bubbles. Our neglect of a strong trailing 

edge singularity seems justified by these photographs. 

Experimental results of cavity length v.s. C^) 

are shown in Fig. 5.16   • If the cavity length is about 

three times that of the chord, our maerical method is 

valid. 
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Pig. 3,1?  shows, the results of mnerlcal calculations 

for an aspect ratio 6 flat plate supercavltatlng foil, as 

compared to experiment. Two cavity lengths were assmedf 

as cavity of three times the chord, and a cavity of five 

times the chord. The re «suits of the calculation for 

:X m  .148 show the insensitivity of the load prediction 

to assumed cavity length. Hie lift coefficients for 

C~ - o as predicted by the method outlined by Johnson are 

also shown on this figure. Since this method is based 

on linearized theory, both ^ and 3~ should be small; 

the disagreement at high 5* and ^  is not unexpected. 

Calculations were done for an aspect ratio 4 

supercavitating foil at an angle of attack of 10° 

( ^ » .175 rad.) with assumed cavity length three times 

the chord. Pig. 3,18 shows lift coefficient vs 

cavitation number for the numerical results obtained by 

this method as compared to the theory of Cunberbatch 

(ref.(23)) and with the experiments of Ref, (19) and (20). 

The T m 0 point as predicted by the method of Johnson is 

also shown. The numerical method is in good agreement with 

the available theories, the agreement with experiment is 

la rather poor. 
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5.3f  Lift and Moment on an Oscillating Supercavltating 

Hydrofoil of Finite Span 

The lift and raonent coefficents for an oscillating 

supercavltating hydrofoil were calculated using the 

numerical method described previously. For these cases, the 

boundary conditions on the complex amplitude of upwash on 

the wetted surface was satisfied at 13 control points, the 

boundary condition on the pressure in the cavity was satisfied 

at 35 control points. Results for assumed cavity lengths of 

two and three times the chord differed by about 2%,  Compu- 

tation time for a case with two assumed cavity lengths was 

under three minutes on the IBM7090. 

The unsteady aerodynamic coefficents for the center 

section cf an aspect ratio six foil in heave and pitch 

about the leading edge are compared with the two-dimensional 

coefficents as predicted by Woods (ref, 29). These coefficents 

are plotted vs reduced frequency k in Fig.3.19 to 3.22 

by use of the following definitions: 

C.  +10^  -     lift due to heave 

Cr       + 1 C        -        lift due to pitch about L.E. 
^r Lc>ci "  ^-2 ^  c^    "   ^ 

cit     "♦• ^ c        ■       moment about L.E« due to heave 
"hr «hi Zpv*-h?   i k  k, 

CM      + i C..      •     moment about L.E« due to pitch 
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The total value of the unsteady aerodynamic coef- 

flcente are shown in Pig. 3.19 to 3.22 for an aspect 

ratio six foil and in Fig. 3.23 to 3.26 for an aspect 

ratio one foil. 

The general behavior of ehe coefflcents with 

reduced frequency is the saae for the t«o-diaensional 

foil and the foils of  finite aspect ratio. Ihe Magni- 

tudes are of course less for the finite aspect ratio 

foils. 
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CHAPTER IV 

CONCLUSIONS AND RECOMMENDATIONS 

Numerical solution of the linearized integral 

equation for a sheet of pressure singularities has been shown 

to constitute a powerful tool in dealing with steady and 

unsteady problems of thin lifting surfaces moving through a 

liquid. The general technique of deriving the kernel function 

analytically and solving the resulting integral equations 

numerically by assumed modes results in an efficient procedure. 

It is felt that these techniques and further extensions and 

refinements constitute the best linearized solutions available 

for a wide varity of lifting-surface problems. 

Certain comparison with expezxments made in water fail 

because of effects which are outside the scope of an 

inviscid linearized theory. The apparent inadequacy of the 

Kutta condition at high reduced frequencies, noted in Chapter I, 

is an example. The disagreement between experiments and 

numerical calculations for steady supercavitatlng foils at 

finite angles of attack could also be mentioned. As yet, there 

are no loading measurements on oscillating hydrofoils of large 

aspect ratio running parallel to the free surface at low 
2 

values of kP . Experiments on supercavitatlng foils of finite 

span in unsteady vibration are currently being preformed by 

Acosta at the California Institute of Technology. 
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The method for fully wetted nonplanar surfaces has wide 

applicability to interference problems. Experiments on 

steady and unsteady motion of nonplanar surfaces such as T tails 

would be very valuable to check the accuracy of the load 

predictions. After investigation of the kernel functions for 

helical motion, this approach could also be used for the more 

complicated problems of thin lifting propeller and helecopter 

blades. The treatment of the effect of gravity waves on an 

oscillating foil could be extended to compute "gust loads" 

on a foil running beneath waves. The three-dimensional kernel 

function can be evaluated numerically without difficulty if 

finite-span effects are of interest. The influence of cavity 

closure conditions on the predicted steady and unsteady loads 

on a supercavitating foil should be investigated further. 

Also more refined models for supercavitating foils could be 

developed with continuous functions, which haye the proper 

singularities, assumed for the pressure source modes. The 

kernel functions for a supercavitating foil traveling close 

to a free surface at Infinite Proude number can be derived 

straightforwardly by means of images and the numerical 

technique extented to cover this case. 
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APPENDIX 1 

EVALUATION OP KERNEL FUNCTIONS 
FOR STEADY AND UNSTEADY 
THREE DIMENSIONAL FLOH 

We wish to evaluate the following functiont: 

x-^Jz-    - I ^L±- f       (1) 

{/cf*-i) *'* 

; ^7 *• 
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Evaluation of K^ 

Jr- 

ic, -c^ (-J~ ^ JA 
z~2'~-*. 

~   2 f 
+      L 

M      Z *-* 

*-**-    (färu^f+z*  [ fa^+fy^S + z^ 
+   J 

■). 

The expression 
A 

V0Z   i        z*y^-^ J 

is a generalized function defining the delta function except 

for a constant of proportionately,A • This constant is 

determined by requiring 

/ 

**£ 

such that 
J    Xl+y-yJ' J 

-     1 
- «• 

- Ac 
£ -rCl I 7 i (f( ' -f 1 

=    Ofy-*t) 
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and 

The expression for K^ becomes 

x -. \ 

z. + i 

The expression in brackets for : ^«O and (y - if ) 

is porportional to the Heavyside function. 

• 0 

= ^ //^-^ 

Evaluation of^i 

•<: /  • ^w^ 

S'-fO    LITT 
ä   / e  </A 

5^/K^Vrx 

where 
•^ -   /Ty^y)1-***~ 

t(x-s) 

-'"I X^t 
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We define two functions to be evaluated separately 
^   ■ i 

K~% 

^^ 
. X.  U 

tV^ 

J 

d* 1 
-2. +0 ~    ?2 '*   n ~+ < 

Following the method of ref»(6} for a eiailar kernel 

function we make the following substitution in  'L« 

Preforming the indicated differentiation we obtain 

iK ^ 

X't+r 

/ 
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But from the evaluation of l^ we have found that 

L     'v ixi i*-*1 J 

The integral in F2 

/ 
/ 
c 

*~* 

/ 1>J 

ch 
d> «. X-5  J. 

/ JT-/ / d ^ I 
^e 

itcCx- *) 



1» 

Fz r -7r afy-'i) 

/v-5/ 

^^^',737 

Evaluation of f. 

— p«9 ^ZV^ 
y 

or 

o- 

F^ ■Jkr.. 
-7, -I** 

■z- •** 
(fl^)** 

JA 



1» 

ex* 

h Ctl'l*      +£'2     /     f/„>U        d* 
U^1)*"' (*Z+**) 

Vx 

The evaluation of these integrale may be found in Ref.   (13) 

(Bateman). 

?.  ~    fr 

Since P1 contains a delta function of y -/y » the 

Bessel functions must be evaluated at y - ^ • 09 s 

The result for F1 is 

•=r  0 

F.-   r fy-r) 
The end result for A^  is 

ei-.fX-l) \ 

xl--jL
j'n)e  ' ('* (fäiJ 

which takes a final form similar to K^ 
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Evaluation of 7^*   and Kg 

We make the following definitions: 

Oo 

Evaluation of H, 

dX 

These Integrals may be found in Ref(15) 

A/, r - ±1  K, (kr)^U [ijkr) - L, Uri] - 

Evaluation of Hg 

^ means of the substitution A = K^SfhhQ   in the integral 
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definition for H2 , *« obtain the following result: 

y(     then becomee     r L V~ r *-+(*'% ?    J 

*l ^fcitti-1 k'r'!' k,(Kfr^ * % ty-i'l1' ^'r^ 

For steady flow 1( raduees to Kg 

U I    .   (   I   *■  ^JJ= — 

Evaluation of K, 

^ "^ iU/d^^)]=& i^"4-j ^^Z: 
We recognize K, as a generalised function defining the 

delta function within a constant of proportionality. To 

solve for this constant«we require that 

j!6(*.i)^J2 - ± 
-o® 
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We evaluate the integral 

Therefore 

> {(6iF(rff+4 -~+ z^^rP 
and 

£.* + Zrr i(r % x-s) 
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Appendix 11 The Kernel Function for Nonplanar Surfacea 

ttie kernel function for a nonplanar surface In an 

infinite fluid Is 

K. *  'jjf art, z*^ y   V/t'+rJ- (11.1") 

The correction to the kernel function for a nonplanar 

surface near a free surface at Infinite Froude nunber Is 

>/rö0     j. A ^ e /   £     ->>   ,     v 
k.    = - ^ ^ a./ / />T777"      ^ 
where 

r- * ty'^+p-f? {u-l) 
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If we make the following definitions 

r      -cb. 
F,     =    I     e        <J> 

4 iJirrJ- 
(11.8) 

%     *     f    —&—    ^ (11.9) 

Then the kernel function In equation (ll.l) becomes 

v" . ^^^ICo. %) Cos p«,) ä\ (K+ F;) 

r-    .,       c    ,,       si.   ,     -      -\     r  , (11.10.) 

And the correction terra in equation (ii.2) becomes 

kf**) 

Since both P, and P^ and functions of y and z only in the 
i      c. 

combination r+ • 1 (*4'*\}1' + (^t f)z 
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2 

J"i     .^  ^r 4*  P^*-    (11.13) 
9 

The functions In equations (11.12) to (11.14) can be 

evaluated using ref, (12) and ref. (7). They are: 

£ 
d 
J^ -t{*f (ir± ) + in {IM-U^i)   (iia5j 

0-^ (^rt)+Tg[m^)~tAvhd        (11.16) 

K-* UA 
Ae   CJA   -   {*-%} e t/^K-j) 

^     '. >2^r 
(11.17) 

(11.18) 

Ihe combination of these functions as In equation(il.lo)— (ll.l4) 

will give the very complicated form of the kernel function. 
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The behavior of the kernel function near the line 

^s'M z «/   Bay be found by expanding the expression 

(11.19) 

for SMSII r, r-fH^tt       n is the normal to the surface, 

t is the tangent to the surface. 

For saall r 

i/) a» ~ k f J~   +.-'-) (11.20) 
Sir \   kr / 

^ «. 
zr 

/x-3/ 

^F. -. / /v-jy ..... 

(11.22) 

>r»-~  ^ ^-s; (11.25) 

Thus , (11.24) 

(11.25) 
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APPENDIX  111  Transformation of the Fourier Inversion Integral 

We consider the transformation s«s , ß« Ts applied to 

the Fourier inversion integral 

c^ 

f (*.#>-- -. if $*'$ e CSX+ ':W 
Js  </ ̂    (iii.l^ 

This integral is also written 

£>0 

ft^y) - ZjrJ 
C      -  Oo 

CO 
oo 

air }  I 
0    /c* 

^(~s. £ e      jp Js      (in. 2) 

Applying the transformation s»s, ß- Tst 

ao 

$ (%.«)* 
ZTT A 

Oo Co 

^77 (111.3) 

Let s—s in the second integral in equation (111.3) 

CX1 

/< 

(111.4) 

-O» -cw» 
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We then let ^ -T In the second integral of (111.4) 

2v-<0 

0 

-'oo   ~oo (lil.5) 

Written In more compact form,  this becomes 

-- <»©  . ^ (111.6) 

jay) = ±^   I        cf^rs) e       /s/ frj. 

Therefore If, 

c>9 cSM n/*^ f / CIA    T- K Rj? 

(111.7) 

then 

4(*,V) ■ ^ jl fa *r) e       ,si ^ ^ (111.8) 


