
AFCPRL 64-411/

AUTOMATED LOGIC FOR SEMI-AUTOMATED MATHEMATICS

James R. Guard

- - APPLIED LOGIC CORPORATION
20 Nassau Street

Princeton, New Jersey

Contract No. AF19 (6Z8)-3250

Project No. 5632

N,(\Task No. 563205

Scientific Report No. 1

March 30, 1964UL7164

Prepared
for

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH

UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS

-Re-pro-duced by t -he -
CLEARINGHOUSE

for Federal Scientific & Technical
Information Springfield Va. 22151

AFCRL 64-411

AUTOMATED LOGIC FOR SEMI-AUTOMATED MATHEMATICS

James R. Guard

APPLIED LOGIC CORPORATION
20 Nassau Street

Princeton, New Jersey

Contract No. AF19 (628)-3250

Project No. 5632

Task No. 563205

Scientific Report No. 1

March 30, 1964

Prepared
for

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH

UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS

Requests for additional copies by Agencies of the Department
of Defense, their contractors, and other Government agencies should
be directed to the:

DEFENSE DOCUMENTATION CENTER (DDC)
CAMERON STATION
ALEXANDRIA, VIRGINIA 22314

Department of Defense contractors m.st be esteblished for DDC ser-
vices or have their 'need--to-know' certified by the cognizant military
agency of their project or contract.

All other persons and organizations should apply to the:

U. S. DEPARTMENT OF COMMERCE
OFFICE OF TECHNICAL SERVICES
WASHINGTON 25, D. C.

ABSTRACT

UNCLASSIFIED

In previous work with our colleagues, we have

investigated some of the possibilities of proving mathe-

matical theorems on a computer on a man-machine basis.

At the intermediate stages in a proof we are, in general,

trying to prove some formula from certain suppositions

and previously proved heorems. If such intermediate

steps have "trivial" pr. zfs, we might hope to have the

machine verify this automatically. This report describes

some algorithms which verify certain "trivial" proofs.

These algorithms can be read iff from the definition of

proof in the formal syst, 1 through S6 described

in this report. Algorithms concerning the propositional

connectives are explicated by systems S1 and S2

quantifiers by S3 and S4 ; V-order predicate-

function calculus by S5 ; and many sorted variables

and constants for t/-order predicate-function calculus

by S6

ACKNOWLEDGEMENTS

The author wishes to acki owledge the contributions of his

colleagues, James H. Bennett, William B. Easton, and Thomas H.

Mott, to this report. As a team, we developed the SAM programs;

and though the development of the automatic logic was the author's

personal responsibility, he had many >eipful discussions with his

colleagues which bear on this report.

The author is affiliated with the Mathematics Department of

Princeton University and wishes to acknowledge their encouragement

in this study in bridging mathematics and computing.

Finally, thanks to the staff at Applied Loqic for admlnistra-

tive assistance.

TABLE OF CONTENTS

SUMMARY

0. INTRODUCTION

1. THE FORMAL SYSTEM S1
5

2. THE FORMAL SYSTE, 8 2 S 10

3. THE FORMAL SYSTEM S3 17

4. THE FORMAL SYSTEM S4 31

5. THE FORMAL SYSTEM S5 36

6. THE FORMAL SYSTEM S . 52

BIBLIOGRAPHY 60

DISTRIBUILON bi

SUMMARY

This report defines and descr:bes six formal systems of logic,

S1 through S6 , for which proof procedures or partial proof procedures

are readily contrived. The systems S 1 through S4 are considered in

order to simplify the descriptions of S5 and S6 . System S1 is a

fragment of the classical propositional calculus whose theorems are

those tautologies which can be shown tautologous by assuming them to

take on the value falsehood and arriving at an inconsistent assignment

to the variables by not using any "branching" rules. This system sug-

gests an efficient means of handling the propositional connectives in

the later systems. System S2 is the completion of S1 .S has

"branching" rules which correspond to treating certain propositional var-

iables by cases. This differs from Gentzen's treatment by Sequenzen in

that Gentzen's "branching" rules consider the value of the antecedent or

consequent of a formula by cases. System S3 is a fragment of the first

order predicate-function calculus. In S formulas are oroved by con-
3

tradiction. The quantifiers of the denial are stripped by cutting the denialV

in miniscope form an0 replacing them by Skolem functors. This is remin-

iscent of the Harbrand technique. However S3 uses a process called

iarchg to coulsider only reasonable Herbrand disjuncts. System S4

is te completion of S3 obtained by carr:noq out the full Herbrand pro-

cess. "'The completeness theorc.., for S4 outlined in ar appendix.

SSys:enA S 5 is n :-oraer -re -fca n-ction cacuus ,atror.ncd after

E

S4. A method for handling types is 'Included in S5 which allows us

tc -,,ve theorems at the lowest pcssible type and yet have instances

of these thexems involving higher types availabie by substitution.

Function-like properties of predicates can also be obtained as instances

of more general theorems concerning functions by substitution. System

S6 is an extension of S5 to a many-sorted '" - order predtcate-

function calculus. It is believed that many f the problems attendent

to mechanizing a many-sorted calculus are resolved by -S . A careful

treatment of the matching process has not however as yet been carried

out for S6 . However no insurmountable obstacles are expected.

6

0. Introduction

It is the opinion of this writer and his colleagues (J. H. Bennett,

W. B. Easton, and T. H. Mott, Jr.) at the Applied Logic Corporation,

that no computers in the near future will be powerful enough to carry

out any non-trivial deductive mathematics. This does not preclude the

possibility of doing serious mathematics by real-time operator-mathe-

rmatician intervention. Such a program we have dubbe6 semi-automated

.athematics (SAM). The purpose of this report is to describe some

algorithms which are useful for the automated portion of 3AM. These

aigorithms can be "read-off" from the definition of proof in the formal

systems S1 through S6 described in Sections 1-6.

Some history is in order. We quickly realized that the method

of mathematical logic known as natural deduction by subordinate-proof

(cf. Fitch [1] or Jaskowski (]) is a convenient way to display mathe-

matical proofs. This convenience holds for both the man and the machine.

Two programs were written for the IBM 1620 using this method. The

first program, SAM I (cf. [3]) handled the propositional calculus on a

semi-automated (man-machine) basis. The second program, SAM III

(cf. [4]), treated semi-automatic -order predicate-function calculus

with equality and methods of definition.

A method cAlled matchng for efficiently applying (upon command

of the man) rules of inference, definitions, axioms, and previously

proved theorems was developed for another IBM 1626 proqram, SAM II.I a

SAM 1I (cf. E5]) was a system for semi-automatic first-order, quan-

tifier-free, (constant) function, axiomatics with equality and methods

of definition. Matching was also used in SAM III. In SAM III we added

some automatic techniques of the following form. In the middle of an

incomplete subordinate proof we may be attempting to prove a formula B

from previously proved theorems and relevant hypotheses C1, C2 ... Cn .

The machine attempts to prove this automatically by creating the set S

consisting of Cl. ... , Cn and some denial of B , and then trying to

reduce S to a contradiction. Matching is used in the reduction of S

Also certain equality rules were automated for this reduction. The method

of handling the propositional connectives in this reduction is explicated

by the systems S1 and S2 below. The method of stripping quantifiers,

called Skolemization, for the reduction of S , along with matching are

described in S3 S S4 is the completion of S3 to the full first

order predicate-function calculus without equality. SS extends S4

to the -Sr- order predicate-function calculus and includes the rudiments

of type theory. The main difficulty in extending to S5 is in giving an

adequate definition of matching. If portions of matching in S5 were

restricted and some equality rules were added to S, we would have

approximately the automatic portion of SAM I1I.

The system S6 is tendered as a solution of the "sorted-symbol"

problem. In intuitive mathematics we use certain personal conventions

concerning variables ran over cer'nn mathematical objects. For-S

eample, m , n , j frequently range over integers; p , q

over primes; r, s , t over rationals; x y over reals;

(G over groups; H over sub-groups; etc. Also we connect various

related objects in a mathematic structure by the process of identication.

E. g. if G is a group with composition f, then we might use Hi to

range over subgroups of G . However with no qualms at all we call

the composition of each of these subgroups, f . After all, only a pur-

ist considers the restriction of a function to be a different function.

Unfortunately, computers are purists. Also we want theorems concern-

ing rational numbers to be available to integers without intervention by

the man. All these problems, at least theoretically, are resolved by

S6 -

No attempt has been made to consider automatic equality rules

in this report. Hopefully, this can be the subject of a later report.

Handling the equality rules in a manner which allows us to do "trivial "-

mathematics automatically may be the last serious theoretical hurdle

before some serious mathematics can be developed on a computer using

SAM.

Notation. Throughout this report we shall use the following notations

and conventions.

T1) 1. will denote provability in system S.
L 4

2) B, C, D, B, Cl .1 , B2 wil bemetamathe-

matical symbols ranging over the well-formed formulas (, ff s)

3 -

or well-formed terms (Wfts) of a given system.

3) Formulas such as B (C1 ,...,C1) will denote a wff where

attention is drawn to all occurrences of the wffs C1, .. , Cn

which appear as subformulas of B.

4) Formulas such as B (... C ...) will denote a wff where atten-

tion is drawn to a particular single occurrence of a subformula

C of B.

5) The usuai rules for associating the connectives, dropping paren-

theses, or replacing pairs of parentheses by dots will be ob-

served.

6) Frequently we will not explicitly name certain variables but

only give names to metamathematic symbols which range over

the variables of a given system.

7) After the final clause of an inductive definition in the meta-

language, consider as added a clause reading that an object is

in the class defined if its being so follows from a finite number of

applications of the above clauses. E.g. in the definition of

wft for S 1 we understand as present a faurth clause reading.

"4) A string of primitive symbols of S is a well-formed

formula of S1 , only if its being so follows from finitely

many applications of 1), 2), and 3) above."

-4-

1. The Formal System Sl

The system S1 formalizes a fragment of the propositional cal-

culus. By itself S~ is of little interest. However S, lends itself

to efficient mechanization and is a sub-system of the more powerful

systsms S2' S3 S4, SS arnd S6

Primitive symbols of Si:

1) Propositional constants T F

2) Propositional connectives & v =P

3) Improper symbols)(

4) An infinite list of propositional variables. We shall use

p , q r , p1 , as metamrathematical names ranging

over the propositional variables.

5) We use B , C , B1 , C1 B2 ... to range over wffs of S1

Well-formediformula (wfsof S,:

1) A propositional variable standing alone is 3 wff.

2)% T crnui F are wffs.

3) If B and C are wff s then so are 8.B (Byv C), (B & C),

(B Z C) , and (B WC).

Teresof S. A finite sequence n,) .. B

I-.r) of finite sets of wffs of S, is said to be a

proof of the theorem B if

1) n1 1 and BW is "B

2) some Bfr) is F ,and

3) some BiJ is p (resp. -p)and EB~ + 1)1 0 0 4 B (j + is
(j) j+ 1

obtained from the previous set by deleting the Bk 0) s which

are p (resp. p) and replacing all the occurrences of p

in the remaining set by T (resp. F) ,or

BI Bn i is obtained from the previous

set by replacing one (or two) of the B. s by wffs using one

of the reduction rules below.

Reduction rules for S

1)Replace B & C by Band C.

2) Replace ~wB oC) by B and -"C.

3) Replace --(B v C) by '%B and %C.

B(. F vC ...) B(. C vF ...) B(... T & C .

B (.*.C & T . . .) ,B (...T X C . ..) or B G. . C T..

by B(G. XC...)

5) Replace any of B(. C F.) B B .F C.) ,or

B(. Cw F ..) by B(. -- C...)

-6-

=_________~~~~~~~UC N-------- _ ----- _ -~

I

6) Replace any of B(.. F C ... C = T...)

B (.°T vC..) B(... C v T ...) , or BI... F.

by B (... T ...)

7) Replace any of B (...F & C...), B (...C & F...),

or B(...-, T...) by B(...F ...)

By way of example we prove some theorems in S1 :

T

Proof: t

I PP

Proof: pm1 p' ~ ~ p p T

F I • Alternatively we could use the proof

,.pp P q p

Proof: . p . q P , qP, P

p q v r) 7. p q p,: p r

Proof: ,.p q) (-r) p pQ -. p r ,..

(qr) p 7q, p -ri T D(qr), Tzq,

to r Tq, ,.r' q r, qr' T 12T~,.r r

Sr, -rl .

-7-

(f

Proof: f^* Pp i~q %

~ q * q P- t kp' q.p -'.T p

Remark: As is well known, the last three theorems are frequently

taken as the axioms along with modus ponens and substitution for a

development of the propositional calculus in terms of only 2 and

However we do not have modus ponens as a rule or as a derived rule of

S since for example p p q p .p ,-.q ~r is

tautologous but not a theorem of S1 p In fact substitution is not a

derived rule of S since I, pp, while p a q q. pq q is

not a theorem. Notice that no wffs of the forms B & C B - C

, (B . C) , and %,(B v C) are theorems of SI. While not

every tautology is a theorem we have the converse:

Theorem. Every theorem of S1 is a tautology.

Proof: Let B1, Bm be obtained from IC ! , , Cn

by one application of the reduction rules. Then (B1 & ... & Bm)

(C1 & ... & Cn is tautologous as can be seen by examining each of

the reduction rules. Hence if B is a theorem of S1 we have -B W F

and therefore B is tautologous.

A M I 9 M==I

Remak. ot~c tht th thorem of are exactly those tautologies

B Which can be proved tautologous by assigning F to B and arriving

*at a contradiction using only the uniquely determined lines of the truth-

tables of the connectives and not treating any propositional variables or

subfonmulas by cases.

2. The Formal System S

The system S2 is obtained from S1 by modifying the

definition of proof of a theorem.

Theorems of S2 : A finite sequence B1 , Bn of wffs

of Si is said to bea proof of Bn in the system S2 if for each

i = 1,2, , n) B1 is a theorem of S1 or there are j

and k (1 j i and 1 k A i) such that

B.i s p Bi and Bk is p :2 Bi .

Example s:

- p W P

Proof: p p - p , by .p >. p : p

(p, ~. p } , I T LT , - T , F

Also I-jo w p, p I by . ". p p ,

S p p .p Sp I, . F = F , ~.- F 1,
Fl . Hence p :k p-p , pV.p p , p M p

is a proof of p s p in S2

I- p p . p q q

Proof: It is easily checked that first four wffs of the following

sequence are theorems of S1

p q p pv q w q , p q v. p o. p q _ q,

p . -q . p . p q C q , p . .,q ,. p P q q

-10-

iq 2. .p q p q , .q .p .p~q q q

p .p qq . Hence this sequence isaproofof

p-. p q q in S2

This proof is unnecessarily long. Suppose we attempt to prove

this wff in .l We have p --% p * q q , .p -. q w q

but we can proceed no further. However, we observe that we need only

treat this last set by cases on q. This suggests the following shorter

proof of the original wff in S2 q :. p >. p > q w q

,q . p z. p D q w s p zo. p tq v q where indeed the first two

wffs are theorems of S1 as can be easily checked.

The longer, "canonical" proof of the example immediately above

suggests the following completeness theorem for S2

Theorem. The theorems of S2 coincide with the tautologous wffs

of S2

Proof: That every theorem of S2 is tautologous is easily observed

from the facts that the theorems of S1 are tautologous and if p > B

and -.p -- B are tE utologous then so is B

On the other hand suppose B (P1 n is

tautol gous and contains only the propositional variables P1 Pn

Then p1 p2 P2 D .. . 5 B where pi is either

pi or pi , will be provabl i S, with the proof

? 2 O B T l 'P2 * Pn 1-1}

i ; -B(" , "C'2 ' . . , rn) , . ., T , FJ,

where T is T or F according as pi is Pi or ^. pi

Now combining the 2n differen + theorems of S1 of the form
=.'P 7..... B we obtain B as theorem of

from a proof with 2 n + 1 _ 1 wffs in the obvious fashion.

The shorter proof of p 2 . p 2 q M q suggests that fre-

quently we can find a proof of a tautology with n propositional variables,

n+l
which has a length considerably shorter than the 2 - i steps needed

in the "canonical" proof. This is a Common occurrence in mathematics;

but all too often some collection of heuristic shortcuts that a mathematician

uses can not be formalized. However, in this case we have constructed

S1 and S2 so that the shortcut is easily mechanized. This is de-

scribed by the follow -wg definition, theorems, and examples:

Definition. Let B* be the last set of a finite sequence of finite sets

of wffs satistying 1), 3) , and 4) of the aefinition of a theorem of S 1

and such that B* either contains F or, it contains no formulas of

the forms p or p and no reduction rule is applicable to B*

For definiteness let us suppose further that in this sequence of sets,

3) was applied where possible before 4) ; and where more than one

application of 3) (resn. 4)) was possible the application first effected

was the one which eliminated the left-most p or ,p (respectively, con-

nective), considering the sets as ordered sets in the natural way.

-12-

Theorem. Let 3 be a tautology. Let m be the number of dis-

tinct variables in B* . Then there is a proof of B in S2 of lengmi

2 ,+ 1 1

Proof: Let ql q2 m be the m variables in B*

Then clearly q = qm B is provable in Sl

where Z. is qi or qi " Now proceed as in the preceding

theoremi.

Examples.

p .p> q = q (B)

Proof: Now B* is 1-.q c q so that q -> p -. p =q w q

.q ,. p > p q "o q , p .p q u q is the proof of

length 2 1 _ 1 =3 indicated by the last theorem. From a compu-

tational standpoint it is much more efficient to combine the proofs of

q .p p . q q and q z. p -. p - q w q in S1

along with the proof of length 3 in S into the following computa-
2

tional scheme:

P ".T q vq ISI

T =1T w TI . T > F C F
I I

+'. TsTI F. F S F I
TI

JFJ F I

13 -

As is frequently the case with branching structures, this display can

be efficiently mechanized by a push-down list arrangement.

Sk 2 P C- (q m . p mq r

Proof: This tautology generates the following computational

scheme:

p w(q r) wo. p _ q- r

T w ~(q vr) .T wq rl ~ F r (q wr)-M. F q rT

~(q r) T a q r~

A,. q r q = r

T r =.T ' rCl F ru.F ri

I I

r'5I. Tr-ar I

T T I S-F FI
1 i

I I

Note that in this case no rules from S1 are applicable so that our

computational scheme degenerates into t.e truth-table procedure. This

is, however, preferable to proving eight longer theorems in S1 and

combining them to make a proof in S2 with fifteen steps.

-14 -

Comparison with Gentzen's algorithms for the propositional calculus.

One of the most efficient algorithms for the propositional cal-

culus arises from Gentzen's system of natural deduction (cf. Kleene's

C63 system Gi, p. 442). The reduction rules 1) , 2) , and 3) corre-

spond respectively to & -- p , --- D , and --. v .

The special case of B (...C...) replacing B (...'C...) where

B (...C...) is just C corresponds to -ay followed by A-

Notice that all of these rules are non-branching rules of Gl. Also

certain applications of the branching rules of G1 are essentially non-

branching. E.g. -- , where the antecedent of the implication to

be eliminated is also a hypotheses could be replaced by a special non-

branching rule (for I D, D CI is equivalent to jD, Ci).

This corresponds roughly to the reduction rule:

"replace B (... T=C ...) by B (...C...) ."

On one hand our reduction rule is more general since C may be buried

quite deeply in B (...C... , while on the other hand we may have

the formulas D and D z C and not be able to get T z C from this

in Sl (e.g. pop and pzpp zC) . We do not choose to

modify Si to include some rule which would get us from I D , D ' Ci

to ID , T -a C1 for reasons of computational efficiency.

In essence then S1 does almost all possible non-branching in-

ferences thus eliminating much of the branching necessary in G1.

Only as a last resort -- thus invoking S2 -- are branching-type rules

k - 15-

used. And in fact the branching used in S2 tends to eliminate further

branching. Of course f or some examples owi method corresponds almost

exactly to the truth-table method. E.g. see the proof of

p a (q _= r) s . p 5 q a r in the example above. However the natural

deduction method is similarly a disaster in thesq- freak cases. In gen-

eral our method seems to be more efficient than natural deduction which

in general is considerably more efficient than the direct truth-table

method. And further, the method of S2 lends itself very nicely to ex-

tension to the higher order calculi.

Considering again the remark at the end of Oaction 1, the method

Of S2 corresponds exactly to the method of assigning F to a tautology

and using the uniquely determined lines of the truth-tables and then by

cases on the propositional variables when necessary, in order to derive

a contradiction. On the other hand, the cut-free version of G 1 corre-

sponds exactly to the method of assigning F to a tautology and using the

uniquely determined lines of the truth-tables and then by cases on the

two halves of a subforxnula using the other lines of the truth-table.

(E.g. , A z- B is T is contradictory, if and only if, A is F is con-

tradictory and B is T is contradictory.)

16 -

3. The Formal System S3

The system S3 is a fragment of the first order predicate cal-

culus with symbols for both predicates and functions but without

equality. This system is introduced so that the techniques for handling

quantifiers and the instantiating of hypotheses can be explained in the

simplest possible setting. The propositional portion of S3 is an evi-

dent generalization of S 1 Techniques for handling the equality rules

will be discussed later.

Primitive symbols of S3

1) - 3) As in Sl , with the comma as an additional improper symbol.

4) Quantifiers A E

5) An infinite list of individual variables.

6) An infinite list of individual constants.

7) An infinite list of predicate constants of each do -ree n

n--1 , 2, 3 ...

8) An infinite list of function constants of each d,;'e n

(n = 1, 2., 3...).

Remark: We use the following symbols in the metalanguage of S3:

1) individual variables x y z xI Yl

2) individual constants a b c d e a 1 ...

3) n-ary predicate constants p n Q(n) R(n) Pl(n) Q,(n)

17 -

4) n-ary function constants G(n) H(n) I(n) (n) Hl(n)

5) well-formed terms M N M1 N1 M2

6) well-formed formulas B C D B1 C1

When no ambiguity arises we will drop the superscripts on the predi-

rates and functions.

Well-formed expressions of S3 :

1) Individual variables and individual constants are well-formed

terms wts.

2) if M1 ,... Mn are wfts and G (PJ is an n-ary function

constant then G (n) (., & , Mn) isa wft.

3) If M1 ,... MnV arewfts then p(n)(Ml *.... Mn) is

a (atomic) well-formed formula (wi.

T and F are (atomic) wffs.

The variables occurring in atomic wffs are said to occur free.

If B and C arewffs then so are (B 'C) , (B & C)

(B v C) , (B C). and - B. !hevaria_.,'s which

free in B and C are free in (B C) (B & C)

(B v C). and (Bi C) . The variables free in B are

free in ',B. If B isawff, sois (Ax)B and (Ex) B

Occurrences of x in (Ax) B arg called bound occurrences

of x and those occurrences of x which are free in B are

said to be bound by the initial quantifier of (Ax) B or (Ex) B.

Free vaiiables of B other than x are free variables of

- i? -

(Ax) B and (Ex) B which are said to be in the scope of

the initial quantifier.

in S1 we proved a wff B by attempting to derive F from

B . In S3 we proceed analogously-- however, in place of the

negation of a wff we use a quantifier-free wff which contains the

intent of the denial of the wff. To this end we define a quantifier-

free form of a wff.

Definition. Let BO -- called the Skolemization of B (where B is

a wff containing no free variables) -- be the formula obtained from B

by successively applying the following reduction rules (the applicable

rule appearing earliest in the list is applied first):

1) Replace subformulas of the form O"'C , - (C = D)

(C v D) , i D(, C D, C D,

(C m D) , -(Ax) B , and -- (Ex) B respectively

by C, C & ,D , o- C & - D, -'C v 'D,

C v D , (-C v D) & (Cv -D) ,(CvD) &

(C v D) (Ex) " B , and (Ax)-B .

2) Replace subformulas of the form (Ax) B and (Ex) B by

B if x is not free in B.

3) Replace subformulas of the form (Ax) . B (x) & C (x) and

Ex) • B (x) v C (x) respectively by (Ax B x'Y) E 'Ay) C (y)

and (Ex)Ei(x) v (Ey) C(y) where y is

m 19-

Mhe first variable in alphabetic ordering not previously appear-

ing.

4) Replace subformulas of the form (Ex) . C & D, (Ex) . D & C

(Ax). CvD 0 and (Ax). D v C respectively by

(Ex) C&D, D &(Ex)C , (Ax)CvD , and

D v (Ax)C where x isnotfreein D .

5) Replace subformulas of the form (Ax) B (x) by (Ay) B (y)

if some quantifier binding x appears to the left of (Ax) B (x) ,

where y is the first variable in alphabetic order not pre-

viously appearing.

(Here and below the x's displayed in B (x) are all the free

occurrences of x.)

6) Replace subformulas of the form (Ex) B (x) which is not in

the scope of a universal quantifier by B (a) , where a is

the first individual constant in alphabetic order not previously

appearing.

7) Replace subformulas of the form (Ex) B (x) by B (G(n) (Yl

.... Yn where Y, Yn are all and only the variables

bound by universal quantifiers in whose scope this particular

occurrence of (Ex) B (x) appears, where G(n) is the first

n-ary function constant not previously appearing.

8) Replace subformulas of the form (Ax) B by B

-20-

Example. Let us compute the Skolemization of

(Ex) (Ay) . (Ax) P (y,x) (Ez) Q (z, x, y) . The steps are

a) (Ex) (Ay) . (Ex) -.- P (y, x) v (Ez) Q (z, x, y) , by 1) twice;

b) (Ay). (Ex) P (y, x) v (Ez) (z, a, y) , by 6);

c) (Ay) ... P (y, G(y)) v Q (H (y) , a, y) , by 7) twice; and

d) P(y, G(y)) v Q(H(y) , a, y) , by 8),

where d) is the required Skolemization. Here and below let us assume

that the symbols represented comply with the requirements of alphabetic

ordering. Note that a) is equivalent to the original formula using the

usual meaning of 2 , v , , (Ex) and (Ax)

In b) we have replaced the initially existentially quantified variable

by a previously unused constant-- a device in common use in informal

mathematics. In c) we have replaced x in P (y, x) by G (y)

where G (y) is to be the name of the object x which is said to exist

for each choice of y . Since G did not appear previously, G (y)

gives us no additional information beyond the existence the object for

each y . Similar statements hold concerning H (y) . In d) we

simply delete the universal quantifier. By this informal reasoning we see

that a contradiction can be obtained from the original wff if and only

if it can be obtained from its Skolemization d) . Examination of the

definition of Skolemization leads us to make this assertion for general

closed (no free variables) wffs.

- 21

In modifying the definition of a theorem for S to serve for

S we can modify clause 1) so that B 1 is the Skolemization ofS31

(Ax) ... (Ax) B where xI , , are all the free variables

of B . Clauses 2) and 4) can remain the same. Of course the re-

duction rules involving m and i are not needed. in clause 3)

we use atomic wffs in the role of the propositional variable p

Since the free variables occurring in the subformulas of the Skolemized

wff were previously bound by the deleted universal quantifiers, we

must allow ourselves all substitution instances of these quantifier-free

wffs in our attempt to derive F . However, it is much too inefficient

to blindly generate instances of these wffs. Suppose B and C

are atomic formulas. Note that an instance of -. B v C call it

B' v C' , will be of use only if there is some previously gener-

ated wff D (or ov D) and An instance D' of D (or - D' of -D)

such that D' is either B' or C' . So that rather than generate

all possible -B' v C' 's and D' 's it is much more efficient to

consider ,B vC and D (or "D) to see if D and B (or

D and C) have a common substitution instance (called a matching

formula below). Further, it is important that this common instance be

as general as possible. These ideas lead us to the notion of matching,

which was developed for SAM II

Definition. Two wffs of S3 are said to match if they have some

substitution instance (called a matching formula) in common. A matching

22

formula from which every other matching formula can be obtained by

su,.stitution is called a general matching formula.

Examples:

1) Q (a, x) and Q (x, H(x)) match and have Q (a, H(a)) as

a general matching formula.

2) P (G (a, x)) and P (G(b, y)) do not match since the con-

stants a and b do not match.

3) Q (x, x) and Q (y, H(y)) do not match since y and

H(y) cannot be made identical by replacing y by the same

wft in both y and H(y)

4) Q (x, y) and Q (y, x) match and have Q (x, x) as a

matching formula. Q (x, x) is not a general matching formula

since, for example, Q (x, y) is a matching formula which is

not an instance of Q (x, x) . Note that in this case Q (xy)

and Q (y, x) are both general matching formulas.

Definition. The following algorithm which is to be applied to two

atomic wffs B and C of S3 is called matching:

Step 1 Consider B and C as being stored at lines (1) and (2)

respectively. Reletter the variables of line (2) so that it has no

variables in common with line (1).

-23 -

- Step 2: Let us denote tie n-th symbol -- ignoring parentheses and

commas -- of line (1) by (1)n . Similarly we define (2) n

Case a): If lines (1) and (2) are identical, the algorithm outputs

(1) and stops.

Case b); Suppose n is the smallest integer such that (1)n is dif-

ferent from (2) n . Since wffs are involved and case a) does not hold,

neither (i)n or (2)n can be vacuous. We consider four subcases:

i) Suppose (2)n is a variable, say x , while (1)n is

a function or individual constant. Then call D the

unique subformula of (1) starting at (1) . If D

contains x , output DOES NOT MATCH and stop.

If D does not contain x ,substitute -D for- x

everywhere in (1) and (2) . Go back and repeat

step 2.

ii) Proceed as in i) if the roles of (1) and (2) are inter-

changed.

iii) If (l)n and (2)n are different variables, replace

Ex(21 n everywhere in () and (Z) by () n

i iv) if 1i~n and (2 n are different constants, output

~DOES NOT MATCH and stop.

Examoles. Let us apply matching to P(G(G(x, G(y,x)), z)) and

P P(G (G(x, y) , G2(x, y)))

. - 24 -

(1) PGGxG yxz

(2) PGG uvG uu

(1) PGGxGyxz

(2) PGGxvGxx

() PGGxG yxz

(2) PGGxGyxGxx

(1) PGG xGyxGxx

(2) PGGxGyxGxx

Then P(G(G(X,G(yx)) , G(xx))) is the output of the algorithm and

is in fact a general matching formula for the two wffs.

Let us apply matching to Q (x,x) and Q(y0H(y)) .

(1) Qxx

(2) Qy Hy

W') Qxx

(2) Qx gx

1) DOES NOT MATCH

The variable x cannot be replaced by H(x) . This is a very simple

example of a subtle way in which two wffs can fail to match. The

more usual case of not matching arises from subcase iv)1 25
£i

Theorem. If matching is applied to two atomic wffs B and C

of S3 then in a finite number of steps the algorithm outputs a gen-

eral matching formula if a matching formula exists and outputs DOES

NOT MATCH if no matching formula exists.

Prooft First we note that the process stops in a finite number of steps

since each application of step 2 which does not stop the procedure elim-

inates a variable from (1) and (2). Let H(R) for a formula R be the

hypothesis that there is a simultaneous substitution in (1) and (2)

which yields two copies of R and further R is a general matching

formula for (1) and (2).

Claim: H(R) holds before an application of step 2, case b) if and

only if H(r) holds after step 2, case b).

Suppose subcase iii) is about to be applied and H(R) holds.

Then the same formula must be substituted for the variables which occur

at (l)n and (2)n in order to obtain two copies of R . Hence H(R)

holds after one of these variables is replaced everywhere by the other.

Conversely if H(R) holds after an application of subcase iii) then

H(R) must have held before.

Suppose subcase i) or ii) is about to be applied and H(R)

holds. If in the simultaneous substitution D is translated into D'

then v must be replaced by D' by the substitution. Note that if D

properly contains v then the simultaneous substitution cannot possibly

yield identical iormulas at (1) and (2) and hence H(R) woald not

-26-

have held. if A does not contain v then H(R) will still hold after

applying the subcase. The converse is similarly true.

If subcase iv) holds it is clear that H(R) for any R could

not hold before or after applying iv).

Hence the claim is verified. If some formula R is outputed by

step 2, case a) then using our claim R must be a general matching

formula for B and C. Let H(R)' be the iypothesis H(R) with the

word "general" deleted. By examining the proof of the claim we see

that the modified claim -- W(' holds before step 2, case b) if and

only if it holds after -- is similarly true. Now suppose DOES NOT

MATCH is outputed. Then for no R does H(R)' hold for (1) and (2).

By our modified claim H(R)' holds for no R for (1) and (2) immediately

after step 1. But in this situation (1) and (2) have no variables in

common so that we can conclude that B and C do not match. Q E. D.

Theorem. If in the matching algorithm atomic wff B is written in (1)

and atomic wff C is written in (2), then the algorithm outputs B if

and only if B is an instance of C.

Proof: This is easily checked from the definition of matching.

Definition: We use matching to define a rule we call matcing reduction:

Let B and C be atomic formulas. If B is an instance of C then re-

place C (resp. ,C) and D(...B..) by C (resp. A,?) and D(...T...)

(rasp. D(.. .F...)). If B matches C with the general matching

-27 -

formula B' but is not an instance of C , then add to C (resp. C)

and D(..B...), the formula D'(...T...). where D'(...B'...) is

obtained from D(... B....) by making the same simultaneous substitu-

tion required to get B' from B (resp., add D' (...F...))

We are finally ready to define the class of theorems of S3 .

Definition. A finite sequence of finite sets of quantifier-free wffs of

S3 is said to be a proof of the theorem B if

1) first set contains only the Skolemization of (Ex) (Exn) B

where x,...., xn are all and only the free variables of B

2) the final set contains the wff F ,

3) every set but the first is obtained from its immediate predecessor

by a single application of matching reduction or one of the re-

duction rules 1), 4), 6) and 7) of S1

Examples:

(Ax) P (yx) , (Ex) P (x,z)

Proof: P(ax) & P(x,b)1 , P(ax) , hP(x,b) 7

JP(ax) , '-P(x,b) , -T , f P(a,x) o .- P(x.b) , F

3 (Ay)(P(x) Z Q(y)) M. Px)v (Ay) Q(y)

Proof: (P(a) = Q(y)) & (P(a) & - Q(b))

IP(a) Q Q(y) P(a), -q(b). , D Q(y) , P(a) , -Q(b) ,

Q(y) P(a) Q(b) F , P(a) .Q(b)

8- 8-

(Ax) P (x) z P (y)

Proof: j P(x) & P (a) 3 * P(x) , P(a)1

SF. aP(a)}

Examples from Group Theory. Let GROUP be an abbreviation for the

formula (commas are dropped for compactness)

(Ax) (Ay)(Az)(Au)(Av(Aw) . P(exx) & P(I(x)xe) &

(P(xyu) V. P(uzw) P. P(yzv) P(xvw)) &

(P(yzv) >. P(xvw) >. P(xyu) ' P(uzw))

Then I- GROUP ID P(xI(x)e)

Proof: Skolemization and several reductions gives us a set

containing the formulas

(B1) P(exx)

(B2) P(I(x)xe)

(B3) -P(xyu) v. ,-P(uzw) v. 'P(yzv) v. P(xuw)

(B4) P(yzv) v. ,'P(xvw) v. ,- P(xyM) v. P(uzw) and

(BS) P(aI(a)e)

Now by applying matching reduction and S1 reductions we obtain the

following additional formulas:

36) , P(yl(a)v) v. P(xve) v n- P(xya) , by

applying (Be) to (B4) (written "B5 into B4 ")4) 4

(B7) P(x l(a)e) v. - P(xea) , by "B1 into B6(B8)) P(I(.a))ea) , by "B2 into B6

b B2 ino 7'
(B9) P(I(la))yu) v. ' P(yze) , by "B8 into B3 ,"

-29-

(B1 o) a-P (eza) v P(I(a) ze) by "B2 into B9

(B1 1) -- P(I(a)ae) , by "B1 into B10

Now (Bi) is reduced to -T and then F

3 GROUP P (xea)

Proof: Skolemization and several reductions gives as

(B1) , (B2) , (B3) , (B4) , and

(C1) I P(aea)

Now we obtain

(C2) a'P(ayu) v. nP(usa) v .,P(yee) , by "C1 into B3

(C3) .,P(aye) v. .,P(yae) , by "B1 into C2

(C 4) -P(aI(a)e) , by "B2 into C3 .

Now we can derive F-from (B1) , (B2) , (B3) , (B4) , and (C 4) as was

demonstrated in the previous proof.

The fact that one of the premisses of a matching reduction must

be an atomic formula limits the power of S3 though it greatly aids com-

putational efficiency. For example the set of wffs

f P1 (x) & P2 (x) v. Ql (x) & Q2 (x) , PI(Y) v P2 (Y)

= a , Qi(2) v -Q2(z)

= is contradictory but we can not reduce this set to include F by our rules

of S3 . Also S3 -- as did Sl -- lacks sufficient devices to handle

the propositional connectiv es. For example, no wffs of the forms

SVC . 8 & C0 *-8 4C, or r-.BvC are theoremsof S 3 .

- Hence with the relationship between S1 and S2 in mind we extend S3 to 54

W- 30 -

4. The Formal System S4

The system S4 is obtained from S3 by modifying the definition

of the proof of a theorem. S4 is a complete system for the first order

predicate-function calculus.

Definition. Let B* be -(Ay) (Ay n) (('-.(Axi) (An)B)°)

where x, x, are all the free variables ofB andy 1 l -Ym

are all the free variables of (-(Ax 1) (Axn)B)0

Let Jb be the set of all variable-free terms which can be formed from

the constants in B* (if B* contains no individual constants, let Jb

be all the terms in the constants of B* and a -- the first individual

constant in alphabetic order)

Let Lb be the set of all varlable-free atomic wffs obtained by instan-

tiating the Y 's in the atomic wfts of B* by elements of Jb

Example. Let B be .(Ex)(Ay) . (Ax)P(yx) j (Ez) Q (zx ,x,y)

Then B° is - P(y,G(y)) v Q(H(y) , a , y) (see the first example

of 43) . Hence B* is t (Ay). n P(y,G(y)) v Q(H(y), a, y)

Now jb = a , G(a), H(a), GG(a), GH(a).....

and Lb fP(M,C(M)) :M6 'bi U OQ(H (M)., a. M) :M '

Theorenuof S4 A finite sequence B1 Bn of wffs of S

is said to bea vroof of B in S4 if Bn is B* and if for each i

(U = 1,2,...,n) Bi is a theorem of S3 or there are j and k

(it " i and i 4 k L i) such that for some C in Lb. Bj

-i31 -

fI

is C" Bi and Bk is -C Bi

Example.

i(4 Ax)(P 1 (X) & P2 (x) v. Ql (x) & Q2 (x))

00 (Ex). Pl(x) & P2 (x) v. Q1 (x) & Q2 (x) (B)

Proof: We find B* to be

nw(Ax)(Ay)(Az) . (P,(x) & P2 (x) v. Qj(x) & Q2 (x)) &. (YPY) v - P2(y))

&. -Q(2.) v -Q 2 (Z) (B*)

Also b is a

and Lb is fPl(a) , P2(a) Q1 (a) , Q2 (a)

It is easily checked that

3 P1(a) % B* Ph "(.&) 2(3'.

Hence 1P 1 (a) = B* , P(a) 2 B* . B* is a proof of

B in S4

In an appendix to this section we shall outline a proof of the

Sodei - Herbrand-Gentzen theorem for S4 (i.e., a wff of S4 is a

theorem if and only if it is valid in every (non-empty) model). Unlike

the usual formulations of the first order predicate calculus, the com-

pleteness theorem and the accompanying proof-procedure follows directly

from the definition of proof in S4 . This is not to suggest that this proof-

procedure can be mechanized to do any but the most trivial mathematics.

This author firmly believes that this procedure and all others developed

to date are not even remotely" close to bein; useful as completely auto-

- 32 -

rr.c -i procedures. However our program of Semi-Automated Mathe-

matics is much less ambitious (and hence more realistic). And here

S4 is quite useful; for while the mathematician-operator directs the

over-all strategy of the proof, the machine can easily do some of the

numerous, trivial, and bothersome steps since the proof-reans of S4

coincide so closely with its related proof-procedure.

I

Appendix to 4 . The following steps sketch a proof of the fact

that 14 B iff B is valid.

1) 13 B implies B is valid since
3

a) the skolemization of the negation of the universal

closure of B is not satisfiable iff B is valid

b) a set of wff s of S3 is "satisfiable" iff it is after

an application of one of the reduction rules of S3 , and

c) no set containing F is "satisfiable."

2) I4 B implies B is valid, by 1).
4

3) B_ not provable in S4 implies that for every finite subset

I C1, - Cni of Jb there is a non-theorem of S3 of

the form

C 1 "" 02 "' - Cn "' B*, where C is Ci or ,-

4) LetC 1 , C2, C3 , be an enumeration of Jb" By 3)

there is a sequence of non-theorems of S3 of the form
C(I) (*,C2)' (2) " B ,C 3) (C3) (.C3) ,

CZ * C1 >-.02 _- ' 7 2 3S1

where C(is C. or '--C. Let D

be Cl if infinitely many of the C~i) 's are C Let D

be .t C 1 otherwise. Of the infinitely many i's such that
(i) .(i)

Cl is D 1, if infinitely many have 02 being C2 then let

D2 be C2 ;, otherwise let D 2 be " C2 . And so on.

In this way we have picked D i , D2 , D3 , -- so that for each

finite n , infinite many of the non-theorems in the sequence

- 34 -

above start with "7. 0. "" n

Hence for each n, D1i. .- . Dn P B* is not

provable in S3

5) From 4) we can define a model whose elements are Jb in

which B* does not hold. The values of the functions of B*

are given by the rule: the value of G(n) when applied to the

elements M Mn of jb is to be the element

GM(n)) of jb . The values of the predicates

of B* are given by: the value of p(n) when applied to the

elements Mi Mn of 'b is to be T if some Di is

(n)(M 1 M....Mn) and F otherwise.

6) B does not hold in the model defined in 5). This follows

easily from the definition of B* and 5).

- 35 -

S. The Formal System S5

The system S5 is to be an V-order predicate-function calculus

patterned after S4 * Enough type mechanism is included in S5 to dif-

ferentiate between predicates and general functions while allowing cer-

tain function-like properties of predicates to be obtained as instances of

more general theorems about functions. Again we postpone to a later

report, the discussion of equality.

Primitive symbols of S5

1) Improper symbols < 7 () L ,

2) Logical symbols . . v & A E A T F

3) Type constants U V

4) An infinite list of variables of each type.

5) An infinite list of constants of each type.

Type formalism:

1) V is a type (- the truth-value type).

2) U is a type (- the type of the universe).

3) If I, T2 1, r n and T are types, then

01 n > is a type (-th- type of all n-ary

functions whose n arguments have the types "r 1n

respectively and whose value is type .

- 36 i

Meta-lanciuac;e for S5

1), , g , 0-, 1 . . to range over

types.

2) Lower case roman letters with integer subscripts and type super-

scripts to range over variables of that type.

3) GH , M , N , HG1 ,..... to

range over constants of type T
B"C Cr V" %- r

4) B , D , B1 , C , to range over

terms of type 'r

Type containment: Type -r is said to be contained in type 0-

written - - , as defined by the following inductive definition:

1) V U -

2) -r -r

3) 1 C T and T C " 3 implies ? C T.122 3 1 3
4) If 0'i C Ti (i= 1, ... ,n) and T C (r

then %.- ' n1' , " n. ' "

We define max (V, 0-) and min (-, -) by

1) max (V ,U)= max (U , V)= U,

2) min(VU = min (U, V) - V

3) if min Ti 0I) and max (, -) have been defined

then

max n' ,)

nnrain 7C m,

-37 -

4) if max (" i ") and min (IC, ") have been

defined then

rain (Cr i ,... -nt < rl ,..0 n ,r

= <max(t 1 , (r , " max(Tn # (r n)

min (,oC,)C >

5) min (V , C) and max (T , 0-) are left undefined un-

less their being defined follow from 1) - 4).

Notice that min (r , -) is the most general common tyFe of

'r and o- , if 'I and O" have a common type.

Well-formed expressions of S5

1) T and F are well-formed terms (wfts) of type V.

2) , &, v, I are wfts of type (V, V, V .

3) is a wft of type V , V).

4) A constant or variable of type T is a wft of type T

5) if (i C Ti (i = 1, ... , n) then

B < . . , n, (B1 1 . Bn) isa

wft of type r.

6) (l 1 x n is a wft of type

-Ct ,...., n , . The occurrences of x in this

wft are said to be bound. The free occurrences of x in

B are said to be bound by the initial occurrence of 'A in

(,x ... 3xnn) B

- 38 -

7) (AxT') Bv and (Ex") Bv are wfts of type V.

The definitions of bound and free are analogous with S3

8) A wft of type V is called a well-formed formula (wff)

Substitution. We use the following substitution notation ir the

meta-language of 5 If " C 'r then

x " Ca

stands for the result of replacing all the free occurrences of xT in

C by B and relettering (in some canonical fashion) those

bound variables of C which would otherwise capture some free

variables of Br

Lambda-conversion. In forming the Skolemizations and as a reduction

rule for S5 we use the following rule of -conversion: A wft of

the form 1 . , xn) B (Cl,.. Cn) can be replaced

by S X.... Xn B A wft is said to be A -converted

C. Cn

if A -conversion is not applicable to any sub-wfts of the wft.

Soecial-conversion. A wft 3f the form (' xi, ... , xn)(B](, ,I.4

where the xi 's do not appear free in B , can be

replaced by B , and conversely.

Matching. Any wft C obtained from a wft B by finitely many applica-

tions of substitution, relettering bound variables,) -conversions, and

-- 39-

=I

special-conversions is called an instance of B . Two wfts B1 and

B2 are said to match if they have a common instance (called a match-

inq term for B1 and B2) . A matching term for B1 and B2 , from

which every other matching term can be obtained, is called a general

matching- term.

Example: Unlike S4 , two wfts of S5 can match without having

a general matching term. For example G (f (x) , f , x) and

G (H (M), f, x) have as matching terms G(H (M), H, M)

G(H(M) , (,z) H(M) , x) , and G(H(M) , (Az)z, H(M)).

However G (f (x) - f, x) and G(H(M), f, x) have no general match-

ing term as can easily be seen. Still we notice that G(H(M)

(I-z) H(M) , x) is a more general term than G(H(M) , ('A z) H(M) , N)

though both are matching terms for the original two formulas. This leads

us to the following:

Definition. A general matching set for wfts B1 and B2 is a set

of matching terms for B1 and 82 such that every other A -converted

matching term is an instance of some member of the set and no mem-

ber of the set is an instance of another member. Two terms for which

neither is an instance of the other are called independent.

in order to describe an algorithm for matching in S5 we first

define some concepts.

-40 -

Definition. We define the character of a sub-wft of a wft B

as follows:

1) A constant has constant character.

2) A free variable of B has variable character.

3) A bound variable of B has constant character.

4) (Ax) B and (Ex) B have constant character.

5) LB I (Bi ,...., Bn) and (kx 1 ,Xn)P have the same character as B.

Definition. Two A -converted wfts are said to rough-match

under the following inductive definition:

1) Two wfts B and C of variable character rough-match

if their types contain a common type; i.e. if min (r", ") is

defined.

2) A wft B of constant character rough-matches a wft C r

of variable character if -c r a-

3) Two identical constants rough-match.

4) Two bound variables rough-match if they have the same type.

5) Two wfts of constant character [B o 7J (B1 Bn) and

[Co (Cl Cn) rough-match if B1 and C1 rough-

match (= o1......n)

6) Two wfts (Ax') B and (Ay O) C of constant character rough-

match if n= if B and C rough-match. Similarly

for (Ex) and (x x (Special-conversion may have

-41 -

to first be applied to a wft of constant character which corre-

sponds to a wft of constant character whose first proper

symbol is .

Remark. If two wfts do not rough-match then they do not match.

Two wfts without free variables or quantifiers rough-match if they

match.

We shall use a series of examples to describe the matching

algorithm for S5W Once the matching algorithm has been defined, we

can define the concept of proof in S5 analogously to that in S4 (going

first to an intermediate system S which corresponds to S3)

Of course the theorems of S5 will be valid in every non-empty model,

but the converse of this result (The Henkin Completeness Theorem) has

no known proof which corresponds to the Godel-Herbrand-Gentzen

method. Hence we have no appendix for this section corresponding to

the appendix of Section 4.

Example: Let x, y, z, xIV, N be objects of type 'C;

let f, f, , G be objects of type <r, <-C , r where M"T:

and let g and h be objects of type <T, VY - Remember that

the lower case letters are variables and the upper case letters are con-

stants. Let us match

m42 -

(1) H(tfl(x)2 (7), 2 Z f1 , (Ah) h(x)) ,and

(2) H([G(N)3 (y) , M, f , (Ag)g(y)).

If necessary we would reletter the free and bound variables of (1) and

(2) so that no free variable occurs in both (1) and (2) and such that

no variable appears both bound and free in (1) and (2). Now we proceed

from left-to-right making the more routine matches. ror example we

by-pass the corresponding sub-wfts [f, (x)f (2) and C G(N)I (y)

since f is a free function variable with arguments and hence it is

not necessary that x match N or 2 match y. We do the routine

matches first so that the matching of free function variables with arguments

will be as simple as possible. In this spirit we match z with M

and fl with f

resulting in

(1.1) H(Cfx) (M) , M , f , (Ah) h (x))

and (2. 1) = (2) . In general when we are matching variables f

and f r which appear without arguments, we substitute f t for

flIr if C r , a, for f r if (rc f 2 min(# ')

for fr and f 1 (where f2 min (rT) has not previously

appeared) if min (r,r) is defined, and finally we do not get a

match if t and 't have incompatible types -- i.e. min (Crt) not

defined. Now we consider the corresponding sub-wfts (Ah) h(x) and

(Ag) g (y) . If the corresponding bound variables g and h were not

- 43 -

the same type we would not have a match. We reletter the bound var-

iables so that the corresponding bound variables are the same. This

results in (2.2) = (2.1) and

(1.2) H(Lfb) (M) , M, f, (Ag) g (x))

interior bound variables are considered as constants so that x and y

in (Ag) g (x) and (Ag)g (y) must match resulting in (1.3) = (1.2) and

(2.3) H(G(N)3 (x) , M , f , (Ag) g (x)) .

Now we have to match [f(x)] (M) and EG(N)] (x)

Notice that this should be considerably easier than attempting to match

these sub-wfts initially -- for we have identified two variables and re-

placed a third variable by a constant. We wish to consider every sub-

stitution for f of the form (Iu) (v) B (u, v) where

[(M) Qu, v) B (u. v) (x) (M). or equivalently after two appli-

cations of lambda-conversion, B(x, M) , matches [G(N)] (x)

However we consider all substitutions of this form so that B(x, M)

rough-matches [G(N 2 x) , using the algorithm itself to eliminate

later any substitutions which lead to non-ma.ching. The B (u , v) 's

which we call candidates, are defined inductively by

i) 1 G(N) I (x) is a candidate ; and

2) if B' is a candidate and some sub-wft B" of B' rough-

matches x (respectively M) . then the result of replacing

'- -

B" in B' by u (respectively v) is also a candidate.

Hence we have the six candidates [G(N)3 (x) , EG(N)] (u) ,

1 G(N)) (v) . LG(u)]bC) . [G(u) M and [G(u)3(v)

After substitution and lambda-conversion we obtain the six matching

problems

(1-1) H C [G(N)I (x) , M , (Au) (Av) E(G(N)2 (x), (Ag) g (x)

(2-1) = (1-1)

(1-2) H (UG(N) 3 (x) , M , (?u) (A) u) jG(N)I (u) , (Ag) g (x))

(2-2) (1-2)

(1-3) H (LG(N) (M) * M , ('Au) (A v) jG(N)3 (v) , (Ag) g (x))

(2-3) H (tG(N) 3 (x) , Cl A , (7u) ()v) G(N)l (v) , (Ag) g (x))

(1-4) H(fG(x X) , M . (?u) (Xv) tG(u)l(x) , (Ag) g (x)

(2-4) H (G (N)] Wx M (- (u) (,Nv) LG(u) I(x) , (Ag) g (x))

(1-5) H (LG(x)(%) •3 M , (Au) (Av)[G(u(u) , (Ag)g(x))

(2-5) H (EG(N)J (x) , M , (u) (v) [G(u)3 (u) . (Ag) g (x))

(1-6) H ([G(x) 3 (M), M (Xu) (Av) [G(u)] (v) . (Ag) g (x))

(2-6) H ([G(N)] (x) M, (Au) (N.v) IG(u)1 (v) . (Ag) g (x))

We consider these problems to be in a push-down list. Let us

treat the top problem, (1-6) and (2-6). We must match x and N.

This results in replacing x everywhere in (1-6) and (2-6) by N

- 45 -

But then we must match M with N , which is impossible. Hence

we delete (1-6) and (2-6) from our list. Now we again treat the top

problem, (1-5) and (2-5) . Here x must be replaced everywhere

by N yielding

(1-5.1) H([G(N)I (N) , M , (Au) (v) LG(u)] (u) , (Ag) g (N))

and (2-5. 1) = (1-5. 1) . Now we let our general matching set con-

tain the term (1-5.1). Let us write this as GMS = J(I-5.I) .

Now we delete (1-5.1) and (2-5.1) from our list of problems. Next

we obtain

(1-4.1) H([G(N)] (N) , M , (u)I(v) CG(u)] (N), (Ag) g (N))

and (2-4.1) = (1-4.1) . Since (X u) (A v) EG(u)I (N) is in-

dependent of (*Au) ()v) LG(u)3 (u) , (1-4.1) is independent of (1-5.1)

Hence we add (1-4.1) to GMS getting GMS (i-5.1) , (1- 4 .1).

Similarly we add (1-3.1), (1-2), (1-1) to GMS where

(1-3.1) H(E G(N)I (M) , M , (%u) (N v) LG(n)] (v) , (Ag) g (M) .

Thus our final result is

GMS = (1- 1) , (1-2) 13i 141 151..

Notice that if the third argument of H were deleted that GMS

would contain only H(CG(n)3 (x) M (Ag) g (x))

- 46 -

This result could be obtainted very quickly by noticing that

H (w r , M , (Ag) g (x)) and

Hf(f1 !x) 3 (M) , M , (Ag) g (x))

are instances of one another (using (u) (A v) w for f)•

This suggests the following rule: If every occ' rrence of a variable

f 1.... n throughout the two terms .: be matched is with

the same arguments and is never in the scope of a quantifier or A ,

then f with its arguments can be replaced by w T where w r

has not previously appeared. As an application of this rule, consider

the following.

Example. We wish to generate GMS for the wfts

(2) G(f(x) g (y, f) x

(2) G(f (xl) ' gy ' x)

Then using the rule, g (y, f) and fI (xl) can be replaced

by variables. Notice that we could not replace f (x) by a variable

at first, since f appears without arguments in g (y, f) . We then

arrive at

(1.1) G (w 3 , w1 , x)

(2.1) G (w 2 , I , x 1)

These can now be matched in a straight-forward manner, the ultimate

result depending on tric - ,z of the variables present.

-47 -

mmmmmmn m • m

If u1 un do not occur free in D , then we can

interchange (Nul un) [D 1 (ul, u n) with D

using specia!-conversion. This raises a problem when (Au, .. , un) C

must match D and the first proper symbol of D is not A . For C

may have the form [D] (u 1 un) , or may be put in that form by

making certain substitutions for free function variables with arguments.

This situation is easily resolved by replacing D in these instances by

(Nu, un) tD I(u ... , un) and carrying on with the match-

ing. For when we match C and [D] (u.... un) we will find

if C can be put in the appropriate form.

We have not encountered the situation in the examples consid-

ered thus far, where we are matchii. two sub-w-fts whose first proper

symbols are free function variables with arguments. We consider first

an example where txie first symbols are the same. In the second example

we show how the general case can be reduced to the current case.

Example. Suppose after the beginning stages of matching we arrive

at the situation:,

(1) H (f(x,y,M) , f, g, x, y, z

(2) H (f(x,.,N) , f, g, x, y, z

Now we attempt to match f(x, y, M) and f(x, z, N).

We keep the corresponding arguments which are identical; we delete

the corresponding arguments which don't rough-match; and then we

- 48 -

delete all 2 n possible combinations of the remaining n arguments

(in this example n = 1) , obtaining 2 n matching problems in

place of the previous one. In this case we obtain

(1-1) H (fI (x, y) , (u, v, w) flI (u, v) 0 x, y, z)

(2-1) H (fl (x, z) , u, v, w) f1 (u, v) , x, y, z

(1-2) H (f2 (x), (u, v, w) f2 (u), x, y, z)

and (2-2) = (1-2) . The tildas () above the f, and f2

indicate that this process has already been performed to this occurrence

of the variable. For the purposes of matching the arguments inside the

f 's , we consider the f's as constants. Hence from (1-1) and

(2-1) we obtain

(1-1.1) H (fI (x, y) , (u, v, w) fl (u, v) , x, y, y)

and (2-1.1) = (1-1.I) Then

GMS = (1-2) , (1-1.1) j

Example. Consider the intermediate stage

(1) (f (M, H) , f, g)

(2) G (g (F, M) , f, g

Considering f as a constant, we get the following trial substitutions

for g by the method of our first matching example:

- 49 -

(A u, v) f (M, H) and) u, v) f(v, H) .

These yield

(1-1) G Cf (M, H) , f , u, v) f M, H

(2-1) (i-i)

(1-2) G (f (M, H) , f, (Nu, v) f (v, H

(2-2) = (1-2)

Considering g as a constant, we get the following trial substitu-

tions for f :(u, v) g (F, M) and (Nu, v) g (F, u) . These

yield

(1-3) G (g (F, M) , CNu, v) g (F, M) , g

(2-3) = (1-3)

(1-4) G (g (F, M) , (A u, v)g (F, u), g)

(2-4) = (1-4) .

Hence GMS is one element from each of these pairs, since they are

independent. In general we would not be done this quickly, but we

would be able now to apply the method of the previous example to com-

plete t -hatuhing.

These examples suggest in an obvious way (we hope) an algorithm

for generating a general matching set for two wfts. It is clear that the

terms in GMS are matching terms for *he two wfts. A detailed proof

so -

that GMS is actually a general matching set, has not been carried
I

out. There seems little point to that task until methods for handling

substitutivity of equality have been added.

Remark. The following derived rule holds for S5 : If we consider !he

types of the atomic symbo's as being appended as superscripts, then the

result of simultaneously replacing every occurrence of U in a theorem

of S5 by some fixed type expression, is again a theorem of S5 . As

an application of this rule we can obtain, for example, from the group

theory concerning individuals, the group theory of other mathematical

entities such as transformations, permutations, etc.

-51-

6. The Formal System S6

The system S6 is an -r-order predicate calculus which is

more powerful than S5 in that a mechanism for defining sorted var-

iables is included within the formation of S6 . This system suggests

solutions to many of the problems which arise in considering the auto-

mation of a "many-sorted" system.

Primitive Symbols of S6 The primitive symbols of S6 are

D I ~, v ,& , = A , E r t

U, V , T, F,) , , /,), < ,),(,and ,,

an infinite list of variable and constant forms.

Well-formed expressions of S6

1) Types and type containment are defined as in S5

2) U is a sort of type U

3) V is a sort -f type V

4) If C" , n- all are sorts of type

"..S n' respectively, then o -' n

is a sort of type s 1 n,

5) If x is a variable form and (r is a sort, then x/0" is

a variable of sort 0-

6) If G is a constant form and 0- is a sort, then G/6"'

is a co,.stant of sort o-

7) T and F are well-formed terms (wfts) of sort V

- 52-

8) The variables and constants of sort 0" are wfts of sort O?'

9) If B is a wft of sort V and 0" is a sort of type ,

then ('t x / o-) B is a sort of type (In the intended

interpretation, this sort, for fixed values of the other free variables

of B besides x / - , is to be the sort--or set-- of all elements

of sort o- which satisfy B(x/ o-

10) If B1 , B are wfts of the respective sorts

". n' ' (1. ' "I C) which

have the respective types n 1 n *1.

n' (' and if C i then [B] (B 1 ,

. Bn) is a vft of sort A(

11) If B is a wft of sort O , then -A xl,/ 1 ... Xn/C'n B

is a wft of sort "1 . -n . If B is a wft

of sort V , then so are (Ex/r) B and (Ax/ C") B. (Free

occurrences of x/r in the sorts within B are considered

to be bound by the initial occurrences of N , A , E , and "%

12) If c" and 6 are sorts, then i r is a wft of

sort V .

13) If B and C are wfts of sort V , then so are -- B,

(B C) , (B v C) , (B & C), and (BE C).

We shall use a metalanguage for S6 which is analogous to that of S5

We develop S6 in a more standard fashion than the previous

five systems in that we proceed from axioms by rules of inference. We

-53 -

only sketch this development.

Axioms and Rules of S6 . In addition to the usual rules and

axioms needed to handle thez logic, S6 has two axiom schema for sub-

stitution:

Al) ar _ .(Ax/)B(x/) B B(C) , where

C is a wft of sort o ; and

A2) (Ay/(T x/ w) D(x/o-)) B y/- I>. D (C)

B (C) , where here and below y / - stands for y/ g

if is the last sort which appeared with y ; hence in

this instance y/- stands for y/(x /)D (x/).

Also S6 has six axiom schema concerning sort containment:

A3) V _ U;

A4) or a-;

AS) -E Cr1" ... i. n n . O

A6) (Ex/,) B - (t x/a-) B E

A7) E"1 - 2 _ 0 1

(Ax/;-) (B ' C) ,. (Ex/. -) B

, (tx/;r) B C (x/-)C; and

A9) (Ey/,A) B (y/m) a . B (x/ (y/,) B(y/))

Analogous to the situation in S5 , we will need to have the

most general sort contained in both a- and S -- abbreviated

- 54 -

by glb (-,) in order to match x/ " and y/$

We define the abbreviations gib (q- , ') and lub (- ,)

simultaneously by

1) glb (, U) glb (U,u-) =

2) lub (a, U) =lub (U,C) = U

3) if the aDbreviations lub (,-i i and glb (o" ,

have been defined, then define

glb 4 4. - I I.... I Crn ' a- 1 , -. .. ' 'n " n)
< 'lub (-i , V.I) ,. lub or n , n.) , glb (,)

4) if the abbreviations glb ((1i) and lub (0-, &) have

been defined, then define

lub ([*,- 1, " ' i. .. ,

< glb (v- 1 , i I) ... , glb (0- n n) , lub (o-',)>

5) if glb (a- , 9) has been defined, then let

glb (("rx/0) B (x/ ro) , (t y/ I) C (y/)

= (' Tz/ glb(- ,)) B (z/-) & C (z/-), and

6) if Iub (a- , S) has been defined, then let

lub(,'t x/ d') B (x/- ,r 'ty / S) C (y/)

= (/zlub(r, S)). ((Ex/ i) .B(x/ 0) &x/r = z/-)

v((Ey/).C y/9) & y/ = z/-)

In order to demonstrate some of the advantages of S6 for semi-

automated mathematics, let us develop group theory in S6 * To facilitate

- 55-

this !et us use s with integer subscripts and free variables displayed,

to abbreviate certain sorts. We use si (-)to stand for s i with the

arguments displayed in its last occurrence. Let s 1 , s2 , and s 3

stand for < U , V , U ,U, U), and < U , U

respectively. Then let

GROUP (g / sI s h/S2 e/U , i/s 3) standforthe wft

[g/sl3 (e/U) & (Ax/U) (Ay/U) (Az/U).

1Eg /sl] (x/ U) & rg/sl] (y/U) -. [g/sll((h/s 2-3 (x/U, y/U))

& [9/s 1 ([i/s2I (x/u))I

& [h/s I] (e/U , x/U) = x/U

& f[h/s 2 1 ([i/s3 "] (x/U) , x/U) : e/U }

& [h/s 21 (h/s 2 3 (x/U , y/U), z/U)

= [h/s 2] (x/U, Ch/s2l (y/U, z/U))

Now we let s4 (h/s 2 , e/U , i/s3) stand for (' g/sl) GROUP

(g/s I , h/s 2 , e/U , i/s 3) . Then for example, s 4 (H, E, I)

is the sort of all sets which are a group under the composition H , the

identity E , and the inverse I . The sort of all elements of a group g

belonging to s 4 (h/s 2 , e/U , e/s 3) is written as s 5 (g/s 4 (-

and is defined by (-' x/U) L g / -] (x/U) .

In order to state theorems compactly we let *B stand for

(Ex/ I) BI & . .. & (Exn/0 n) Bn B where (T x, /B -i

(C- Xn/C" n) Bn are all and only the distinct sort expressions

- 56 -

in B of the form (" ...) . We are now ready to sketch the

proof that the left identity of the group axioms is also a right identity.

Notice that the group axioms do not have to be explicity stated.

i_ 6* [h/s 2' (x/s 5 (-) , e/U) = x/-.

Proof: The antecedent of this alleged theorem is

(E y /U) g/s 4 (-) (x/U) & (Ef/s 1) GROUP (f/sl, h/s 2 , e/U , i/s 3)

Now using the deduction theorem which holds in S 6 we have

1) ante. I- GROUP (g/- , h/s 2 , e/U , i/s 3) byaxiomA9.

2) ante. I [g /-I (x/ s 5 (-)) by axiom A9.

Now by standard techniques, the proof can easily be completed using

1) and 2)

Now we are in a position to appreciate one of the advantages of

S6 . Suppose we wish to replace x/- in the theorem just proved by

a constant M / S5 (G / s 4 (H, E, I)) . Before this substitution

can be made, we have to first replace h , e, i , and g by

H , E , I , and G respectively. When S6 is (semi-) automated

these four initial substitutions would be carried out automatically.

Henze S6 suggests a very straight-forward way of handling a very

sticky problem of automating many-sorted zbr-order calculi.

Using sorted variables, it is quite convenient to define new

sorts. E.g. we let s 6 (g / s 4 (h/ s 2 , e / U i/s 3)) stand

-57-

for (Tr f/s 4 (-)) (Ax/s 5 (f/-)) [g/s 4 (-) I (x/-) . Hence s6 (g/-)

is the sort of all subgroups of g . As a final example we see that

COSET (x/s 5 (g/-) , f/s 6 (-)) can be abbrev iated by

(N y/S5 (-)) I f/sl (-)] ([h/sl I (I i/s3 3 (x/-) , Y/-)

Semi-automation of S6 : We close this report with some comments and

ideas bearing on the mechanization of S 6

1) By using Skolemization, matching, and various reduction rules,

a contradiction will be sought from the denial of a wft of S6 and

previously assumed steps, theorems, and axioms in a manner analogous

to S5 .

2) In matching we might make a concession to practicality by not

using glb(o", 1") in matching x/S and y/- Rather we

might attempt to find instances and a-' of £ and o-

respectively such thdt S or 0-

3) Each distinct sort will be stored in a location and only the

address of this location will be attached to the various symbols. The

variables in 0- which are free in " but bound in the occurrence of

0- in some wft , are stored free in . The variables in 0"

which are bound in 0 are canonicalized to reduce the number of

sorts stored. When substitutions are made or bound variables are re-

lettered in wfts , new sorts may be generated.

- 58 -

4) A library of sort containments might be kept to increase the

power of substitution and matching. Sort containments arising from

implications being proved (see axiom A8) might be catalogued.

Alternatively it might be simpler to search the theorem library for suit-

able implications.

-59 -

BIBLIOGRAPHY

[ij F. B. Fitcri, imbolic Logic New York, 1952.

E2] S. jaskowski, "On the rules of supposition in formal logic,

Studia Logica, no. 1, Warsaw, 1934.

[3] J. H. Bennett, W. B. Easton, I. R. Guard, T. H. Mott,

Introduction to Semi-automated Mathematics: Section

One: A Programming Language for Natural Deduction

AFCRL 63-188 (Contract No. AF 19 (628) - 468), 1963.

[4] J. H. Bennett, W. B. Easton, I. R. Guard, T. H. Mott,

Semi-automated Mathematics: SAM III, report in

preparation for Air Force Cambridge Research Laboratories

(Contract No. AF 19 () -)

[5) J. H. Bennett, W. B. Easton, J. R. Guard, T. H. Mott,

Introduction to Semi-automated Mathematics:

Section Two: Axiomatic Theorem Proving, AFCRL 63-188

(Ccntract No. AF 19 (628) - 468), 1963.

L6J S. C. Kleene, Introduction to Metamathematics, New York, 1952.

- rAJ-

