\‘. PN ("?"c'\
s =
[ H ~ C ¢
N
<
N
"
< N
o = L -
/(v [ .
a
%
N I R
i3 N N ¢
a N ot
O & .- N ’
LA &
> #
¢ a
. ° Q > . @
N E
- kg
@ o0 N
~
¢ ~ < B
- &
<
N o 4 ”
B
o IR . PN
IS [
o AN < ~
. B
. K .
° R N S
¢ ~ ~ I
N . : - [0
B PR
PR U ¢
i
.© o v - .
W " '
v .
< =
o~
< S o O A >
, '.3; - i — -
° v N .
A\ : !

'ﬂSRi: Research Report No, 71
28 June 1964
A,

K[| 25

Departmazit of the Navy
UNDERWATER SOUND REFERENCE LASORATORY

< @ >
v R
o LS R : .
o N /‘ - A
S : ‘
o R B "
@ o 3 ! < ¢ . e ¢
»0 , , °,,“ @ ‘
C‘ 'Lf e
mvw Q il r .
- < -
.. f‘v‘g“ o @ N . S N
° ¢ - . i -
<
o
< = -
, a < DA . N
0O .o o N P < N
N » ihe . <
Y % L\\ ~ > = ~
~ N .
2 2 o - o ) .
(4 0 @
. - o, o .
“ @ ¢ : “
S o - L Y %
@ < I
4 v . °
7 o, e &
- e - ¢ & - -
:) o R -
wee v ¢ [ . .
N o . v - .
o L b
) DY > . )
o & e, . - . . _
¥ z ~
~ P \
N . « N . <
~ o <t .
. ° “ ’ .
G 2 i
- X
-~ © N [4
R
P 2 ~
© - -
¢ .
\\ ~ “ - 4
2 .
< M
t s . ”
P . . . -
TS e -
“ : k4 -
s . - -
. N
4 ‘3‘ ' < ~ R
<y & . N
v e . - .
g -3 R4 ks ° v, . ;
~ R \r() r ¢ re
v - < ',

Offic of Naval Research

o

P O Box &;37 , o , Orlando, Florida
o “ ” %,G v ¢ Yooe e - . ‘ ' . .
. .o 8 PR ¢ - .
0‘ L “ R “ 3. ) . .
2 . ¢ < 40 ‘ ° o7
‘ - v "\U o ’ " 3 -




mscumn

Z @
Ogmy’

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.




ABSTRACT

The composition of pulses and their use in underwater
sound measurements are examined from a nonclassical view-
point. The multiple aspects of the complicated subject of
pulse modulation are treated with particular consideration
for the practitioner rather than the mathematician or the
theoretical physicist.

Exception is taken to the following generally held
notions concerning pulsed measurements: 1. If the response
of the device being measured is to approach the steady-state
condition, the number of cycles in the driving pulse must
equal the Q of the driven device at the operating frequency.
2. The buildup and decay times of the pulse are equal.

3. The frequency of the received signal is the same as that
of the transmitted signal.

FOREWORD

The material in this report was originally compiled as
working notes for employees at this laboratory, and was not
intended for further distribution. Because of widespread
interest in the subject, however, and numerous requests for
the material in its present form, it is now being published
as a USRL Research Report without extensive revision. It is
hoped that the information will be useful in this form.
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PRACTICAL ASPECTS OF PULSED SOUND MEASUREMENTS

INTRODUCTION

Pulsed ¢ound techniques have been used for calibrating and testing
underwater sound transducers and materials for about 20 years. Patent
No. 2,451,509, "Testing Devices for Sound Projectors," was issued to
0. M. Owsley in 1948 for this evaluation method. The technique is used
whxn interference from boundaries makes c-w methods impracticable.
Boundary interference is eliminated by conrecting the hydrophone (or
"gating” it) only while the pulse arriving by the straight-line path is
impainging on the hydrophone. At all olher times, when interfering pulses
are arriving, the hydrophone measuring ci:cuit is inoperative.

The chief disadvantage of the pulsing ‘echnique is that a pulse con-
sists of a spectrum of frequencies, whereas a c-w signal may contain only
one frequency. It i1s the effect of the filter bandwidth, the pule¢~ length,
and the rulse repetition rate on this spectrum that causes most of the
prcblems in pulse measurements.

If 311 the equipment and conditions for pulsed measurements satisfied
the ideal conditions, there would be little reason for this report. If
“"ideal conditions" existed, the pulse would contain the number of cycles
requiredc to approximate a steady-state or c-w condition in the device
being measured. All transducers and measuring systems would, under ideal
conditions, possess flat frequency response characteristics so that pulse
buildup would be instantaneous upon initiation and the decay would be com-
plete and immediate upon termination of the excitation. The satisfaction
of these improbable conditions would place the pulsing technique on an

elementary level equivalent to making c-w measurements in a large body of
water.

Violation of these ideal conditicns is always to be expected, however,
when measurements are made in a bounded region where sidewall reflections
or unwanted diffraction from reflecting plates restricts the pulse length
to a small number of cycles at low frequencies. This paucity of cycles
always causes considerable doubt as to whether an approximate c-w state
has been established. Suspicions about inaccuracy of test data may be
allayed by a study of the pulse composition and an understanding of the
theoretical limitations imposed by the pulse method of measurement. It is
the purpose of this report to present such a study.

Much excellent material has been published during recent years on the
analysis of circuit transients. In fact, one 300-page text on pulses gives
200 references to other textbooks and published techni.al papers. Many
articles have been written concerning television and radar systems, but




the use of pulsed wave trains to test sonar devices is mentioned only
occasionally, although this use has become widespread.

To cover the entire theory of pulse modulation in & research report
is not only infeasible, but impossible. In fact, it might be more help-
ful to omit the theory and to discuss only its application to specific
underwater sound prablems. A cursery discussion of pulses is presented,
however, as a review for those already familiar with the subject and as an
introduction for others.

The transient oz pulsed behavior of networks can be analyzed by a
number of methods. Some of them are:
1. Differential equations (classical method)
2. Heaviside operational calculus
3. Fourier and Laplace transforms
4. Fourier integral

The Fourier integral methed was chosen for discussion here, not only
for its relative simplicity, but also because electric waveforms rather
than analytical functions can be dealt with. This method gives the engi-
neer an immediate mental picture from which an approximate graphical
colution can be obtained without laborious calculation.

THEORY

In 1822 Fourier stated his important mathematical theorem which, for
our present purpose, may be expressed as follows: "Any continuous single-
valuea periodic function can be expressed as a summation of simple harmonic
terms having frequencies that are multiples of that of the given function."”
The series that results from Fourier's theorem may be expressed:

x = A0 + A1cos wt + Azcos 2wt + ...t Arcos Twt ...
+ B1sin wt + stin 2wt + ... + Brsin Tt oo

(1)
where x is the instantaneous value of the function at time t; the coeffi~
cients A4, Ap, By, etc., are the arbitrary maximal amplitudes of the termsj

and w = 2uf, where f is the fundamental frequency of the function.

As an illustration, Fig. 1a represents the waveform produced by a
woman's voice pronouncing the vowel "i." A Fourier analysis of the wave,
depicted in Fig. 1b, shows the amplitude of the fundamental compared with
that of fourteen harmonic frequencies. There are probably many higher
harmonics that are not shown in this figure.

The pulse modulating envelopes that occur in underwater sound testing
lie between the limits of square and triangular waves. Triangular wave
modulation is closely approximated by the cosine-squared waveform shown in
Fig. 2 together with the square’ and half-cosine wave shapes. The reason
for choosing these three forms will be brought out in the section "Essentizl
Bandwidth."
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produced by voice. of voice waveform.

The authors of various texts on pulses use two methods of presenta-
tion. In Fig. 2, zero time is shown at the center of the pulse. This
method is used with the concept of negative frequencies, which will be
discussed later. The figure could have been plotted with zero time at
the start of the pulse, thus changing the curves from cosine to sine
functions. The choice of presentation is largely arbitrary, but there is
some preference for starting the pulse at zero time. In this report,
emphasis will be placed cn discussion of the square or rectangular pulse,
with only occasional reference to the other two types. It is well, how-
ever, tc recognize the existence of the other modulation envelopes because
of their frequent occurrence. When short sequential pulses are started
at different points on a sinusoidal wave, the modulation envelope will
vary from pulse to pulsc.
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Evaluation of the constants in Eq. 1 gives the analytical form for a
square wave with zero amplitude occurring at zero time as shown in Fig. 3a:

x = (4a/m)(sin wt + (1/3)sin 3wt + (1/5)sin 5wt + ...] (2)

For zero time occurring at the midpoint of the maximum of the square wave
as shown in Fig. 2, the analytical form would be:

x = (4a/m)[cos wt - (1/3)cos 3wt + (1/5)cos 5ut - ...] (2a)

The two formulae give equivalent results.
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Fig. 3a. Approximation to a square Fig. 3b. Twelve more harmonics

wave by combination of the primary added to Fig. 3a.

freyuency and two harmonics.

Only the fundamental and the first two odd harmonic terms are plotted
in I'ig. 3a, but the resemblance of their sum to a square wave is readily
seen. Some residual ripple still exists even after the first fifteen odd
terms are summed as in Fig. 3b, but as still higher harmonics are added,
the synthetic curve approaches a square wave except at the points of dis-
continuity. At these points, little "towers" appear. The formation of
these towers i3 called Gibb's pheromenon in the Fourier series. For a
function whose period is 2w, the amplitude of these irregularities is, in
general, 0.0895 of the square wave amplitude. According to Goldman (1],
"These towers are actually equal to the negative of the sum of the terms
beyond the last term used in making the graph of the function from its
Fourier series. As the number of terms used is increased, the total area
of the tower decreases; but, instead of decreasing in height, the tower
becomes narrower. However, this is not surprising, for as the limiting
process progresses, the tower represents higher and higher frequency terms.
The limiting process of summing the Fourier series thus has no necessary
effect on the height of the tower, even though it continually decreases
its area."

The first term Ag in the expression for a Fourier series (Eq. 1) is a

constant that can represent a d-c component that, when added to the series,
displaces the square wave upward so that the bottom of the square wave
coincides with the base line. The square wave then becomes 2 square pulse
for modulation purposes.

1E
0 { {- —__—1_— Fig. 4a. Square pulses at the
repetition rate 60 pps.

4t 7-16-} MIPE e

TIME ~~

Typical pulse shapes used at the USRL are shown in Fig. 4a. The repe-
tition rate is ordinarily the power line frequency (60 cps) or, occasion-
ally, some multiple or submultiple thereof. The proximity of reflecting




boundaries usually limits the length of the pulse for transducer tests to
approximately 1 msec. The primary frequency of the spectrum of this 1-msec
pulse is 500 cps, comprising only the first half-cycle of the square wave
shown in Fig. 3. In this report, the frequency is described as "primary"
only when explicit reference 1s made to the lowest frequency contained in
the spectrum of the square pulse.

The duty cycle K is the ratio of the pulse length T and the time
interval T between initlation of successive pulses, which is the recipro-
cal of the repetition rate. (Note: K is arbitrarily defined in some
texts as the inverse nf this ratio.) For Fig. 4a,

K = 1/T = 0.001/0.0167 = 0.06 = 6%.

When K is considerably less than one, the relative amplitude An/k of

any spectral frequency (n) can be calculated by the following formula from
Terman [2],

A /K = [2E sin(rKn) 7/(nkn), n=1,2,3 ... (3)

where E is the amplitude of the square wave. The absolute amplitudes of
these frequencies are obtained by multiplying the relative amplitudes by K.
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Fig. Ab. Normalized plot of the Fourie. .pectrum
for square pulses. For pulses of Fig. 4a, the

spacing of the vertical frequency lines represents
60 cps.

Figure 4b can be used t¢ analyze a square pulse of any length. The
units of the abscissa are cycles. When these units are divided by the
pulse length of the square wave under analysis, the abscissa then repre-
sents the spectral frequencies making up the square pulse. The relative
amplitudes of these frequencies in terms of the height E of the square
pulse are given by the crdinates. The plotting of spectral lines below




the abscissa indicates reversal of phase. This phase reveisal also was
shown in Fig. 3a midway between O and T. When the primary frequency of
Fig. 3a is at its peak, the 3rd harmonic maximum is 180° out of phase and
the 5th harmonic maximum is again in phase, in conformity with Eq. 2a.

In the example for a 1-msec pulse, the unit cycle of Fig. 4b becomes
1/0.001 = 1 kcj the vertical lines are then arbitrarily ~paced at
0.06/0.001 = 60 cps, the repetition rate for this example. If the pulse
length were increased tenfold, the first intersection of the curve with
the abscissa would represent 100 cps, and a much narrower band of fre-
quencies would contain most of the pulse.

The maxima of the lobes appearing at 1.5, 2.5, 3.5, etc., are the
relative levels of the third, fifth, and seventh harmonics, respectively,
that make up the square pulse shown in Fig. 3a. Notice the absence of
spectral frequencies at points on the abscissa labeled 1, 2, 3, etc.,
representing, for a 1-msec pulse, integral multiples of 1 kc. These are
the even h:rmonics of the 500-cps primary frequency, and also are shown
by Eq. (2) to be absent from a square pulse.

The maximal amplitude of each harmonic is its numerical reciprocal
multiplied by the amplitude of the primary frequency. The amplitudes of
the harmonics are important when steep response slopes, such as occur in
the characteristics of typical electroacoustic projectors,cause asymmetric
amplification of the sidebands. More explanation may be worthwhile.

The primery frequency of the 1-msec pulse is 500 cps and lies, there-
fore, midway between O and 1 k¢ in Fig. 4b. Its amplitude relative to
that of the square wave is AE/n or 1.27E as was shown in Fig. 3a. The
amplitudes of the 3rd, 5th, 7th, etc., harmonics are, respectively,
(1.27/3)E, (1.27/5)E, (1.27/7)E, etc. The amplitude of the square pulse
equivalent to the spectrum of Fig. 4b is 1.27E multiplied by n/4, or E.

When this square pulse is used to modulate the usual sinusoidal wave,
the fundamental frequency of the modulated wave is superimposed on this
plot at zero frequency. Sum and difference frequencies then appear on
elther side of the modulated frequency and a mirror image of Fig. 4b
appears to the left of this chart with negative frequenciesj that is,
frequencies that are subtracted fro~ the modulated frequency. This is in
agreement with the superposition theorem [3]. Briefly, this theorem
states that the spectrum o’ an amplitude-modulated wave (having any enve-
lope) is identical with the spectrum of its own envelope, except that the
amplitude-modulated wave is symmetrical about the carrier frequency and
the modulation envelope is symmetrical about zero frazquency.

Some authors prefer the method of presentatiun of Fig. 4c, which shows
negative numbers--hence negative frequencies--to the left of zero on the
abscissa. Because both plots furnish the same infoxmation, a choice may
be made on the basis of individual preference.
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Spectral frequencies for the half-cosine and cosine-squared pulses
are plotted in Figs. 5 and 6 for comparison with the square pulse spec-
trum of Fig. 4b. Attention is called to the decreasing importance of the
harmonics and the increasing bandwidth of the major lobe as the rise and
decay times of the pulse lengthen.

G //ﬁ\\L__ Fig. 5a. Half-cosine pulses at

e TeimBtE —m the repetition rate 60 pps.

i
i —Te 16-§-mnc ——————

TIME ——

The major lobe of the cosine-squared pulse of Fig. 6b is strikingly
similar to the probability curve, exp(-x2). A composite plot of the three
spectra is presented in Fig. 7 using the concept of negative frequencies.

For easier mathematical manipulation; some authors, for example,
Cherry [3], prefer to describe a pulse as composed of both positive and
negative frequencies. In elementary a-c theory, sinusoidal quantities
are sometimes depicted as the projection of a rotating vector onto some
fixed axis. This projection varies sinusoidally with time, so that the

rotating vector may be regarded as the generator of a sine wave.

The vecter is imagined as lying in the plane of a coil rotating in
a uniform magnetic field, so that the projection of the vector gives at
every instant the amplitude of the emf induced in the coil.
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Another and more logical way of depicting a-c vectors is to use a
conjugate palr of vectors, each of which is half the length of the single
vector, to maintain the proper ampiitude. These half-length vectors are
assumed to rotate in opposite directions at the angular speed w, and the
sum of their projections on the real axis varies sinusoidally, but the sum
of the projections on the imaginary axis is always zero. Because these
vectors rotate in opposite directions, their angular speeds must be #w,
and this condition gives rise to the idea of "negative" frequency. The
use of such negative values of freaquency in calculations is quite legiti-
mate and gives practical results, just as does the use of j or imaginary
numbers in impedance analysis.

TREATMENT OF DATA

A communications channel must satisfy two essential conditions to make
the waveforms of the input and output signals identical (apart from prob-
able difference of level)s The channel must be linear, and it must be
completely nonselective with regard to frequency. When a given waveform
is analyzed into a spectrum of sinusoidal terms, that particular spectrum
(of amplitude and phase-angle components) is unique for that waveform.
Hence, if the amplitudes or phases of these components are disturbed by
selective circuits, the waveform of the output signal wi)l be modified.

Sullivan [4] states: "The response of a network to a transient may
be determined from a knowledge of the complete steady-state characteris-
tics, if the amplitude and phase shift distortion of every(Fourier)sinu-
soldal component in the applied transient, imposed by the network's
characteristics, be taken into account."

The calculation of transient response requires three discrete proces-
sest (1) analysis of the applied transient into its Fourier spectrum;
(2) modification of this spectrum according to the characteristics of the
network; and (3) summation of all the component sinusoidal waves in this
modified spectrum. Analysis of the transient has already been covered in
some detail. The modifying process is dealt with in a later section. 1In
this report, where a rectangular pulse modulates a sinusoidal wave, the
phase shift distortion of every (Fourier) spectral component is neglected
because measurements to determine this phase shift become exceedingly
involved, and the computations become complicated and tedious. Also, the
phase shift in the experiments was probably minimized by the narrow fre-
quency range covered and could be neglected with an acceptable error.
Only the amplitude distortion of the sinusoidal sideband components is
considered. The calculations and experimental data are in reasonably
good agreement, so this method of treatment seems justified. The ampli-
tude of the center of the modified (and probably distorted) square pulse
is obtained by arithmetic addition of the in-phase components above the
abscissa and subtraction of the cut-of-phase ones below.. The sum
approaches theoretical amplitude only when an infinite number of points
is considered.

10




ESSENTIAL BANDWIDTH

The partial spectrum of a rectangular pulse modulating the carrier
frequency 2.4 kc is shown in Fig. 8. The inclusion of much higher pulse
harmonics than the fifth shown in the drawing would be necessary to
approximate the true square wave in Fig. 3a. The absolute amplitudes of
the spectral frequencies at 60-cps intervals are represented by the
heights of the vertical lines, which were computed by multiplying the
relative amplitudes by only 3K to compensate for the negative or lower
sideband frequencies that are present below the carrier frequency. The
circles of Fig. 8 represent the amplitudes of these frequencies as meas-
ured by a narrow-band harmonic wave analyzer. The values for frequencies
below 540 cps defied accurate measurement, but most other values are in
excellent agreement with theory.
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Fig. 8. Theoretical Fourier spectrum of a rectangular pulse modulating
the frequency 2.4 kc, compared with experimental results.

The Appendix to reference [5] contains the statement: "A bandwidth
equal to the reciprocal of the pulse length will produce some pulse dis-
tortion, allhough ithe energy in the pulse will be essentially the same as
for a broad band system. Twice this bandwidth is sometimes called the
essential bandwidth for pulse transmission." This is shown in Fig. 8 as
the frequency band of 2 kc between -1/7 and +1/T which includes only the
primary frequency of the square pulse.

This definition of essential bandwidth probably originated in radar
theory for search-type systems [6] and was transferred verbatim to acous-
tical calibration procedure. The design of radar systems had two require-
ments: (1) maximum signal-to-noise ratio, which occurs at a bandwidth
only slightly less than 2/7; and (2) highest peak signal voltage. The peak
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amplitude of the modulating envelope is developed by eliminating all fre-
quencies below -1/7 and above +4/%. There remains then only the primary
sine wave shown in Fig. 3a, which apparently increases the amplitude of
the envelope by 2 dB when compared with the square wave. When, however,
a square pulse is used for modulation, a bandpass of 2/7 increases the
envelope only 1 dB. This amplitude is obtained by adding the spectral
frequencies shown in Fig. 4b. For narrower or wider bandwidths, the
expected amplitude changes depend on the positive or negative phases of
the added bands of harmonic frequencies. For example, a bandwidth 1/7
decreases the amplitude by 1.0 dB; a bandwidth 4/~ decreases it by 0.9 dB;
a bandwidth 6/7 increases it by 0.5 dB. These are the levels only at the
midpoint of the pulse, and are not necessarily the levels indicated by a
peak-reading meter or recorder.

This possible increase in envelope amplitude is readily demonstrated
by varying high-pass and low-pass filter cutoff values toward the modu-
lated frequency. Peak amplitudes occur with the elimination of frequency
bands outside #1/7. A further narrowing of the bandpass to tbe band of
frequencies 1/7 causes the amplitude of the modulating envelope to
decrease approximately 1 dB below the level of the square wave pulse. A
decrease of like magnitude occurs for a resonant transducer driven with a
pulse length of (0.7Q + i) cycles [7].

The bandwidth essential for retention of the original square pulse
shape is infinite but, in most cases, a bandwidth ten times the so-called
"essential bandwidth" is sufficlent. That is, the bandwidth for negli-
gible distortion of pulse shape should be twenty times the reciprocal of
the pulse length [8].

When the signal frequency is modulated with the half-cosine pulse
shape of Fig. 5, a bandwidth of only 3/7 causes a positive 3% error in
voltage measurements. When the bandwidth is decreased to 2/1, the summa-
tion of the spectral frequencies of Fig. 5b shows the pulse amplitude to
be decreased by 1 dB.

A similar analysis of the cosine-squared pulse shows that the band-
width 4/7 causes a positive error in pulse amplitude of only 1%, but that
decreasing the bandwidth to 2/1 decreas2s the pulse amplitude sufficiently
to cause an error in measurement of 2 dB.

TECHNIQUE FOR MEASUREMENT OF SPECTRUM

All measurementis of the spectiral frequency amplitudes were made by the
repeated pulse excitation of narrow-band filters at the repetition rate
60 pps. Two harmonic wave analyzers were used interchangeably, one manu-
factured by Hewlett-Packard Company and the other by General Radio Company.
Some data were taken using the filter in an automatic transmission meas-
uring system. The passbands ranged from 7 to 15 cps, which allowed com-
plete separation and measurement of individual sideband frequencies. All
measurements were relative, with surprisingly high accuracy over a 34-dB
range as shown in Fig. 8, where the measured and calculated levels are
compared.
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a. Wide passband setting. b. Narrow passband (Q = 343).
Fig. 9. Response of harmonic wave analyzer to a 1-msec pulse.

The buildup and decay of a single pulse examined at the output of a
heterodyned multistage spectrum analyzer is of interest, if only academ-
ically. Figure 9 illustrates the variation in output signal with the
maximum #nd minimum settings of the continuously variable passband in the
Hewlett-Packard harmonic wave analyzer. Figure 9a shows the rise-decay
envelope initiated by the 1-msec pulse that appears as a very narrow line
located approximately two small divisions to the right of the first ver-
tical line. Figure 9b shows identical conditions except for a narrowing
of the frequency passband and a slight displacement of the pulse to the
left. The oscilloscope sweep time for the pictures was 0.25 second, mak-
ing the time between vertical marker lines 25 msec. The discussion that
follows applies to both figures, but only Fig. 9b will be used as an
example of phase delay, because of the larger time lapse between the input
pulse and the maximal amplitude of the output of the analyzer.

The picture shows that the analyzer output is virtually zero for
5 msec after the pulse has been applied to the input. It also shows that
the maximal output does not occur until 50 msec later. This retardation
is similar to that occurring in multistage amplifiers where the output
response signal remains substantially zero for a very long time and then
starts to build up as though the wavefront has a definite (virtual) speed
through the amplifiers. The maximal output is the buildup of the modu-
lated fundamental frequency and shows the greatest delay. The 45 milli-
seconds prior to this maximum contain the sideband frequencies above and
below the center frequency, consequently show less retardation and more
attenuation. The calculated Q of the wave analyzer was 343. This figure
is the quotient of the operating frequency, 2400 cps, divided by the band-
pass, 7 cps. This computation follows from one definition [5] that
states: "Q is the ratio of the system's resonant frequency to the fre-
quency interval between its quadrantal or half-power frequencies..."
Further, "...Q is a measure of the duration of the transient and is used
in specifying the build-up or decay time of the resonant system under
pulsed excitation conditions."

The voltage or current decay in a resonant electrical circuit usually
is expressed as [9]:

Ay = A; exp(-Rt/2L),
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where Ay = amplitude at time t, Ay = initial amplitude, R = circuit resist-

ance, and L = circuit inductance. Without revision, the negative exponent
in this expression does not lend itself well to acoustical computations.
If both numerator and denominator of the exponent are multiplied by nf,
the result is

wfRt/(2wfL) = (R/X)nft,
where R/X = 1/Q, and ft = number (n) of cycles.
The formula for the transient decay then becomes
Ay = Ay exp(-mn/Q),

and the transient buildup is obtained by subtracting A, from one. As an

examples when n = Q, exp(-w) = 0.04, and the pulse amplitude during this

period either has decayed to 4% or has built up to 96% of its steady-state
level.

¥hen n = 1, the exponent n/b is called the logarithmic decrement {log.
dec.) of the circuit and is designated by the symbol 6. It represents the
ratio of successive maxima of the current in an oscillatory discharge.
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Fig. 10a. Comparison of rise and decay times in a high-Q circuit.

A theoretical curve comparing the rise time with the decay time of a
1-msec pulse at the frequency 2400 cps, with a circuit Q = 343, is shown
in Fig. 10a. The pulse has decayed to 4% of its peak (not steady-state)
amplitude in 143 msec (Q/f seconds), although the buildup time was only
1 msec. The buildup time exactly equals the decay time only after the
pulse has attained steady state, which theoretically is never reached,
but is only approached asymtotically. In general practice, the steady-
state condition is assumed to exist after a period equal to Q cycles.
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Fig. 10b. Buildup of repetitive 1-msec pulses to steady state in a
circuit of Q = 343.

The large time constant or long signal-storage time of a high-Q cir-
cuit permits the summation of repetitive short pulses when the output of
an oscillator is gated to maintain a4 constant cyclic phase relationship.
A graphical representation of the builldup to steady state of repetitive
1-msec pulses at the rate 60 pps in a circuit of Q = 343 {s shown in
Fig. 10b. The ordinate is labeied so that the average pulse ampliitude
can be compared directly with a ¢-w signal when measured by the same wave
analyzer. The average pulse amplitude represented by the horizontal
dashed line in the upper right-hand corner of the chart shows the condi-
tion where the buildup of an individual pulse in 71 msec exactly equals
the decay of the preceding pulse in 1/60 second.

The average of the peaks and valleys of this sawtooth wave shows this
quasi-stable state to be approximately 24.3 dB below the c-w signal level,
whereas actual measurements showed it to be 25.5 dB lower. The prediction
from the theory 1s that the diifference should be 24.5 dB (= 20 log K),
which makes this graphical representation appear reasonable. The inertia
of a meter movement or a recorder pen was sufficient to produce a steady
reading between the bottom and the peak of the sawtooth wave.

This same method of specirum amplitude measurement was described in
{10] for the harmonic analysis of repetitive transients with graphical
input data.

The peak voltage at the 9th pulse may be computed from the expressions
Eg = (1 = e72:48)[1 + e 408 + ¢-2(400) 4 ¢-3(400) + .. 4 o-8(400);
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The first expression in parentheses is the amplitude level of the 1-ms.c
pulse at the frequency 2400 cps. The second expression is the sum of tne
pulses after thev have decayed for subsequent periods of time.

The abscissa in Fig. 10b is divided into time intervals equal to the
raciprocal of the repetition rate and designated as T earlier in this
report. Between the 8th and 9th intervals, a quasi-steady state condi-
tion is approached. Particular attention is called to this occurrence
because the buildup has been attained with far fewer than the Q cycles
that theory predicted were necessary; in fact, with n = KQ cycles. If ft
(frequency times time) is substituted for n cycles, the formula again
becomes applicable, because 2400 x 9/60 is approximately equal to the cir-
cuit Q. The foregoing warns that a high-Q circuit approaches a quasi-
steady state in a time interval that would contain Q number of cycles with
c-w although the actual number of cycles present may be far less than Q,
because the sigral during the buildup time is a series of short pulses.

FREQUENCY SHIFT OF SPECTRUM, CALCULATED

When the pulse whose spectrum is shown in Fig. 4b is centered on a
rising response curve (response level increasing with frequency, as when
measuring below the resonant frequency of a transducer), the upper side-
band frequencies are amplified more than the fundamental and become pre-
dominant for an ungated peak-reading detector. ("Ungated" measurement is
defined as the measurement of a pulse in its enti ety; it is not sampled
by a receiving gate of shorter length than the pulse.)
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Fig. 11. Normalized cuxves for changes in amplitude and displacement
of spectral frequencies for a square pulse with asymmetrical sideband
amplification. Curves are for response increases of O tc 5 dB.
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Figure 11 shows normalized curves for both the cpectral frequency dis-
placement and the spectral amplitude when the rectangular pulse wave is
subjected to varying degrees of asymmetrical sideband amplification. The
lowest curve is the upper portion of the main lobe of Fig. 4b, extending
from the amplitude 2E at zero frequency to approximateiy G4% of 2E at
fT=0.5. The curve 1s expanded in length for increased legibility, and
the ordinate is plotted in decibels to simplify its use. For the bottom
curve, the network's characteristics are flat; the slope is 0 dB. On a
falling response curve (response level decreasing with frequency, as when
operating above the resonance of a transducer) a mirror image of these
curves would appear to the left of zero.

The abscissa is the product of frequency and pulse length. This method
of presentation normalizes the curve for any length of pulse. The fre-
quency band is obtained by dividing the length of the abscissa as labeled
by the length of the pulse in seconds; frequency = 0.5/T. The curves

labeled from O to 5 dB give the increases in spectral amplitude over the
frequency band shown.

For a 1-msec pulse the entire abscissa length of Fig. 11 becomes
0.5/0.001 = 500 cps. When this pulse exists on a slope that rises 2.5 dB
in 500 cps, imagine a curve midway between the curves for 2 dB and 3 dB.
The maximum on this interpolated curve lies at the point (150 cps, 0.5 dB),
and indicates that the pulsed fundamental frequency has been shifted to
the adjacent spectral frequency of greatest amplitude and higher than the
fundamental by 150 cps, and that some spectral lines have been increased
in level by 0.5 dB. A transmitted rectangular pulse wave modulating the
frequency 2400 cps, whose partial spectrum was shown in Fig. 8, would be
received at the frequency 2550 cps. The increase in amplitude level of
the ungated pulse would probably exceed 0.8 dB. This value would be com-
puted by the addition of all the spectral frequencles shown in Flg. 12,
which represents the distorted spectrum.

The foregoing method applies equally well to a slope of opposite sign,
where the response level decreases with frequency. Then, however, curves
may be visualized as shifting the maximal spectral amplitude of Fig. 8 to
a lower frequency. The amplitude of the spectral frequencies would still
be increased by 0.5 dB, but the pulse would be received at the lower
frequency 2250 cps.

The frequency is increased on a positive slope and decreased on a
negative slope. At the peak of the curve (point of inflection) the cir-
cult or transducer has the characteristics of a band-pass filter.

FREQUENCY SHIFT OF SPECTRUM, EXPERIMENTAL
Two available transducers (types J9 and XQB) having a combined posi-
tive response slope with increasing frequency were rigged 2 meters apart

at 3 meters depth in open water. The type J9 was driven with sixty 1-msec
pulses per second at the frequency 2.4 kc.
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The combined response of the two transducers is shown by curve (1) in
Fig. 13, with the voltage amplitudes plotted relative to the response
measurement obtained at 2.4 kc. The curve shows a positive slope of 1.55
from the reference frequency to the frequency 500 cps higher. That is,
the combined response is 3.8 dB higher at 2.9 kc than at 2.4 kc.

The received spectral frequency output from the measuring hydrophone
was recorded at 60-cps intervals with a narrow-band filter over a range
sufficient to show the frequency displacement of the pulse spectrum and
the increased amplitude of the harmonic frequency bands. From the curve
of Fig. 11, a spectral frequency shift of 250 cps is to be expected for a
1-msec pulse. This theoretically predicted shift is in agreement with the
240 cps shown by curve (1) of Fig. 14. Summation of all the spectral fre-
quencies enclosed by the curve yields an increase of 1 dB in the amplitude
of the pulse, whereas the normalized chart predicts 1.2 dB. This discrep-
ancy probably is caused by the flattening of the combined response curve
above 3 kc. This flattening permits the upper harmonic bands to be far
less distorted than if the curve had continued its steep upward slope.
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Fig. 14. Spectra of ungated and gated pulses with asymmetrical
sideband amplification.

Curve 2 of Fig. 14 shows the result of gating the 1-msec transmitted
pulse by a 0.5-msec received pulse so that only the central portion of the
transmitted pulse is used in the measurement. Thus, the distortion terms
appearing at the leading and trailing portions of the pulse were elimi-
nated. The frequency displacement is then barely discernible, and the
summation of all the spectral frequencies indicates zero error in amplitude
at the pulse center.
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Fig. 15, Spectral frequency content of various portiocns of
a pulse with asymmetrical sideband amplification.

The frequency and amplitude scales of Fig. 14 are expanded in Fig. 15
to show the location of the spectral frequencies in the pulse that cause
the frequency displacement. Curve (1) is the peak of the 0.5-msec received
pulse shown as curve (2) of Fig. 14; it demonstrates the nearly perfect
symmetry obtained above and below the center frequency 2.4 kc. Curves (2)
and (3) of Fig. 15 result when the gate is moved so as to sample the
beginning and the end, respectively, of the pulse; they show the equality
of the amplitude-distorted spectral frequencies.

The oscillograme in Fig. 16 show the distortion of the pulse and the
location of the gate for the measurements of Fig. 15. The vertical grati-
cule lines represent time intervals of approximately 0.167 msec. The
presence of the high-frequency components is readily recognized by the
short wavelengths at the beginning and end of the pulse as shewn in the
upper and lower traces.

This experiment was repeated with two type F22 transducers currently
used in the anechoic tank for low-frequency reciprocity calibrations.
Their combined response level plotted relative to their level at 2.4 ke

is shown by curve (2) of Fig. 13. Meacursments were made &g previcusly
described except that the pulse repetition rate was doubled, which spaced
the spectral frequencies at 120-cps intervals and doubled the magnitude
both of K and the absolute components. The resulting measurements of the
entire pulse and of the gated pulse, plotted in Fig. 17, show striking
similarity to those of Fig. 14. Greater care was exercised in this second
experiment to obtain more nearly exact pulse lengths of 0.5 and 1 msec,
This exactness is demonstrated in Fig. 17 by the crossover at 4.4 kc of
the two curves at zero level. That is, the first zero crossing for the
0.5-msec pulse is at the same frequency az the second zero crossing for

the 1-msec pulse.
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Fig. 16. Variation in 0.5-msec
gating of a 1-msec pulse at 2.4 kc.
Grid length = 1.67 msec.

Summation of the amplitudes of the spectral frequencies in the ungated
1-msec pulse again indicates an error of +1 dB in the amplitude of the
square pulse. This error is eliminated in the lower of the two curves
where the pulse was gated at its center. Once again it is demonstrated
that properly gating the pulse eliminates the frequency displacement
caused by the sloping response characteristic.

COMPARISON CALIBRATIONS USING SIDEBANDS

A study of Fig. & reveaied the pussibility of using a particular
spectral frequency in a lower haimonic of & rectangular-wave modulated
frequency for the sound source in the comparison calibration of a non-
resonant hydrophone. This method would allow the use of short pulses at
low frequencies, thus eliminating sidewall reflections that would occur
with c-w transmission., These lower f{requencies cannot ordinarily be
pulsed, because each pulse may then contain only a fraction of a cycle.
By lowering to 2.0 kc the modulated frequency 2.4 kc shown in Fig. 8,
however, the higher-amplitude spectral frequencies in the first lower
harmonic could be shifted downward to apprcximately 500 cps. 1t would
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then appear feasible to use this lower frequency as the sound source. A
fundamental or carrier frequency of 500 cps cannot be used with the pulse
length 1 msec because the pulse would then include only half a cycle.
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Fig. 17. Spectra of gated and ungated pulses with asymmetrical
sldeband amplification.

A 1-msec pulse at the frequency 2 kc, the repetition rate 60 pps, and
the available power 50 watts was used to drive a type J9 projector. A
standard and an unknown hydrophone were spaced one meter from the projector
and their sensitivities were compared by measuring the amplitude of spec-
tral frequenclies in the lower square wave harmonics. The method of meas-
urement was the same as described under "Technique for Measurement of
Spectrum.” The voltage sensitivities of the two hydrophones differed by
as much as 30 dB. The received pulse was gated and its length made equal
to that of the transmitted pulse. This left the location of the harmonic
frequency maxima undisturbed, and eliminated reflections. The driving
frequency was adjusted to obtain ldentical incremental changes of a par-
ticular spectral frequency, which always remained at a fixed frequency
interval below the driving frequency.

At 450 cps, the sideband calibration was 1 dB lower than the c-w cali-
bration made just prior. Between this frequency and 1000 cps, the two
methods were in disagreement by no more than 0.6 dB. Frequencies below
450 cps consistently showed errors as large as 6 dB, thus setting 450 cps
as the lower frequency limit for the sideband method for a 1-dB variation
from c-w results. Equally good results were obtained by using a 0.5-
millisecond pulse and a driving frequency near 3.5 kc. This method makes
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feasible comparison calibrations of nonresonant transducers in the high-
pressure tank down to the frequency 450 cps without sidewall reflections.
During the measurements, some "jitter" of the meter needle of the harmonic
wave analyzer was observed. This jitter was reduced considerably by
doubling the pulse repetition rate to 120 pps.

TRANSDUCER Q, AND Q_ DEFINED

The values of Q associated with an electroacoustic transducer are
understood only vaguely by many persons engaged in underwater sound evalu-
ations. This is not always the fault of the individual. A literature
search shows that the culpability lies with authors whose definitions are
inexplicit, confusing, partially true, or completely false. The following
explanation is an attempt to give the reader a feeling for Q by explicit
definitions of what it is, together with some excerpts from other authors
to clarify what it is not. Probably exception can be taken t5 some state-
ments that follow, but it is hoped that the exceptions will be rare.

The Q associated with an electroacoustic transducer is aut a unique
value; the transducer possesses both electrical (Q,) and mechanical (Qg)

properties. These two Q's will be defined and discussed individually,
although it should be borne in mind that their product is used as a
parameter in the design of transducers.

According to [5], the electrical Q (Qe) of a transducer specifies the

magnitude of the ratio of the electrical reactance to the electrical
resistance (series circuit), or the magnitude of the ratio of the elec-
trical susceptance to the electrical conductance (parallel circuit) at
the frequency of mechanical resonance. And, [11] Q, is a parameter of
the circuit defined as the quotient of the shuiit resistance divided by
the shunt reactance (parallel circuit) at the resonant frequency only.
It is a crystal constant whose value depends on:

(1) Crystal material
(ag sound velocity in
(b) piezoelectric constant of
(c) dielectric constant of

(2) Type of drive
(a) clamped
(b) symmetric
(c) inertia

(3) Load medium
(a) water
(b) air
(c) other

A popular misconception is that the value of Qe can be determined

readily at any particular frequency of interest by measuring the complex
impedance at that frequency. It is, of course, possible to measure the
ratio of reactance to resistance at any frequency and this ratio may be

useful for some purposes, but it is not thv Q, of the transducer except
at mechanical resonance.
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According to both Hunt [12] and Vigoureux [13], the mechanical Q (Gp)
of a transducer "is most fundamentally significant as an expression of the
ratio of the peak value of the mechanical energy stored during a cycle to
the total erergy dissipated in a radian period, that is, in a time inter-
val 1/u." Qm specifies the sharpness of mechanical resonance and is a

measure of the transient duration in either the buildup or decay time
under pulsed excitation with a specific electrical termination and
acoustic load.

As with Qe' the Qm of a plezoelectric transducer may be computed from

the material on page 106 of reference [8] or page 176 of reference [11],
where it is taclitly assumed that the proper driving impedance is used.
Reference [8] mentions the unreliability of computed values, where the
error may approach the factor 2. The original article quoted by this
reference gave the theoretical value Qm = 16 and the corresponding experi-

mental value Qp = 9. The difference was attributed to losses in the

mounting. Re-examination of the data in [14] showed a theoretical Q, =15
and a measured Q, = 10 obtained with an ummounted barium titanate trans-

ducer. This result switched the hypothesis from "mounting losses™ to the
"numerous approximations in the formula." Trese discrepancies do not
justify recommending that the value of Q, be theoretically calculated
rather than measured.

The number of suggested methods for obtaining tic value of Qm from

measurements is myriad. Apparently, the same confusion exists about
determing Q  as was found in defining Qe‘ Some writers hold that, inas-

much as there are a number of frequency responses (voltage receiving,
current receiving, transmitting current, transmitting voltage, etc.)
associated with a particular transducer, t-ere is a measurable value of
Qm corresponding to each frequency response curve. This statement is

again in disagreement with the definition in [5], "The appropriate
response-frequency curve for the selection of the resonant frequency is
that one in which the excitation, electrical or acoustical, varies with
frequency in such a way that the driving force exerted on the mechanical
system is constant and the observed quantity is one which is proportional
to the velocity in the mechanical system.” This states without qualifi-
cation that the Q; of a particular class of transducer may be obtained

only from specific curves or observations applicable to that type of
transducer. It is admitted that a number to represent Q can be obtained
from almost any avallable plot, but it is not the mechanical Q (Qm).

It is recommended that the final sentence in section 4.6 of [5] read:
"In specifying a mechanical Q, the nature of the electrical termination
must be stated, i.e., the termination must be an open circuit or a short
circuit, depending upon the nature of the electromechanical coupling.”

The definition states that Q  can be determined only when the transducer

is electrically driven with constant voltage or current, or mechanically
driven with zero or infinite terminating lcad impedance for that particu-
lar class of transducer. The specification of "short circuit" or "open
circuit" for the electrical termination appeared in the final corrected
draft of the American Standard, but was inexplicably deleted only a few

months prior to printing.
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The equations defining Qe and Qm show that the electrical Q increases

with increased loading (pc), and the mechanical Q decreases with increased
loading. For example, the Q, of a quartz transducer is 50,000 when the

load is air (pc = 42 g/cm? sec) and only 15 when the load is water (pc =

150,000 g/'cm2 sec). This inverse direction of change of electrical Q with
loading leads to the conclusion that the buildup time of the pulse is
unaffected by Q, except for an exponentially decaying d-c component that

is added to the exponentially increasing sinusoidal current or voltage
wave. This d-c component displaces the first few cycles of the pulse
above or below the zero-reference line and its magnitude depends upon
both Qe and the phase of the cycle at the time the pulse is started. An

oscillographic observation of repetitive pulses starting with the usual
random phase may show that the first few cycles have a wagging motion.
The d-c component is discussed by Kerchner and Corcoran {15].

When controllable, Q, should be kept to a minimum to insure the least
possible change in the relative amplitude and phase of the pulse throughout

its frequency spectrum. That is, the driving amplifier should "see" a load
having minimal asymmetry.

The experimental determination of Qm for the electrostatic (piezo-

eiectric) class of transducers requires test conditions (or data plots)
different from those for the electromagnetic (electrodynamic or magneto-
strictive) class. Because it is necessary to treat the classes individu-
ally, discussion and comments are limited; only the most frequently used
methods are discussed, and mathematical proof that is available in texts
is omitted.

The Qm of a piezoelectric transducer is obtained from:

(1) Transmitting VOLTAGE response.
Comment--The resonance frequency is divided by the frequency band
between the 3-dB-down points on the curve. The probable
error is less than 20%.

(2) Free-field CURRENT sensitivity (short circuit).
Comment--Same as (1).

(3) Motional ADMITTANCE circle.

Comment--The frequency at the diametral intersection of the circle
(resonant frequency) is divided by the difference in the
quadrantal frequencies. The latter frequencies are deter-
mined at the points on the circle where it is intersected
by a second Adiameter drawn perpendicular to the first one.
The probable e¢iro- is less than 20%.

(4) Motional ADMITTANCE circle.

Comment--Q, = %fq (do/df); f = fys where fj is the resonant frequency
and 6 is the phase angle in radians. This relation is defined
in[5]as "one-half the rate of change at resonance of the
phase angle of the system's ADMITTANCE with incremental change
in the ratio of the frequency to the resonance frequency."
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Because the data are the same as in (3) above, the value of
Qm is virtually the same. This method is not recommended

because it involves additional computations.

(5) Cyclic buildup or decay of acoustic pulse.
Comment--The driving amplifier must furnish CONSTANT VOLTAGE. Hydro-
phone should be of nonresonant type. Qm equals the number

of cycles shown on the oscilloscope between the initiation
of the pulse and the point where the amplitude attains 96%
of its steady-state value, or decays from steady state to
4% of that value. The error is less than 5%.

The Q of the electrodynamic or magnetostrictive transducer is obtained
froms

(1) Transmitting CURRENT response.
Comment--Same as (1) for piezoelectric type.

(2) Free-field VOLTAGE sensitivity (open circuit).
Comment--Same as (2) for piezoelectric type.

(3) Motional IMPEDANCE circle.
Comment--Same as (3) for piezoelectric type.

(4) Motional IMPEDANCE circle.
Comment--Same as (4) for piezoelectric type, except change the word
ADMITTANCE to IMPEDANCE in the definition.

{5) Cyclic buildup or decay of acoustic pulse.
Comment--Same as (5) for piezoelectric type, except the driving ampli-
fier must furnish CONSTANT CURRENT.

SONAR TRANSDUCER Q, EXPERIMENTAL

Elementary resonant circuit theory, which teaches that pulse buildup
and decay times are functions of the Q of the entire circuit and are not
uniquely dependent on the Q of the load, is often forgotten. When the
generator impedance (assumed in this report to be resistive) matches the
resistive component of a series-resonant load, the circuit Q becomes one-
half the load Q, and the buildup to steady-state amplitude occurs in half
the time interval required for a circuit having a generator of zero
impedance.

Piezoelectric crystals, such as tourmaline or quartz and the polarized
ceramics, usually have at least two distinct fundamental resonances:
(1) a transmitting voltage response (series) resonance, and, at a higher
frequency, (2) a transmitting current response (parallel) resonance. These
two resonances can be understood readily by referring to either of the
series circuits shown at the bottom of Fig. 18a and visualizing the exist-
ence of a capacitor Cy, shunting the Ry-L-C series circuit. This series-

parallel combination then is the usual electrical analog of any clamped or
symmetric drive piezoelectric plate where Ry reprusents the mechanical

resistance, C the compliance, and L the mass.
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The capacitance C, is that introduced by the crystal between its

electroded faces, due largely to its straight capacitor action; C, usu-
ally is referred to as the clamped capacitance.

For the frequency at which the inductive and capacitive reactances of
L and C are equal, the series branch is in electrical resonance, which
indicates that the crystal is in mechanical resonance.

Above this frequency, the reactance of the inductor increases until
its inductive susceptance equals the susceptance of the shunting capacitor
(Ce)’ and a parallel resonance occurs that may be described as mechanical-

electrical. (This definition of parallel resonance is adequate for this
report, although attention is called to the other two conditions given on
page 144 of [2] that describe this type of resonance.) It is at this
upper antiresonant frequency that the mechanical vibration of a quartz
crystal is used to stabilize the frequency of an oscillatory electrical
circuit.,

The Q of the R£-L-C series branch of the circuit at resonance repre-

sents the of the piezoelectric transducer and determines the cyclic
buildup time of the current pulse when the voltage applied to the circuit
is constant. Constancy of driving voltage is also assumed for the usual
resonance curve, with current as the ordinate. At the higher frequency
where the transducer is in parallel resonance, its Q is obtained as has
been described for obtaining the of the electrodynamic or magneto-
strictive transducer. This is the Q of the piezoelectric transducer at
antiresonance but is not Qj, although the two may be numerically equal.

The order of occurrence of the two resonances is reversed for the
electromagnetic type of transducer, whose simplified electrical analog
is a parallel RL-L-C circuit in series with an inductance.

A piezoelectric sonar projector is more complex than a single crystal,
with multiple resonances not always anticipated by the design engineer and
variously attributed to the housing, a shift in the mode of vibration,
variation in the performance of individual ceramic elements comprising an
array or mosaic, or other factors.

Some experiments were made under free-field conditions to illustrate
how the generator impedance influences the buildup and decay times of a
pulsed signal drivina a multiresonant piezoelectric projector. The oscil-
lograms in Fig. 18b show the waveforms of high-impedance and low-impedance
generators driving parallel resonant and series resonant circuite, For
the moment, the discussion will include only the groups-of-three pictures
labeled PROJECTOR, and will neglect the groups-of-two pictures titled CIR-
QUIT. Both groups are presented concurrently for ready comparison, which
would be inconvenient were they placed on separate pages. Figure 18a is
included to clarify the discussion of the circuits.

The groups-of-three pictures show, from top to bottom, oscillograms of
driving current, driving voltage, and hydrophone output voltage associated
with a resonant piezoelectric projector, as a function of the generator
impedance. The two upper groups permit comparison of current, driving
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See traces 4 and 5
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See traces 9 and 10
Qc = Q of entire circuit
= u/(Gy + G.)
= Q of lc.d only
= uC/G‘ = IL/I
Q, # Q, because Gg is large;
E, I, and IL at steady state

directly after transient spike.

Q

Low-Z generator (constant voltage)
Se2 tra.es 19 and 20
Q. = Q ef entire circuit

= (.n./(ng +Ry)
Q of load only
oL/R .= EC/E
Qc = Q‘ because Rg is smalls
1 andg Ec epproscn steady
state in Qc cps.

9

Fig. 18a. Diagrams for electrical circuits represented by
traces of Fig. 18b.
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Fig. 18b. The effect of generator impedance on the buildup and decay
times of a pulsed resonant piezoelectric projector at resonance fre-
quencies of transmitting current (upper) and voltage (lower) response.
Pulse shapes for similar type resonant electrical circuits are on right.
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voltage, and hydrophone voltage for the case of the projector driven by
high-impedance (virtually constant current)* and low-impedance (virtually
constant voltaga) generators at the resonant frequency of transmitting
current response (TCR), or parallel resonance. The two lower groups per-
mit a similar comparison at the frequency of transmitting voltage response
(TVR), or series resonance. ~his particular transducer displayed a minor
TVR resonance followed by a TCR resonance, and a major TVR resonance with
a small increasing frequency change. That is, the response curves showed
a double-hump TVR with the minor lobe at the lowest frequency, and the
TCR resorant peak approximately midway between the lowest and highest fre-
quencies. Observations made at the frequency of the minor TVR resonance
showed nothing of interest, consequently photographs were made only at the
two major resonances.

The transmitted pulse length in all the photographs was held at 5 msec,
the equivalent of four vertical marker lines.

Trace (1) of the projector current illustrates the presence of a tran-
sient by the high initial amplitude of the pulse compared with its later
steady-state amplitude. This transient indicates that the generator
impedance was not large enough to drive this particular parallel-resonant
circuit at constant current. If the ratio of the generator impedance to
the load impedance had been greater, the current pulse would have been
rectangular, and the voltage pulse of trace (2) would have approached more
nearly the shape of the hydrophone output trace (3). This latter trace
is shown building up to approximately 96% of steady state in 7 cycles,
indicating the circuit Q = 7. This is in reasonably good agreement witn
Q = 8 obtained from a curve of TCR recorded from open-water measurements
and computed in the customary manner. The value Q = 7 is obtained alsc
by counting the cycles in the decay period after termination of the pulse.
It should be recalled that this is not Q.

The buildup and decay periods will be equal only if the generator
impedance when driving the load equals the generator impedance in its
quiescent state when seen from the load. The impedance of the generator
used in these tests happened to have the same value when measured in
either direction. The effect produced at the mechanical input of the
transducer by varying the load across the electrical terminals is dis-
cussed in [14]. An example of inequality of generator impedance is that
of a cathode-follower type of driver.

The group-of-three pictures at the upper right in Fig. 18b may be
compared directly with those to the left, the only change being the sub-

stitution of a low-impedance generator. The conductance of the generator
is now high and is no longer negligible. It lowers the circuit Q to

varVULL W VW

approximately 4. Traces (6) and (8) show what appears to be modulation

#¥When the generator impedance is infinitely high, the generator is
described as a constant-current one. In a constant-current source, the
generated voltage is infinite and the internal resistance is also infi-
nite, but the ratio of generated voltage to internal resistance is finite
and equal to the current supplied [16].




by a lower frequency. The wavelength of this undulation made it appear
to be the result of a beat frequency between the TCR resocnant frequency
and the frequency of TVR resonance.

The hydrophone output trace (18) shows that a 15-cycle buildup time
is required to approximate the steady-state condition, giving a mechani-
cal Q = 15, This is in good agreement with Qm = 16 computed as previously

described from a plotted curve of the TVR of the projector. In this case
the low impedance of the generator makes Rg negligible, and again only the

Q of the load is mr~asured. A comparison of the hydrophone output traces
(13) and (18) illustrates the decrease in buildup time when Rg becomes

appreciable and the circuit Q is lowered to approximately 3.

The wavelength of the ripple impressed on the voltage and hydrophone
output traces (12) and (13) was at first assumed to be the same as that
shown by the current and hydrophone output traces (6) and (8). However,

a closer study showed that this beat frequency was considerably higher.
Electrical interference was suspected, and additional photographs were
made of the hydrophone output trace, with longer pulse lengths to deter-
mine when, if ever, steady-state condition was attained. When the pulse
duration was quadrupled to 20 msec, steady-state condition was finally
obtained. The ripple almost completely disappeared after 15 msec. Cal-
culation indicated another higher resonant frequency with Q = 60 that
apparently had gone unnoticed. Re-examination of the original calibra-
tion recorder traces proved that this hypothesis was correct. For all
practical purposes, this ripple would have had little influence on meas-
urement accuracy. From an academic viewpoint, liowever, it was interesting
that Q number of cycles at the driving frequency may be entirely unrelated
to the interval needed by the pulse to reach steady-state condition.

GENERATOR IMPEDANCE AND Q

The same lack of understanding mentioned in the section "Transducer Q"
has been observed concerning the Q associated with simple parallel and
series circuits under pulsed excitation. Use of the following indefinite
statements, which may be true or false, is common:

(1) The voltage across the reactance of a series-resonant circuit is Q
times the applied voltage; or, the current circulating through the
reactances of a parallel-resonant circuit is Q times the generator
current.

~~
D)
~-

A puise builds up to 96% of steady-state magnitude in Q number of
cycles in either a parallel or a series resonant circuit.

This confusion disappears when it is recognized that the Q of state-
ment (2) differs in magnitude from the Q of statement (1) except for a
single theoretical condition that can be approached, but not attained,
experimentally. The Q' are identical only when the series resonant cir-
cuit is driven with constant voltage or the parallel resonant circuilt is
driven at constant current. When these two G's are defined and identified
by appropriate subscripts, all ambiguity disappears.
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The Q referred to in statement (1) is the Q of the load only (Q,).
The Q of statement (2) is the Q of the entire circuit (Qc)‘

In the electrical series-resonant circuit,

X X
Q.ﬁ =t and Q. = Lt where
R, +R
2 4 g
Qz = Load Q
Qc = Circuit Q
X; = Reactance of the load inductance (ul)
RL = Resistance of the load
Rg = Resistance of the generator
In the electrical parallel-resonant circuit,
B B
£
QL =% and Q =— where
$ G
GL Gz Gg
Qz = Load Q

Qc = Circuit Q

w
]

P Susceptance of the load capacitance (wC)

"]
]

Conductance of the load

G_ = Conductance of the generator (1/hg)

The groups-of-two pictures of Fig., 18b show the similarity of current
and voltage pulse shapes for resonani electrical parallel znd seriss cir-
cuits. No attempt was made to make the circuits equivalent tc the pro-
Jectors a 5-mH inductor was connected in series or in parallel with a
235-nF capacitor, and the circuit was driven with pulses of 4 msec duration
at approximately 5 kc.

Note the similarity in the distortion of the current pulse in trace
(9) and the voltage pulse of (15). The fundamental frequency is nearly
absent from both traces and the harmonic content is accentuated because
of the increased amplifier gain necessary to obtain uniformity of ampli-
tude in the photographs. The error in measuring the absolute amplitude
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of either of these pulses with a wideband amplifier is obvious, and demon-
strates an additional handicap inherent in pulse-testing practice. The
same distorted sinusoids in the pulse would be evident in c-w testing
except for the general use of narrow-band filters.

The harmonic frequencies in the current pulse of trace (9) are predomi-
nant when a constant-voltage generator is used because they are at a lower
impedance level than the fundamental when the load circuit i3 antiresonant.
This is a high-Q current circuit with complete absence of voltage reso-
nance. To obtain the high-Q voltage resonance, a constant-current generator
must be used, as illustrated in trace (4).

Similar reasoning may be applied to the voltage trace (15) of the
series-resonant circuit driven by a high-impedance generator. A series-
resonant load circuit presents minimal resistance to the generator at the
resonant frequency. When the generator resistance is high, tre load is
virtually a short circuit at the frequency of resonance; consequently, the
voltage across the load is very low. At frequencies off resorance, the
impedance of the load increases, and harmonic voltages may b« measured.

These oscilloscope traces may be understood more easily by reference
to their related schematic diagrams in Fig. 18a. The driving impedances
used in ordinary measurement practice will vary, of course, between the
limits of constant voltage and constant current that are shown.

PULSED MEASUREMENTS OF REFLECTION AND ABSORPTION

This report would be incomplete without some mention of the use of
pulsed sound to measure the transmission, reflection, and absorption of
plates. The Navy requires that large reflecting baffles operate at high
hydrostatic pressure for sonar targets or sound screens; at great depths
in the ocean, these may become transparent. Research has been continuous
in this specialized field to find underwater sound absorbers or reflectors
whose characteristics would be unaffected either by temperature or pres-
sure. These materials must be evaluated in a closed tank so that tempera-
ture and pressure can be controlled; thus, small samples must be used.
Thee * tests require the use of pulsed sound, not only to eliminate reflec-
tions, but also to avoid diffraction effects created by the finite size
of the plate.

The method of measurement was first described by W. J. Trott and the
writer in an oral paper, "The Measurement of the Acoustic Properties of
Sound-Absorbent Panels at High Hydrostatic Pressures" presented at the
39th meeting of the Acoustical Society of America in 1950. The paper was
not published at that time. Three years later the measurement technique
was described briefly [17] excluding both the theory of pulse modulation
and of the near-field (Fresnel region) of a square plate. The latter theory
is now available as [18]. The method described by Trott and Darner remains
virtwdlly unchanged. Any refinements mey be attributed to use of a larger
pressure vessel, improved probe hydrophones, increased size of plates, and
temperature control.




A brief review of a decade-old method will serve as an introduction
to a technique of absorption measurements that was developed almost
entirely on an empirical basis. An omnidirectional probe hydrophone was
positioned in front of a square steel plate on an imaginary line joining
the centers of the plate and of a distant projector, the faces of both
being normal to the linwv. The pressure of a short pulse of sound from
the projector was measured as it passed the probe on its way to the plate.
The pulse pressure was measured again after reflection from the plate and
before receipt of diffracted sound contributions from the edges of the
plate. Because of the greater distance of travel and the proximity of the
sound source, the reflected sound amplitude had to be corrected according
to the inverse square law distance loss. The ratio of the measured ampli-
tudes of the distance-corrected reflected sound energy and the incident
energy was a measure of the plate reflectivity.

The measurement of sound transmission through the plate was even sim-
pler; the magnitude of the sound received by the probe without the plate
in position was compared with that received before the diffracted sound
when the plate was inserted ahead of the probe to shadow it from the pro-
jector. The pulse technique, of course, permitted the measurement to be
made before the energy diffracted by the plate arrived at the receiver.
The sum of the reflected and transmitted sound energies (not pressures)
should have been very nearly 100%, provided that there was no measurable
absorption in the steel plate. Sound-absorbing materials were then glued
to the face of this plate and their measured lack of reflectivity (with
zero transmission) was termed absorption.

The initial reflection and transmission measurements are always made
with a bare steel plate to checks

(1) Perpendicularity of plate to sound beam
(2) Equality of response of probe hydrophone faces
(3) True inverse-square distance loss

(4) Ability of the system operator to eliminate sound diffracted by the
plate edges by adjusting the receive gate.

From the foregoing description, one might conclude that these meas-
urements can be made without difficulty. Just the opposite is true, for
they are undoubtedly the most difficult to make of any of the types of
measurements in the anechoic tank.
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The equation given by Rayleigh [19] nearly 100 years ago for the sound
energy reflected from a plate is of the form:
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pqc pc
R = 171 -
2nL pc p
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where R = reflected energy, p = density of medium, P = density of plate,
¢ = sound velocity in medium, ¢, = sound velocity in plate, L = thickness
of plate, and A1 = wavelength of sound in plate.
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Fig. 19. Sound energy reflected from steel plate.

Frequency values are for plate of 5/8-inch thickness.

lectivity of any steel plate is shown in Flg. 19 as
a function of the ratio of its thickness to the wavelength of sound in the
material. Note that the plate is an almost perfect reflector when the
thickness is an odd multiple of quarter wavelengths, with total transmis-
sion occurring at the even multiples. The frequencies indicated on the
curve between O and 0.50 on the abscissa apply for the standard 5/8-inch
plate. In recent years there has been a consistent trend toward lower

and lower frequencies. At frequencies below 5 kc, the 5/8-inch plate
transmits considerable energy. The use of a thicker plate has been con-
sidered, but the gain in reflectivity is more than offset by the increased
rigging problems associated with a heavy plate. The substitution of a

The calculated ref
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1-inch plate for the one now in use would increase the energy reflected
at 5 kc approximately one dB, or to the point marked "8 kc" on the curve.
A 2-inch-thick plate would be required to approach total reflection at

5 kc, and its weight would be a rather unwieldy quarter of a ton.
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Fig. 20. Theoretical reflection and transmission compared
with experimental results for a 5/8—inch stainless steel plate.

The measured sound reflection and transmission for a stainless steel
plate of 5/8 inch thickness are compared in Fig. 20 with Rayleigh's theo-
retical curves. Data at frequencies above 20 kc have been omitted because
the sound energy is almost totally reflected as the plate thickness
approaches a quarter wavelength. Note that the excess of measured
reflected energy over that predicted by theory at 5 and 6 kc is compen-
sated by the low value for transmitted energy. At 6 kc the sum of the
two measured energies gives a total that is only 4% too high.

Unlike the thickness of the plate, the requirements for which can be
determined mathematically, the side dimensions are limited by the diameter
of the porthole fthrough which the plate must be rigged. When the measure-
ment of diffraction contributions is to be avoided this limitation of the
plate width to 30 inches determines the lower limit of the test frequency.

The theory developed for an underwater sound projector or a radar
antenna can be applied to the near field (Fresnel diffraction region) of
a reflecting plate. The radar antenna presentation was chosen from [20]
peceusse of its relative clarily and mathematical simplicity, and because
the effects of square and circular configurations can be compared.

The on~axis power densities of uniform square and circular apertures
are plotted in Fig. 21. A coefficlent has been chvosen to normalize the
power density or sound intensity to one at R = 2L2/), where R = distance
from probe hydrophone to plate, L = length of side of square, and A =
wavelength in water = speed/frequency. The similarity of the diffraction
effects about apertures, plates, and projectors permits use of these three
terms interchangeably.
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Fig. 21b. On-axis power density, uniform circular aperture.
Use of these curves makes possible approximate sclutions without the

mathematical tedium associated with point-by-point calculations using

Fresnel integrals, which are described in [21] and tabulated in its third
appendix.
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Some additional explanation may save the novice considerable time in
the use of these curves, which are important in visualizing the transition
of the sound field along the axis connecting the near field (Fresnel dif-
fraction) and the far field (Fraunhofer diffraction). It is in this inter-
vening region that most of the acoustic evaluation measurements take place.
The divergence of sound intensity from the near-perfect inverse-square law
gain with decreasing distance to the reflecting plate or projector is
readily seen. Diffraction phenomena as shown by the figures should be
understood and their unwanted appearance recognized and avoided in pulsed
acoustic reflection measurements.

Only the square aperture is discussed here because an understanding
of the circular aperture readily follows. The only difference in the two
formulae lies in the substitution of the diameter D of the circle for the
side L of the square.

The ordinates of Fig. 21 compare the undulating intensity near the
face of the plate with the reference level 1 measured at a distant point.
The distance of this point from the plate is represented by the abscissa
value 1.0 at the extreme right; that is, X = 1 when the probe hydrophone

distance R = 2L2/.

Because only frequency is varied during measurements of plate reflec:
tion, the formula may be changed into the more convenient form X = Rc/2L<f
by substituting sound speed ¢ and frequency f for the waveiength A. 1In
this form, X is an inverse function of frequency because R, L, and ¢
remain constant during any particular series of measurements. That is,
as frequency increases, the position of the measuring probe appears to
approach the plate and possibly shift from the far field to the near field.

At the distance X = 1,0, spherical-wave divergence is shown by a com-
parison of the intensity at this point with that shown by the curve at
X = 0.707. The intensity varies as the square of the ratio of the dis-
tances: (1/0.707)2 = (1.414)2 = 2, which is in agreement with the inter-
section of the curve and the ordinate. These two distances may be regarded
as being in the far field with accompanying Fraunhofer diffraction.

By a further decrease of test distance to X = 0.5, a transition zone
appears that connects the near and far fields. The square of the distance
ratio should again double the intensity: (0.707/0.5)2 = (1.414)2 = 2.

The curve fails to reach this level, however, and measurements taken in
this region are subject to this error. The error becomes intolerable with
decreasing measurement distance.

A comparison of the upper and lower charts shows that, for equal
error, measurements can be made nearer to a circular plate or projector
than to a square. For the circular configuration, the proper distance
loss is still evident on the curve at X = 0.5 (R = DR/)), that is,

(1/b.5)2 = 4. From this observation, the conclusion may be drawn that

the square shape should be tested at 1.4 (ratic of diagonal to side) times
the distance used for the circular shape. A technlcal discussion of near
and far fields for the circular shape only appears on pages 59-72 of [8].




When test frequency is the variable, the formula for the curve of
Fig. 21a iss

f = (Rc/2L3X),  where

f

f = frequency of a maximum or a minimum

R = distance from probe hydrophone to plate

(the distance 39.5 cm was chosen for the data of Fig. 22)
¢ = speed of sound (1.5 x 10° cm/sec)
L = length of side of square (30 in = 76 cm)

X = numerical value of abscissa where max or min occurs

Insertion of the parameters for the specific conditions of the test
simplifies the formula to:

f = (0.51/X) ke.

When X is given the successive values 0.032, 0.045, and 0.070, the curve
predicts a minimum at 16 kc, a maximum at 11.3 kc, and a minimum at 7.3 ke,
respectively. The agreement in frequency between theory and experiment
is shown by the solid curves of Fig. 22, These two curves were recorded
with slightly different pulse lengths and show the magnitude of measure-
ment error that can occur because of diffraction contributions from the
plate edges. Without some understanding of the theory, the apparent lack
of reflection at the minima of the curves could be misinterpreted as the
result of absorption. The dashed curve was made with a properly reduced
pulse length to avoid the edge effects and to make the size of the plate
appear infinite to the probe. Even with the probe distance reduced to
30 cm, the received pulse must be shorter than 0.2 msec, which necessi-
tates thc recording of less than one cycle at the minimal test frequency
5 kc.
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Fig. 22. Measured reflection from steel plate; the values of X
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When the sound-absorbing coating on the test plate is of the resonant
type, the technique required for its evaluation differs from the method
usually employed on nonresonant materials. A resonant absorber may be
defined as one having high echo-reduction over a very narrow frequency
band. Suppnsedly, it would possess a mechanical Q equal to the frequency
of minimal reflection divided by the difference in the frequencies at the
levels 3 dB higher.

The theory of the resonant sound absorber is developed briefly in [22]
and will not be repeated in this report, which deals with the evaluation
of the material by pulsing methods rather than its development and con-
struction. Reference [22] mentions that the resonant absorber is analo-
gous to an electrical parallel resonant circuit in which the a-c potential
corresponds to a mechanical alternating force, and the a-c current to the
velocity amplitudes of the absorber elements. This analogy is acceptable
for this report, although some writers prefer other theories. Usually,
the acoustic impedance of the absorbing material is assumed to be matched
to that of water.

As with its electrical counterpart, a mechanical resonant circuit
yrdinarily requires Q number of cycles to approach within 4% of the
steady-state condition. A resonant circuit having Q = 10 with a water
load should not be measured with a pulse of less than ten cycles if
reasonable accuracy is to be attained. Pursuing this line of reasoning,
the lower test frequency for a resonant absorber 76 cm square with Q = 10
would be limited to 67 kc for a received pulse length of 150 psec measured
acoustically at the very beginning of the pulse. Or, measurement at the
frequency 5 kc would require a pulse lengtl of 2 msec, which is ten times
the length permissible for the avoidance of the edge diffraction effects.

A reflection measurement made prior to Q number of cycles must be
regarded as qualitative rather than quantitative. There is no way to
avoid the fact that a number of cycles equal to the Q of the mechanical
vibrating system is necessary to obtain a correct measure of the echo
reduction.
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A hypothetical example of a resonant absorbing system with Q = 10 is
plotted as the dashed curve in Fig. 23. At its resonance frequency 5 kc,
the pressure reflectivity is 5%, or 26 dB lower than that of a perfect
reflector. This point of minimal reflectivity is to be measured with a
square pulse envelope having a duration of 0.2 msec. The Fourier spec-
trum of its main lobe only is plotted as the solid curve centered at the
frequency of interest.

Note that most of the absorption occurs in a 3-kc band centered at
5 kc; the spectral frequencies below 3.5 kc and ahove 6.5 kc receive neg-
ligible attenuation. The amplitudes of the spectral frequencies that were
only partially absorbed are enclosed by the dotted curve, which is the
product of the per cent pressure reflected and the original relative
amplitudes at each spectral frequency. When the square pulse is recon-
structed by summation of the spectral frequency amplitudes, the measured
ievel of the envelope is found to have been decreased by only 6 dB rather
than the 26 dB that is shown.

The foregoing also may be regarded as a graphical representation of
a pulsed signal unable to follow into a narrow, deep null in transducer
response measurements where the sideband amplitude is increasing in two
directions.

This error in measurement can be reduced considerably by using the
repeated pulse excitation of a narrow band filter that has been described
under "Technique for Measurcment of Spectrum." Measurements on one par-
ticular resonant sample, usirg this method, showed the reflected sound
energy reduced 995%. This wac in considerable contrast to the usual
method, which showed far higher reflectivity. Admittedly, the higher
measurement of absorbed energy was inexact, but it at least provided some
evaluation of the possibilities of the material whcse exact worth could
not be determined by any other method.

During wideband measurements of this particular resorant absorber,
photographs were made of the reflected pulse appearing cn the oscillo-
scope. A study of these pictures showed the nearly complete absence of
the fundamental frequency during excitation of the sample. When the
pulse terminated, however, the fundamental frequency appeared as a highly-
damped signal with the initial cycle of magnitude sufficient to indicate
total reflection. This anomalous trailing transient was thought to be
either the product of plate-edge diffraction or the oscillatory decay of
the mechanical vibrating system. Diffraction from the edges did not & .m
plausible because the high sound apsorption connoted an acoustical imped-
ance matching that of the water; then the plate edges, presumably, would
not act as a boundary.

The alternate theory (oscillatory decay of the mechanical vibrating
system) seems reasonable when the resonant absorber is considered to
change from a nonreflector of incident sound to a radiator of its stored
sound energy upon cessation of the pulse. The junction of the pulse
termination and its trensient might be explained as a discontinuity in
the nscillatory phase of the reflected pressure wave., An attempt has
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been made in Fig. 24 to illustrate the probable mechanical displacement
of the plate. Both the figure and the following explanation are entirely

hypothetical.
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The assumed frequency 5 kc permits the presentation of a two-cycle
pulse from t = 0 to t = 0.4 msec. Even though the final half-cycle of the
reflected pulse is a compression, it is followed immediately by another
compression rather than the rarefaction usually enccuntered in sinusoidal
vibration. This occurs because the sound wave reflection is 180° out of
phase with the plate motion. When the material is absorbing, positive
sound pressure causes negative plate displacement; but when the material
is radiating, negative displacement causes negative pressure. When the
pulse is terminated, the final half-cycle of the reflected pulse is headed
toward negative pressure while the plate travels toward a positive dis-
placement to create the second compressional wave. This follows Newton's
First Law of conservation of momentum.

Fig. 25. Phase r.versal of the

transient current in a parallel-
resonant electrical circuit upon
termination of the pulse.

The same effect appears in the cuirent waveform of thc analogov
parallel-resonant slecirical circuit., This effect for Q = 8 is sk .n in
Fig. 25 to the right of the center line, where the current waveform




reverses its direction at the abscissa when the pulse terminates. Similar
reversal of the voltage waveform occurs in a series-resonant circuit.
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