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FOREWORD

The material presented here is taken from lectures given by the author in an informal senu-
nar on quantum field theories, held in the Radiation Division of the U.S. Naval Research
Laboratory. The purpose of these lectures was to present a calculation of the propagators, or
Green’s functions, of the different types that appear in quantum field theories within the
framework of the theory of boundary value problems for linear partial differennal equations,
thereby rendering the Green's functions more amenable to physical interpretation. Further,
a classical setting of the propagators separates neatiy those properties of the propagators which
may be discussed without recourse 10 the procedures of second quantization from those proper-
ties which do require the latter methods.

A perusal of the table of contents will give the reader an idea of the scope of the subject
matter and the direction that is followed. Chapter 1 is devoted primarily to the basic ideas that
will be needed from the speaal theory of relativity and geometry, together with a presentation
of our notation. Chapter 2 introduces the various boundary value problems that may be posed
in conjunction with the Klein-Gordon equatisn and the auxihary functions associated with these
problems. It will become clear in the course of the development of these auxiliary functions,
variously called propagators and Green's functions, that their physical imerpretations reside
in the formuiation of the specific boundary value problems they enable us to solve. The propa-
gators are deterniined explicitly, in this chapter, in terms of known higher transcendeintal
functions, and are also presented in several integral representations that are useful in quantum
field theories, or appear often in such theories. Chapter 2 is basic to the rest of the material of
these lectures in that the formulation of the boundary value problem for the Klein-Gorden
equation carvies over to the wave equation for both scalar and vector helds virtually unchanged,
and cairies over, in substance, to the Dirac equation. In addition, the detailed results of this
chapter are used in the calculations of the subsequent chapters. The reader for whom Chapter 2
has become a part of his own experience will find the subsequent chapters relatively simple
fare. A summary of the results of Chapter 2 is presented for easv reference.

Chapter 3 contains a discussion of the boundary value problems of Chapter 2 but with respect
to the wave cequation. In applying the Green's funcuions of the wave equation to an integral
formulation of the field equations of the four-potential for the electromagnetic field, we take
proper account of the fact that the four-potential must satisfy the lLorentz condition. The
boundary value problems of Chapter 2 vis-a-vis the Dirac equation are discussed in Chapter 4.

Chapter 5 is a simple introduction to scalar meson field theory with second quantization in
order 1o show how a calculation of the propagators is rendered quite simple by the results of
Chapter 2. Although analogous developments for the electromagnetic and electron fields are
easy to carry through, they are not done here. Finally, a brief discussion is given, in this chapter,
of a few o' he mathematical problems that arise in quantum feld theories. The discussion of
mathemaucal iigor here is kept brief, for such a discussion in depth would carry us too far
aheld of our onginal purpose and requires volumes in itself. Finally, mathematical nigor in
quantum field theory is sull only little understood. The interesied reader will ind pertinent
mathematical detait and developnient in, for example, Hille and Phillips, “Functional Analysis
and Semi-groups,” «sp. Chapters 1-V

Finally, we must mention the subject of references. The reader will ind an occasional ref-
erence in footnotes scattered sparsely throughaut the text. The author made no effort to system-
atically search the literature to be compiete or to find original source material. The subject
matter has become generally too well known for this to be necessary in a set of lectures; many
textbooks will supply such a list of reference matenal. However the author wants to state his
indebtedness in partcular te the book “Field Theory,” Vol. 1, by Jan Ezewuski (Polish Academy
of Scierce, Physical Monographs; Hofner Publishing Company, New York) and recommends
it highly to the reader.
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CHAPTER 1
RELATIVISTIC CONCEPTS; NCTATIONS

It is not our purpose to develop the special
theory of relativity, but to present thse ideas
from that discipline that are pertinent to the subse-
quent work of this discussion. This short discus-
sion also provides the opportunity of presenting
the notation that will be used. On this latter point,
the reader will no doubt be aware of the plethora
of notations that are widely used; the choice that
one m2k=s, of course, is immaterial insofar as
the physics is concerned, so that the seiection that
is made is based on personai tastes or is simply
arbitrary. However, once having made a selec-
ton, we shall find little difficulty in comparing the
final results with the conclusion of others using
different conventions.

NOTATION

A point in space-time will be denoted by various
symbols: x, (%o, x1, X2, x3), (xe, %), (%0, 7), (x,):
a:, time point will also, at times, be referred to
as an event. The coordinates of a point in space-
time, x,,, will always be given in terms of the covari-
ant components; on no occasion shall the contra-
variant components be used. If a = (a,) and
b= (b,) are two four-vectors, their scalar or inner
product will be denoted by a - b or a,b, which will
be a symbolic representation of the number
—Gebo + albl + szz St agb; = —aobo +a-b The
length of any four-vector a is Va - a; since the
inner product is clearly indefinite, the number
a® = a - a may be positive, zero, or negative. If
a? < 0, the vector is said to be a time-like vector;
if a® > 0, the vector is said to be a space-like vector.

A set of four-points, S = {x, 5, z, ...} is said to
be a space-like set if (x — y)? > 0 for every pair
(x, y) of elements, each in S. In particular, if S
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constitutes a space-like three-dimensional “con-
tinuum” in four-space, S will be called a space-
like hypersurface. (For example. the set of all
space-time points for whicl. x is the same is the
entire three-dimensional space we ordinarily
perceive, and this constitutes a space-like hyper-
surface in the space-time continuum.) With the
exception of the preceding parenthetic remark,
meaningful definitions arise from this paragraph
if the term “space-itke” is replaced by “time-
like” and (x — ¥)* > 0 is replaced by (x —y)2 < 0.

The set of four-points Cr = {u, v, w, ...} such
that (u — x)? = 0 for all u belonging to C; is said
to be the light-cone associated with the point x;
here, x may be any point of the space-time con-
tinuum. If each point of C; is interpreted as a
physical event, then C; is that subset of all physical
events whose occurrence coincides with the arnival
of a light-signal from the event x or whose sig-
nals arrive at the event x.

The set of all time-like points L;= {u,v,w,...}
such that ue — x0 > 0 lie within the forward light-
cone associated with point x, where again x is any
point of the space-time continuum; similasly, the
set Ly = {u, v, w, ...} of time-like points such that
tio — xo < 0 are said 10 lie within the backward light-
cone of the event x.

A geometric representation of the above sets is
obtained in the usual wav: we suppress two of the
space components of a tour-poiat x in order that
a point in the space-time continuum may be repre-
sented by a point in a plane; then a Cartesian
representation of the remaining pair is used,
with the remaining space component, say x;, as the
abscissa and xo as the ordinate. The union of the
sets Co and C, is the light-cone C, associated with
the point x = 0; the shaded region marked by Ly
is within the forward hight-cone associated with the
origin. while the crosshatched area marked by
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Figure 1

Ly is within the backward light-cone of the origin.*
The axis xo =0 is a special and important case of a
space-like hypersurface S, while S® is a more
general space-like hypersurface, always possessing
the property that its slope nowhere acquires the
value +1 or —1 and is always between these two
members.

Let x be a point in the space-time continuum
not on, say, the space-like hypersurface S,
but otherwise arbitrary; with x, we associated a
time-like hypersurface T = {u, v, w, ...} such that
u; = x;, all uin T In our geometric representation
T is a straight line through x parallel to the xo axis.
T must intersect S® at some point z whose coor-
dinates are finite. If z¢ > xo, we shall say that xo
precedes S®, or is prior to 8%, or earlier than S*,
if z¢ < xq, we shall say that x is later (han S®.
Note that xo being eariier than S® does not imply
that all events on S* occur at a time later than the
event x occurs, as may be seen from the example
represented geometrically in Fig. 1. Of course, if
the hypersurface in question is one for which ue =
constant, all u € S, such as S® in Fig. 1, then x
indeed is an event which occurs prior to all events
on S. Similar observations for the case that x is
later than S® may be made.

LORENTZ TRANSFORMATIONS

A Lorentz :ransformation is, by definition, a
linear transformation on the componeiiis of a
space-tune which is, first, invertible, that is, the

*Ofientimes, the “solid” tet represented by the union of Lg and C,
will be 1eferred to as the forward lightcone. The context will usually
make clear whether one is sueaking of points on Coor in L,

inverse of the transformation exists, and second,
leaves the form (x — y)? unchanged in value and
in form, that is, if x’ is the transform of x, and
y' of y, then (x' — y')? = (x — y)*. A function on
the space-time continuum ¢{x) with the property
¢(x') = ¢(x) when x' is the Lorentz transform of
x is called invariant. Thus, a Lorentz transforma-
tion is an invertible linear transformation which
leaves the form (x — v)? invariant. It follows im-
mediately then that under Lorentz transforma-
tions, space-like hypersurfaces transform into
space-like hypersurfaces, time-like hypersurfaces
transferm into time-like hypersurfaces, and the
light-cone of any point transforms into the light-
cone of the transformed point. The forward and
backward light-cones of a given point must be
given more consideration, which will be done
when more detailed study of Lorentz transforma-
tion is given.

Let x be a point of the space-time continuum
whose coordinates are (xo, x1, X2, x3) = (x,).
The point x’, derived from performing a Lorentz
transformation on x, has components xq, xi,
23, x3 which are related to those of x by the equa-
tion

x{.=a,ax;+b, (l)
where u =0, 1, 2, 3, and the Einstein summation
convention is used. Equation (1) is linear by our
definition of the preceding paragraph. The point
y transforms to the point y' by equations of the
same form as (1). The condition that (x — y)? =
(x' — y')? leads to the condition

@

Quy Cur = S

or

det (a,n) ==1.

(3)
Let a,, be the cofactor of a,,; then

Ary Quy = 6;; .

4

Comparing Eqgs. (4) and (8), we see that ax, = a,a:
Eq. (1) is now readily inverted, by multiplying by
a., = a,, and summing over u:

=1r_ﬂv

Gur Yy =aua0t by ay,

or

=g, 1.+ 8. (5)
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With Eq. (5) and the invanance of (x — y)?, we
conclude

(6)

AQyy Qrp = 8“ o

The defimtion of the Loreniz group given above
admits a wider class of ransformations than those
encountered in the usual development of the
theory of relativity; that is, in applying the prin-
ciple of relativity 10 determine the transforma-
tions of the compone:ats of a given point in one
inertial frame in terms of its components in an-
other inertial frame, one obtains thar subclass of
the above transformation that may be devcloped
in a continuous manner from the identity trans-
formation and with the characteristic that aee > 0;
this class has the property also that det |a,n|=+1;
this subgroup of the full Lorentz group is cailed
the proper orthochronous Lorentz group.(We are
not attempting to prove the statements of this par-
agraph, but content ourselves here 10 accept their
validity.) It is then clear that if x is a point in the
forward light-cone of the origin, then (x' — b) is
also, where b is the image of the orig:n under the
Lorentz transformation. Thus under Lorentz
transformations that are proper and orthochro-
nous, time-like intervals {(x — y) transform into
time-like intervals, spacc-like into space-like,
with the sigii of the zero component preserved;
here it follows that the forward and backward
lightcones of a givenn point transform under
proper orthochronous Lorentz transformations
into the forward and backward light-cones of the
transformed point, respectively. It becomes equal-
ly clear that if x precedes the surface S in one
inertial frame, under a proper orthochronous
lorentz transformation, x' precedes S’. Finally,
we observe that it § is, in one ineitiai frame, the
hyperplane x,= constant, then under a proper
orthochronous transformation, S transforms into
a hyperplane no longer parallel, in general, to any
hyperplane of the form x¢ = consiant; and if one
has a hyperplane of the latter type, there exists a
Lorentz transtormation which will transform the
hyperplane into one parallel 10 x¢ = constant in
some (one) inertial frame. From this, it follows di-
rectly that if 1 precedes the hyperplane § in a
given incrtial frame, there exists another iner-
tial frame wherein x’, the image of x under the
corresponding Lorentz transformation, not only
precedes the transformed surface, but all events
on the surface will have occurred at a ume, in
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this reference frame, later than the event x’. (That
this result is not true for more general hyper-
surfaces may be seen by considering a point x
that precedes a nonplanar hypersurface that
approaches the backward light-cone asyvraptoucal-
ly. Since we are not concerned with such cases,
we shall not dwell any further on this point.)

An example of a nonorthochronous, improper
Lorentz transformation is

x&'—=—x:
= X
(7)
X=Xz
[
X3= X3
J

If x precedes the hypersurface S, it is clear that
under the above transformation the image S
would precede x', the image of x under Eq. (7).
Such transformations are of considerable interest
in modern feld theories but do not play any par-
ricularly important role for cur purposes: there-
fore, their study will not be pursued further here.

REPRESENTATIONS OF THE
LORENTZ GROUP:. PARTIAL
DIFFERENTIAL EQUATIONS

Let O be an observer in a given inertial frame
studying a system which, he discovers, requires n
functions fj(x) = fj(r,xe) 10 describe it completely.
According to the principle of relativity, an ob-
server 0" in a second inertial frame will also re-
quire n functions, fi(x’) to describe the system.
The functional values at a point P as observed by
O’ will be related to the functiona! vaiues at the
point P as observed by O; if the ccordinates of P
are x' and x in the inertial frames of O’ and O re-
spectively, then with L denoting the Lorentz trans-
formation parameters,

filx) = AL (h(x), folx), ..., falx))  (B)
where Al is a general function of f,, f. ..., f.. but
one such that the set {[AL], [AL],...} form a
continuous group; that is, Eq. (8) are required to
be a realivanon of the Lorentz group. Hence,

-1
AL
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the inverse to AL, exists:
fi(x) = A,L—'(fl(x').fz'(x').---.f:.(x')) . (9

Observer (¢ will determine that his set[{f.} of
functions are, in general, correiated with one an-
other through some set of equations which we may
denote by

M(fiSt,.-n [3) =0. (10)
Again from the principle of relativity, Eq. (10) may
be written so that observer O’ arrives at the same
equation except for primes in the appropriate
places.

A very impertant class of fields will be those that
obey some form of superposition principle; if O
determines that {f;} and {g:} each satisfy (10) and
that {f; + g} satisfies Eq. (10), then O' must ob-
serve that f; + g/ also satisfies his version ot Eq.
(10). Thus, f+ g = {fi + g} is an acceptable field
configuration and transforms according to Egq.
(8) also:

hy(2') = AL (filx) + gi(x), fr(x)

+ g(x),..., fu(x)+ ga(x)) . (11)

In addition

hi(S) = fi (') + gik(x') (12)
where fi(2') and gi(x') are relaied to the func-
tions {f;} and {g} respectively by (8). From Eqs.
(1), (12), and (8), it then follows that the func-
tions AL must have the property that they are

linear in f:
AL({LA(S) +a(x)})

= M0} +AL{a(x)}) . (13}

If in the function space of the set of all accepta-
ble vector functions ({fi}) a metric is introduced,
then the notion of the “nearness” of one function
{fi} 1o another, say {g}, may be given definitive-
ly, and continuity of functions on this function
space, such as the AL, may be made precise also.
Without going irto detail, it is intuitively clear
that if {fi} is ncar o {&}, in some sense, for
observer O, then {f]} must be near to {g/} for
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observer O0’, which is equivalent o requiring that
the functions Af be continuous functions of the
functions {fi}; Eq. (13) requires them to be linear.
It may be shown that the only continuous solutions
of the functional equation (13) for AL have the
form

AL D) = $ a8 filx) .

(14)

Thus, for fields described by n functions and
obeying the principle of superposition, the set of
functions must transform under Lorentz trans-
formations according to (14), that is, according
to some n-dimensional representation of the
Lorentz group. The physical requirement that the
functions Af, for fixed L and k be continuous

functions of the f’s applies equally well to (8); that
is to say, this requirement is not related to the
superposition principle; hence if the system under
study is a nonlinear system so that the superposi-
tion of two solutions to (16) is not a solution, then
the set of functions that describe the system, if the
description is to be Lorentz invariant, need not
transform according to a representation of the
Lorentz group but instead according to some (non-
linear) realization of the Lorentz group. Unfor-
tunately, little is known about such systems, but
for us, the linear problems constitute our main
concern.

We here give a resumé of the equations of type
(10) that we shall study. The first equation that will
occupy our attention in considerable detail will be
the Klein-Gordou equaticn. Let ¢'(x') = ¢(x)
obey the partial differential equation

19! 1.1
‘7’90—;;—3—} mh’c ¢=0. (15)

Henceforth, we shall take A = ¢ = 1 and use the
notation

= 0,0,¢ . (16)

Then (15) reads
Op—mie=0. k)]

We shall, in Chapter 2, study this equation in
considerable detail, showing how to extract from
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a given solution of (17) the positive and negative
frequency parts, and how to ccastruct the Green'’s
functions for the different boundary value prob-
lems associated with (17}. In addition, we shall con-
sider not only (17}, but the inhomogeneous Klein-
Gordon equation, and its Green's functions to-
gether with their associated boundary value
problems. For all these functions, we shall develop
several different and useful integral representa-
tions and also explicit representations in terms of
known functions; further their asymptotic be-
havior will be made explicit. (' onsiderable atten-
tion to detail is given for the Klein-Gordon equa-
ton because a thorough understanding of the
work on that equation will greatly simplify the
calculations to follow.
In Chapter 3, we shall study the wave equation
O¢ =0, (18)
developing results analogous to those for the
Klein-Gordon equation described above; it will
become clear that the results of Chapter 2 will
carry over to Chapter 3 by simply putting m =0
or taking the limit as m — 0. We shall then prove
that the results for (18) may be applied directly
to the wave cquation for the four-potentials
{A.(x)} of the electromagnetic field; in (18), the
function ¢ is again a scalar, but in the equations
for A,,

OA4.(x) =0. (19)
The {A4,(x)} transform according to the vector
transformation law and obey the subsidiary con-
giiion

A

9Ap
ox, o &)
We shall show that the integra! formulation of
(18) will carry over to (19) in spite of (20).

In Chapter 4, we shall consider the boundary
value problems anaiogous to those considered in
the two previous chapters for the Dirac equation

(yu8u+m) Y(x)=0 (21)
where {y.)} are the Dirac matrices and y(x) is a
four<component function which transforms under
a Loremz wransformation accerding to a cenain
spinor representation of the Lorentz group, the
details of which will not concern us here.

GAUSS’ THEOREM; GREEN’s THEOREM

et 2 be a (four-dimensional) volume in the
space-tine  continuum whose boundary is the
space-like hypersurface S. To each point of S, we
may associate a four-vector (m,(x)) such that
n.n, = —1 and such that n,(x)éx, = 0 where
8x, is the uth component of an infinitesimal dis-
placsment from the point x in the surface S.
The four-vactor r will be called the normal to the
surface S at x; that the requirement a®* = —] may
be niet is guaranteed by the condition that S be a
space-like hypersurface. It becomes geometrical-
ly clear that if S is space-like at x, then n is time-
like, so that n,n, < 0; thus, n, may always be
normalized such that n n, = —1. If at x, S has the
tangent plane equal to x; = constant, then it is
clear that n = (%1, 0, 0, 0). *Ve shall always select
that choice of sign for n such that it points in the
forward light-cone of the point x. Here in our
special case, n = (+1, 0, 0, 0). In adiition to the
normal n(x) at the point x, we define the four-
vector n'(z) at the point x of S, calling it the out-
ward normal, in the following way: let 8x be a
displacement from x on § along the direction of
the norinal at x, n(x). If the point x -+ 8x does not
belong to Q2 for any such 8x, then n’(x) = n(x),
by definition. If x + 8x belongs to the set 2, then
n'(x) = —n(x), by definition. 1t is clear from this
definition (and assuming {2 contains no points of S)
that the outward normal points in the direction of
n when (1 precedes the point x on S, « =, whenever
ary space-like hypersurface through {1 precedes
z on §, and that n’ (x) = —n(x) when the opposite
is true. The geometric interpretation is quite
clear and is best illustrated by Fig. 2.

Analogous to ordinary geometry, in four-space
we define the element of area on a surface as the
pseudovector do, whose magnitude is that of the
area of the element and whose direction is the out-
ward normal ny:

do, = n,do (22)
and, on a space-like surface,
do = —n,do,, n%=-1. (23)
If we intrcduce ny, it is related to ne by*
ne = noli . (24)

*C. Moller. “ I'he Theory of Relatvity.” Oxford, 1952, page 129.
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Figure 2

If £, is a four-vector, then, with fy=if ;and x ;= ix,,

Uy o 3 s 3 s,

9x, 9x, Odx2 Ox3 09X
TN ST T S
dx; Odxs Ox3; Ox4

If © is a volume in space-time bounded by the
hypersurface S and f, is a continuous differenti-
able function in Q) and all pertinent integrals ex-
ist, then

!;d‘xg{ﬁ=£do,f“=£do nifu

(sum u=1,2,34) (26)
where d*x = dxodx, dx: dx;. Equation (26) is a
statement of Gauss theorem. We are especially
interested in the case § = S,US:,* where S, and

Sy are space-like hypersurfaces and S, is later
than S,; in this case Eq. (26) becomes

!d‘lﬁif::fdoufu_[daufu (27)
5 Se

where, now do, is a four-vector always pointing
in the forward light-cone:

do,=n, do (0 =1,2,3,4 only). (28)

*$,US; stands for the set union of S, and S;.

We shall often wake the space case S, = {x|zy =
const.}; then

[ dou s = [ dan,fi
= Id’x L;-'if.

= fd’x fo . (29)

Equation (29) tells us that dre=—d%x; we shali
have frequent occasion to recall these results.
Suppose next that f, = ¢(x)3.¥ — ¥a.¢; then

[ d's (0¥ — ¥O0p) =
[1]

[-[aofew 2 -vini] oo

S Sa

which is Green’s identity. This may also be written

f.m[v(m- m?) g — (0 - mt)g] =
[{]

fsdo(:pa%%-&%) 1)

where 3/9n’ = n’, 8/dx, is the derivative along the
outward normal on S. Again, let S =5,US; as de-
fined above, and S; = {(x)]|xe = const.}; then

fdo.¢(x)§;“;=—[d=w(x>£% (32)
sl

by (24). Thus, if we have an integral of the form
of the right side of (32), it may be given a covariant
geneialization by replacing it by the left side of
(32).

In the formulation of Gauss’ theorem and the
Green's identity, we required ¢ and § to be con-
tinuous and twice differentiable; the continuity
requirement will now be drepped but the theorem
retained; this is done to admit as solutions the
gener ilized functions or the so-called distribu-
tions. Though distributions do not always possess
desirable continuity properties, they are infinite-
ly differentiable and always integrable; hence we
can utilize them in our identities.




CHAPTER 2
THE KLEIN-GORDON EQUATION

THE HOMOGENEOUS
KLEIN-GORDON EQUATION

We shall consider, in this section, the boundary
value problem for a function ¢(x) which is a scalar
function under Lorentz transformations that are
proper and orthochronous and which satishes the
homogeneous Klein-Gordon equation:

(O — m?) o(x) =0. (1)
The pertinent boundary value problem is the
determination of the function ¢ at x in terms of
its values and the values of its derivatives on a

prescribed space-like surface. Prior to this, we
discuss the general solutions.

General Solutions; Positive and
Negsative Frequency Parts

Using the standard technique of separation of
variables in a Cartesian coordinate system, we see
immediately that ¢(x) = exp ik-x solves (1) if

K+m=0 (2)
or
ko= w 3)
where
w=+ VT

In general, one may obtain a solutiown of (1) by a
superposition of such plane waves. Put

¢uF7éFLMaMM“. @)

Applying the differential op~rator 0 — m? to both
sides of (4) and uulizing (1). a condition on a(k)
1s seen to be

(k2 +m?®) alk) = (5)

Now k2 + m? = (—k,2 + w?), which vamishes {or

those two values of k, given by (3) but not other-
wise; therefore, i order that (5) be met for all
values of

ko, a(k) must vanish when (3) 1s not

satished. This condiion may be met if a(k)
vanishes identically; but then (4) vanishes identi-
cally also, and we have the tnvial solution to (1).
Thus, if a(k) has the property

a(k)
alk) #0, ko =* &

=0,k #**w

and the integral over k, of a(k) is nonvanishing,

(4) will acquire meaning. These conditions are met
by

a(k) = a(k) 8(k2 + m?)
k
=%£{Nh-m)+&h+mﬂ 6)

where a(k) is, as yet, undetermined. With (6),
(4) becomes

(2 )*

fdak ‘( k,'-(o) ei(ln ﬂ-xo (7)

(2 )*

We define the two functions

ot (x) = fdak“("'“) pilhe —wrg)  (82)

(2 )*

(P‘_) (x) [({"’k a(k‘_w) eflxr +erg) (8b)

(2 )*

We shall call ¢'*! (x) the positive frequency part
of ¢(x) and ¢’ (x) the negative frequency part
of ¢(x). The above discussion shows that any
general solution oi the Klein-Gordon equation
in 2 given Lorentz frame mav be decomposed
into its positive and negative frequency parts:

¢lx) = ¢ (x) + ¢ (x). 9

We shall now show that this decomposition is
invariant under proper orthochronous Lorentz
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transformations. Consider a given Founier com-
ponent of ¢(x) characterized by the momentum
vector k; there are two terms in (7) afhhated with
this momentum vector, one whose exponential
part is characterized by the four-vector x, =
(w, k) and the other by x; = (— w, k). Now &'k, =
K1k = —m? < 0; thus cach of these four-vectors is
a time-like vector, one (x:) lying in the forward
light-cone and the other (x:) in the backward
light-con¢ of the origin in momentum-energy
four-space. Under proper orthochronous Lorentz
transformations x; will transform into a four-
vector that lies within the forward light<one
(see Chapter 1) and x; into one which lies in the
backward light-cone. It is thus clear that if in a
second inertial frame the transformed function
¢'(x') is decomposed into its positive and negative
frequency parts ¢'*) (x') and ¢~ (x'), and if

¢'(x') = Lo(x), (10

then

@' (x') = L' () (11

and the Lorentz invariance of the decomposition
(9) is established.

If, in Eq. (8b), —k replaces k as the integration
variable, Egs. (8) may be written as

¢ ) (x) = jdak"("w") ter (19)

(2 )¢
where
x=(w, k).

A very useful method for extracting the posi-
iive and negative frequency part of any function
which shows clearly the invariant character of
the decompositicn is due to Schwinger. To
develop this method, we first observe that

J'd'r im={l.m>0
2mi 0,a<0

where P is the contour in the complex 7-plane
shown in Fig 3.

Let n be atme-like four-vector pointing in the
forward light-cone; using (8) and (7) we see that

2%[?«:(:— m) = (x) (%)

r—=PLANE

Figure 3

and

-21— j ? ¢(x +7n) = o'-)(x).
P

The calculation is facilitated by the choice n =
(+1, 0, 0, 0. We shall utilize (13) quite often.

The Boundary Value Problems and the
Invariant A-Functions

THE INvARIANT FUuNcTIiON A(x) AND lT1S
ASSOCIATFD BOUNDARY VALUE PROBLEM

Let S be an arbitrary space-like hypersurface
in the space-time continuum and let x be an arbi-
trary spave-time point; x may precede S, lie on §,
or be preceded by S. The boundary value problem
we strive to solve here is the determination of the
value of ¢ at x when ¢ and 3¢/dx, (1=0,1,2,3)
are known at each point of S. (This may seem im-
possible for that case where x precedes S, because
it would appear tha: we wish to determine the
amplitude of the field at a given pont in space
and at a given time by its values (or events) that
occur in the future, which is a violation of our
intuitive notions of causality; but it must be point-
ed out that the Klein-Gordon equation does not
contain in it anything that precludes such cases of
boundary value problems. Said in another wav,
causality, however formulated, is a physical re-
quiretnent imposed on those hields ¢ of interest
quite distinctly from the mere solving of the equa-
tion, which is our purpose here. We shall discuss
cases later that meet some of our intuitive notions
of causal rclatons.)
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Figure 4

For the present discussion, assume x does not
lie on S, let &' be a surface that is space-like and
such that x |, on §’, and let § and S’ wincide
everywhere except in the region of finite diameter;
let Q2 be the four-volume enclosed between S and
S’ (see Fig. 4, which shows x later than S, although
the relations could as well be reversed).

Assuming ¢ (x) and ¥ (x) both satisfy the Klein-
Gordon equation for all x, Green's identity, Eq.
(30) of Chapter 1, reduces to

dcru[ () ) -y 28]~ g

(14)

and because the volume integral vamishes for any

1 due to the assumption that ¢ and ¢ solve the

Klem-Gordon equatnon, (14) i1s independent of §
and §'. Another way of writing Eq. (14) 1s

fd(r,'.[‘P(x')-—*—aw(; ) ¥ ')a‘sit )]

8!

—fd(r,"[d;(x') M_ (I.)Gdl(:t')] _
dax, ax,

We shall impose conditions on S°, S, and ¢ n
order to assist our evaluation of ¢ at x on 8. Sice
(15) is independent of 8" and S, choose §” to be the
hyvperplane xg = xo and S to be anv space-hike hy-
persurface preceding S or atter at, but otherwise

L

meeiing the requirements that Q2 be finite. Then
the ieft side ot (15) becomes

— [ &, [«:( ) M) _ w(x')‘ﬁ%].ue)

r'e=~Fe

We shall require of ay(x’)/dxe that it be a three-
dimensional delta function, — 8{¢’ — r):

a(r’) _

9xo

—- 8{r—r'). (17

Theu (15) reduces to

Bx'y(x') M

y(x) =-—
fda“ [ )i‘& )i‘(&] (18)

Equation (18) involves integrais over two
surfaces still; we wish to reduce it to only that
integral over the surface S, which means we
want the integral

f d&*x; d:(x')aLa(:o'.)

to vanish; this will be so if Y(x') = 0 on §’. This
requirement may be made more gtneral by
noting that if we want (18) to be Loremz in-
variant as it actually is, then ¢(x’) must vanish
outside the light-cone of the point x. We see that
this requitement is consistent with the above,
because under a Loremtz transformation the sur-
face xo' = x transforms into a hyperplane that is
space-like and goes through x.

Charactenzing the function $(x') by x as well,
the requirements we have placed on ¢ are

U-(x') =0, for (x'—x)2>0 (19a)
M:—&(r—').x'"=xo_ (lgh)
axa

If such a tunctuon ¢, (x') exists, then

«pm=—fd<ru'[w,<x')9%’.‘—)—¢(x )""”“ ’] 20)

N
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We shall see that ¥.(x'} does not exist as an
ordinary function, but as a distribution instead.
To this end, we decompose y-(x') into its positive
and negative frequency parts just as we did the
general soludon in the preceding section:

*;(2') =

Idaka“’I) i(he —wr?)

2w

(211)
=l

+ — | d%k
(27)*

Impose on (21) the condition (19a) on ¢, (x') in
the {form that ¥:(x') vanish on x’o = 20; then be-
cause the Fourier transform of zero vanishes
we get from (21) and (19a)

dk,~w:x)
2w

ei (e’ n-.r") .

2D

d(k,w;x) = —d(k,w;x) e =% (22)

and (21) and (22) combine to yield

AN i . —fmZg+ik- !
¥ (') ——(21’)‘ Id’k d(k,w;x) e X

sin w(xo’
w

~x) (23)

Applying condition (19b) to (23) in order to deter-
mine d(k,w;x), we get

¥r(x') = fd’ke”‘" -e) X

T (2m)

sin w(xe' — x0)
—

(24)

From (24), it is immediately evident that ¢, (x')
is invariant under translations; hence we may
write it as A(x" — x). It is not evidently invariant
under more general proper orthochronous
Lorentz transformations, althougth this will be
established shortly. It s evident that the integral
does not exist in the usual sense, since @®kjw ~

kdkd); hence A(x' — x) must exist in the sense of

a distribution (1.e., it may be regarded as a linear
functional on the linear space of the solutions of
the Klein-Gordon equation.)

We have thus solved the boundary value
problem posed:
¢(1)=—fda [A(x —1) "
Il
- BA(x'—x)]
e(x') T om
= - —x' ﬁ
[ dai [3a =20 32
S
A (x —x'
o BEZI] g
where
=] Sheiwe SIN WXo
A(x) = @)’ Id ket -
o=+ Vki+m? (26)

and it can be readily seen that (25) reduces to an
identity when S is chosen as x¢ = x. The A-
function with the special value m = 0 was first
introduced by Jorda. and Pauli.*

Expression (26) for A(x) is an integral repre-
sentation of this function. There are several
others that are useful and important. Observe that

sin wxy _ e~ tkoTo

@ T om jdko

(27)

where the contour C in the ko-plane is shown in
Fig. 5. With (27) and (26), we obtain a second
integral representation of A(x):

elkut

=1 ]
A(x) = (2n)‘fd“k’+ : (28)
¢
To get a third, define
+1,if ke >0
€(k) = 0,if k=10 (29)
—1Lif ke <O

*P. Jordan and W Paul. Z Phys 41 151 (1928)
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Im:.o

‘o = PLANE

uonw/aﬂo

Figure 5

and note that

sin wxo __ e'To —ei=To
@ 2wi

= L[ ko e % [8(ke + w) — (ko — @) ]

2iw

= :1]— J dko €(k)e %00

[S(ko + w2)w+ 8(ko — w) ]

=i',r dko €(k) e *o%o S(k2+ m?).
Then
__ 1 - ikr 2 4 2
A(x) (Zn)ﬂj’d‘ ke*r e(k) 8(k* + m?). (30)
The mvanance of  A(x) under proper ortho-

chronous Lorentz transtormations, is now easy
to prove; if xi = a,axa, then

A(x') =

jd‘k e kuturTr e(k) (A2 + m?) .

ot
(2m)3

Make a change of mtegration va iable from k&,
to ki = auk,. Because the transformation is prop-

er, the Jacobian is unity, and because it is ortho-
chronous, €(k’) will have the same value as e(k);
because it is a Lorentz transformation, k2 = A2;
hence

M) = = gy [d4 ' ek (kT + m)
- (22): f‘”‘ e'** c(k) 8(k* + m?)
or
A(x') = A(x) .

The following properties obtain, as is readily
shown from (26), (28), and (30):

A(x)* = A(x)
A(—r,x0) = A(r,x0)

A(r,—xe) = —A(r,x0)

A(=x) =—A(x) (3N

te., A(x) is real, an even function of its space co-
ordinates, and odd in its time coordinate. An
explicit representation of A(x) in terms of better
known functions will be derived in a later sub-
section.

THE INvARIANT FuNcTIONS A®) (x) AND A (x)
AND THEIR ASSC CIATE BOUNDARY
VALUE PROBLEMS

We have seen, from Eq. (25), that the values of
¢ at x mav be determined by the values of ¢(x)
ond ¢u(x) on some space-like surface S. Know-
mng ¢ (1) over all space, we may construc: by direct
computation or by Schwinger's method, the posi-
tive and negative frequence parts. Hence, one
should be able to determine these functions direct-
I interms of ¢ and ¢, on S, This 1s now quite
straighttorward; trom (25)

d¢
ax,.

¢(x *7n) =—J'da','. [A(x' *7n — x)
Ry

A
I'

~¢(x") ox.

(x' £ rn— x)].
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Performing the obvious integral 10 be done, ac-
cording to Schwinger’s prescription, we get

[

02 (x) == [doy]atrxr - 5 22
ax
s

6A‘

—e(x) 3 (x - x)] (32)

where
dr
T

AG)(x' - x) =2lf A(x" =70 = x). (33)
P

If we choose the second form of Eq. 25, te,

= ’ _on ¢
e(x) —+!do, [A(z x') Sl
_dA(x—x') ,)]
axh (34)
then using Schwinger’s integral again,
s
(2)
= (x x) elx )] (35)

The physical interpretation of Eq.(35)is rela-
tively straightforward, if we be lax in our ter-
minology. The functions A'*) and A!-) determine
directly the posiive and negative frequency
parts, respectively, of ¢ at x in terms of the
values of ¢ and ¢, on S. Eq. (35) rather than
Eq. (32), will be the final form of the bound-
ary value problems solved by A*) and A'").
Comparing (35) and (32), we see

A (x' —x) =— A (x —x') (36)

which also obtains from (31). From the defini-

tion of positive and negative frequency parts,
we have immediately

A(x) = &")(x) + &7 (x). (87)

Let us compute the integral representations of
A*)(x) and A")(x):

1
A (x) = omi j %I A(x—7n)

P
] lkr dT
=~ e [ 3 2mf sin w(xo— 1)

where we have taken n= (1,0,0,0); this immediate-
ly yields

) i ellne -wxg)
(+ =— —— . E—
A*)(x) (2,):]‘”‘ o (38)
and (38) and (36) together yield

AC) @ke Uhviar)
A second integral representation for these
functions analogous to the second integral

representation for A(x) as given by Eq. (28)
is obtained in the manner that Eq. (28) was
obtained:

e ] e-koro
P “*ﬁfcf""’ (ko + @) (ko= w)
1 e~ tkoTo
——2_1n'jdkok‘+m2 (40)
Cy

where C. is shown in Fig. 6; also

e*wo ]
70 -‘ﬁf"’“
C

e~ koTo

(ko + @) (ko — @)

-i*o-to
—+—]do (41)

where C_ is also shown in Fig. 6.
Applying (40) and (41) to (38) and (39) respec-
tively, one obtains

elk x

A¥)(x) = (2 T f s (42)
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Imkg
[
o- PLANE
C- Ce
Figure 6

elk-r
kt+ m?’

AN (x) = (2 T Id‘k

(43)

For a thiid integral representation, we use

+x

—io xr
:jﬂ:-zl_.f kO e-ik..l’o a(ko—w)
- 217,] dko e-*oe @ (k) [8(ko — w)
+ 8(ko + w)]
- fdko e-tkro O(K)S(K: + mt)  (44)
where
l, X0 > 0
0(x) =<1/2, x0=0 »>=0(x0). (45)
, x0 < 0

In a similar way,

+x

= I-dlro e ke To@(—k)S (A + m?) . (46)

x

eiw,..ro

2w

Using (38) and (39) with (44) and (40) respectively,
we get

AN (x) =~ (2”)3 fdak ek r0(k)S(k® + m?)
(47)
A (x) = (,, E fd‘k etk 9(—k)8(k* + m*)

k-

(48)
and it follows directly from (47) and (48) that

A(+)(1)*=A(—)(1) . (49)
Also, (47) and /48) exhibit the Lorentz invariance
of these functions.

THE INVARIANT FuNcTION A (x) AND ITS
ASSOCIATED BOUNDARY VALUE PROBLEM

Define the function A"(x) by

A (x) = #fd’k eite LS @WXo (50)

It is clear that A®(x) solves the Klein-Gordon
equation. This function may be related to the
function A (1) symbolically by

AM(x) = — —-——-———A(x)

Vartm S

where the symbolic operation —3o/V—3f + m? is
interpreted to mean, first, *xpress A(x) (or any
function the operation is applied to) in terms of a
Fourier integral and, second apply the operation
to each component; thus

__T_‘l'__A x) = 1 fdsk ! %
V -4t +mt (2m)3 V —at+ m?
o, 9 SN wXe
€ O —
dx, w

= 2")31(15’;“6“" (0S WXo.
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Suppose ¢(x) and d¢/dx, are knowa on §; let
us compute the function

I doy [A‘"(x —2') Qo)
s

e(x’) ,4M(x — x')] = ®lx).

Here ¢(x) may be any function whatsoever; now,
with (51),

O(x) =——0 f da.:[A(z — )%
V-di+mt/ 0xy

-, ,,0A{x—2'
..4,(1)4_5;:‘_1].

Suppose @(x) is ¢'*)(x), the positive frequency
part of ¢(x), where ¢(x) solves the Klein-Gordon
equation and ¢ and d,.¢ are known on S; the posi-
tive frequency part propagates independently of
the negative frequency part. To see this, suppose
¢(x) = ¢*)(x) with the negative frequency part
identically vanishing for all x; then,

#(x) = [ do a0 - 21) 2
S "

|

ox,

Analogously, if ¢(x) = ¢! (x) with ¢(*)(x) = 0,
then

ax.

¢ (x) =fda;.[A(x-,')iL"£.'_)
s

_v(-)(x')aA(I-I'Z]_

ox)

Now any function ¢ (x) may be decomposed thus-
ly. Hence we have

jda:.[am(x- )34 (x')
S

—¢' =) (2')3LAM (x — x')]

de
V—9}+m?

¢(=)(I) .

But
- a. (!,(x) =——.i——l_.
V-a1+m=‘° V-3 +m? (2m)¢

fd’ka(k' * w)e“k"z“)

2w

= (2;)‘ jd’k “_f"-zj w) (2;_@) el(ke swz)

=4 i¢(!)\*) .

Thus,

ox;

() (o'
fdo,'.[A‘”(z -1') =M (x")
s

AN (x — ')

—_ () ('
e (x') oxh

] =xip*)(x) . (52)

The functions A (x) will “propagate” the posi-
tive and negative frequency parts of ¢ and d¢/dx,
from S to the point x but with a change in phase,
in contrast to A(x — x'}).

Next, we develop integral representations for
AM(x). Expanding cos wx, in terms of exponen-
tial

COS WXy

2 = Idko 5(k2 + m?) e-thko%o (53)

we get immediately from (50)

1

A(l)(z) = (_2—."_)3

+>
Id‘k 5kt + m?) e'** (54)
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Utilizing (40) and (41) we get also

T 2mi I

C-

l -{koxo
& fon ez,

e“ktx.

COs wxo _
o nie ke ————
E+m

2w

Let C', be the contour C, traversed in the oppo-
site sense and let CV' = C_UC, ; then

k.r
iAW (x)=(—2;_}7 f d o

ct

(55)

Two equivalent contours C" are displayed in
Fig. 7.

Imko

b
ko*-w 7 \\ ko*+w //Reko

Figure 7

RELATIONS AMONG THE INVARIANT A-FUNCTIONS

That the functions A(x), A (x), A (x),
and A (x) are all invariant under proper
orthocironous Lorentz transformations is evident
from their integral representations involving
integrations over the whole of the k-space; that
they are not all independent of one another is
evident from the integral representation over
contours, if it were not evident before. The
following relations are easy to verify:

A(x) =A™ (x) + A" (x)
(56)

iAlx) =A%) (x) — A (x)

A (x) = [A(x) — A" (x)]/2
(57)

AC) (x) = [Alx) + iA™ (x)]/2]

It 1s seen from (56) and (57) that A and A"V
play roles analogous to cos x and sin x functions,
while A®) and A'") play roles analogous to the
exponential functions exp (—ix) and exp (+ix),
respectively.

EXPLICIT REPRESENTATIONS OF THE
INVARIANT DELTA FUNCTIONS

In this section, we shall evaluate the integrals
for A*)(x) and A‘")(x) in terms of the higher
transcendental functions and thereby obtain
explicit representations not only for A*’ and
A=), but, through (56), also for A and A"

In the integral representation (38), we trans-
form from Cartesian coordinates in k-space to
polar coordinates in k-space wherein the k.-axis
is made parallel to the vector r. It is an easy mat-
ter to show that (38) reduces to

+

i 3T e

8n2r ar w

Zx (58)

e—l(kr+~8.)

A(*) (I) =

where we place |¢| = r. Put k = m sinh B; then
dk = m cosh B8 dB and w = m cosh B8, and (58) may
be rewritten as

A9 (1) =g 2 LW (rx)  (59)
where
L) (r,xe) =2—- j dB exp[— im(r sinh 8
b + x5 cosh B8)]. (60)

From the fact that A©-)(x) = A" (x)*, we have

Al- )(x) =_l__L( D(,- 10)

mwr or

(61)

L= (ryxe) = L) (ryx0)*

We cannot derive all the pertinent results for
all values of (r,xo) with one development; instead
we musy consider certain regions of space-time
separately. These are labeled in Fig. 8.

Region 1
Since

r X
< 0

Vil—rt Vil-n
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Xo

Xo >0

“Xot +r*<o}/

thmv' 2:
X020 }
x,{«rbo

/ REGION 3.
Xo<0 }

REGION &

//' ////

REGION 3
-

REGION 4: {

Figure 8

there exists a real 8o such that

sinh B,= —-;\/‘g_—__r’
= Xo
cosh B.—\/I:__r’

Then

r sinh B + x0 cosh 8 = Vi — rt cosh (8 + Bo)

and

L) (r,xe ) =#I dp e""‘/‘o’ -3 cnh (8+89)

=§l;f dﬁ e-—ll%r: -r? uuhﬁ. (62)

We note that L*(r,x) does not converge in
the usual sense; however, since cosh 8 i1s always
positive, if A = Vixg* — r* is regarded as a complex
variable and A assumes complex values with neg-
ative imaginary part, then L‘*){A} converges off
the real A axis and below it. We may thus regard
L‘*)(r,xe) as the boundary value of what is clearly
an analytic function of A.* Instead of the param-

eter A, we put

*This result 18 4 special case of a very general resclt derived by
Wightmann (Phys. Rev. 101:860 (1956). In this paper of Wightmann
nes the foundanon of a deep study of held theory on an axiomatic basis
in which the a-function properties above come about in a very logxal
way, along with other important tunctons.

m Vi —r={

where, in general, { may assume complex values
whose real and imaginary parts we shall designate
by £ and % respectively. Thus L*)(r,x) may be
regarded as the boundary value of

i +x
— ~i{coshB
o jdﬁe .7 <0. (64)

From the theory of the Hankel functiont, we have

H' (z) = # Idﬁ eltshB I'm 7> 0 (65)

H'*(z) =— —jdﬁ e tzshB m 2 < 0. (66)

Thus, by analytic continuation,

LYrag) =+ 12HY(m Vx2 - 1)
, region 1.
L(rxe) =+ 12HM(m V xt — r) (67)

The second of Egs. (67) follows from the fact
that H\"(x)* = H\®(x) when x and A are real.

Region 2

Here, r > xo, 50 we cannot put r = V2 — x?
sinh 3o and x = Vr? — x¢? sinh B,; instead we put

————=cosh B,
Vrt —Io’

Xo

=sinh 8, .
VF’+X|)’ '

Then

m(r sinh 8 + xo cosh B8) =

mVrt — a2 sinh (B + Bo) .

Thus, in region 2,

“Methods of Mathemaucal Physis,”
hapter VI, Vol |

tSee Courant and Hilbert,
Interscience, New York, 1958, esp
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L (rx0) =§'1_rf dB e-{mYTT -~ I3 unh 8 ]
(68)

L (r,xe) == L™ (r,xe)
In Eq. (68), 1eplace i sinh B8 by its equivalent cosh
(B + i(w/2) and then let y = B8 + i(7/2) ; then

g +x+i( w/2)
L(o) r.x = —
( ’ 0) 21r

—x+f('/2)

d.y c-nqr’ - :.imnhy s

(69)

In the step between imy = 0 and Imy = n/2, the
integrand in (69) has no poles, and it is easily
seen that the countour integration above is then
equivalent to an integration on the real y—axis;

tx
L) =g [ dy -V v
. +x
-_—_.‘_ i!\/r’——r!-l I
21rf dye" Y

or, using analytic continuation again,

L (rxe) == 12HV(imV rt — xo?) (70)
while , region 2.
L(rxe) =+ 1/2 Hy"V (im Vr® — x2) 7
From (38) and (39), it follows that
AN =x0 ,0) == ANz , r)
(72)
A (= x0, 1) =— AN (x0 , ¥)
from which it immediately obtains that
L (rxe) == 1/2 Hd"(im V r* — x,?)
. region 3

L(rxe} =+ Y2 Hd" (im V r* — x2) (73)

L (raxe) =— 12 Ho™W (m V x3— 1)

L(rae) =—1j2 Ho ®(m V 2§ — 1)

, region 4.
(74)

We may combine the results (67) and (70) and
(71) 10 get a representation of L'*) and L'’ in
the union of regions 1 and 2 (with the light-cone
itself omitted):

~

L (roxe) =g { B(-x) B (mV)

= a(x’)HJ”(m\/—?)} g (75)*

L (r,xe) =~é HY (mV-x?)

/
(Region 1U2)

and we may combine (73) and (74):

LY (r,x0) =—% H(mV-1?) )
L (r,x0) = —-% {6(—1’)1{;”(;11\/—:’) >
_ (76)
9(1’)”0“’("!\/—:’)]J
(Region3U 4)

From (75) and (76), we get

Ax) =2 {C(I)[L(”('.Io)+L"’('.Io) ]]

1 8 (-
— —— ..._l
4 810 x?) X

[ ”0(2)(’"\/_:2)+”o(l)(m\/_*l) ]
2

= e(x) { 0(— x*) Jo(m \/_x')}

(n

4mr or

*#(x%) s the s:ep lunction 8(a) = 0 for @ < 0. #(0) = 1/2. and d(a)
= | for @ > 9. this 1s defined when a 1s a number. Contrast vhis with 8(x)
where 1 15 a four-vetor; we we ¥(x) = #(10).1n a2 umilar manner we
dehne €(a) See Equanon (45).
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Using the fact that

Yap(st) _, de(x?)
r or ar
— _ g 9¢(x?)
3(—x?),

when this operator operates on these functions of
(— x*) we get Ainaily

c(x)

Ax) =-S5 [ 3(x2)

_m(—2%) J,(m V—2x?) ] (78)

2 mV—x

Equation (78) applies everywhere including the
light-cone: the derivative operation implied in
(77) could not be performed for all points x in
classical function theory; but 0(—x?)Jo(mV—x?)

J. N. HAYES

exists as a regular generalized function and there-
fore possesses a derivative which, as (78) shows,
is also a generalized function.  From (78), it is
manifest that A(x) vanishes outside the light-cone,
and for xy = 0 (from the definition of €(x)). It
is a delightful exercise to verify directly from
(78) that A(x) sau. ‘es the Klein-Gordon equation,
and ihat

a
3x¢

=—6(r).
xo=0

Turning to the function A'"(x), we see from
Eq. (50) that

AV (— xo, ¢) = AV (xq, r) (79
so that it will only be necessary to obtain a repre-
sentation of A" for regions 1 and 2 and then it

will be known for the whole of space-time. From
(58)

IA(”(I)—M"& (L&) (rxe) —L'*)(r,%) ]
=74:r—rair [_H_gﬁl H},”(m\/’—_x’) _.0_(’2_1'1”4:)(,,,\/:7)]
__1 e(2)HY (mV—x?) — 0(—1’)”“’(m\/ )]
4ar or [

- I No(mV=27) ,
" A or | _gon(mvTH)

1 M\/’:I; ’
TN V=)
21r’\/_ b (m\/-)

m? Ny (mV=z?)

A\
4dm mV-—x?

k.gm\/—[

or

A1) (x)
m!
ot

x2 <0

x>0

<0

x22>0

(x* <0)

(80)
(x> 0)
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From (80) it is quite clear that A" (x) does not
vanish idcentcally outside the light<cone. The
functions Ny and N; in (80) are the Neumann
functions of order zero and unity respectively,
while Ko(z) is given by

Ko(2) =3’§‘H.(')(iz).

For explicit representations of A“)(x) and
A“)(x), one may use Eq. (57) together with
(78) and {80):

r_e(x)&(z’)+_nl’ H®(mV- x’)_
2w

4r mV— x

2 <0,2>0

_€(x) 5 (x*) _mt H{(mV=1)

AN (x) = { 2w m mV-x
<0,2<0 /81
_&(x) 8(x*)  im* Ki(mV x)
2m 2mt mVae
L ®>0
and
A (x) = A% (x)*. (62)

The behavior of A(x) and A" (x) near the hight-
cone (x* ~ 0) and large distances away from u
(2 ~ * =) and may be denived from the behavior
of the function Ji(z), Mi(z);, and K,(z) for

|z]| ~ % o respective'y.+ Near the origin

Lu)~§+0uw

2 &z yr_t
Ni(2) 1rz+1'rln2+1r 2ﬂ+...

~—

|
K,(2) -§+-I2-|I’l£2+(y—§

tCourant and Hilbert, loc cu

where vy is the Euler-Mascheroni constant. Thus

|, ~-S2 s - S o +
(83)
2 \/ ?
AN, ~ e R
1\ m?
oD

Thus A(x) has a singularity of the light-cone
with an additional jump discontinuity; A is
likewise singular at the light-cone, but the singu-
larity is much stronger than that of A(x).

For large values of [z!,

cos 2z

2
J1(2) \/;

sin z

Mu)~v%;

e %,

2
K A
i Vnz

Thus, inside the light-cone

2
AV(x) ~ 2’:;::: \"’/_-\;?:,,. =t~ o (86)
while outside the light-cone,
A(x) =0, 2% ~ +x (87)
A (x) ~ m} e 1~ +x. (88)

91/255/2 (m\/x;)”’ '

The 3oundary Value Problems and the
Invariant A-Functions (Continued)

In the preceding section, we discussed the
solution of several boundary value problems for




20 J N

the Klein-Gordon equation which gave nse to
four important Green’s functions, ail of which
solved the homogeneous Klein-Gordon equation
themselves. In this section, we <olve severa!
more boundary value problems which give rise
to Green's functions different from those pre-
viously studied and which satisfy not the homo-
geneous Klein-Gordon equation, but a special
version of the inhomogeneous Klein-Gordon
equation, that is, Eq. (1) wherein the right side,
rather than vanishing, is a prescribed function of
space and time.

THE RETARDED A-FUNCTION, Ax(x)

Consider a physical experiment wherein the
experimenter sets up his field function ¢ at the
time t = ¢, in such a way that the functional values
of ¢ and all its first derivatives are known through-
out all three-dimensional space at time ¢ = ¢,.
Since the values of ¢ and its derivatives at previous
times are immaterial, we may require that these
vanish. Since the function ¢ develops in space and
time according to the Klein-Gordon equation, we
may expect to be able to compute the values of ¢
at any later point in space and at any time. We
wish to construct an auxiliary function which we
shall call the retarded A-function and shall
designate by Ax to describe this situation, that
is, 2 function which, when used in conjunction with
Green'’s identiy, wili yield ¢(x) when x is later
than the surface S(¢) and zero when x is earlier
than the surface S(t). Let us try to develop this
function in a manner parallel to that used in the
preceding section.

Consider first the case x later than S{¢y); let
S: be a space-like surface through x such that S,
is tangent to the plane xo = xo at x (Fig. 9), and
that the volume {1 interior to the union of these
two surfaces is finite. From the first two subsections
of the preceding section, the value of ¢ at x is
given by

_ ; -y e
¢(x) jda.u [ A(x~ x') o,
Sleg)
_ . 0A(x — x)
elx') ox ]

ITAYES

S(Xo*Xs)

Figure 9

Thus, if

Aria —2')=A(x—1'), 20 > 2o/ (89)
we shall have achieved part of our goal.

Now suppose x lies earlier than S(¢,). Construct
S: through x in a manner analogous to the con-
struction of S, (Fig. 9).

Let us assume again (as was tacitly done 1n (89))
that Ag obeys the Klein-Gordon equation:

(O—m?) Ar(x) =0, for x € n_s"_q(,u’. (90)

Then in the Green's identity, the volume integral
vanishes as before and we are left with

Jdo ot

=jd0' ['p(x)M-A(x-x) % ]

01“ axu

aAn(x—x) — Anlx—x") _ﬁ]
ax,. Xy

S(ty)

91

But our b()undary conditions of ¢ stated ¢ = 0

for all x prior to S(t); hence ¢(x') = 0= d¢/dx,
on S,. Thus,
dAr(x — x') 9
fda,l [ ') ———— = Ax(x — ') —f } =
1 ax, oxy,

Stte)

which can be satisfied only if
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Ax(x~2') =0, 20 < x¢". (92)
Thus, if we choose Agx(x) for all x to be
Ax(x) = 8(x)A(x), all x, (93)

a form which exhibits invariance under proper
orthochronous Lorentz transformation, then the
boundary value problem posed in the beginning
of this section will be solved. While it is true that
Ar sctishes the Klein-Gordon equation in 2(S,,
S(te)) and (82,5 (%)) (the later by virtue of (92)),
Ag does nnt satisfy the Klein-Gordon equatior
everywhers (Ncte that Az as given by (93) is an
extension of Az outside the original domains (1 of
definition.) Let us determine what equation Ag
does satisfy in its extended domain. It is easy to
show

9,0, Ax(x) = A(x) 9,0,0(x) + 0(x) 3,9,A(x)

+29,6(x) 3,A(x).

Now
0,0(x)=0,if n=1,2,3
900(x) = 8(x0).
Therefore
0,0,0(x) = — 86900(x)
-_9
= 8108(10)
_ &(x0)
=
Therefore
A(I(hr)

A(x) 0,0,0(x) = 5(x4)

Xo

At the point xo = 0, A(x)[J8(x) is undefined: we
shall detine it by a limiting process; therefore

) hm A(xs,r)

lim A(x) 3,8,0(x) = 8(xe) =~

- dA
= §(xo) . {x9,7)

=—8(x0)8(r)
=—§(x)

where 8(x) = 8(x¢)8(x1)8(x2)8(x3). Since ALJO
vanishes elsewhere, we have

A(x) 9,0,8(x) =— 6{x)

and similarly

29,0(x) 3,A(x) =+ 2 8(x).
Thus

OAr(x) = 6(x) OA(x) + 8(x)

and utilizing the fact that A(x) obeys the homo-
geneous Klein-Gordon equation, we get

(O — m*) Ar(x) = &(x); (94)

that is, the invariant function Ag(x) satisfies the
inhomogeneous Klein-Gordon equation. With
this fact, we may recast our treatment of the
boundary value problem of this section in a
manner different from above and in a way that,
as we shall see, cannot possibly be applied to our
previous A-tunctions.

Let 2 be a finite volume in space-time bounded
by two space-like hypersurfaces S, and S;, where
Sy 1s later than S,. Let x be any point interior to
0, i.e., x € ) but x ¢ $,US:. We shall try to find an
auxiliary function ¢,(x') that satisfies

(O —m?) ¢r(x') = 8(x" — x) (95)

and will solve the boundary value problem stated
above; namely, the value of ¢ at x is determined
solelv by its values of S alcne. We shall use
Green's idenuty in the form of Eq. (29) of Chap-
ter 1:
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Id‘x'[q:(x')(D' — mt)(x')
0

=g (x' ) (O —m*e(x')]

[( )8%(1) a_-,p(_ag_’_,\]-

d’.r(xl) '

5,8,

(96)

Using (95), the fact that S, is by hypothesis to
make no contribution, we get, when x € {2,

o(x) = [do'[p(x) 2D
Ss
- *:(I')M .
on'

To assist us in casting the right side in the

fo

form, assume, for the moment, §; is the hyper-

plane x = constant; then do = dxidx.dx; = &Px =
da’o and
9 __9
an’  axd
Then
d .r(x )
e(x) =— !dtfo[w(x ) "'
a ’
—vetx) 222 ]
, a"’.r(x)
fd(fu[w( ) i oxy,
 9e(x’) ]
— o) 222 | @7)

We have indicated all the steps in detail so that the
signatures of various terms have their origins
clearly delineated. Equation (97) is clearly covan-

ant. When x ¢ ], the left side of (96) vanishes and

0= ]dau[w,( ) 26600 _ prry 2te) |
(98)
Comparing (97) with (34), we get
(') =A(x—x"),xe ). (99)

Since S, is arbitrary for this boundary value prob-
lem, (99) implies

¥:(x') =A(x—x'), all x later than S;. (100)

Equation (98) implies

¥:(x') =0, all x earlier than S; . (10))
Since A(x - x') vanishes outside the light-cone,
(100) and (101) may be combined into

Pr(')=0(x—2x') A(x—x') (102)
so that ¢-(x") is identical with Ag{x — x'). [t
remains to show that ¢, (x’) solves (95):

(0494 — m?) ¥ (x')

= (940, — m?) Ap(x —1')

= [(—=d,) (—9,) — m?] Ar{x — x')

= (O - m?) Ag(x— x’)
=8(x—x')

where the last step follows from (94).

This method differs from the first method in two
ways: first, we required the function ¢:(x') to
solve the inhomogeneous Klein-Gordon Eq. (94)
at the very outset, whereas in the first method,
this was derived; second, the point x was not re-
quired to liec on the upper or lower surface as in
the first method.

We conclude this subsection by noting that we
shall derive integral represenmtations for Ax(x)
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in a later subsection, and by summanzing the
boundary value problem in the formula

dAr(x — x') J { ¢{x), z later than S

0, x earlier than S .

(103)

THE Apvancep A-Function, 44(x)

Let us examine the above boundary value prob-

lem as it appears in a reference frame O which is
the inversion of the reference frame in which the
boundary value problem of the preceding sub-
section was formulated; e, if P is a point of
space-time whose coordinates in the above reter-
ence frame, called O, are xo, x1, x2, x5, then in
O the coordinates are Xo, X1, X2, x3, where x,=
—x,. The surface § goes into S and

f do;, — f da,,.
s s

Transforming (103) we get

fdai‘ [Ak(——i+;",ﬁ"('i')

—a%,
_, 0A =%+ x')
—et == |
"

¢(—=x), x earlier than §
{ 0 , x later than S.

Denoting ¢(—x') by ¢(x'), the last equation reads

J'da;.[ A~z +7) )

I e E’)]
- X -
P a5,

0 xlater than § (104)

a { —¢(x) x earlier than E

The function ¢(x) satistes the Klein-Gerdon
equation

(3.9, — m?) ¢(x) = 0.

Thus (104) represents the solution of a new
boundary value problem in the reference frame
of 0, had we solved the boundary value problem
in the preceding subsection in O’s reference frame
and then wansformed to the reference frame O,
we would have denved (104) within the bars
appearing there. Thus, we define

A4(x) = Ax(—=x) (105)

which solves the boundary value probiem sum-
marized by

[ 4o 1 Cn el o, Adx—x)
!doulA,q(x x') oxs ¢p(x)—ax——-—-;‘

s

0 , x later than S

= { ol & i GG, D

Utilizing (93) and the property that A(x) is an
odd function in x, we have
A (x) =—6(—x) A(x). (107)

Integral representations for A (x) will be
developed in a subsequent subsection.

THE INVARIANT FuncTiON A(x)

Define the function E(x) by

Alx) =1/2[ Ax(x) +A (x) ). (108)
It follows immediately that
A(x) = 1/2 e(x)A(x) (109}
and
S ) 20— ey 2B )
Idn,, [ A(x—x") e e(x’) ox. ]

—¢(x), x carlier than §
= { (110)
+¢(x), x later than S
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and that

(@ - m?) A(x) = 8(x). (1)
A subsequent subsection will give integral repre-
sentations of A(x).

THe FevNman, or CAusAL, PROPAGATOR, Ap(x)

We seek to construct the Green’s function which
will yield from the values of ¢ and d¢(dx,) on
some space-like surface S the positive frequency
part of ¢ at the point x when S precedes x. We
could develop this boundary value problem as we
did before directly from Green's identity, but
this is not necessary, for we have enough devel-
oped with the functions A and A or A to ease
our path. For our purpose, we shal take (35)
as our starting point and observe that the Green'’s
function we want, which we {2bel Ar(x), is given by

A¥)N(x),if x>0

—AN 1), if x0 < 0 iz

ar() = {

where for simplicity, we have taken S to be the
hypersurface xg = 0. Equation (112) may be cast
‘nto a form e plicitly covariant by use of the
6-function and thereby broaden its applicability
to ali space-like hypersurfaces:

Ar(x) = 0(x) A (x) — 6(—x) A (x). (113)

This function was introduced by Feynman in
his theory of quantum electrodynamics and
independently by Stuckeiberg and Rivier. The
latter authors designated the function by Ac(x)
and called it the causal propagator. Utilizing (13)
and (57), we may also exoress As(x) by

Br(x) =B(x) = § A(x) (114)

and from (114), it is clear that

(O — m?) s (x) = 8(x). (115)

We summarize the boundary value problem by the
relation

fdtf'u [ Ap(x — x') i%(-Jf—')- e(x') ?A'dx—,_ﬁ
X, ax,

_ | ¢*(x), x later than S o
- 116}

—¢'"Nx), x earlier than S.

Integral representations of A«(x) are derived
in the next subsection.

INTEGRAL REPRESENTATIONS OF THE
INHOMOGENEOUS INVARIANT A-FUNCTION

Let ﬁ(x) be any one of the four functions

Ar, Ay, K. and Ar. From the work of the preceding
subsections we have seen

(O-mt) & (x) =8(x) . (117)
Because these functions al! satisfy the inhomoge-
neous Kle<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>