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ABSTRACT

A closed solution!ýhe.s-zeu developed to calculate the critical
buckling load of a uniformly loaded sphere which yields results that
are in close agreement with test. This procedure permits the cal-
culation of buckling loads of spherical shells wit% varying shell
segments, varying loading (provided axisyrnmetric and radial), and
a varying thickness. ..,

ACKNOWLEDGMENT

The vithor wishes to thank Mr. Troy Smith for his assistance
toward the completion of this report.

ii



SYMBOLS

R radius

h shell thickness

C modulus of elasticity

u Poisson ratio

P external load

f q strain, meridional

to strain, circumferential

angle, meridional

8 angle, circumferential

a denotes a c.hange

T external work

V internal work

I total energy

A, B arbitrary constants

w deflection, radial

v deflection, circumrferential

a critical stress (PR/Zh)

iii



Preceding Page Blank

INTRODUCTION

Numerous articles have been written with the intent of trying to
obtain a solution for the buckling of spherical shells. Some solutions
have been found but are based upon small angle approximations and
uniform load.

The purpose of this report is to try to obtain a solution without the
use of small angle approximations or the necessity of uniform load and
be applicable to any shell segment.

DISCUSSION

The problem under consideration is that of elastic buckling of a
thin spherical shell subjected to a uniform load.

UNIFORM EXTERNAL
PRESSR

THICK

Figure 1

The principle of virtual work shall be employed. Several authors
(Ref. 1, 2, and 3) give the form of the energy expressions. However,
modifications are required to be acceptable for use here.



The total energy of a system consists of three parts:

1. Energy due to bending the membrane

2. Energy due to stretching the membrane

3. External work

Only the last of the three energy equations shall differ from those
given in References 1, 2, and 3.

The energy that is contributed by bending shall be neglected as it
is but a small percentage of the total amount in the shell. However,
because of bending there is a change in surface area.

The stress distribution shall be assumed such that the transverse
cross sections which were originally plane and normal to the centerline
remain plane after bending. Let ab and cd be two adjacent cross
sections of the shell (see Fig. 2) and do be the small angle between
ab and cd before bending. As the load is applied, bending of the
cross section occurs and section cd rotates with respect to ab about
the neutral axis nn by a small angle Ado. The angle is positive if
the initial curvature of the shell is redr-:ed. Because of the rotation
the fibers on the outer surface are compressed and the fibers on the
inner surface are put in tension. Let y be the distance from the
centroidal axis perpendicular to the plane of bending, taken positive
in the direction toward the center of curvature of the centerline of the
element and e is the distance to the neutral axis nn from the
centroidal axis. It can be seen that the extension of any fiber during
bending is (y - e)Ado and that the unit elongation of the fiber is

(X- e) A do

"P (R -y)do

The stress distribution is no longer linear but follows a hyperbolic
law. Assuming that the neutral axis and the centroidal axis are in the
same plane, that the greatest stress is produced in the innermost
fibe-rs, and that the thickness is small in comparison with the radius,
we can write

hAd()

Note: The minus sign indicates inner surface.
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Similarly,

hz~dO
S  2RdO (z)

Thus, the decrease in the angles during bending is

Ado -. 2*ýRa•p (Ia)

AdO 2 6oRdO (2a)
h

The original area over which the external load was applied is
equal to

dA = Rd~adc

where

a = R sin d)

By the bending of the membrane, this infinitesimal area will change to

dA' = R(l + A)do(l + A)a•d

or by substituting equations la and Za

ciAt = R2 2-3R 1) (11 -?AR) sin (Ado (3)

Expanding equation 3 and neglecting small terms we get

dA' = RZ l-3ORT _29R sin/ddodO (4)

The external work is given as

T = - e wdA (5)

Now substitute dAI for dA and we get

T Rf PW sin- Od4dd (5a)
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The internal work neglecting bending is

V = Rz4OfNO + 0Ns) sin 0d(d0

Th• magnitude of the compressive stresses in the shell we shall
call

If we assume that the quantities v and w represent components of

small displacements during buckling from the compressed spherical
shell form, then the No and Ne compressive forces differ but little
from the compressive forces -9 thus

N0 =N +N' 0

and

N& No + N'W

Since the external load P produced the N forces in the shel
with the original deformation w, the external work shall include

only the small increase as will the internal work.

Therefore, the internal work becomes

V= R' f (N'eo + N'0,E) sin OdipdO (6)

However,

Eh

and

Sh.
Nb (luz)(0 udtl•



Substituting into equatL n 6

v R.Eh 4f + 2tt6r) sin OdidO (6a)

Then equation 5a becomes

TP= +----P (tR, N)+ sin (ýdodO (5b)
h fo (* 0)

The total energy of the system, T + V, is equal to a constant, 1.

T+V=I (7)

This total potential energy does not change when the structure
passes from an equilibrium position to an infinitesimal, adjacent
position.

Therefore, the structure will be in a stable position if the total
potential energy I is a stationary value and is a minimum.

According to the mathematical rule, I will be a minimum if the
second variation 621 is positive for any virtual displacement.

The Ritz method is very general and applies to all problems in
mechanics and physics which may be considered as problems of the
calculus of variatiou~s.

If the deflection -w is expressed in the form

w = al(,1 01 + azo.4z + . . - + a6nn~n

where the total function satisfies the boundary conditions. The co-
efficients a are arbitrarily chosen parameters.

If this deflection curve is introduced into the energy equations,
we arrive at an expression f-jr the total potential energy I as a

function of the n parameters a. If w is to be regarded as a
solution to the extremumn problem, it must satisfy the condition of
extremum

T + V = I = stationary

The problenm is ther- a. max.mum - minimum of calculus.
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By taking the partial derivative of the total potential with respect
to each of the arbitrary parameters and set equal to zero, we arrive
at a system of n homogeneous linear equations from which the
parameters a are to be determined. This system of equations does
not have a solution different from zero unless the determinant D
of its coefficient- is equal to zero. Therefore,

D= 0

is the equation of degree n in the unknown force P and from this
the stability condition from which P can be determined. The smallest
root is the P = a.

Therefore, the arbitrary parameters a remain arbitrary because
the determinant D of their coefficient vanishes.

Success or failure in applying the Ritz method to any problem is
content upon the individuality of the problem and thve analysis may
become unnecessarily lengthy and laborious if the series is not
properly selected.

The Ritz method, although giving values higher than actual, offers
the means for the approximate solution to buckling problems in those
cases where the exact sohition may become too difficult or is not
practicable.

Timoshenko provided a concept similar to the Ritz method.
However, whether Timoshenko or the Ritz method is used, results
are higher than actual.

For certain buckling problems a good approximation can be
obtained with only one term in the series.

An extension of the Ritz method, which was rrmad by Trefftz in
1935, is not included in this report.

Substituting the linear strain - displacement relationships (Ref. 4)

R

to C avct S - W

into equations 6a and 5b we get the total potential I of the shell
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7hdJ~v)I' + 2(l +u)( v cot

Svdv

+PR h F dv0 vW cot 0 - Zw2 sin Od~d9 (8)

By substituting a selected deflection for w and v we can obtain
the following total potential

I = XIAz + XZAB + X 3B 2  (9)

where X is a function of (constant, P, E, h, R. and u) and A and B
are arbitrary constants.

If we take the partial of equation 9 with respect to A then B,
we get

al
y- = ZXIA + XzB = 0

S= XzA + ZX 3 B = 0

Therefore, the determinant D is

D = 4XIX -Xzz = 0

From this we can solve for the critical value of the external pressure, P

For a complete sphere with a uniform load and u = 0. 3, we obtain
a critical stress as seen in Appendix A

a = 0. 282 Eh
R

which compares with the test vaiues of

C=O0.154Eh
R

8



This calculaLted value is slightly higher than those given by test
but the procedure allows for the calculation of any shell opening,
loading (provided axisymnmetric and radial) and the use of a varying
thickness is expressed in terms of the meridional angle. The selected
form of the deflection curve series must satisfy the boundary conditions
of the specific problem.

Appendix A is a sample calculation for a two-term deflection curve
for a hemisphere.

Figure 3 shows the buckling curve for varying shell openings from
10 to 90 degrees.

9

•nm m • • m• m wm • m m m w n m • m m • In m n m



104



APPENDIX A
SAMPLE CALCULATIONS

HEMISPHERE
13:90° "

Eh UWdvI:~ ["V +h L~~I20 +u~ w vw cote)

+v2cot2o +2uv-- cote ] sine dodo

Assume:

w=A,cosesine +Azcos3esin3e
v= Bsinesine +Bsin 3esin3e

dV = B, cosesine + Bcos 3* sin 3e. 3

Substituting and noting

2n
sin 2 (3)ede = -rr

jstnesin3ede =0

Performing the intergration, minimize the

total energy with respect to A,,A,,B, 8 B2

and set in determinant form, we get
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