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\\ ABSTRACT
N e
A closed solution;g\h&s—bma developed to calculate the critical

buckling load of a uniformly loaded sphere which yields results that
are in clocse agreement with test. This procedure permits the cal-
culation of buckling loads of spherical shells with varying shell
segments, varying loading (provided axisymmetric and radial), and
a varying thickness. . ..
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SYMBOLS

radius

shell thickness

modulus of elasticity
Poisson ratio

external load

strain, meridional
strain, circumferential
angle, meridional
angle, circumferential
denotes a -“hange
external work

internal work

total energy

arbitrary constants
deflection, radial
deflectiorn, circumferential

critical stress (PR/2h)
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INTRODUCTION

Numerous articles have been written with the intent of trying to
obtain a solution for the buckling of spherical shells. Some solutions
have been found but are based upon small angle approximations and
uniform load.

The purpose of this report is to try to obtain a solution without the

use of small angle approximations or the necessity of uniform load and
be applicable to any shell segment.

DISCUSSION

The problem under consideration is that of elastic buckling of a
thin spherical shell subjected to a uniform load.

UNIFORM EXTERNAL
PRESSURE

Figure 1

The principle of virtual work shall be employed. Several authors
(Ref. 1, 2, and 3) give the form of the energy expressions. However,
modifications are required to be acceptable for use here.
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The total energy of a system consists of three parts:
1. Energy due to bending the membrane
2. Energy due to stretching the membrane

3. External work

Only the last of the three energy equations shall differ from those
given in References 1, 2, and 3.

The energy that is contributed by bending shall be neglected as it
is but a small percentage of the tntal amount in the shell. However,
because of bending there is a change in surface area.

The stress distribution shall be assumed such that the transverse
cross sections which were originally plane and normal to the centerline
remain plane after bending. Let ab and cd be two adjacent cross
sections of the shell (see Fig. 2) and d¢ be the small angle between
ab and cd before bending. As the load is applied, bending of the
cross section occurs and section cd rotates with respect to ab about
the neutral axis nn by a small angle Ad¢. The angle is positive if
the initial curvature of the shell is redvzed. Because of the rotation
the fibers on the outer surface are compressed and the fibers on the
inner surface are put in tension. Let y be the distance from the
centroidal axis perpendicular to the plane of bending, taken positive
in the direction toward the center of curvature of the centerline of the
element and e is the distance to the neutral axis nn from the
centroidal axis. It can be seen that the extension of any fiber during
bending is (y - e)Ad¢ and that the unit elongation of the fiber is

€ = -e)Ad
¢~ (R-y)d¢
The stress distribution is no longer linear but follows a hyperbolic
law. Assuming that the neutral axis and the centroidal axis are in the
samne plane, that the greatest stress is produced in the innermost

fiters, and that the thickness is small in comparison with the radius,
we can write

e = hAadd¢ (1
¢ = = IRdg )

Note: The minus sign indicates inner surface.




2—— EXTERNAL PRESSURE, P

ad

Figure 2




Similarly,

hAd
Ge:—-?-‘fR—-z‘-?' (Z)

Thus, the decrease in the angles during bending is

Ado = -E%?::‘i (1a)

2¢gR
Adf = - —‘-f)—h-f'i (2a)

The original area over which the external load was applied is
equal to

dA = Rd¢adg
where

a =R sin ¢
By the bending of the membrane, this infinitesimal area will change to _

dA' = R(1 + A)Mdop(l + A)ads

or by substituting equations la and 2a

dA' = R‘(l-z“PR) (1-2‘

gR
h h

)sin dde (3}

Expanding equation 3 and neglecting small terms we get

_%gR
B

dA' = R? (1 - h}?R) sin ¢d¢dg (4)

The external work is given as

T=- ./.;.rea Pwda (3)
Now substitute dA' for dA and we get
o2 _2¢pR _ 2egRY
T=-R LL Pw (1 5 . sin »dddl {5a)
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The internal work neglecting bending is

V= szc;‘/;(e@No + egNg} sin ¢dpde

Th~ magnitude of the compressive stresses in the shell we shall
call

N
if we assume that the quantities v and w represent compcnents of
small displacements during buckling from the compressed spherical
shell form, then the Ny and Ng compressive forces differ but littie

from the compressive forces N, thus
Ny = Ny + N'y
and
Ng = Ng + N'g
Since the external locad P produced the N forces in the shell
with the original deformation w, the external work shall include

only the small inerease as will the internal work.

Therefore, the internal work be:omes

V = R? j;)j; (N'(b:o + N'gcg) sin $pdods {6}

However,

.

. ﬁ&%}:m W

Eh
N'\D = zi—_—uzy(co + mg)

and

W0
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Substituting into equat.on 6

R’Eh .
V= WLL ézd) +eky + 21&@(9) sin $d¢pds (6a)

Then equation 5a becomes

T=+ %PLL (wté + \me) sin ¢pd¢pds (5b)
The total energy of the system, T + V, is equal to a constant, 1.
T+V=1 ()
This total potential energy does not change when the structure
passes from an equilibrium position to an infinitesimal, adjacent

position.

Therefore, the structure will be in a stable position if the total
potential energy 1 is a stationary value and is a minimum.

According to the mathematical rule, I will be a minimum if the
second variation 821 is positive for any virtual displacement.

The Ritz method is very general and applies to all probiems in
mechanics and physics which may be considered as problems of the
calculus of variations.

If the deflection w is expressed in the form

W= ay$0, +a06,+... +andnbn

where the tctal function satisfies the boundary conditions. The co-
efficients a are arbitrarily chosen parameters.

If this deflection curve is introduced inte the energy equations,
we arrive at an expression for the total potential energy I as a
function of the n parame‘ers a. If w is to be regardedas a
solution to the extremum problem, it rmust satisfy the condition of
extremum

T + V =1 = stationary

The problem is ther 3 maximum - minimum of calculus.




By taking the partial derivative of the total potential with respect
to each of the arbitrary parameters and set equal to zero, we arrive
at a system of n homogeneous linear equations from which the
parameters a are to be determined. This system of equations does
not have a solution different from zero unless the determinant D
of its coefficiente is equal to zero. Therefore,

D=0

is the equation of degree n in the unknown force P and from this
the stability condition from which P can be determined. The smallest
root is the P = 0.

Therefore, the arbitrary parameters a remain arbitrary because
the determinant D of their coefficient vanishes.

Success or failure in applying the Ritz method to any problem is
content upon the individuality of the problem and thre analysis may
become unnecessarily lengthy and laborious if the series is not
properly selected.

The Ritz method, although giving values higher than actual, offers
the means for the approximate solution to buckling problems in those

cases where the exact solution may become too difficult or is not
practicable.

Timoshenko provided & concept similar to the Ritz method.
However, whether Timoshenko or the Ritz method is used, results

are higher than actual.

For certain buckling problems a good approximaticn can be
obtained with only one term in the series.

An extension of the Ritz method, which was madz by Trefftz in
1935, is not included in this report.

Substituting the linear strain - displacement relationships (Ref. 4)

_1 fdv _
‘0 "R \do ‘)

cg:%(vcoté-—w)

into equations 6a and 5b we get the total potential 1 of the shell

foossorn s




“%j;_é[(% +Z(l+u)(u? ¢ vwcot»,b)

+ V% cot? o+ Zuv%(; cot Q] sin $dHdh

F 3
ZPR J;J; 6,___ 4 vw cot ¢ - zwl) sin ddpdd (8)

By substituting a selected deflection for w and v we can obtain
the following total potential

I = X,A% + X;AB + X;B? (9)

where X is a function of (constant, P, E, h, R, andu)and A and B
are arbitrary constants.

If we take the partial of equation 9 with respect to A then B,
we get

a—: ZX,A+XzB =0
%: X3A+ ZX;B =

Therefore, the determinant D is
D = 4X}X3 - XZZ = 0
From this we can solve for the critical value of the external pressure, F

For a coinplete sphere with a uniform load and u = 0.3, we obtain
a critical stress as seen in Appendix A

R

which compares with the test vaiuzs of

Eh
- 0.154 =2
o R




This calculated value is slightly higher than those given by test
but the procedure allows for the calculation of any shell opening,
loading (provided axisymmetric and radial) and the use of a varying
thickness is expressed in terms of the meridional angle. The selectad
form of the deflection curve reries must satisfy the boundary conditions
of the specific problem.

Appendix A is a sample calculation for a two-term deflection curve
for 2 hemisphere.

Figure 3 shows the buckling curve for varying shell openings from
10 to 90 degrees.
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APPENDIX A
SAMPLE CALCULATIONS
HEMISPHERE
B = 90°

TP
I‘é%t/l/t(%%)-'ﬂ(l*'u(wz-w%-vwcotm)

+v2coto +2uv¥ cote ] sino do de

do
Assume:
w = A,cososine + Azcos3osin3e
v=DB,sinosine +stin 3osinde

g—% = B, cososine +Bzcos dosin3e :3

Substituting and noting

2n
‘/sinz(;)ede = 10
0

2n
Asinesin3e de = O

Performing the intergration, minimize the
total energy with respect to A,A,,B, 8B,
and set in determinant form, we get
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