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ABSTRACT

A newly concelved gliding parachute, called the parafoil
glider, and several existing glide parachutes have been
examined with regard to thelr general stability, resulting
stable angle of attack, and 1lift to drag ratio. The parafoll
glider assumed stable angles of attack up to 50° against the
vertical which represents a 1lift to drag ratio of approximately
1.2, The Investigated exlsting parachutes had 1lift to drag
ratios of less than unity. The tangential force coefficient
of the parafoll gllder amounts to approximately 1.5 at the
pisition of the stable angle of attack.
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I. INTRODUCTION

: : With most conventlonal parachutes, the stable angle of
: § attack 1is such that the parachute develops 1lift as well as

§ drag. When this occurs the parachute i1s said to "glide" or

‘ to fly at an angle of attack; the angle of attack, X, is
determined by the ratio of the 1lift and drag forces, L/D, and

i1t can be seen from Fig 1 that K = tan~t L/D.
T

[

wy
] L,_d
‘ FIG 1. FORCES AND COORDINATES FOR GLIDING
PARACHUTE

J When gliding, the aerodynamic forces of the parachute

) and the suspended weight are 1n equilibrium. 1In order to

malntalin the position of equilibrium, the forces acting on the

canopy at other than the stable angle of attack must be such

that they develop a restoring moment toward the stable position,
It 1s the obJjective of this study to develop a self-

g inflating aerodynamic decelerator with a high 1lift to drag

? ratio, possibly of two (2). For a 1lift to drag ratio of 2,

Manuscript released by the authors December, 1962, Tor
publication as an RTD Technical Documentary Report,




the angle of attack of the parachute would be o‘stable = 63.5°.
Thus this parachute would glide during its descent at an angle
of 26.5° relative to the horizon,

A first step 1In thls investigation was to test the
following four (4) existing unsymmetrical parachutes in the
subsonic wind tunnel at the University of Minnesota and in
low level drop tests:

a) A 26-inch nominal diameter circular flat canopy with
two double-sized slunted and ten straight personnel
guide surface-type extensions (see Fig 2). This
parachute was found to have a stable angle of attack
of 6° + 3° corresponding to an L/D of 0.11.

b) A 70-inch nominal diameter extended skirt canopy
modified with diametrically opposite, slanted and
vented gulde surface extensions as shown in Fig 3.
This model achieved a stable angle of attack of
22° t 3°, corresponding to an L/D of 0.40.

c) A 26-inch nominal diameter T-10 extended skirt
canopy modified with an unsymmetrical arrangement
of personnel guide surface type of extensions as
shown in Fig 4, This configuration has a stable
angle of attack of 12° + 3°, corresponding to an
L/D of 0.21.

d) An A/P28S-3 steerable parachute modified from a
37.5 inch nominal diameter MC-1 canopy with a single
orifice as shown 1in Filg 5. It was found that this
parachute had a stable angie of attack of 20° + 3°,
corresponding to an L/D of 0.36.

None of these parachutes approaches the desired L/D
ratio of 2. There are more gliding parachutes, however, such
as the "Blanc Gore" or the "Sky Sall" parachute. However, it
is known that these types also glide at about 20 to 25 degrees
against the vertical (Ref 3). Therefore, 1t was decided to
initiate a more basic study with unconventional forms. This
resulted in a new parachute configuration of solid cloth

ro




FIG 2 26-IN NOMINAL DIAMETER CIRCULAR FIG 3 70-IN. NOMINAL DIAMETER

FLAT PARACHUTE MODIFIED WITH EXTENDED SKIRT CANOPY
EXTENSIONS a=6°t3° WITH MODIFIED EXTENSIONS
o= 220t 3°

FIG 4 26-IN. NOMINAL DIAMETER T-10 FIG 5 AIP 285-3 STEERABLE PARACHUTE
EXTENDED SKIRT PARACHUTE WITH MODIFIED FROM MC-1 CANOPY
UNSYMETRICAL EXTENSIONS WITH A SINGLE ORIFICE

=123 oc=20°¢3°

3
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called PARAFOIL GLIDER, which achieved glide angles up to 50°
agalnst the vertical which is equivalent to a lift to drag

ratio of 1.2,
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Rigld Models

II. MODELS

L/ of 2

B.

ments we
cloth.

used for three-component measurements,
for drop testing.

Model 1)

Model 2)

Model 3)

Elght rigid models have been tested 1ln the open section

of the wind tunnel.
investigation in search of a parachute which would have an

The models are:

These models were used as an inltial

an extended skirt canopy wlith two lateral extensions
constructed of balsa wood and Plastelina (Fig 6),

an extended skirt canopy modified with a stabllizing
downstream extension (Figs T7a,b),

an elliptical canopy with two glldlng surfaces at
the downstream part (Figs 8a,b),
an extended skirt canopy with a
face (Fig 9), and

an extended skirt canopy with gliding surface and
exhaust Jet in rear of the canopy (Fig 10).

single gliding sur-

Fabric Models

In addition to the tests with rigid models, many experi-
re conducted with gliding parachutes made out of nylon
These models ranged in size from a 1€" nominal diameter,
to a 10' nominal diameter
These models may be described as follows:

A 32-inch nominal dlameter unsymmetrical parachute con-
structed of nylon cloth wlth a porosity of 120 ft3/ 1
£t°-min. This configuration is shown in the wind
tunnel in Fig 11 and schematlcally in Fig 12.

A gliding parachute modified from a 37.5 inch
nominal dlameter 10% extended skirt canopy 1s shown
schematically in Fig 13 and in the wind tunnel in
Fig 14. This model was constructed of nylon cloth
with a porosity of 120 ft3/ft2-min and was modeled
after rigld model number 4.

A gliding parachutc modified from Mcdel 2, This
model 1s shown schematically in Fig 15 and inflated
in Fig 16. It has a nominal dlameter of 16 inches
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FIG 11 32-IN. DIAMETER UNSYMETRICAL GLIDING PARACHUTE IN
WIND TUNNEL (MODEL 1)
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and 1s constructed of nylon cloth with a porosity
of 120 £t3/ft%-min.
The modifications consisted of removing a strip of
cloth from the hase of eight of the gores contained
in the 10 per cent extended skirt portion of the
canopy. In addition, slots were cut from four of
the gulde surface panels alornig the line of inter-
; section of the roof and guide surface panels.
§ _ Deflection tests of this model in the open test
: section of the wind tunnel indicated a maximum
stable angle of attack of 35° + 3°, However,
analysis of three-component tests on a smaller
model showed the stable angle of attack to be
22° + 3° (See Table 2), This model was also
examined with a zero porosity canopy in which
condition a stable angle of attack of 40° + 3°
was achieved.
Another version of this type of parachute was
equlpped with a large exhaust slot, somewhat simi-
lar to Model e, Flg 10. However, the textile model
off thils version displayed unsatisfactory inflation.
Further work on thls version was discontinued.
] Model 4) A modified 12-inch nominal dlameter ribbed gulde
1 surface parachute as shown in Fig 17% This model
was constructed from nylon cloth with a porosity
of 30 ft3/Tt2-min. (See Fig 17, on page 13.)

Model 5) A 16-inch nominal diameter gliding parachute con-
structed with zero porosity mylar-coated nylon as
shown in Fig 18% This model employs the use of
longitudinal ribs to support the canopy roof.

¥The evolutlon of Models &, 5, b, and 7 1s described 1n-
the Appendix. ’
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FIG 17 GUDING PARACHUTE MODIFIED FROM 12 INCH
DIAMETER RIBBED GUDE SURFACE PARACHUTE
IN WIND TUNNEL (MODEL 4)

Model 6) A 24-inch nominal diameter parachute of the same
design as Model 5 but constructed of nylon cloth
with a porosity of 30 ft3/Tt2-min. This model 1s

shown in Fig 19% Longitudlinal ribs also support
the canopy roof.

FIG 10. 24 INCH DIAMETER GLIDING PARACHUTE QONTRUCTED
FROM 30 POROSITY NYLON CLOTH (MODEL 6)

*The evolution of Models &, 5, b, and [ is described
the Appendix

13




Model 7) A 24-inch nominal diameter parachute constructed
from nylon cloth with a porosity of 10 £t3/rt°-min.
as shown in Fig 20% Thils configuration is a
variation of Models 5 and 6. The basic design for
this canopy is shown schematlcally in Fig 21 and
1s the design used in Models 7, 8, 9, and 10. It
incorporates all characteristlcs which, on the basis
of this study, are feaslble and practical. The
configurations 7 through 10 shall, for the purpose
of dlstinction, be called the PARAFOIL GLIDER.

Model 8) A 10-ft nominal dlameter replica of Model 7 as
shown in Fig 22. This model was constructed from
nylon cloth with a porosity of 10 f£t3/ft2-min.

Model 9) A 16-inch nominal dilameter replica of Model 7

as shown in Flg 23. This model was constructed
g from 10 porogsity nylon for use in three component
studles.

Model 10) A 36-inch diameter parachute shown in Fig 24 was
b modeled after the configuration shown in Fig 21,
i This model was constructed from nylon cloth with
' a nominal poroslity of approximately 10 and has
32 suspension lines.

) -
v

] ¥The evolut.on of Models &, 5, 6, and 7 1s described
in the Appendix,

14
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FIG 24. 36-IN. DAMETER PARAFOIL GLIDER
MADE OF 10 POROSITY NYLON CLOTH

WITH 32 SUSPENSION LINES (MODEL10)
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ITII. EXPERIMENTAL PROCEDURE

A. @Gliding Parachute Nomenclature

In the course of developing a gllding parachute, it
has become convenient to adopt a system of oo»ordinates and
stabllity notation. The co-ordinates shown in Fig 25 are a
comblnation of standard parachute and alrcraft co-ordinates.
This arrangement allows a description of a gliding parachute's
performance, which includes the stable angle of attack, X,
longitudinal stability, pitech, 1atera1 sfability, roll, and
yaw stabllity. Pitch, roll,‘and yaw are expressed as an
angular deviatlon from the mean stable position. Thus a para-.
chute which has a small angular deviation from 1ts mean, or
average positidn, would be termed a stable‘configﬁration.

B. Rigid Model Test Procedure

To expedite the experimental analysis of various para-
chute conflgurations, a system has been devised which utllizes
riglid models. Rigld models used were fabricated from wood,
metal, and Plastelina (a form of modeling cla&), or a combina-
tion of these materials, This method of testing was previously
used in connectlion with rigld models of conventlomnal parachutes
and has been redesigned to accommodate the present testing of

gliding parachutes.

The rigid models are mounted on a sting support which
is attached to a pivotal device. This pilvot restrains vihe
model and sting to movement in a horizontal plane only. A
schematic representation of this system is shown in kig 26,

Experiments performed wlth rigid models were conducted
in the open section of the subsonlc wind tunnel at a veloc-
ity of approximately 40 ft/sec. For a 6-inch dilameter model
thls velocity ylelds a Reynolds number on the order of
2 x 105. When the models assume thelr stable pousition in
the flow, the angle of attack can be read directly from a
deflection indicator,

20
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FIG 26. WIND TUNNEL TEST ARRANGEMENT

Cc. Flexible Model Test Procedure
1) Pendulum Testing Procedure

Experiments with fabric models were conducted in the
open section of the wind tunnel at a veloclty of approximately
25 ft/bec. For a 24-inch nominal diameter canopy this velocity
corresponds tc a Reynolds number of approximately 3 x 105.

The models were suspended from a pendulum device which
allows free motion in a vertical plane. A schematic representa-
tion of the system used 1s shown in Filg 27 while the pendulum
support 1is shown in Fig 28, The pendulum support is equipped
to measure and record the stable angle of attack and the
longitudinal stability (pitch) by means of an electrographic
recorder while the lateral stability (roll) and the yaw stability
are Jjudged by eye.

2) Three Component Measurements .

In the advanced stages of development, parachutes are
tested in the closed section of the wind tunnel on a three
component strain gage balance. The procedure involved for
this method of testing 1s described in Ref 1.

22
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FIG 27. SUBSONIC WIND TUNNEL TEST ARRANGEMENT

FIG 28. ANGULAR DEFLECTION INDICATOR
23




The tangent force, T, acts along the centerline of the
canopy and is the resultant of the lift and drag as shown in
Fig 1. The normal force, N, 1s perpendicular to the centerline
of the canopy and produces the aerodynamié moment, M, about
the confluence point of the suspension lines. This moment 1s
considered to be positive when, for angles of attack greater
than the stable angle of attack, it tends to rotate the canopy
in the direction toward the stable position. It 1s considered
negative when, for angles of attack less than the stable angile
of attack, ‘1t tends to rotate the canopy toward the stable
position. Thus a stable positlion will exist when the moment
diminishes to zero and the derivative __&g)o, where Cy 1s
the moment coefficient and CAis the angle of attack.

3) Drop Testing Procedure

Drop testing of models 1s used to verify the results
L obtalned in wind tunnel tests. A descent rate of approximately
10 ft/sec 1s used for the 24-inch nominal diameter models,
corresponding to a Reynolds number of about 1.3 x 105. In
] drop tests the angle of attack 1s determined by comparing the
1 horizontal distance traveled to the vertical distance of
i descent. With properly adjusted suspension lines, the direc-
/ tional stabllity was sufficlent to provide a steady descent
which in turn was satisfactory for this mode of glide angle

Judgment.
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IV. ANALYSIS AND RESULTS ;

Before the results are discussed in detall, the follow- i
ing general femarks may be 1In order, :

The significant characteristic of a gliding parachute
is that 1t has an inherent ability to prefer a gliding motion
over all other motion. 8Such a decelerator must exhiblt a
stable gliding condition, maintained by a restoring moment.

It has been shown that this condition exists when §EQM>-O
and the normal force diminishes to zero. dcc

It was also noted that in general the gliding parachutes
in the wind tunnel assumed thelr stable position at which
they remained quite steady. However, when drop tested, many
model configurations descended along a spiral, which would
indicate a certain lack of yaw stablllity or lack of symmetry
in the model.

It was found difficult to maintain full canopy infla-
tion on some model configurations, particularly at relatively
high glide angles. It was noted that at the limiting glide
angle, the front portion of the canopy buckled inward and
thus prevented the development of any higher 1ift to drag
ratio. Therefore, the experiments with rigid models would
only be of an exploratory nature, because rigid models would
operate at large angles of attack, while thelr fabric counter-
parts are affected by buckling at these high angles.

A. Rlgid Models
Table 1 presents the results of the investigation with

elght rigid models. These tests showed that several rigid
canopy configurations would approach or fully develop twice

as much 1lift as drag, but selected fabric models dld not reach
these values because of collapse of the leading edge at large
angles of attack. The Reynolds number of these tests with
rigid models was on the order of 1.75 to 3.0 x 105.

B. Fabric Models
Table 2 summarizes the results obtained from experiments
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TABLE 1. SUMMARY OF RESULTS FOR
RIGID PARACHUTE MODELS

SURFACES SLOTTED

. | A F
MODEL | DESCRIPTION Amace (o) |
" EXTENDED SKIRT | OSCILLATING
CANOPY ' BETWEEN
150 « 60°
EXTENDED SKIRT
CANOPY WITH TWO | 350 + 50 0.70
ATTACHED BODIES
" SKIRT CANOFY BETWEEN
18° . 62°
d 10% EXTENDED
SKIRT CANOPY 64° * 1° 2,05
MODIFIED
ELLIPTICAL CANOPY | OSCILLATING
e O G AXIS RATIO BETWEEN
(1:1,65) 259 . 55°
ODIFIED ELLIPTICAL
f 0 CANOPY AXIS RATIO | 61° * 1° 1.80
(1:1,55)
10% EXTENDED
g SKIRT CANOPY WITH | 480 + 3° 1.11
v GLIDING SURFACES
10% EXTENDED SKIRT
p) [CANOPY WITH GLIDING | 56° + 3° 1.48
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with the fabric models. It can be seen that glide angles on
the order of 50°, corresponding to a 1lift to drag ratio of
1.2, were resached.

Models 1, 2, and 3 represent the initial attempts to
modify existing parachutes with unsymmetrical afterbodies.
The main problem with these configurations was that of leading
edge collapse. None of these parachutes reached an L/D of 0.5
and remained stable and inflated.

Models 4 through 10 evolved as an attempt to counter
the problems found with the previous models. A description
of the development of Models 4 through 7 is given in the
Appendix. Table 2 shows that Model 5 achieved a stable angle

- of attack of 57° 4+ 3° or a 1ift to drag ratio of 1.55, but it

was found in drop tests that the configuration of Model 5 was
too unstable and cannot be recommended.

Modifications of Model 5 resulted in the configuration
shown in Fig 24, represented by Models 7 through 10. It was
found that these models had a stable angle of attack ranging
up to 50° with an L/D ratio of 1.2.

It may be assumed that full size parachutes of the
type represented by Model 10 will achleve a higher 1ift
coefficient, based on experience with regular airfoils.
Therefore, one may conclude that the lift to drag ratlos ob-
tained in these model tests are the lower limits of the
respective 1ift to drag ratios.

cC. Three Component Tests

Three of the configurations, namely, Models 3, 5, and 9,
were tested on the three component balance. The results of
these experiments are shown in Figs 29, 30, and 31.

Figure 29 shows the curves for Model 3, which 1s made
of relatively high porosity cloth. It can be seen that this
model has a stable angle of attack of 22° and the slope of
the moment curve indicates a stable configuration. This model
has a moderate tangent force coefficient of approximately 0.65
at 1ts stable position,
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Figure 30 shows the curves for Model 5., Thils zero
porosity model exhibits a large stable angle of attack of §7°
out the restoring moment 1s relatively weak and may not be
sufficlent to achleve satlsfactory stabllity. Thls part is
in agreement with the observations made in free drop tests.

The most successful configuration, Model 9, has its
characterlstic curves shown in Fig 31 for various line length
adjustments. It can be seen that they are of the same general
shape as those for Model 5, but have a lower stable angle of
attack. However,'it has a noted 1lncrease 1n stabllizing
mor2nt resulting in a more stable conflguration.

The tangent force curve fer this model reaches a maxi-
mum nhear the stable position. Hence, unlike Model 3 1in Fig 29,
the 1ift and drag of Model 9 increases near the stable angle
of attack, thus creating a high tangent force. The maximum
CT value for this model is approximately 1.4 and would provide
a relatively low rate of descent. {

£2 an o
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V. SUMMARY AND CONCLUSIONS

In summary, 1t was found that several rigld models
possessed large stable angles of attack. The fabric models
were subJect to collapse and instability and the maximum
gllide angle of flexlble models was lower than those of the
rigid models.

In addition, it was shown that the models which indi-
cated relatively large angles of attack would not necessarily
be sufficlently stable in the three directlions. Thus a com-
promlise was obtained with a canopy which has a glide angle of
approximately 48° or a 1lift to drag ratio of approximately 1.1l.

It appears that to achleve larger glide angles would
require parachutes based on entirely new deslign principles
or wlth rigid front portions, leadlng edge support, or other
mechanical contrivances.
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APPENDIX

DESIGN, DEVELOPMENT, AND MODIFICATION
CF THE PARAFOIL GLIDER

This section contalns a description of the evolution
of a gliding aerodynamlc decelerator.

In designing a gllding parachiute capable of operating
at high angles of attack, the problems encountered in earlier
deslgns, where canopy collapse was a prime performance factor,
were carefully considered, To deslign a canopy which would
present a thin leading edge to the flow, it was proposed that
ribs be allowed to support the roof of the parachute. As a
rreliminary investigation of this type of deslign, a ribbed
gulde surface parachute was tested and modified.

The mcdified model, shown 1in Flg 17 of the maln text,
was obtalned by removing portions of the guide surface panels
at diametrically oprposite sldes of the canopy. This formed
a channel through the canopy which allowed flow to pass with-
out affecting the canopy skirt, that 1s, wlithout causing
bucklling at the canopy skirt. When the suspension lines were
properly adjuste@, the modified portions would become the
front and rear of the canopy in the flow. Upon completion of
testing, this configuration displayed a stable angle of
attack of 40° + 3° and was qulte stable.

Since this model performed so well, a new configuration
was designed which had ribs placed parallel to the flow, as
shown in Fig 18. With this type of canopy the flow over the
top of the canopy creates aerodynamic 1ift while the flow
through the canopy reduces the drag. Since the roof panels
are supported by ribs they may be constructed such that they
are very nearly parallel to the flow and do not collapse.

Two parachutes were constructed with this design and
subsequently tested; one of the models was constructed of
30 porosity nylon and the other of non-porous mylar. The
model of zero porosity had a stable angle of attack of
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57° + 3°. The 30 porosity model was stable at an angle of
attack of 50° 4+ 3°. These models are shown in Figs 18 and
19, respectively. It can be seen from Table 2 that theae
parachutes, listed as Models 5 and 6, were unstable and hence
had to be modifiled. ‘

To 1mprove the characteristics of this design, modifi-
cations were made which praduced a deeper canopy and one with
slanted ribs. This configuratlon, shown in Fig 20, eventually
attained an angle of attack of 48° + 3°, which was less than
the previous configuration but showed a marked improvement in
stability. |

Flgure 21 shows the schematlc drawing of the gliding
parachute which was used in the followlng experiments and
which has been referred to as the PARAFOIL GLIDER.

Since Model 7 (shown in Fig 20) was intended to be only
an aerodynamic model, efforts were next directed at the
development of a structural model, Two conflgurations were
proposed and constructed. The first, Model 10 shown in Fig 24,
had 32 suspension lines and 8 longitudinal ribs. This model
achieved a stable angle of attack of 50°'i 3°, corresponding
to an L/D of 1.20. Upon completicn of testing, 1t was decided
that 32 suspension lines were not necessary or desirable;
consequently the model shown in Figs 32 and 33 was designed
which had 24 suspension lines and 6 ribs.

Exploratory drop tests and wind tunnel tests of this
cloth model with porosity of 10 ft3/Tt2-m1n showed that 1t
also had an L/D ratio of approximately 1.20, A schematic lay-
out of the gores for this configuration is presented in Fig 34.
Figures 35 through 39 show the dimensionless gore pattern
layouts.

The nominal dlameter of the canopy 1is calculated from
the total canopy area excluding the area of the ribs.
Figures 40 and 41 show the suspension line arrangement and
lengths, where all suspension linc lengths are measured from
the skirt of the maln canopy to the connectlon links. It
should be noted that the susrension lines are continuous
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LEADING EDGE

4 4

ATTTORRS
1

9
10\& 10
N 11

12 12
TRAILING EDGE

LINE NO éo LINE NO éo
1 1,125 7 1.044
2 1.125 8 1,038
3 1,100 9 1.050
L 1.075 ¢ 10 1.075
5 1,070 11 1,100
6 1.04L4 12 1,122

D, based on total cloth area S,
£ = length of suspension line measured
from skirt of canopy to connection

lii.ks on risers
Lines 1-6 on front risers
Lines 7-12 on back risers

FIG 40. SUSPENSION LINE LENGTH FOR 24-
SUSPENSION LINE PARAFOIL GLIDER.
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across the bottom edge of the fiba. The riders used on this
configuration were 0.15 D, in length, thus increasing the
over-all length of the suspension system to approximately
1.25 D,.

A schematic view of the inflated canopy 1s shown in
Fig 42 to indicate the location of the varicus ribs. The ribs
themselves are attached along the seam of adjacent canopy
panels. Figures 43 and 44 present the dimensionless gore
patterns for the front and rear ribs. The shape of the front
and rear ribs which are Joined at the center of the canopy
are nearly ildentical except for a slight difference on the

top edge.
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