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ABSTRACT

Thermal radiation from refractory oxide materials is
a volume, rather than a surface, phenomencon. General equations
describing emissivity, transmissivity, ;,nd reflectivity :or
scattering and absorbing systems have been derived in a form
that allows determination of the necessary material constants
and calculation of emissivity under isothermal and non-isothermal
conditions. Methods of evaluating conditions under which these
equations are applicable have been derived, and a simple eKpres-
sion developed for radiant energy transfer when conductiorh in
the solid is negligiblp ",e radiant energy transfer
in the solid,

Experimental i. prai&,s has bean develooed -nd measure-,
ments of the isothermal. emissivity of several refractory odides
and the transmissivity of single crystals have been made over
the wavelength range 1-15 micronr at temperatures up to 1350-C.
Emissivity was found to depend strongly on composition, micro-
structure and wavelength. Different grades of "alumina" ceramics
range from about 0.2 to above 0.9 in the near infrared 4.L..444

Diffuse transmissivity measurements provided experimental
values from which scattering was calculated for each sample. Large
scattering values --l'--ada Lt--..) were obtained, however, emis-
sivities calculated from these measurements agreed well with
experimentally measured data. Results show that the normal emis-
sivity in these systems is substantially larger than the hemispher-
ical emissivity in contrast to opaque solids where they are nearly
the same.

This technical documentary report has been reviewed
and is approved.
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JULES I. WITTEBORT
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1.0 I NTRODUCTI ON

Performance evaluation of ceramic, ceramic-plastic
or ceramic-metal fiber radomes, re--entry bodies or high
temperature anti-abrasion coatings on a metal substrate
requires a precise knowledge of the thermal gradients and
radiant thermal transfer through and from the bodies.
Energy transfer through these s:ystems is by two modes:
(1) radiation, (2) lattice conductivity. There exist
complex interactions and perturbationb between these trans-
fer modes which cause large deviations from linear ther-
mal gradients in areas near interfaces. These gradients
may be larger or smaller than would be predicted on the
basis of lattice conduction alone.

Emissivity has been widely accepted as a simple
dimensionless constant, and has been used in conjunction
with the blackbody radiation equation to uniquely expres:;
the quantity and quality of radiant energy emitted by a
heated object. For opaque materials such as metals or
graphite which possess large extinction coefficients, the
emission process is in essence a surface phenomena, unaffected
by internal gradients, and the emissivity concept for these
systems is accurate and useful. However, for semi-transparent
materials such as polycrystallinc ceramics used for high
temperature applications, radiant energy emission is a
volume process. Thermal gradients normal to the radiating
surface are almost always present, and no obvious single
temperature is useful in characterizing such radiating
systems. Thus, the surface emissivity concept becom3 ; fun-
damentally unsound.

The iniportance and significance of these concepts to
heat-transfer ari temperature measurement in translucent
materials such as refractory oxides and oxide coatings is;
not widely appreciated. However, using re_Žýonable uptical
constants for dense sintered aluminum oxide, our estimatc's
indicate that differenc, es as great as one hurnred percent
from isothermal emissivity values may occur in practical
systems. For example, at IlVV') C the effective er..issivity

Manuscript released by author July 1962 for publicat'ion ,s
an ASD Technical DociLmentary Refpo-t.
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for aluminuLm oxide in still air is already thirty-five
percent higher than the isothermal value. This difference

becomes increasingly important as the temperature level
increases (roughly proportional to T) , and as the air
velocity increases. That is, these effects are substantial

ones of practical as well as theoretical importance.
(1) (2) (3,4,5,6,7)

McMahon , Gardon , and others have

developed the -,olume emissivity concept for describing
the radiant transfer within ar.d from transparent (i.e.
non-scattering) systems such as glass or single crystals.
f!owever, most i.mportant ceramic and' plastic systems con-
tairn either pores or fibers as scattering centers. As a
result, these analytical methods and use of a simple volume
emissivity are unsound. There is not at present any sound
general basis for describinq the t,±!rmal radiation charac-
teristics of semi-transparent materials under non-isothermal
conditions.

The numerical mnethod of Hottel (8) and the Hamaker
difiezential equations consider both absoidtion and scattering
coefficients. At present neither of these systems has been
subjected to much high temperature experimenital verification.
Thus it is necessary to (a) select an analytical system
sufficiently powerful to solve complex and difficult problems
and which will permit material constants. to be expressed in
a relatively simple form, and (b) .o experimentally verify
the analytical results.

2, o THE PROBLEM

The problerrm of heat transfer and radiant energy
interaction with absorbing and scattering materials is
a compiex one. Factors such as absorption and reemission
within the body as well as scattering must be taken into

account; in addition to the linear thermal gradients in
the center of thick sections, boundary effects must be

cons4iO.ed; also there are dimensional effects and, less
frequently, polarization "nd phase have to be handled.
In general there are tw,. methods of approach to this problem,
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Representative of one, the numerical aproach, is
the Hottel-Cohen method'8). In this method the sample being
considered is broken up into small zones of constant tempera-
ture. Radiation exchange factors are determined for each
possible zone interchange. These radiation exchange factors
are then used in energy balance equations, one equation for
each zone in the system. Heat transfer to the zone by con-
vection, radiation or by unsteady state enthalpy change of
the zone are conside ed in the energy balance equations.
When these are solved with suitable boundary conditions,
the required temperature and heat flux distribution inside
the sample are determinea. The success of this type of
calculation depends on the speed of modern computers. One
of the advantages is that (by making the zones small enough)
practically any desirable accuracy can be obtained, pro-
vided that sufficient machine time is available. A main
disadvantage is that a solution is valid for o.nly one
specific case; this is useful when actual heat transfer
to some known configuration with known optical properties
is desired, but is not helpful for general design purposes,
or in understanding the mechanisms involved. It does not
proide a good basis for defining material properties or
comparing the potential utility of different kinds of
materials.

The other general method involves equations des--
cribing the whole process in terms of position and the
parameters at these positions. The solution describes
th,? desired property, such as effective thermal conduc-
tivity, in terms of the necessary parameters. The main
disadvantage of this technique is that it is extremely
complicated to solve the problem in the most general case,
and the solution may be so complicated that a computer
is needed to obtain numerical values from it. A practi-
cil approach is to make suitable approximations which
simplify the general problem to a manageable set of equa-
tions. Such an approach was taken by Tlamaker( 9 ) who
,-ssumed diffuse radiation an,! divideJ the flux into a
fo•-ward and backward component. Though the limitation
to diffuse radiation simplifies the niathematicb - great
deal, it is not a serious lo•z% of generality •;inv-n practi-
cally all cases or heat trt-mn.;for of practical interest
involve mostly diffuse radliation.



Although other analytical methods are possible,
Hamaker's equations appear to be the most useful system
presently available to characterize the thermal radiation
behavior of both isothermal and non-isothermal semi-
transparent solids. For non-isothermal cases, thermal
gradients as well as optical coefficients must be consid-
ered in calculating radiation interchange. This procedure
is not currently used because of heat transfer specialists'
greater familiarity with opaque materials, and because the
required optical data are not generally available.

Two important optical parameters are defined by
the Hamaker relations 9 : the absorption coefficient (a),
and the scattering coefficient (s). The former is basic-
ally an intrinsic property that is related to, but not
equal to (a), the absorption coefficient of single crystals.
The absorption coefficient (a) is partially dependent on
the structurally sensitive scattering coefficient.

In order to be able to calculate radiant energy
emissivity from non-isothermal semi-transparent materials,
values of (a) and (s) are needed as a function of tempera-
ture and wavelength. The reflectivity and isothermal
emissivity of infinitely thick samples allow the determin-
ation of the ratio (a/s) but not the individual values.
Thus, present emissivity values cannot be converted into
the required coefficients. Measurements of the reflecti-
vity, transmissivity, or absorptivity of a given material
as a function of thickness does allow both constants to
be determired. In general, it is most convenient and
accurate to measure transmissivity for scattering systems;
although for very thin layers, completely diffuse radiation
is required, and for thick layers the accuracy decreases
due to loss of signal strength of the transmitted beam.
Becatise radiation emissivity differences between isother-
mal and non-isothermal specimens increase with increasing
temperature, data for optical coefficients is most diffi-
cult to obtain in the region of greatest interest. Since
(s) is nearly temperature independent, this problem can
best be overcome by elucidating the interrelationships
between (a) , (s) and (ci) which are more easily measured
at or extrapolated to high temperature.

4
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3.0 THEORETICAL INVESTIGATIONS

The differential equations presented by Hamaker
provide a basis for developing analytical expressions of broad
applicability. In contrast to some other analytical systems,
these derived expressions are general enough tc include the
strong effect of scattering in addition to absorption effect.
For real systems, the re'lative simplicity of the equations
facilitates a study of mechanisms and trends and a determin-
ation of design data. Although the derived equations are not
entirely general, a number of important cases may be considered
and certain optical constants may be calculated for a particu-
lar material. Other analytical systems, particularly numerical
methods, may provide greater precision since some general
assumptions were made for deviation.

We have modified Hamaker's original differential
equations by introducing a correction for the radiant energy
density. This correction appears as (n2) , the index of refrac-
tion squared, in both the differential equations and the gen-
eral solutions. An additional correction for surface reflection
is included in the boundary conditions.

Further development of the Hamaker relations to a
form suitable for heat transfer calculations depends on a
clear understanding of the underlying assumptions and the con-
ditions under which they can be used. Two important assumptions
involve diffuse radiation impinging on the body and the nature
of scattering produced by a pore phase. In addition, the
equations contain an approximation for the conductive heat trans-
fer which may impair accuracy under some conditions. Methods
have been considered and developed for evaluation of limits
arising from approximations and assumptions inherent to this
system of equations. For some of the simpler cases, new analy-
tical relations have been derived.

5



3.1 Further Developnent of the Hamaker Relations

The method used is pased on a system originally
conceived by Schuster 10 'll'and added to by Hamaker(9);
the notation used here is essentially that of Hamaker.
The basic method is that of dividing the flux into two
parts: one flowing in a positive direction, and the other
in a negative direction. A set of simultaneous differential
equations is used to describe these fluxes and the other
necessary parameters. Since only a forward and a backward
flux are considered this is a one-dimensional calculation
and therefore has as a basic assumption that the incident
radiation is diffuse (i.e., the intensity is equal for all
angles of incidence), and that the radiation scattered
sideways is compensated for by an equal contribution from
neighbouring parts of the layer (i.e., the area investi-
gated is either small in cross section compared with the
total illuminated cross section of the sample or is large
compared to the thickness of the sample). This condition
is not a severe limitation since most practical heat trans-
fer problems are concerned with diffuse radiation.

The treatment for the situations where temperature
gradients are present suffers from the further limitation
that only total radiation is considered and therefore the
fact that the wavelength 4-istribution of black-body
emission changes with temperature is not taken into account.
Also it is assumed that the properties of the material
change only gradually. This then implies the assumption
that the temperature gradient across the sample which is
being measured is small. Practically all the methods of
calculation in use today also suffer from this limitation
and in practice there are calculation schemes which can be
used to alleviate the problem.

3.1.1 Isothermal Layers, General Solutions

The total radiant flux is divided into two
parts:

I = The flux in the dir~ction of the positive x axis

J = The flux in the direction of the negative x axis

6



An absorption coefficient, (a) , is defined by
requiring that (a I dx) be the amount of the radiation
absorbed from the flux (I) on passing through an infinitesi-
mal layet, (dx); a scattering coefficient (s) , is similarly
defined by requiring that the flux scattered backward
from (I) (and therefore added to J) in an infinitesimal
layer (dx) is Is I dx). On passing through this layer
(1) will then be diminished by the amount absorbed and the
amount scattered, but will be increased by the flux lost by
scattering from (J) , or:

dI/dx - (a+s) I + sJ (I)

similarly:

dJ/dx (a+s) J - sI (2)

The general solutions of these equations can be
found by putting

c•x -cOX

I C e + C2 e (3)

C3 e + C4 e (4)

only two of the four constants C1 *......... C4 being arbitrary.
The solutions (using the same notation as Hamaker) are then:

I A (I-0j) e + 11 (i+0") e(x (5)

J A (I+0.) e + B (1-i3.) e'(x (6)

where
= a (a+2s) (7)

7



go = Fa/(a+2s) = yo/(a+2s) (8)

both roots being taken with a positive sign. In these
equations (A) and (B) are constants to be determined by
the boundary conditions.

3.1.2 Isothermal Layers; Specific Solutions
With No Diffusing screen

One of the cases for which one would like
specific solutions is that of a layer placed in a beam
of diffuse radiation where there is reflection from both
internal and external surfaces.

At an interface where the index of refraction
is increasing, let the reflectivity equal (po). At an
interface where the index of refraction is decreasing,
let the reflectivity equal (p.). (The actual values of
these constants can be calcwiiited from the index of refrac-
tion and will be discussed in a following section.)

The following nomenclature will be used (where
D is the thickness of a layer):

I. = The incident flux at x = 0
1

Io = The forward flux immediately below the interface
x = 0

Jo = The backward flux immediately below the interface
x = 0

JD = The backward flux immediately below the inter-
face x = D

ID = The forward flux immediately below the inter-
face x = D

There is assumed to be no incident flux on the
back surface x = D.

8



Then the boundary conditions are that at the front
surface (x = 0) , part (po) of the incident radiation (I.)
is reflected back, and part (I-I~o is transmitted. The'
flux immediately below this interface (I.) is composed
of this flux ([l-po]Ii) plus that flux reflected From
the inner surface of x = 0 or (4. J 0 ).

or (at x = 0):

I0 = (l-po)I. + P. Jo (9)i 1

At the back surface (x = D) since there is no inci-
dent radiation, the only flux is that part (pi.) reflected
from the remaining forward flux (ID) D

or (at x = D):

SD Vi ID (10)

Substituting in these equations for Io, Jo, IDr and
JD from equations (5) and (6), gives:

A(l-A+)) + B (1+P0) (-i I + t(A(l+,,) + VB(143.)i i

(11

and

D D D
A(1+03 ,,) e'7 + B(l-i~o) e_(")(1i~ + i, .B(l+i3,) e !"

(12)

These are the equations to be solved for the constants
(A) and (B) for these p3rticular boundary conditions. They
are (when the exponentials are substituted for by hyperbolic
functions):

9



A 2 [[O. 2(l+pi) + (i-p.)2 Isinh cD + 2 i3, (i-p. ) cosh joDJ

(13)
I cY e (1-P.) [o(l+Pil-+ll-Pi) I

2A2-22

2.U3 2 (i+pi) 2 + (l_Pi)] sinh coD + 20.l (i-pi ) cosh aoD)

I 113)

(14)

using these values in equations (5) and (6) gives the follow-
ing expressions for I (the forward flux at x) and J (the
backward flux at x): x X

-CoX CoD

1.( - o [ ( +pi)+( - i) 1](1+90o )]e(-a x e a.D

+ [ , (Jl+pi) (- qlP) ] (1-0 .) e~ e-YD

X , 2)
2([o 2(1+pi)2 + (l-Pi) ]sinh aoD + 2/3o(l-p, )cosh coD}

(15)

o) 1p,)+(- (-Ae cy oD

+[. ( - ) [ o l i) ( 1-pi ) -(1- po)e- (1 0 ) Y e-Xe

+[ 2 (+i--pi) ](li+o) CX-o
J ;= 2 1y. 2d 0 1~ 2

21[io2 (i+ri) 2 + (l-1i) 2Isinh aoD + 20o(l-i )cosh aoD)

(16)

In practice, it is impossible to check these quantities
experimentally; what can be checked, however, is the trans-

10
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missivity and the reflectivity. To arrive at these qualities
we first determine the forward flux immediately under the
back surface (I D) by substituting (D) for (x) in equation
(15).

Then:

1, 2030 (l-p,)21 o
I

D 2 2 2 2
+(i-.i) ]sinh joD + 20o (l-,-i )cosh c0 D

(17)

The transmissivity ('c) is then the ratio of the amount
of radiation of the above that gets through the surface
([l-i-i'ID) to the incidenrit radiation.

Or:
S= ID (1-Fi)/l. (18)

giving for the transmissivity:

20,o (l-ý, ) (1- i )

2 2- 2)

[0, 2(l+ti) 2 + (1-Fi) 2lsinh 7oD + 20, (1-,i )cosh ,D

(19)

The reflectivity (,) can be found similarly by adding to
the fraction of incident radiation reflected from the front
surface (,,Ii) the amount of backward flux that gets through
the irýerface ([i-,iiJ,).

Then:
- ý3, 1- -2, ,) (1+t d Isinh ,.(D+2 ,(, (1-, i)-.osh D

2 2 2
""(+, ) + (1-.i) sinh , D+2,5,. (1-, i )coh D

(20)

ii



It is also possible to calculate the absorptivity (a) of the
layer since a + p + T = 1. It is:

213, (l-po) (P. (l+pi) sinh aoD + (i-p.) [cosh o0 D-1J (21)

[ 0o2(l+pi)2 + (1_Pi) I sinh a.D + 293(l-p. ) cosh uoD

This is also the emission of the layer relative to
black body radiation according to Kirchhoff's law.

3.1.3 Determining Optical Constants From Transmissivity
Measurements

One of the objects of making transmissivity measurements
is to use them to calculate optical constants of the material.
In order to do this, equation (19) for the transmissivity of the
material has to be solved for the constants. Cross multiplying
in the equation (19) gives:

2 •o (l-po) (l-p.) =

Sio2 (l+Pi) 2sinh aoD + T(l-pi) 2sinh CoD + 29oT(1-pi2 )cosh aoD

(22)

Or, by regrouping the terms:

2
r (l-pi) sinh aoD =

2)2
S2[(1-po) (l-pi)-t(l-p) cosh aoD]-T9o(l+pi)2 sinh aoD) (23)

12



If we consider two layers of thicknesses (D ) and
(D )and transmxLssivities (T ) and (,r ) respectively then
(dividing by equal quantities):

TI(I-Pi) 2 sinh joD1

2

T 2(l-Vi) sinh KYD 2  (24)

2[(l-po) (i-t1(l-pi)cosh GoDl]-r 13O (i+F,,i) 2 sinh ,)oD1

2[ (I-po) (i-pi)-T2(1- 2 )coh coD2]-t2•i• 2 -
i 2osh3D 2 22 sinh coD2

or (again cross multiplying):

2 T (1-po)sinh (oDi-21 T (1+i 3 sinh u0 D1 cosh ooD2
-1 sinh 1 12(li)2 1li)2

-o. T 1 2 (1+Pi) 2 (l_.) 2 sinh aoD 1 sinh o0 D2 =

2 (1-po)( 1 sinh coD2-2¶1 r2(l+Pi)(1-Pi) sinh c.D 2 cosh (oD
2 22 '

2'&* (,_-K) sinh coD, sinh o,0D

(25)

All the terms involving (03o) drop out of the above
equation giving (having made use of the identity sinh [x -y]
sinh x cosh y-cosh x sinh y);

sinh ooD1 sinh c.D 2  (l+pi) sinh o, (D 1 -D 2

"2(--po) (2C'

13



Or, if sam)ple thicknesses are chosen such that

D1 = 2 D2 2D (27)

Then:

sinh 2 •oD sinh G0D (l+r•)
51sinh A 0 D (28)

but sinh 2x ý- 2 sinh x cosh x (29)

and:

2 slnh :0oD cosh -oD sinh ooD (l+P.)
_ = sinh (!,oD

T2 TI (lp) (30)

T 2 1 (l+Pi)+(l-Po)
and cosh ýoD =

2 r1 (l-po) (31)

allh)wing one to calculate (L7o) from two transmissivity measure-
ments.

Once (i;o) is known, (i,0) can be found either by solving

equation (19) by the qcuadratic formula, or with an electronic
data processing machine.

3,1.4 Isothermal Layers with Diffusing Screen

Corrections.

In order to approximate the theoretical conditions in

the experimental measurements, a screen can be used before

the sample to diffuse the radiation. Since this screen will

reflect back onto the sample some of the radiation which the
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sample reflects, a correction must be made for it. The flux
incident on the sample i.,, however, the initial flux passing
through the screen (I ) enhanced by the radiation rereflected
from the screen. If (I.) is the total flux in this case and
(p ) is the reflectivitylof the screen, (aad the reflectivity
of the sample (p) is the same as that calculated in the pre-
vious section),

Then:

+ + 2 2 1 +3 3 1 (32)h. ', Pps +h •s h ""IhhI+ s Ih "(

or
nI~i I h s ( )n (33)

n=o

but
c-j

E x l/(l-x) for 0<4<l (34)
n=o

since both 0<p<l and O<p s<1, O<ppS <1 (35)

and 1. = I %

If we introduce this result into equation (19) for the trans-
missivity we obtain the following result where (T) in this
case is now the ratio of the transmitted flux to the flux
measured from the screen with the sample removed.

2 P0 (i-p,) (i-p)

2 2 =2 2
(1l- s) 2+'l-f.i) sinh ooD + 20o(l-pi )cosh oDj

(36)

If the value of (p) from equation (20) is introduced
into equation (36) one obtains:



2PIo (-po) (l-pi)

-%l+pi.) [LIpi+ps(l-pi-2po) I +(l-pi) 2 (-Ps) 3 sinh aoD

-20o(1-pi) [l+pi-ps(po+pi) ]cosh TD

(37)

This equation can then be solved for (Go) [by steps
similar to equations (22) - (31) 1:

sinh o.D1  s2.nh aoD 2  [l+Pi-.Ps(PO+Pi)
- = sinh ao (DI-D2

"½2 -T (1-p') (38)

where (t ) and (T ) are the transmissivities (as measured by
the methods deacr2Jed here) of two layers of thicknesses (D )
and (D2 ) respectively.

Or if thicknesses are chosen such that:

D1 =2D -2D (39)
1 2

t 2 {'TI[l+P'-pZ S(po+pi) ]-t(l-po) 3
cosh o 0D =

2 Ti (l-Po) (40)

3.1.5 Determination of the Value of Go and go From
Experimentally Obtained Values of Transmnissivity

From equation (38), Oo can be determined from measure-
ment of the total reflectivity of a surface where the index of
refraction is increasing. Fo, and the total reflectiviuy when
the index of refraction is decreasing, Pit the reflectivity
of a diffusing screen placed before the sample, ps, and the
transmissivitV T and 'r of layers of thicknesses! D and

D2 respectively.
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Since the solution of this equation by hand is laborious
and time consuming, a program has been obtained to solve it
by machine. Tie Fortran statements of this program are
given in Appendix L. This program was written to be run on
an IBM 7090 electronic data processing system. The other
material constant, the corrected emissivity for transfer
between two parallel plates, Oo, can then be obtained from
the exprepsion for T given in equation (37).

A Fortran program to solve this equation for fo using
the value of co obtained above and a value of T and D
measured, and the known values of the other constants is
given in Appendix II. These two programs allow one to obtain
the materials constants I. and ao from transmissivity measure-
ments of two or more layers of different thicknesses. These
programs have been debugged and tested and the answers they
produce agree with answers previously obtained by hand.

3.1.6 Surface Reflections

In order to use the result derived here for practical
calculations, it is necessary to know the value of the
reflectivity at the interfaces. The case of interest here
is that- of diffuse radiation. Then the intensity is equal
for any angle of incidence, and the flux is then the intensity
times the cosine of the angle of incidence (as measured from
the angle to the normal).

Ix (e) is the angle of incidence, the portion of
radiation coming from that part of the hemisphere between
(e) and (o+ de) is sin e de (times a constant factor which
will be normalized). The total flux at this angle of inci-
dence is then cos e sin e do. If p is the reflectivity
of the interface for a ray at angle (e), then p cos o
sin e de is the amount reflected for each incremental angle.
To find the total reflectivity then, one would integrae
this expression and divide by the total radiation (, sin o
cos e de)(since we are considering here only an interface
where the index of refraction is increasing, this reflectivity
is po):

17



O/2 p e sin e cos e de

f r/2

o sin e cos e d e (41)

The value of (p) is given by the following Fresnel equation
for reflection of randomly polarized light where (e) is the
angl of incidence, (y) is the angle of refraction, (sin e =

n sin -,) , and (n) is the index of refraction.

1 sin2 (e-y) tan2 (e-'y)

-e 2 + I
2 sin(e+y) tan2 (e+Y) (42)

Therefore:

rr/2 2 2 2 2
fo•2 sin e cos el[sin (e-y)/sin (e+y)+tan (e-y)/tan (e+y) Wde

PO
2 f-/2 sin e cos e de
2f (43)

This integration has been carried out by Walsh with the
result that:

1 (n-i) (3n+l) [n 2(n 2_1) 2 (n-l)
PO - + 2 + 2+ 3 log

2 6(n+1)2 [(n + 1) (n+1)

2n3 (n 2+2n-1) [ 8n4 (n 4+1)2 4 + 2 4 2 logn

(n2 +1) (n 4_1) [(n2 +1) (n 4_1) 2 (44)

18



which allows one to calculate the reflectivity of an inter-
face for diffuse radiation as a function of the index of
refraction. These calculations have been carried out by
Ryde and Cooper(13) with the results shown in Table I; this
table compares the total reflectivity for diffuse radiation
to that at perpendicular incidence.

At an interface where the index of refraction is
eecreasing, the situation is more complex. Here any radia-
tion arriving at an angle to the normal greater than sin -1(/n)
is totally reflected. To find this fraction we would
integrate from this angle to (r/2) and divide by the total
flux:

w/2
'sin edsin -1 (1/n)

total reflectivity =

fi" sin u cos e de (45)
0

since

1 2
f sin e cos e de - sin e (46)

2

1
Total reflectivity = 1 - -- 2

n
2

n -i 2 (47)
2

n

2 Of the flux that is transmitted, (1-reflectivity) or
(1/n ), a portion of this is reflected by the Fresnel reflec-
tion discussed above. This can be shown to be the same frac-
tion as that previously calculated (p.). The sum of these
two is then the total reflectivity at a surface where the index
of refraction is decreasing (p.):
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TABLE 1

Comparison of the total reflectivity for
diffuse radiation to that at perpendicular incidence

(After Ryde and Cooper(1 3 ))

SReflectivity for Reflectivity for

Refractio.. Perpendicular Incidence Diffuse Radiation

1.00 0 0

1.1 0.0023 0.026

1.15 0.0049 0.035

1.2 0.0083 0.045

1.25 0.012 0.053

1.3 0.017 0.061

1.35 0.022 0.069

1.4 0.028 0.077

1.45 0.033 0.085

1.5 0.040 0.092

1.55 0.047 0.100

1.6 0.053 0.107

1.65 0.060 0.114

1.7 0.067 0.121

1.8 0.082 0.134

1.9 0.096 0.146
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2n -i p

pi= -- 7 + -2(n n (48)

Or:

2
n -1+po

= 2 (49)
n

This can be an important (though usually neglected)
factor in heat transfer calculations. For instance, for a
material with an index of refraction of 1.5, pi would be
0.595. For a material of index of refraction 2.0, p, would
be 0.788, both factors being quite significant.

Rearranging equation (49),

l-po

Pi 2 (50)
n

showing that the transmission through an interface where
the index of refraction is decreasing is only one divided
by n 2 of the transmission of an interface where the index
of refraction is increasing.

3.1.7 Non-Isothermal Layers

In order to be useful in heat transfer calculations
this theory must be extended to non-isothermal situations.
This can be done (as is shown by Hamaker and also by Schuster)
by adding a term in each radiation equation representing the
amount of energy emitted by the infinitesimal region. Thi3
is (E E dx) where (d) is the emissivity and (E) is the black-
body radiation at the temperature at (x). Making use of
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Kirchhoff's law, this term becomes (a E dx) where (a) is
the previously defined absorption coefficient. An additional
heat balance equation is now needed expressing the fact
that heat is neither accumulated nor produced within the
body:

2
k d 2T

dx2  + a(I+J) 2aE (51)

where (k) is the lattice thermal conductivity. The first
term on the left side represents the heat accumulated by
conduction; the second term is the heat absorbed from the
radiation, and the sum of these equals the heat loss by
radiation (the term on the right).

The total black-body radiation within a media of
refractive index (n) Is given by the Stefan-Boltzmann equation:

E = a' n T (52)

where CW') is the Stefan-Boltzmann radiation constant and
(T) iim the absolute temperature. If the temperature is
high and the temperature gradient not too large then CE) may
be represented by:

E = Eo + b (T-T,) (53)

where

b = 4 a' n2 To3 (54)

and (To) is a temperature close to the actual temperature,
and (E.) is the corresponding total radiation. When the
above equation holds the temperature may be fixed equally
as well by (E) as by (T) and, since this simplifies matters,
(W) has been retained in the equations rather than (T). The
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set of simultaneous differential equations is then:

dI = -(a+s) I + sJ + aE (55)
dx

dJ = (a+s) J- sI- aE (56)
dx

k d2E + a(I+J) = 2aE (57)
b dx 2

Hamaker shows that the complete general solution of these
equations is:

I = A(I-p)e ax + B(l+0)e- ax + C(ox--g)+F (58)

ax -aoX

J = A(l+0)e + B(1-0) e + C(ax+O)+F (59)

E = -AKe -B i e +Cax +F (60)

where a + F2ab + a(a+2s) oo (61)

k

3= a/(a+2s) (62)

= 2b/k(a+2s) = 2bO3Ao (63)

And we have introduced here the proper (n 2) term which does
not appear in Hamaker's work.

To illustrate how this theory might be uqed, we will
derive the particular solutions for a layer receiving radia-
tion at both surfaces, and where heat is being conducted away
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from the surfaces. The amount of heat being conducted away
from the surface must equal that conducted to the surface
in the solid giving one boundary condition at each surface.
The other two boundary conditions are supplied by the radia-
tion interchange at the surface. The temperature (particu-
larly at the surfaces) and the emitted fluxes will be solved
for.

Using the same notation as the previous sections,
immediately below the front surface x=0, the forward flux
(Ia) is equal to that part of the incident flux (I.) which
isn't reflected ([l-p,]Ii) plus the amount of the 1

backward flux at this surface (Jo) which was reflected
(piJo).

Therefore;

I0 (lpo) I + piJo (64)

Or substituting from equations (58) and (59):

A (1-4) + B(l+0) -C3 + F = (1-po)I. + P A(l+P) + PiB(l-P)

+ P, CO + FPi

(65)

Similarly, immediately below the back surface x=D,
the backward flux (J D) is composed of the part of the inci-

dent flux on this surface (J.) which is transmitted ([l-po]J.)1

plus the part of the forward flux at this surface which is
reflected (PiID):

And:

JD = (l-po)Ji + Pi'D (66)
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or:

A(l+0)e(D + B(1-0)e-' + C((iD+I3 ) +F

(J-po)Ji+pi A(l1-0)e(3D +B Pi(l+3)e-D + pi C(oD-i 3 )+ iF

(67)

If we define (TI) as being equal to the gradient at the sur-
face times (b):

dT dE

x) surface x surface (68)

Or, if the heat is conducted away by a gas:

dE -b O-(-)= - (69)

d(x) surface k

where (%) is the heat being conducted (or convected) away
by the gas.

Then since (by differentiating equation (60)):

dE Gx -ciX

dE - -A < u e + B k o e + C (70)dx

The other two boundary conditions are:

dE)
dx (71)

-) A K j + B • + C (72)

and dE(-).

= dxD (73)
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aD -aD
T -A #.; a e + B K a e + C 1 (74)

The four simultaneous equations (65), (67), (72)
and (74) are then solved for the constants A, B, C, and F
where it has been found convenient to define a function con-
sisting of the denominator:

let:

2(1-pi) (rcosh aD-l)+[29(l+pi) (li+•)+tc cD(l-pi) ]sinh ojD-=etc (75)

then:

(e-D-_1) 1a (I1-J.)+ 1[29(l+pi)+oD(l-pi) ]A = i

2 a etc (76)

(eD-l [lp)(I.-J.)+r[2i 3 (l+pi)+oD(l-Pi) ]
(e -1) [(1--p ,)( )

2 aetc (77)

-2 o(l-po) (I.-,T.)sinh oD+4TI[ (i-p.) (cosh oD-1)

+ 9(1+pi) sinh aD ]
C = - _ _ _ _ _ _ _ _ _ _ _

2 a etc (78)

2an 21i[,(l-pi (cs D (osh a TD-l)+[ (i+pi) (1+i)+&)D(1-pi) ]sinh oiD

+2an2 Ji(((i-p.) (cosh oDl)•lP)(l+•')sinh aD)

F -2aiD( l"-Pi (cosh oD-l)+ 1 3(l+p i) sinh aD)

2 a etc

(79)
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By introducing these constants into equations (58),
(59), and (60) it is now possible to find the fluxes and
temperature at any point in terms of the radiant and thermal
fluxes.

They are:
[e -(eD aD

(l-po) (I.J) -(e -) (1-1)+(e -1) (l+0)e-x-2r.(ox-0) sinh oD)

+rI[ 20(1+pi )+cyD(J-pi) If eX(e-aD- 1(143)+e- ax (eSD-1)

+4 (ax-A) [P(1l+pi) sinh aD + (i-p.) (cosh aD-!) ]j
I =

2 a etc

F (90)

T(l-po) (I e -J (e X(e- D-1) (l+9)+e- X(e aD-) (-l-0)-2j.(x+A)sinh aD)
-raDx+--Dx aeD

+ 20 Tfp(l+pi)+OD(1-pi) ][e X(e -1) (l+0)+ea (e,-) (I-1 ) ]

+4 (ax+g) [9 (l+pi) sinh aD + (1-pi) (cosh crD-ll)
j=

2 a etc

+F (81)

-c (I-po (I.i-J. He X(e-eaD-l )+e-ax(eaD- +2ox sinh aD)

ax-aD e-aX aeD

-c[[20 l1+,o) + D(l-po) IIeX(e -1)+e (e -1)]

-4ax ([ 3(1+Pi) sinh aD + (I-Fi) (cosh aD-i)])

E=
2 a etc

+ (82)
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These are again not measurable quantities. The quan-
tities desired are the fluxes emitted at each surface and
the temperatures at the surfaces. At the back of the layer,
(x=D), the flux emitted in the forward direction (here
denoted by le) is equal to the fraction of the forward flux
immediately under this surface (I ) which is not reflected
at this surface ([i-Pi]ID) plus t~e fraction of the incident
radiation on this surface which is reflected into the for-
ward direction (poJ.

I

or
I = (l-Pi)ID f POj (83)ei

Similarly (where Je is the flux emitted in the back-
ward direction at the front surface):

J = (l-pi) JO + poI. (84)

Finally the energy equivalent of the temperature at
the surfaces is found by substituting x=0 and x--D into
equation (82). Actually in the constant (b), the (n 2 ) term
should be the index of refraction of the material in which
the particular quantity is measured. In order to keep the
notation consistent in this part, the (n 2 ) term will be kept
in the constant (b) but the energy equivalent of temperature
measured outside the sample (here denoted by E and E ) will
be divided by (n 2 ) so that the numerical results will
correct. Before setting down the results it is desirable
to define the following functions since most of the equations
are symmetrical.

Let etc.•=- 2(1-pi) (cosh 1D-l)+[20(l+pi) (l+])+KaD(l-pi) ]sinh cD

(85)
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f -

1 tc (86)

2etc (87)

etc (88)

f (1+K)[(1-p.)(cosh aD-iL) + P (1+p) sinh caD](9

etc

(i -p.) [-2(cosh ajD-i) + aD sinh a7D]

f5etc 
(90)

[ajD(1+tc) (i-p._)+21 3 ic(1+p.)](cosh ayD-1)+ IgoD(l-p,)sinh cD

n etc (91)

It is useful to note that,

f 1+ f 2= f 3+f 4=1 (92)
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f3 - f4 •f5 (93)

Then the desired terms are (where 9g is the negative of the
heat removed by conduction, and therefore T -b Q A):

I = f I + f J + f Q (94)
e 1 i 2 i 5 -g

J = f I + f J - f tc 9 (95)
e 2 i 1 i 5 -

E =f I +f J - f - c0 (96)ao 3 i 4 i 6 27- -g

E f Ii + f Ji + f . Q (97)
ad 4 i. 3 i. 6213 -g

This gives an idea of how the theory can be used to
calculate radiation transfer; the actual choice of parameters
is arbitrary. For instance, it would be possible to specify
the suirface temperatures and perhaps assume no incident fluxes
(they might conveniently be chosen as being zero), then solve
for the emitted fluxes and the surface gradients necessary to
maintain the given situation.

3.1.8 Derivation of the Effective Thermal Conductivity
of a Powder.

Using the relations derived above, it is possible to
calculate an effective thermal conductivity for a powder if
it is assumed that the powder consists of layers of material
the thickness of which is the same as the average particle
size of the particles of the powder and if the porosity of
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the model is the same as the porosity of the powder. An
amount of radiation Iij is incident on the first layer of
the system; the radiation being emitted then from its
second surface is Ielf This latter amount is now incident
on the second layer and is therefore the same as Ii2. On
the last layer of the system, the jth layer, the amount of
radiation incident is Jij (it is in the bzckward direction),
and this layer emits from its other surface an amount of
randiation Jej' which is then incident on the next to last
particle and would then have the notation there of J
In this manner, all the radiation terms can be found-,Jl)
as functions of the radiation incident on the first and last
layers. It is assumed that the first layer is the hottest
one and heat is transferred down the stack to the jth layer.

Since the emitted radiation from one layer is inci-
dent on the next, one can transform equations (94) and (95) to
the following:

I - f I - f J - f Q 0 (9a)

en 1 e(n-l) 2 e(n+l) 5 -g

and:

Je - I -f Je + f5 k Q = 0 (99)
en i2 e(n-l) 1 (n+l) 5 g -g

But since fl = 1-f2, substituting-I e(nl)+f 2Ie(r.)

for -f I e(nl) in equation (98) and -Je(n+l)+f2J e(n+!) for

-fl e(n-1) in equation (99), the following is obtained:

I -1 + f [I -Je I -f . 0 = 0 (100)
en e(n-l) 2 e(n-l) e(n+l) -g
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and:

Jn-Je )- f [I -J ]+ f nn Q = 0 (10].)
en e (n+l1) 2 e(n-1)- e(n+1) 5 -g

Similarly, substituting for f 2 Je(n+l) in equation (98),
f2 e(n-1) in equation (99). The following is obtained:

I - J - f[I -J ]+f Q 0 .02)
en e(n+l) 1 e(n-l) e(n+l) 5 -g

and:

J -I + fl[I - J ] -f Q 0 (103)
en e(n-l) 1 e(n-1) e(n+l) 5 -g

Applying equation (95) to the (n+.) layer:

=1 i Je +
Ien 2 e(n+l) - f2 e(n+2) + 2 QU (104)

and equation (94) to the (n-i) layer:

i =j 1- f5r
en f 2  e(n-l) f 2  e(n-2) f 2  -g (105)

substituting equation (0.04) into equation (102):
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J .<j+ Q -

e(n+1) 1 l' e(n+2) + f5 K-g -f2 Je(n+1)

-lf2 [Ie -l-Je l)-f2 f5' Q
S f 2 [e(n-1) e(+1I 2 f5 Q-g = 0 (106)

Or, since l-f2 = fl' and dividing by fl:

J - J - f [I - J ]+f Q = 0 (107)
e(n+l) e(n+2) 2 e(n-1) e(n+l) 5 -g

Similarly, substituting equation (105) into equation (103):

I-I+ f2[Ie-

e(n-1) Ie(n-2) 2 e(n-1) e(n+l) f5 Q 0 (108)-g

From equations (100) , (101) , (107), and (108), it can
be seen that:

J - J=J -Je . = - Ien e(n+l) e(n+l) e(n• 2) e(n-2) e (n-1) =

I-I = ...I =I - Ie( I-i) en en ei n+1) e (u+1) e(n+2) (109)

Furthermore,
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e (n •=1 (n-2 f (I - j+f Q,e(-) -Je(n+l) =e(n-2) 2 e(n-1) e(n+l) 5 -g

e (n+l) 2 [1e (n-1) -Je (n+'.) ]+f-5 o
-g

e(n+2) e(nW4-i 2 f e[Ia(n+l)-j e(n+1)

+ 2 f5 c Qg (110)

Or by repeated subst 4itutions similar to equation (109) , if
there are j particles,

J. -(j-) f [I

e(n-1) e(n+l) "i- 2 e(n-1) e)n+l)

+ (j-1) f 5 i Q (111)

and:

I -J + (j-1) f iQ
e (n-) e(n+l)1

1 + f2 (j-1) (112)

and:

J - J =e- J =1 - J
en e(n+l) e(n+l) e(n+2) en e(n+l)

f i -Jij I-f I -Q

le(n+l) -I e(n+2) 1 i (j 5( 13)

1 + f4 2 0-l)
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Since the amount of heat transferred by gas con--
duction is the samke everywhere in the system, it would
simplify matters if the following substitution is made.

-_ - [E ad (n-l)- E(

(dx)g blDp

The notation b (which is defined as being equal
to 4 o' T3 ) is here used1 to denote transfer in air where the
index of refraction is unity as differentiated from b (which
equals 4 a'n 2 T 3 ) which is used for transfer within a layer
of index of refraction n.

Where it should be remembered that:

o -k (dT)
-g g (dx)g

D represents the distance across the pores andp

Ead(n-l)- Eaon is the temperature drop across the pore. The
b 1

latter can be evaluated from equations (96) and (97) :

k

-E ] f I + f J + f j &__q(dT)
ad(n-1) aon 4 e(n-2) 3 e 3 (dx)g

3 1e(n-l) f4 Je(n+l) (116)

Or, on substitutinq for I Ind J from equations (1i8)ande(n-2) en



(101), and using the relationship f 3 -f 4 = xf5 :

[[ -e[(n-1) -e(n+l) ] [f 2 -c f ]
[Ead(n-1) aon k f6

1 b+ C-D [ f--f5 1 (117)
biDp

Finally, by subst.tuting for Iee(nl) (n+l) from

equation (112), again solving for E ad(nl)-Eaon and reducing

to simplest terms we finally obtain the latter as a function

of IilJij and kg:

I.[ -i. .i ]f 2-K f 5
Sad(n -1) aon J l 0f2(Jjl)+b_. f6[ ] -f f[f (j-l)+l])

2l 1Dp 5 5

(118)

Introducing equation (118) into equation (113), the following
is obtained:

en e (n+l) e(n+l) e(n+2) en e(n+l)= I e(+l) -Ie(n+2)

tck f2f2[(I -J..] {f2+ blg 2 - K f5 I)
(Iil- ij (f2 +b D 9Cf5

ip

/ck f6
1+f (j-l)+ - [,.+f (j-l) ]-f 5[Vf5(-l)+l1

(119)

Using the above equation, any des-red term can now be
derived. For instance:
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[I - (f + Z-1ý [fg;fG - tc fii ij 2 b 1D5

el ii Kk f6

2b ID p2 5 5

and:

Kkg ff 2

en ii l

1+f (j-1)+ 6 ~ j1- ~(-)1} (121)
2b 1D [f2 jl-5 K5j-) )

similarly:

tck f 2f62

~i1 ii 2 b ID p-~ 5)
J =J +

en ij Jkg (j,) 1i+f (0-1)-f Etc f (j-1)+1]J
2+ j-) b D 9 5 5

2 (122)

And substituting into equations (96) and (97):

J3aon f3 1 i l + f4 i j tck f 6 _K 2 1) 6 f &

'p

1+f (j-1)+ b D I1f(j-1) IJ-f (j-1)+113 (123)

and:
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Eadn f 41i1 + f31ij
] ( 2 bD + & f 2 [)f 2f 2fKf 56]

[Iil+Jij L 3 (j-l)-n+l][f2 b 1iD _ ]C5 [f2- f5
ip

&k f 6
1 + f2(J-1) + -__ ( [l+f U-1) ]-f5[t f5(J-l)+l]

2b 1D W T 1f~~ f 5  5(jl+]

(124)

These relationships allow the calculation of any desired
radiation tern or temperature in a system if the incident radia-
tion, the condctivity of the gas, the scattering and absorption
coefficients, the average temperature, the conductivity of the
solid, and the average size and number of particles in the sys-
tem are known.

An effective thermal conductivity ke is defined by

the following equation:

Q -k
e (Ax) (125)

or:

k =_Q
e (AT) (126)

where Q is the heat flowing across a unit area under the
influence of a temperature drop, LAT, which occurs over a
representative distance, L\X. The length from the top sur-
face of one layer to the top surface of the next layer will
be taken as a representative distance. Then:

Ax = (D + D ) (127)
p

where D is the thickness of a layer, and D is the thickness, p
of a pore. The temperature drop across this section is then:
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[ Ead (n-1) Eaon
AT= (128)

b1

which from eqtuation (123) is found to be:

Ikg f+t6
(I il-Jij [* 2 +bl-D 5

AT=1_
1 b+f 2 (J-l)+ _ t [1+f 2 (J-l) -f 5 rKf 5 (j-l)+])}

(129)

The total heat flow can be found if any surface is
considered. There the heat flow is equal to the difference
between the forward and backward radiation fluxes plus the
heat conducted by the gas. The latter is equal to the tempera-
ture drop across a pore times the thermal conductivity of the
gas divided by the distance across the pore or:

kg E-
Q= I - J + [-

in en b D Ead(n-l) aon

kg

DJ -r (E -E ] (130)
e(n-l) en b 1-D ad(n-l) aon

Introducing equations (121) through (124) into equation
(130) clearing of fractions and reducing to the simplest terms,
the following is obtained:
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kg 9 f6 fl 2
[Ii-i ij ]tf1 + bD - f1 + 4f4

Q =
+k 6[+f20-l) I-f [tf 5 (j-1)+1]} (131)

l~f2 1j-D) p +b2

Then from equations (125) to (131) we find:

b (D+b) [f + 6 1 6 1 - f 4- 4f 12
1 p 1 b 1D f3 1 4

k =
ef + r[ 1fff 2 (132)

2 bID ' - 5

Since the pore size of powder is difficult to measure
but the particle size and porosity can be measured, it is
desirable to substitute for Dp a function of the porosity, P,
and the 1,Frticle size, D:

D

D+D (133)
p

or:

PDp (1-P) (134)

and:

D 4 -D (135)p (i-P)

Then the conductivity becomes:
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D k (- b 1. 4Df 1+k (1-P) [ 6 f I 4f 1+41-f2]

k
e2 2 2 ,

(I-P)t3{PD k-5f2 + 2n k (l-P) [f2f 6-5f2 (156)

Note that the K in the second part of the denominator
has been removed and 2bg/ka has been introduced in its place,
(where k is the thermal, conductivity of the solid) and that
the ecqation has been cleared of fractions. At t? s point,
co simplify the above expression to one that can be used, it
is necessary to make a tedious substitution for f through

from equations (85) through (91). This will be done only
for the case of a vacuum; i.e., where k is zero.

g

The result is:

21 D bI (l-po) (1+k) sinh oD

k =
e

(1-P) [ 2 (1-pi) (coshaD-l) +[ 2ý (jo+jPi) (1+K) +),uD (1-qi) I]sinh oD)

(137)

T'his equation illustrates the usefulness of the
general theory in that a relatively simple equation can be
derived for a very complex problem. This equation has proper
end points, partially due to the introduction of the surface
reflections.

3.2 Validity of the Hamaker Approximation

In develooment of the Hamaker equations, an aipproxima-
tion is introduced in the conductive part of the combined heat
transfer by conduction and radiation. Measurements of the
effective thermal conductivity of polycrystalline alumina at
temperatures of about 20000< indicate that the conductive part
is still a major contributor(14), This results from the
relatively high conductivity and large scattering in den:se
polycrystalline ceramics. Since the utility of the specific
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solutions of the Hamaker equation derived thus far depends
critically on the validity of our underlying assumptions, it
is essential to have critical understanding of the nature
of these limitations.

3.2.1 The Hamaker Approximation

The equations describing the transmission of heat
by conduction and radiative transfer in a homogeneous
medium are (for the one dimensional case and the steady
state):

k -d - 2an2 C' T4 + a(I+J) = 0 (138)
dx2

dI = an 2 a' T4 - (a+s)I + s J (139)
dx

dJ (a+s) J - sI - an2 a' T4  (140)dx

where I and J are the radiant fluxes in the +x and -x direc-
tions, T is the absolute temperature, a' is the Boltzmann
constant, and k, a, s, n are material ccnstants already defined.
These equations are identical to t51) (55) and (56).

Hamaker's approximation cqnsists of replaping the
first term in equation (138),k d"T, by &7 d ,in which

dx 2  To dx
To is some average temperature in the material. This replace-
ment wakes the set of equations (138), (139), (140) linear and
homogeneous in the quantities I, J, and T4 so that a solution
in closed form can be obtained readily. However, consider
the identity:
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d2T 3k dT 2  k d (
x 2 = - T d + (14].)

Hamaker's approximation is equivalent to neglecting the
first term on the right hand side: it should be valid
therefore only when the inequality, (5),

(dT 2 T d2T
T-) << dJ7 (142)

is satisfied or when the entire conduction term, k d2 T/dx
negligible compared to the other terms in equation (138).
We note that the inequality (142) cannot be satisfied with a
constant temperature gradient (i.e. when conduction dominates
radiative transfer) and, in fact, is not satisfied for any1
temperature distribution of the form T = axn unless n << 3

3.2.2 Numerical Integration of Exact Equations at
Low Temperatures

For computation it is convenient to reduce the set of
equations (138), (139), (140) to a single second order
equation. Equations (139) and (140) are added and the stur
integrated once to give:

I + J = -(a+2s) (Hx+kT) + A (143)

3.n which A is a constant of integration and H is the net
heat flux (also constant) defined by:

dT
H = I - J - k dx (144)dx
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Substituting in equation :138), we obtain finally:

l d2T
kdxT 2an '4d - 2 4- a(a+2s) (Hx+kT) + aA =0 (145)

_This equation has been given essentially by Kellett; we have
introduced here the effect of radiation scattering and multi-
plieC the Boltzmann constant by n 2 . For comparison with
various approximations we have calculated an exact solution
to equation (145) by numerical integration for the initial
conditions (imposed at x=0) listed below:

a. Heat flow in -x directicn in a homogeneous
medium containing the plane x---0

b. Net flux, H-= -3.03 cal. cm 2 se-1

c. Radiant flux in +x direction, I(x) = 0 at x = 0

d. Radiant flux in -x direction, J(x) =-0.03 at
x=0 (cal cm- 2 sec-I)

e. Temperature, T(x) = 0.1 at -.--O (in units of
1000 0 K).

f. Temperature gradient, dT = 1.0 at x=0 (units of
1000OK cm~-) 1u

The material constants assumed are:
-i

g. Absorption coefficient, a = 10 cm

h. Scattering coefficient, s = 10 cm 1

-i -i
i. Material conductivity, k = 3 cal cm sVc per

1000 0 K

j. Refractive index and radiation constant,2 -2 -i
n' = 3 cal cm sec per (1000°K)4
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For the particular values assamed, equation (145)
becomes:

d2T T4
d T= 20 T + 300 T - 303 x - 30.1 (146)

A straightforward numerical integration gives the solutions
plotted in Figure 1. It should be noted that the initial
temperature was chosen to be very low and the temperature
gradient is large so the solutions obtained thus far cover
a range in which substantial differences between the Hamaker
and exact solutions are to be expected.

3.2.3 Numerical Integration of Exact Equations at
High Temperatures

We have also attempted the numerical integration of
the transfer equation (145) in the temperature range of
1000 0 K and above. In principle a numerical solution can
be obtained to arbitrarily high accuracy by taking sufficiently
small intervals for the integration; in practice a very largc
number of intervals is needed to get reasonable accuracy in
t'.e high temperature region. As the solution proceeds to
higher temperatures the second term, 2 an 2c'T4, dominates;

d 2 T
to satisfy the equation the first term, k dx2 I must become
large and positive with the resalt that the solution T(x)
rapidly goes to infinity.

A complete analytical solution for equation (145) has
not been found but we have developed a f-orrm which has the
correct asvmptotic behavior and is well adapted to numerical
calculation in the high temperat ire limit. We can show
that if T(x) is a solut ion of equation (145), then the inverse
function x(T) must satisfy equation (1.47):
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T ~22
xf(T) f T dO ( 4 an 2a (05-To 5 )+ a(a+2s)(E 2 To2) 2

(T 5 k

2AdT 2 2a(a+2s)

ka (0-To) + +- k- H f x(ý)dý,3 2

TT,

k +~ k

(147)

The two variables of integration, 0 and ý, have the
dimensions of temperature: 0 ranges fron To to T and
ranges from To t, 0.

After differentiating oxice, equation (147) becomes:

dx 4 an 2 aI 5) 2 2aA
(= H - (T-T, )+a(a+2s) (T 2 -T 2  - (T-T) +

dT 5 k k

dT 2 2a(a+2s) H T
(-) + H x (ý) d •, - 2dx, (148)

Although formidable at first sight, these equations
are not difficult to apply. A procedure for calculating
the solution x (T) follows:

a. Assume the materials constants, the heat fluxes H
and A, and the initial conditions To and(dT) at x.--O'Tdo

b. Estimate the coordinate x corresponding to a nearby
temperature T1 and evaluate the integral

T11

f x(e) de.
To

c. Calculate d at T = T from equation (148).
dT 1
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T1 ,dx)

d. Integrate to 4et xd f xT dT + Xo.
T,.

e. Use the calculated value of x to replace the esti-

mated value in (b) and iterate until a consistent
value for x is obtained.

f. Continue stepwise to calculate x2 (T 2), x 3 (T 3) and

so forth. As the solution proceeds to high tempera-
ture the step (b) and the iteration becomes unnecessary

Tn1

because the term involving fn+ x(ý)dý becomes

To

negligible compared to the first term on the right
hand side of equation (148).

As an illustration of the method we have calculated
a solution with the same material constants and initial values

, , (d T .
for H, I, J, and ()) used in the last section except that the
initial temperature is taken to be 1000 0 K (To=l.0). Equation
(148) then becomes:

dx 5_ 2_ T1
dT (8(T -1) +300(T -1) -6o.2(T-1)+l-606 f x d 2

(149)

The result is plotted in Figure 2.

To show that equations (145) and (147) are equivalent,

differentiate equation (147) with respect to T to
obtain equation (148) which can be written as:

dT dx 1 4 an k3 (T 5-T 5) + a(a+2s)(T 2-To) -dx dT5 k
2aA dT 2 2a(a+2s)

(T-To)+(•) + k H f x (ý) dýJ 2 (150)
k dxo k

To
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