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INTRODUCTION

(U)JA systematic analysis of low frequency background
noise has been undertaken to determine the dependence of
noise statistics on processing procedures and environmental
factors. The processing procedures of interest include
the bandwidth and averaging time. Environmental factors
include consideration of the spectral character of the
ncise and system environment interactions. The presence or
absence of surface ship generated line components and the
proximicty of the surface and beottom interfaces are of
particular interest.

(U)Utilizing long term continuous noise samples the
measured quantities are the mean noise level, its distri-
bution and standard deviation, znd the decorrelation (relaxa-
tion) time determined from noise leval autocorrelation
computations.

(U)The study goals are: (1) To obtain statistical noise
data at bandwidths and averaging times appropriate to direct
application for predicting surveillance system performance;
to compare these results with analytic assumptions made in
the absence of experimental data; and, to the extent that
they differ, to identify the impact on analytic procedures.
(2) To identify any special requirements for data gathering
and processing to satisfy this need. (3) To identify any
special characteristics of the noise statistics which could
be employed to improve surveillance item performance.

(U)The analysis was limited to the above study goals
as a necessary initial step in a systematic analysis of
the statistics of noise, signal, and signal to noise ratio
for specific passive surveillance systems of interest. In
our cpinion, a systematic approach offers the best oppor-
tunity for identification of the sources of fluctuation in
signal to noise ratio for different surveillance system concepts.
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BACKGROUND

(C)S8tudies of surveillance systems have demonstrated
that performance is dependent upon the detailed system and
environmental characteristics. Recognition of the require-
ments have evolved gradually as experience has been gained
with advanced systems.

(C)Early evaluation of acoustic system performance
led to the development of the sonar equation. This concept
is relatively simple. Average noise levels, target char-
acteristics, and system capabilities, are summed tc obtain
a sonar Figure of Merit (FOM). The range to the target for
which the FOM is equal to the propagaticn loss is the range
for single look 50% detection probability. If none of the
parameters fluctuate with time, 1008 detection probability
is achieved at shorter ranges, with zero probability at
longer ranges. Because of fluctuations this is modified
to reduce the detection probability at shorter ranges and
to increase the probability at longer ranges, shown con-
ceptually in Figure (1). The exazc shepe of the prcbabilitv
curve depends upon the functional dependence of average
propagation loss with range, and the fluctuation statistics.
At the current time the fluctuations in signal to ncise are
treated by assuming a log normal distribution and estimating
the standard deviation to be of the order of 7 or 8 db.

(C)The 50% single look detection range, and the single
look detection probability curve, are very useful criteria
fcr determining the effectiveness of a surveillance system.
They can be used to compare the performance of different
systems in the same environment; and the same system in
different environments. However, they are not sufficient
to fully quantify system performance.

2
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(C)A common problem is to determine the probability
that a target is detected at least once if it remains with-~

i

in a pre-set area for a predetermined period of time. Alter=~
natively one can ask how many system installaticons are necessary
to achieve a predetermined detecticn probability. To resolve
these problems the cumulative detection probability is nesded.

R

This is obtained by considering the target track and speed,
and determining the probability that the target will be
detected at least once during a pre-set time period. A
cumulative detection probability of 95% in a 24 hour period

g i

is frequently used as a goal.

{C)The fluctuation in signal to noise ratio has to be
known to determine the single look detection probability
curve. If the dependence of the fluctuation on time is
also known, the ctumulative detection probability can also
be computed. In current practice the time devendence is
usually considered to be a "decorrelation” or “relaxation"
time of the order of 1-1/2 hours. This is equivalent to
stating that the auto-correlation function of the fluctuation
is reduced to 1l/e in 1-1/2 hours. This determines the change
in the signal tc noise ratio which can occur between "indepen-
dent" look intervals. The final cumulative detection pro-~
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*

L
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4
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bability cuxve is illustrated in Figure (1).

% (C)While this concept has considerable merit its appli-
cation raises serious questions. The assumption of a log
normal distribution and a decorrelation time leads to a non-
zero prooability of detection at any range, no matter how
long, if the target loiters for a long enough periocd of time.
To cope with this, it has been suggested that the distribution
ke truncated at one or two sigmas to remove the tails of the
distribution. Truncation can be chalienged as arbitrary,
leading to an artificial range beyond which detections can not

4
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be made. Alternate suggestions have included skewed
statistics with and without truncation. The difficulty
does not lie with the general concevnts for computing cumu-
lative detection probability, but the paucity of experi-
mental data which describe the necessary statistics. 1In
the absence of hard data the assumption of statistical
forms readily amenable to analytic procedures is quite
logical.

(C)The statistics of fluctuation in the signal to
ncise ratio consists of the appropriate sum of the statistics
for fluctuation in prcpagation loss, background noise, and
target level., It has been suggested that under some conditions
fluctuaticn in provagation loss and bhackground ncise may have
a small positive correlation, but, basicalliy we can consider
the three sources of fluctuation as independent. To under-
stand the total fluctuwation it behooves us to understand the
individual fluctuations and tie factors which influence them.

(C)Fluctuations in propagation loss are readilv defined
for the case of a fixed source and fixed receiver, and depends
entirely upon temporal changes in the environment. When the
source is permitted to move the fluctuation must be understood
to represent a distribution about a range dependent propagation
loss curve. This adds considerable complexity since it requires
the adoption of an “average" propagation loss ~urve along the
track of the source. The deviation of data points from this
"average" curve depends upon the amount of detail included
in the "average" curve, as well as the effect of the temporal
fluctuations, so that a certain amount of subjectivity enters
into the problem. Since this report is devoted to fluctuation
in noise, no further comments will be made on fluctuation in
propagation loss or target level.

{C)By contrast, fluctuations in noise at a fixed receiver
are more readily defined. Although spatial factors are present,
notably the movement of surface ships which coatrol the noise

5 .
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level at low frequencies, these factors are reflected as
temporal fluctuations at the receiver, and can be so treated.
Thus, & systematic experimental investigation of fluctuations
in noise appears to be an appropriate beginning for under-
standing the total fluctuation in signsl to noise ratio.
(C)In performing a systematic experimental investi-
gation it is desirable to set forth a number of gcals.
These are presented here as a set of parameters upon
which the noise statistics may depend. In each case a
speculative theoretical basis is set forth for the depen-
dency, to be verified or denied by the experimental results.
1. Dependence of Bandwidth
(C)Measured noise levels are generally reduced
to spectral levels at the center of the band by
applying a correction factor cf 10 log BW. If
the spectral levels are reasocnably flat over the
~2ndwidth, and strong line components are not
present, we expect the results to be essentially
inveriant for progressively narrower measurement
banés. However, if strong line components are
present, reduced spectrum levels may change
considerably as the bandwidth narrows, depending
upor whether the lire components are included or
rejected.
2. Dependence on Averaging Time
(C)Existing and conceptual passive gurveillance
systems utilize averaging times of minutes to tens
of ninutes. Data gathering programs ‘have utilized
averaging times ranging from secords to hours.
Assuming that the bandwidth time constant product
is tlways greater than one, any dependence of the
noice statistics on averaging time will be related
to the decorrelation time.

6
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3. Proximity to Interfaces
{(C)Noise statistics may be dependent un the nroxi-
mity of the sensor to the surface or bottom inter-
faces. The total noise field consists of the summa-

R
P2
e

tion of signals received from a large number of surface

g ships. The multipath propagation from each ship can
be considered to consist of a number of paired pro-
pagation paths; one membher of the pair having an

§ additional surface or bottom reflection at the end

. of the propagation path. For a s~nsor close to an

3 interface the contributing refiecting area should
generally be smaller than for a sensor distant for

% an interface. Phase variations may therefore be

more rapid resulting in larger fluctuations. If
such an effect is found, it would imply that fluc-

vl o

tuations in propagation loss will also be higher for
a hydrophone near an intexface.

[ Es o
[F8
.

Array Aperature
i (C)Most noise measurements are made with omni-

Y

directional hydrophones; yet, horizontally direc-
‘;; tional arrays are a powerful tool in surveillance.
It is well known that low frequency noise fields are

._,
PR

generally anisentropic, so that a signal to noise

N i improvement of 10 iog n, where n is the number of
. % hydrophones, is usually not correct. As the beam
; 3 width narrows the number of surface ships which

L
-

g contribute significantly to the total noise field
is progressively reduced. For a small number of

N O

¥,
N

A

contributing surface ships spatial redistribution

as a function of time should lead to larger fluctuatiocns.
An additional factor is the variation of coherence
across the array aperature for the signal from each

RN

s
AR

v

.‘va

ship. This may be significantly more important for
bottom arrays than for suspended arrays.
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(C)We do not address all of these cuestions in this
report. Specifically, data for a sirgle bottom and a single
suspended hydrophone has been used. The efftect of array
aperature was therefore .ot counsidered. Additionally, strong
line components were generally ~.t present over the bandwidths
studied; at least as viewed through «n omni-directional hydro-
phone. However, simultaneous record:ngs of some array beams
are available for further study and comparison with the results

reported herein.
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RESULTS OF THE ANALYSIS

General

(U)There are two general characteristics of the noise
which should be bocrne in mind while reviewing the analysis
results.

{U)1. The variation in noise lev=1 over the entire
period was moderate. Variation of the broadbai.d noise level
was sufficiently small to permit recording of each hydro-

- phone on a single channel without gain changes for the entire
S% day sample. Four hour averages of the processed bandwidths
had a tctal range of about 10 db.

e

(U)2. BAs seea through omni-directional hydrophones
strong line compone. :s were generally not observed in the
processing bandwidths. This was readily apparent from
oscillograph viewing of the /3 cctave filter outputs, and
| was spot checked by detailed analysis as shown in Figure
l {24). 8Since there is no significant difference in the levels
! : between the different filter bandwidthe the probability cf
E line compcnents is very small. Continuvous narrow band

G N analysis over the 1/3 octave bands was not employed, so that
} | the occasional presence of line components can not be entirely
3 precluded.
§ ¥
" ' Data Sample
%

(C)A 9% day data sample was obtained for a bottom

. hydrophone near Barbados, BWI at a depth of approxi-

' mately 3,000 feet, and a susmended hydrophone in the

MILS Array at a depth of 3,100 feet in approximately
1,500 fathoms of water. The recordings were obtained

by NUSC, New London, as part of the. Translant II exercise.
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(C)The data was processed at center freguencies of
100 Hz and 50 Hz with bandwidths of 1/3 octave, 1/10 onctave,
1.0 Hz and 0.2 Hz. Spectrum levels were determined by energy
integration over predetermined time intervals, converted to
decibel levels, and corrected for bandwidth and integration
time. Averaging times of 10 seconds, 1 minute, 10 minutes,
1 hour and 4 hours, were employed.

(U)The results are presented in the form of average
levels, standard deviations, histograms, autocorrelograms
and decorrelation times of the noise isvels,

(U)Additional details covering processing procedures

are given in the Appendix.

Average Levels and Standard Deviation

(U)Tables (Al) to (A4) show the mean noise level and
standard deviation for four bandwidths with 10 second to
10 minute averaging times for the two hydrophones at center
frequencies of 50 and 100 Hz for the entire 9% day sample.
The mean roise levels are essentially independent cf band-
width and averaging time except for the 0.2 Hz bandwidth
utilizing 10 seconds averaging time, where it is about 1 db
lowex. The insensitivity of the mean value to bandwidth and
averaging time is consistent with the observation that back-
g4 uuand line components were not observed. The standard
ve2yviation, o, i3z also stable but tends to increase with
d2creasing bandwidth time constant. For the 0.2 Hz bandwidth
utilizing 10 second averaging time, it is significantly higher,
increasing for all data sets by about 1.5 db. fThe results
&z 50 Hz for the suspended hydrophone, shown in Figure (2),
derived from Table (A3), clearly shows the trend towards
inc¢yvearsing standard deviation as the product of the baﬂdwidth

zuG 1waraging time decreases.

10
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Figure (2)

Standaré deviations for the 4 bandwidths as a function
of averaging time for the bottom hydrophone; center
frequency 50 Hz; sample length 9% days.
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(U) The standard dzviation for the suspended hydrophone
is generally lower than for the buttom hydrophcne. It is
about 0.8 db at the 100 Hz center frequency for all band-
widths and averaging times, except 0.2 Hz at 10 seconds for
which the difference is reduced to 0.3 db. For the 50 Hz
center frequency the standard deviation is essentially
identical for both hydrophones for all bandwidths except
for the 1/3 octave band for which it is about 0.4 db lower
for the suspended hydrophone.

Distributions

(U)Figures (A5) to (A51) are useful for investigating
how the mean values and standard deviations vary with time
during the 9% day sample.

(U)Figures (A5) to (AlQ) show the cumnlative mean
values and standard deviation for the bottom hydrophone
at 100 Hz. These results indicate that a 24 hour sampling
interval may be sufficient to stabilize these parameters.
However, the time series plots for 4 hour and 24 hour mean
levels shown in Figures (All) to (A34) for both hydrophones
and center frequencies suggest that this is contingent upon
the sample starting time and that at least 48 hours of data
are necessary to stabilize these parameters. A typical
comparison of 0.2 Hz data is shown in Figure (3).

(U)If the 100 Hz and 50 Hz curves for mean levels are
overlaid for each hydrophone the positions ¢f positive level

excursions are reasonably coincident with a single pronounced
exception. There is a positive excursion at about 4% days at

50 Hz. which is not present in the 100 Hz data. This comparison
is shown in Figure (4). It is also apparent that the data spread
and curve "roughness" is greater for the bottom hydrophone than

for the suspended hydrophone,
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(U)The standard deviations, Figures (AZ3) to (A34),

b : can be qualitatively described as having a base value with
occasicnal excursions cto higher values. The histograms

for the standard deviation, Figures (A35) to (A46) provides
*3 guantitative data. The most probable value of the standard
deviacion for a 4 hour interval is consistently at the low
end of the distribution.

(U)The +time of occurrence of large excursions in the

[T

standard deviation appears to be weakly correlated with

increases in the mean noisfe level. A typical comparison

H is shown in Figure (5). Point plots of the standard devia-
tion as a function of mean noise level are shown for a few

% cases in Figures (A47) to (AS51l}, and show a definite trend

towards higner standard deviations as the mean noise level

increases.

e

(U)Histograms of the noise distribution for the entire
9% day sample are shown in Figures (A52) to (A76). In general,
v the distribution is normal for the 0.2 Hz bandwidth and 10
second averaging time, and becomes progressively skewed towards
& ’ high noise levels as the bandwidth time constant increases.
This effect is clearly illustrated irn Figure (6) for the bottom
{ hydrophone at a center frequency of 100 Hz and the 0.2 Hz
bandwidth., For the 1/3 octave bandwidth the distributions are
essentially independent of averaging time and comparabie to
the results for the 0.2 Hz bandwidth and 10 minute averaging.
(U)The shift from a normal to a skewed distribution is
most pronounced for the bottom hydrophone at 100 Hz and least
pronounced for the suspended hydrophone at 50 Hz. At both
E frequencies the distribution is more normal for the suspended

K

SR

hydrophone.

§ (U)Cumulative distributions plotted on probability
paper are.shown in Figures (A77) to. (a84). A straight line
represents a normal distribution. All of these curves

§ indicate some degree of skewness. The deviation from a
straight .line occurs in the vicinity of 85 to 90% cumulative

:
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Figure ‘(6)

Noigse distribution for indicated averaging times.
Bottom hydrophone; center frequency, 100 Hz; band-
width 0.2 Hz; sample length 9% days.
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distribution for the bottom hydrophcne at 100 Hz with 10
seconds of averaging time. For other conditions the breszk
point occurs at higher distribution levels and the distri-
butions appear to be closer to normal.

(U)Figures (A85) to (A1l02) show comparative 24 hour
distributions for 50 and 100 Hz, for both hydrophones, with
a bandwidth of 0.2 Hz and 10 minutes of averaging time.
Most of the 24 hour histograms are skewed towards hich noise
levels, but there are a few cases which are close to normal
or slightly skewed to low ncise levels. Flgure (A98) which
shows the 50 and 100 Hz results for day 5 on the bottom hydro-
phone, is of particular interest., The 100 Hz distribution
is very tight with some indication of skewing to low noise
levels. The 50 Hz distribution is broad and skewed to high
noise levels. As previously noted, on day 5 there is a peak
in the 50 Hz mean level vs time curve which is absent from
the 100 Hz data. The pronounced difference in the histograms
is prcobably related to this factor.

Aatocorrelograms and Decorrelation Times

(y)Figures (Al103) to (All4) show typical noise level
autocorrelograms. As can be seen, they are well behaved.
The time series data and@ the autocorrelograms were used to
datermine if there was any pronounced cyclical variation
in the data. None was found, although the scalloping in
the lower curves of Figures (al03), (Al05) and (A107) may
be zelated to tides. Figures (Al1l2) tc (All4) show a com-
parison o:i 24 hour autocorrelograms for 1 minute and 10 minute
averaging. For 1 minute averaging the autocorrelation coeffi-
cient shows a pronounced drop within a delay time of a few
minutes. This is not indicated in the 10 minute data, and
the two results are quite similar after about 100 minutes.
These reswits suggest that there are at least two differeht
phenomena contributing tc the fluctuations. One has a

. 17 -
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decorrelation time of the order of a minute, the second
of the order of tens of minutes or greater. Wwhen 10
minutes of averaging time is employed the more rapid
fluctuations are averaged out.

(U)The decorrelation time is defined as the time
delay for which the autocorrelation coefficient decreases
to a value of 1/e. Tables A5 to A8 show the results for
the entire 9% day sample for averaging times of 4 hours,

1 hour and 10 minutes. From the tables it is apparent

that 4 hours of averaging is too long, and 1 hour averaging
does not provide adequate resolution. Based on the 10
minute averages, there is a weak trend towards a decrease
in the decorrelation time with decreasing bandwidth. For
each hydrophone the decorrelation time is significantly
higher at 50 Hz than at 100 Hz. The decorrelation time is
substantially lower for the suspended hydrophone than for
the bottom hydrophone, except for the €.2 Bz bandwidth at a
center frequency of 50 Hz, For all of the data the decorrela-
tion time ranged from 1 hour to more than 6 hours.

(U)To investigate how the decorrelation time depends
upon sample length the 0.2 Hz bandwidth data for 10 minutes
of averaging time was analyzed in 4 day groups, days 2 to 5
and days € to 9, and for each of the 9 days. The'énalysis
was repeated for 1 minute averaging time to furthef-examine
averaging time dependence. The rxresults are shown in Tables
K10, Al2, Al4 and AlS.

{(U)For 10 minute averaging time the results for the
4 day samples were significantly different than for the 9%
day sample, as is apparent from Table 1. For example, for
the bottom hydrophone at 106 Hz with a 0.2 Hz bandwidth the
decorrelation time for the 9% day sample was 140 minutes;
for days 2 to 5 it was 90 minutes, and for days 6 to 9 it was
250 minutes. The suspended and bottom hydrophones dc not
display~sy§tém§tic results. The decorrelation times for
the suspended hydrophone was 120 minutes on days 2 to 5,
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TABLE 1

Comparison of Selected Decorrelation
Times for the 0.2 Hz Bandwidth Utilizing
10 minute Averaging Time.

Data Sample Period (davs)

Frequency 1-9 2~5 6-9 5
100 140 90 250 40
100 80 120 40 60

50 220 170 240 160
50 380 170 490 120
19
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and 40 minutes on days 6 to 9, the reverse of the order
for the bottcm hvdrophone. By contrast, at a center fre-
quency of 50 Hz they were both lower on days 2 to 5 than
on days 6 to 9.

{U)On a daily basis the results for 10 minutes of
averaging time showed wide variation. The total data set
varied from 20 minutes to about 5 hours. The variaticn
between adjacent days can be quite large. For example,
from Table (A9) for the suspended hydrophone at a center
frequency of 100 Hz, the decorrelation times were 30 minutes
and 110 minutes on days 8 and 9, respectively. Similar
examples can be found in the remaining tables,

(U)For 1 minut- averaging, the decorrelation times
were significantly liwer, and showed a larger fluctuation.

For the 4 day groupiiigs the decorrelation times for the

total data set range'!l from 7 minutes to 172 minutes. For

the daily decorrelat .on time this trend was further accentuated,
with a total range o: data from 1 minute to 246 minutes. There
is a marked differen:e, by an order of magnitude, between the
suspended and bottom hydrophone at 100 Hz. For the suspended
hydrophone the decor celation time ranged from 1 to 36 minutes
with a mean value of about 9 minutes, for the bottom hydro-
phone the range was 2 to 246 minutes with a mean value of

85 minutes. At 50 Ez the mean values for the suspended and
bottom hydrophone were 22 minutes and 76 minutes, respectively.

{U)Tables Al7 to A24 provide a comparison of 10 minute
and 1 minute averaging times fcr all 4 bandwidths on days
5 and 7. Of the 16 data sets, 1C sets show decreasing de-
correlation time with decreasing bandwidth; 4 sets show
increasing decorrel: tion time with decreasing bandwidth; and
2 sets are erratic, The trend towards decreasing decorrelation
time with decreasinc bandwidth is more strongly established
for 1 minute averaging times, with 6 of the 8 sets displaying
this characteristic and the remaining 2 erratic.

20
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CONCLUSIONS AND DISCUSSION

(U)The results described in the previous chapter are
based on a relatively limited data sample. The discussion
which follows is limited to these results as an indicator
of more general conclusions which remain to be confirmed.

Our discussion will therefore ke qualitative and will not
employ any particular set of numbers generated in this
study, except as necessary to clarify a particular concept.

{C)Aas indicated earlier in this report, two primary
goals of the study are to determine whether noise statistics
are consistent with the usual assumptions made when emploving
fluctuations to determine cumulative detection probability
for passive surveillance systems, and to determine whether
there are any special requirements in gathering and processing
noise data. We will discuss these separately. For cumulative
detection probability the discussion is further limited to the
use of an omni-directional system, and the noise component
of the tctal fluctunation in signal to noise ratic.

Cumulative Detection Probability
(C)To simplify the discussion we make the following
a priori statements:
1. The larger the standard deviation of noise fluctua-
tions the higher the cumulative detection probability.
2. The lower the decorrelation time of noise fluctua-
tions the higher the cumulative detection pro-
bability.
(C)The following general observations are made:
1. The noise statistics are different for a bottom
and a suspended hydrophone.
2. The noise statistics are different for different
freguencies &t the same hydrophone.

21
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(C)For large bandwidth time nroducts* the noise distri-
bution is skewed in the dixection of high noise levels., If
a normal distribution is assumed for ease of computation,
L it should be truncated at 2 v on tlte low noise side, 1If
truncation is not employed the results will be overly
optimistic.
{C)The decorvelation time for large bandwidth time

products ranges from about 1/2 hour to 5 hours. If the
i long term decorrelation time is used to compute the cumula-
tive detection prcbability the true variability of this
term is obscured. For example, assume one c-mputes the
area coverage for 24 hour 95% cumulative detection pro-
bability for a bottom hydrophone at 100 Hz with a bandwidth
of 0.2 Hz and an averaging time of 10 minutes using a
decorrelation time of 140 minutes (see Table A5). On a
daily basis the cumulative detection probability in the

same area will be greater on days 2,3,4 and 5; lower on

days 6,7 and 8; and 95% on days 1 and 9 (see Table All).

On days 2,3,4 and 5 the cumulative detection probability

will be increased by only a few percentile; in contrast

on days 6,7 and 8 the decrease can be substantial. Thus,

the average is likely to be below 95%. For a fixed cumula-
tive detection procbability the coverage area will be increased

PR My

e

g on those days when the decorrelaticn time is reduced. Thus,
i another way to view this result is that because of daily
variation in the decorrelaticn time the opportunity for
"glimpses" of the target will be greater on some days and
less on others, when all other conditions remain the same,
A more realistic quantitative description could be obtained
by computing the probability {p) that the 24 hour cumulative
detection probability fcr a predetermined area exceeds a
value (P). A family of curves for different values cf the
area {A) would provide a more complete description of ex-
pectations for an arbitrarily selected day.
*aAlthough the bandwidth and the averaging time have been
studied as independent quantities, their product is uged
in this discussion since the data indicate a broad relation-
ship between the product and the noise statistics. This
should not be construed@ to imply that the statistics are
independent of the values of the individual parameters.
22
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(C)For low values of the kandwidth time product
the situation is considerably altered. A normal dis-
tribution of the noise level is now appropriate, and the
standard deviation is increased. The prior comments con-
cerning the decorrelation time also apply to this case.
However, the decorrelation time is much shorter; and con-
secutive independent look intervals will be frequently
achieved. If all other system parameters remain the same
a reduction in the averaging time reduces the processing
gain, thereby reducing detection capabilities, but the
increased fluctuation in the noise and the decrzased
decorrelation time increases the cumulative detection
probability. While these effects are balancing, it is
difficult to determine how the overall capability will
vary with averaging time. For a predetermined bandwidth
there may be an optinum range of averaging time for which
the detection capability is maximized, but this possibility
is not pursued in this report.

{C)Current advanced processing concepts for passive
surveillance systems include consideration of a reduction
in bandwidth to the order of 0.01 Hz and lower while re-
taining an averaging time of about 10 to 20 minutes. The
bandwidth time product would range from a high of 12 down
to unity. It is noted that a 0.2 Hz bandwidth with an
averaging time of 1 minute corresponds to a product of 12;
and for the 19 second averaging time a product of 2.

(CYIt is not at all certain that the results presented
in this report can be directly applied to these much narrower

bardwidths. We would expect the noise level distribution
to be ncrmal and to be independent for consecutive look

intervals, but this would have to be confirmed experimentally.

{C)A number of conciusions can be reached relative to
gathering and processing basic noise data. We assume that
the data is intended to be useful for all low freguency

23
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) passive surveillance systems, but will restrict ocur attention
tc the statistics of omni-directicnal noise, 1If periodic
data sampling rather than continuous measuremen:t is employed,
the sampling time should be egual to the longest averaging
tima employed by surveillance systems. This is particularly

i important for narrow band systems, but can be relaxed if
interest is restricted to large values of the bandwidth time

i constant, Selection of the sampling interval is considerably

more difficult. For low values of the bandwidth time product
i the decorrelation time cannot be determined unless continuous
lneasurements are made. For large values of the bandwidth
time product it may be possible to determine the decorrelation
: time if the sampling intecval is short enough. For both con-~
tinucus and sampled measurements, data processing, reduction
and reporting, zhould follow zlong the lines of those reported

[ET e,

kerein. However, the processing need not be as extensive for

————y

large randwidth time products.
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