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FOREWORD

(')  This technical report was prepared tor the Air borcee
Rocket Propulsion Laboratory, Rescarch and Technolopy Division, Ldwards
Air Force Base, California by the Esso Research and Engineering Company,
Goverument Rescarch Laboratory, Linden, New Jersev in completion of
Contract FO4bl11-068-C-0044. Under this Contract, Esso Research has
developed a thermally stable, non-strategically limited catalvst for the
monopropellant decomposition of hydrazine fuel. this final report covers
all the work conducted on the contract over the period January 15, 1968 -
November 15, 1969,

(U) The Alr Force Project Officer was Lt. D. Huxtable
USAF/RPCL. The Esso Research Program Manager was Dr. M, S. Cohen from
January 1968 to June 1969, with Dr. D. Grafstein assuming management after
that date.

(U) This report has been assigned Esso Research No. GR-7-LCH-70.

(U) This report contains classified (CONFIDENTIAL) information
generated in the program.

(U) This technical report has been reviewed and is approved.

W. H. Ebelke, Colonel, USAF
Chief, Propellant Division
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I.  SUMMARY

(C)  An active, highly stable hydrazine monopropellant
decomposition catalyst has been developed.  This catalyst labeled Esso 500,
utilizes ruthenium for its active component and thus does not contain
any costly and strategically limited iridium metal. lLaboratory and 5
pound thruster studies conducted at Esso Research and Engineering Company
and 5 and 25 pound thruster studies conducted at the Air Force Rocket
Propulsion Laboratory indicate that Esso 500 is highly active at low
fgnition temperatures and shows unusually high resistance to loss of
surface area during motor firing. Data obtained at both laboratories
actually indicated that Esso 500 showed no loss of surface area after
up to 24 minutes of pulse mode firing with hydrazine,

(U) A cobalt containing catalyst, called Esso 101, was
also developed. This catalyst has much lower activity than Esso 500
for hydrazine decomposition at 5°C. [Esso 101, however, is active at
higher temperatures and can be employed where short ignition delays at
low temperature is not required and where extremely low cost is a
desired property.

(U) Results of studies with various cobalt containing catalysts,

cobalt-noble metal hybrid catalysts and ruthenium containing catalysts
using several different substrate materials are also reported.
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2. INTRODUCTION

(V) The original objective of the work conducted under this
contract was to develop a low cost, readily available, active catalyst
tor the decomposition ot hydrazine. At the present time, an active,
low temperature spontancous catalyst does exist for the decomposition
of hydrazine-=Shell 405. However, Shell 405 derives its activity from
the precious metal iridium which is very costly and limited in availability.

(C) In the carly stages of this program, we investigated
several alumina supported cobalt and cobalt-noble metal hybrid catalysts
as hydrazine decomposition catalysts. Though cobalt appeared to be a
very active hydrazine decomposition catalyst at high temperatures, it
was not capable of affecting spontaneous hydrazine ignition at 5°C. The
use of about 10 wt. % of the metals platinum, palladium and ruthenium
in hy%sid combinations with cobalt improved the low temperature activity.
Howevet, decomposition rates were still not great enough to cause spon-

taneous ignition.

(C) A more detailed study with the metal ruthenium indicated
that a dramatic increase in hydrazine decomposition rate could be ob-
tained if the ruthenium was deposited on an alumina substrate containing
no cobalt. Subsequent work with ruthenium on alumina showed that
properly prepared catalysts at the 30 wt. % ruthenium level had activity
approaching that of Shell 405. Ruthenium appeared to offer distinct
advantages over iridium as the active hydrazine decomposition catalyst.
It is much more widely available and is about one third the cost of iridium.
Additional studies with ruthenium based catalysts showed that active
ruthenium catalysts with unusually high resistance to degradation in
pulse mode hydrazine motor firing could be developed.

(V) This report discusses results of these studies with cobalt
catalysts, cobalt-noble metal hybrid catalysts, and finally with supported
ruthenium catalysts.
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3. LITERATURE SURVEY

J.l. Actlve Hydrazine Catalysts

(C)  Work conducted by Shell Development Company tor the
National Aeronautics and Space Administration (Contract No. NAS7-9/)
indicated that the best possibility for obtaining high activity and
stability, without a cost limitation lay in the platinum metals or
their near neighbors in the periodic chart(l). Shell workers found
that ruthenium, iridium and platinum were more active toward hydrazine
decomposition than any other metal with the binary of ruthenium and
iridium being the most active of all. Other metals and mixture of
metals that were found to be active are listed in Table 1 in descending
order of activity.

Table 1
(C) Materials Active for Hydrazine Decomposition(g’l)
Carbon Carrier Alumina Carrier
Ru-Ir Ru-Ir
Ru-Pt Ir
Ir Ru
Ru~-Rh Ru-Pt
Ru~Pd Fe-Co-Ni-Rh
Ru
Ru-0s
Ir-0s
Pt-Ir
Fe,Co,Ni
Pt-0s
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W) Fable 1 was compiled by Shell worbers using liquid
phase tests. Both carbon and aluming were ased o support tor tin
vatious Histed catalvtic materials.  Carhon is one ol the ot
thermally stable materials hknown. Tt b oo very hiiph sartace area and
heat ot wetting per pram ot mater “als High surtace area b advantapeous
in that it provides an extended support tor catalvtic promoters., A
high hedat o wetting helps to attect Jow temperature ipnition. L
tortunately, sShell scientists tound that the carbon supports reacted
with the hvdrogen liberated in hvdraczine decomposition to tore metiane
at high temperatures.  Aluming was tound to be relatively stable at
high temperatures and was thus taken to be a more acceptable support.
Fhough aluming has a lower heat ot wetting than carbon, it is available
in many torms, is substantially incert at hipgh temperatures, and is used
as a cdtaivst support in many industrial processes.  Atter considerable
testing, Shell tormed two catalyst tormulations which were act ive at
1°C: A 28% wt. metal catalvst with a Ru/lr ratio ot .34 on Harshaw
Al-1404 alumina pellets and a 30 wt. 4 Ir catalyst on Harshaw Al-1404
pellets.  The latter formulation was found to be more stable and was
later named "Shell 405", This catalyst has been tested by many companices
and has compiled an impressive record of stability and long lite. How-
ever, it is made from extremely costly iridium which is limited in
availability.

(C) Other efforts have been made to develop an active hydrazine
monopropellent catalyst using more readily available and less expensive
transition metals. P. C. Marx, at .erospace Corporation, found that
Girdler T-323 (silica gel treated w 50% pre-reduced cobalt on a
Kieselguhr support) was found capable of initiating decomposition of
hydrazine at 33°C and restart at 53°C(2), However, this catalyst had
poor life characteristics, presumably, according to Marx, because of
the difficulty in degassing the silica gel at low temperatures,

(C) Hang and Ward found that the combustion of cobalt and
copper on activated alumina showed the same catalytic behavior after a
repeated number of tests(3). Liengme and Tompkins at London Imperial
College found that hydrazine could be decomposed on evaporated tungsten
films at temperatures from -78 to 0°C(é). However, no rates were pre-
sented. Their efforts were aimed at examining the NH3/H2 ratio at dif-
ferent temperatures.

(C) Extensive work by A. F. Grant at the Jet Propulsion
Laboratory in the early 1950's produced a series of catalysts using
metallic iron, nickel, and cobalt deposited on an alumina carrier(5).
They were active at high temperatures but were not capable of spon-
taneous ly decomposing hydrazine at room temperature. Some of these
catalysts are readily available from the Harshaw Chemical Co,
Cleveland, Ohio, e.g., nickel catalysts Ni-1600S and Ni-1601T.
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Jeod  Mechanism ot Hydraeine Decomposition
on Catalytic Surtaces

(V) Almost all ot the hydrazine heteropgencons decomposition
reaction mechanisms presented postalate an celectron donor sequence
whereby hvdrazine donates clectrons to vacancies or holes in the catalvsi
lattice.  For example, Eberstein and Glassman postulate a nitrogen
donor route which can account tor hyvdrazine decomposition on platinum
black at low temperatures and on silica at intermediate and high tempera-
tures(047) . In this mechanism, hydrazine is chemisorbed on the catalvst
by donating electrons from the nitrogen atoms to vacancies in the catalyst
lattice (d-band tor platinum). Hydrogen atoms then migrate to produce
amnonia as well as Ny and H,. This is illustrated by the following
schematic equation where M represents metal atoms and 0 metal d-band
vacancies.

H H
ZN?HA +  4M(0) —>» 2HN-NH — 2NH3, 2M(0), 2M - NH (1)
= L I
MM
2M = + H,
M - NH —> N2 H2
The overall reaction is thus
2N.H, — 2NH, + N + H (2)

274 3 2 2

This has been shown to be the m%%?anism for catalytic decomposition on
platinum black on acid supports‘=’. But this reaction does not account

for some experimental results obtained with Raney Nickel. Eberstein

and Glassman found that the volume of gas obtained in the presence of

Raney Nickel is always greater than that indicated by the above mechanism
and more closely agrees with the followin, overall stoichiometric reaction;

3NJH, —P2NH, + 2N, + 3H, (3
The additional hydrogen produced by the Raney Nickel at low temperatures
is believed to be a result of a surface dehydrogenation of adsorbed
hydrazine on the catalyst surface. However, the steps in the mechanism
of surface dehydrogenation are presently not clear. Both hydrazine
dissociative adsorption (reaction 2) and surface dehvdrogenation
(reaction 3) occur to some degree in heterogeneous catalyzed decomposi-
tions. The nature of the catalyst surface will determine which reaction
predominates.
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() Evidence ot changes in the mechanism of the heteropencous
decomposition or hvdracine with very small changes in catalvst composition
is tound in the work ot Voelter and Katint) 0 These workers studied the
decomposition ot gascous hvdrazine on nickel supported by doped Mpt, ne
activation encrey tor hvdracine decomposition was observed to chaupe 1y
L2 Real/mete tor Gatd to lo Keal/mole when Lit was used an tioe dopant .

(Y Similarly, the Soviet scientist, V.o M, Frovlov, tound that
the rate ot decomposition ot hvdrazione on permaniam depended on the cun-
centration ot antimony dopant in the germanium single crvatals (li)). Froviov
attributes ammonia tormation in this studv to a reaction mechanisu analoyou
to (1Y, d.e.,

o i, GeenN M, - + (N
Ge ﬂ“: *’“’ E “\3 A nN“j (pas) (‘”)n (ads.)

3.3 Heat, Mass Transter and Catalyst
Bed Desivn Considerations

(C) A detailed mathematical analysis of the steadyv-state and
transient behavior of hydrazine reactors has been conducted by A, 5.
Keston at United Aircraft Research Laboratories(11), Keston's mathematical
model contains a detailed description of the heat and mass transfer
processes in the pores of the catalyst pellet. He considers both thermal
and catalvtic decomposition of reactants, along with simultaneous heat
and mass transfer between the free gas phase and the gas within the
pores of the catalyst pellets., The results of his steady-state analvsis
indicate that the steadv-state axial temperature in the catalyst bed rises
very sharply in the first inch f the bed after fuel injection to a
level of about 2200°F and then slowly drops off down the length of the
bed. The practical implication of this result is the possibility that
a very thin active catalvst bed is required to ignite and sustain hvdrazine
decomposition. In fact, a long bed appears undesirable because it
permits ammonia decomposition which causes the gradual temperature drop
in the bulk of the catalyst bed. Experimental data cobtained at Rocket
Research Corporation agree closely with Keston's theoretical results on
axial temperature and gas concentration profiles(12).

(C) In accordance with these results, J. 0. Drake conducted a
study to determine whether a practical catalyst bed consisting of a thin
layer of spontaneous catalyst (16.5 volume percent Shell 405) could be
used in conjunction with a larger less expensive non-spontanecous catalvst
(83.5 percent Harshaw HA-3) to produce a workable lower cost spontaneous
catalytic system(lg). Tests were run with a fuel containing 63 percent
hydrazine, 27 percent water, and 10 percent hydrazine nitrate. The
results of Drake's experiments were promising but inconclusive. Spon-
tancous ignition took place over a wide range of temperatures but not
at the very cold -65°F level, Ignition delay times were high approximately
0.1 sec.  ‘pparently, a higher spontancous catalyst loading is required
for very low (-65°F) ignition. Further work in this area is required
to develop the concept.  The idea seems even more practical for a pure
hydrazine propellant which operates above 3°C.
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4. EXPERIMENTAL FEOUTPMENT FOR CATALYST FVALUAT IO

(U)  The basic intormation required to satistactorily detine
the pertormance ot a hydrazine decomposition catalyst includes the iso-
thermal low-temperature activity and the apparent activation enerey tor
the decomposition process. The latter is obtained by measurements ot
the catalytic activity at several temperature levels and the construction
ot an Arrhenius plot with this data. The slope ot a plot ot the loy ut
the rate of decomposition vs. the reciprocal absolute temperature 1s
taken as the apparent activation energy tor a given catulystercactant

system.

4.1 Isothermal Rate Measurement
Apparatus and Method

(U) The method used to evaluate the isothermal rate of hydru-
zine decomposition consists of measuring the change in pressure of a
calibrated constant volume container over a period of time during the
decomposition reaction. This technique was previously used b{Ljhe Shell
Development Company and was shown to produce reliable results . The
apparatus used to make the measurements is a replica of the one used by
Shell scientists and is depicted in Figure 1. 1In a typical run, powdered
catalyst material is placed in the 5 cm3 glass reactor which contains a
Teflon coated magnetic stirrer. The entire apparatus is evacuated, gas
collector vessel isolated, and the glass reactor filled several times
with helium. A hypodermic needle is used to inject hydrazine into the
glass reactor which has been previously chilled with dry ice. The reac-
tor is deliberately kept very cold when the hydrazine is injected to
guard against a sudden gas surge with an active catalyst. A temperature
for study is chosen, the dry ice bath removed and replaced with a constant
temperature bath mounted on a magnetic stirrer. A small charge of catalyst
is used in the reactor so that isothermal conditions are approached by
active stirring of the catalyst-hydrazine reaction slurry. As gas is
tormed in the reactor, it passes into the gas riser leg shown in Figure 1
and is discharged into the gas collection chamber. The decomposition is
followed by observing the change in gas pressure in the collector vs.
time. This technique has been found to yield substantially linear plots
of gas formation vs. time for almost all runs. The rate of decomposition
of hydrazine at a specific reactor temperature is taken as the slope of

this line.

4.2 Five Pound Hydrazine Monopropellant
Thruster

(U) Evaluation of a hydrazine decomposition catalyst in an
actual monopropellant catalyst engine is required to completely characterize
its start=-up performance and life. Thus, a 5 lb. thruster was designed

UNCLASSIFIED
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and constructed tor ovur catalyst cevaluation. The basic unit consists ot
a 1"D x 3"L Type 304 8.8. catalyst chamber instrumented with 1/16" inconel
sheathed chromel=alumel thermocouples and Teledyne pressure transducers.
Ignition delay and fuel pulse duration is measured by a direct writing
ocillograph with a trequency response of 5000 c¢ps.  Fuel is stored under
nitrogen gas pressure and injected through a 80° cone fuel injector.
Nitrogen gas automatically covers the catalyst bed when no

fuel (hydrazine) is flowing. The test thruster is not designed for
tlight operation. Its purpose was to provide a system to measure the
comparative performance of several catalysts in adiabatic engine opera-
tion.

4.3 Laboratory Adiabatic Spontaneous
Decomposition Test

(U) A simple test aimed at simulating monopropellant engine
ignition and thereby repeatedly subjecting catalyst pills to high tempera-
tures was constructed and used in our laboratories. This test consisted
of partially filling a glass tube with catalyst and charging the tube
with cold hydrazine. Observations made during the test included the
time required to start the reaction, the duration of the reaction, the
physical condition of the catalyst pills after firing and the number of
times the high temperature reaction could be sustained. The unit, de-
picted in Figure 2 , provided a convenient and rapid means of determining
catalyst relative activity and strength.
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5. COBALL BASED CATALYSIS - k58U U SEKIES

5.1 Catalyst Preparation

(€C)  The Esso 101 catalyst consists ot 60 wt. Z cobalt metal aud
40 wt. % ALy, both co-precipitated trom aqueous solution.  The co-
precipitation technique offers a unique way of dispersing active metal
cobalt crystallites in a matrix of alumina, thereby providing a means of
preventing cobalt sintering and concomitant loss of active catalyst area.
Details of the Esso 10l preparation process are plven in Appendix B.

(U) Binary metal compositions used in this study were obtuined
by introducing the required stoichiometric amount of iron and nickelous
nitrate salts, respectively, before precipitation.

(U) The hybrid catalyst mecat variations discussed in the nex-
section of this report are fabricated by means of impregnating the Esso
101 catalyst in the "as calcined" stage with noble metals, drying the
impregnated catalyst and reducing the mixture as above.

5.2 sothermal Rate Studies of Esso 101

(U) Isothermal decomposition rate measurements of hydrazine
on the basic Esso 101 catalyst powder were made in our glass reactor.
As can be seen in Table 2, these measurements indicated that Esso 101
had a much lower room temperature activity than Shell 405.

Iable 2
Low-Temperature Activity of Esso 101 Powder
Hydrazine Decom= Apparent*
posigion Rate at 23°C Activation Energy
Catalyst cm®  (STP)/min~-gm Kcals/Mole
Esso 101 75 23-28
Shell 405 2,200 17=22

*The term "apparent activation energy" refers to the activation enerpy
displayed by catalyst particles. It includes any effects due to mass
transfer through the catalyst pores. The apparent activation energy is
obtained by measuring the slope of a plot of hydrazine decomposition
activity vs. the reciprocal of vthe absolute temperature.
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(U)  The activation energv, on the other hand, appeared to b
somewhat higher than that reported by Shell scientists for Shell Goh,
Shell's scientists tound in the course ot their work, that a catalvat
must have a minimum activity of 79 co3/min-pw to be spontancous.  lius,
at low temperatures, Usso 10D would have too long an ignition delav
time. lpnition delay measurements on Esso 1O in our 5 Ib, thruster
contirmed this prediction. Work was thus conducted to improve ithe low
temperature activity of Esso 01, One approach tried at improving
low=temperature activity was to increasce the cobalt loading ot the
catalvst,

5.3, Ettect of Cobalt Concentration

(C)  The basic composition ot Esso 10l is o0 wt. 7 Co =46 wt.
Al203.  To determine whether a change in cobalt concentration would
affect the catalytic activity, we prepared catalyst powders with 50 and
70 wt. 4 cobalt, respectively. These formulations were tested in the
isothermal reactor at three different temperatures.  The results, de-
picted in Figures 3 and 4, showed a definite eflect of cobalt concentra-
tion. The 70 wt. % cobalt formulation was more active than the 60 wt.
formulation; the 50 wt. 7 formulation had significantly lower activity.
Increasing the concentration to 80 and 90% gave further improvement in
activity though the relative increase appears to level off at very high
cobalt concentrations. Higher cobalt concentrations gave higher catalvst
activity, dispite the fact that the total BET surface area was lower,

(U) The apparent activation energy for catalvst hvdrazine
decomposition, on the other hand, was not altered. It, thus, appears
that increasing the cobalt concentration in the catalyst formulation
could result in some reduction in the low-temperature ignition delav
but that this reduction would not be sufficient to vield a catalvst
that affected spontaneous hvdrazine decomposition at 0°C. Thus, other
approaches were tried.
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FI1GURE 4
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5.4 Effect of Other Transition Metals

(U) Altering the "d bund' vacancy of a transition metal catalyst
is another means of changing its catalytic activity. In another approach
at improving the low-temperature activity of the basic Esso 101 formula-
tion, we attempted to study the effect of introducing the metals, nickel
and iron, into the Esso 10l formulation. Modifications containing co-
precipitated nickel and iron, respectively, were screened in the laboratory
isothermal reactor. The resulting activity of these catalysts are presented
in Table 3.

Table 3

(C) Effect of Co-Precipitating Nickel
and Iron with Cobalt

Hydrazine
Decomposition Rate at 23°C
Catalyst Composition cm3 (STP) /min-gm
60 wt. % Co-40 wt. % A1203 80
(Esso 101)
40 wt. 7% Co-20 wt., % Ni 18
40 wt. 7 A1203
40 wt. % Co-20 wt, % Fe 1
40 wt. 7% A1203

(U) Both the nickel-cobalt and iron-cobalt formulations showed
much lower isothermal low-temperature activity than the basic Esso 101
formulation. It is difficult to explain this severe loss in activity
resulting from binary transition metal formulations. However, the
negative results of the preliminary binary transition metal formulation
studies did not justify any further effort on this approach with nickel
and iron.
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5.5 Ettect ot Catalyst Preparation Techuique

(U) The basic Esso hydrazine decomposition catalyst consists of
cobalt and alumina co-precipitated from aqueous solution.  The catalyst
was originally prepared by dissolution of the nitrate salts of cobalt and
alumina followed by the co-precipitation of the oxides of these metals and
subsequent reduction of the cobalt oxide to the metal.  In the original
preparation procedure, precipitation was affected by means of the slow
addition of ammonium bicarbonate to a well stirred solution of the nitrate
salts at 150°F. The von Weimarn theory of precipitation predicts that high
surface area precipitates result from precipitation under conditions that
yield a high degree of local supersaturation--rapid addition of precipitating
agent, no stirring of solution, low temperature of solution. We attempted
to utilize this theory to increase the surface area of the resulting pre-
cipitate and hopetully also improve the low temperature activity of the
resulting catalyst.

(C) Two variations in the precipitation procedure were tried:
(a) the low temperature (0°C) addition of ammonium bicarbonate to a solu-
tion which was not stirred and (b) the addition of the cobalt and aluminum
nitrate salts to a cold solution of ammonium bicarbonate, i.e., using a
mixture of the nitrate salts as the precipiting agent. The results of this
experiment are given in Table 4.

Table 4

(C) The Effect of Precipitation Procedure on the Surface Area
of Co-Precipitated Cobalt-Alumina Catalysts (1)

Surface Area

Procedure m2(gm

Conventional 61
Low Temperature 100
Low Temperature-Salt Precipitation 129

(1) All preparation procedures resulted in a catalyst
composition of 837 Co-17% A1203
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() Both modittcations o the precipitation procedure resulted
o increased catalyst surtace aredas Low temperature precipitation in-
creased the surtace arca 047 and the low temperature, nitrate salt preca-
prtation more than doubled the surtace area when compared with the
conventionally prepared catalyst.  Untortunately, the low temperature
daotivity per yram ot catalyst was not improved by these moditications
in catalvst preparation procedure.  This implies that the increasce in
surtace area was mainly due to an increase in the aluming surtace area,
and not the cobalt.  Substantial improvements in the heat ol wetting,
laryely a tunction ot the support surtace area, would be expected tor
the higher surtace arca catalysts. However, it scemed unlikely that
these improvements would substantially improve the low temperature acti=
vity of the tinished catalysts. Thus, further pursuit ot this approach
was dabandoned.

5.0 Screening ot Non=Noble Metal Catalyst
Materials

(C) Several non-noble metal and metal oxide catalysts were
screened for low temperature hydrazine activity using our laboratory
adiabatic screeniny test, i.e., by observing the presence of any gas
evolution when cold hydrazine (2°C) was added to catalyst samples in a
test tube reactor. We took advantage of the availability of a wide
range of complex inorganic materials which were synthesized in the
Esso laboratories for electronic and electrocatalytic applications.
These materials included transition-metal phosphides, non-stoichiometric
oxides and non-stoichiometric tungstates. The materials tested are
presented in Table 5. None showed any sufficient level of activity
to warrant further evaluation.
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Table 5

Screening of Potential Non-Noble Metal Catalyst Materials

Hydrazine Decumgusjcion

Material Activity 2°C V1J»i<)
Nickel Phosphide NiP No Activity

Cobalt Phosphide CopP No Activity

Titanium Phosphide Ti,P No Activity

Chromium Phosphide CrzP No Activity

Manganese Phosphide MnqP) No Activity

Niobium Phosphide  NbP No Activity

Rhenium Metal Slight Activicy

CrWO3 Slight Activity

Cr + 1.45 WO3 No Activity

Cr203-w02 No Activity

CRaW,404 No Activity

Cr203.w02 No Activity ﬁ
Co.263W03 No Activity

Cr.MSWO3 No Activity

Cr203w03 No Activity

CrO2 Slight Activity

W+ WO3 + Cr203 No Activity

Cr, 0, + WO Slight Activity

23 2

(1) Test consists of the addition of anhydrous hydrazine at 2°C
to powdered catalyst samples and observing the gas evolution,

(2) No Activity - defined as no noticeable effervescence of
hydrazine after 5 minutes,

Slight Activity - defined as some effervescence but less

than what would be observed with a similar charge of Esso
101 powder.
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6. HYBRID CATALYST STUDIES

(C) Aunother approach to reducing the low-temperature ignition
delay of Esso 101 was to incorporate small quantities of readily reduced
transition metals into the catalyst formulation. Small additions of
these metals could provide appreciable surface area which would not have
any oxide layer resulting from desensitization procedures. Furthermore,
low concentrations of readily reduced metals (less than 1 wt. %) such as
platinum and palladium have been observed to enhance the activation of
nickel catalysts by hydrogen(lﬁ). Similar enhancement was expected for
cobalt. The cost of incorporating small quantities of these readily re-
duced transition metals would not be great; e.g., 1l wt. % of a metal
costing $100/troy ounce would add only $15/1b to the cost of the catalyst.
This approach appeared promising and was, thus, studied in the
laboratory.

6.1 The Effect of Low Concentrations of

Noble Metgls

(C) Readily reduced transition metals were added to the basic
Esso 101 preparation after the calcining step. Salts of palladium,
platinum silver and gold were dissolved and impregnated into different
batches of calcined Esso 101, dried, and reduced as described in the
standard procedure for fabricating Esso 101 catalyst powder. The varicus
preparations were then individually tested in the isothermal laboratory
reactor. The results of these isothermal rate measurements are given

in Table 6.

Iable 6

(C) 1Isothermal Rate Measurements of
Esso 101 Catalyst Powders Containing
Small Quantities of Readily Reduced

Transition Metals

Hydrazine Decomposition Rate
Catalyst at 23°C cm3 (STP)/min-gm
101 80
101 + 1% Pd 100
101 + 1% Pt 55
101 + 1% Ag 42
101 + 1% Au 65
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(C)  Only the palladium tormulation showed any activity improve-
ment over the basic Esso 10D catalyst at 23°C. On the other hand, tormu-
lations incorporating platinum, pold, and silver appeared to be somewhat
less active. In terms ot these resalts alone, one would not expect a
signiticant mprovement in low-temperature ipgpition delay performance ot
the moditied catalysts. However, we telt that the advantage of having
some metal surtace which is unattected by the passivation step, present
in the cobalt catalyst tormulation, may not have been clearly scen in the
isothermal laboratory reactor tests. We thus evaluated the fgnition
delay of these preparations in our 5 1b thruster. We also continued
screening other readily reduced transition metals.

6.2 Eftect of Higher Concentrations of Noble Metals

(C) Initial studies indicated that the incorporation of pallu-
dium metal into the cobalt-alumina catalyst formulations, at the 1 wt. %
level caused an improvement in low temperature activity. Thus, higher
palladium metal loadings were studied. In addition, higher loadings of
platinum on the cobalt-alumina catalyst were evaluated. The results of
the isothermal low temperature decomposition tests using these and other
hybrid formulations are presented in Table 7.

Table 7

(C) Effect of Readily Reduced Transition Metals on the

Low Temperature Hydrazine Decomposition Activity

of Cobalt-Alumina Catalysts
Hydrazine Decomposition lLate

Catalyst at 23°C cm2(STP) /min-om
Esso 101 80 (base)
101 + 1% Pd 105
101 + 107 Pd 128
101 + 1% Pt 56
101 + 10% Pt 160
101 + 1% Rb 80
Raney Co=Pt alloy 64
10% Pt

[ ]

Shell 405 270 (107¢)
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(C) lucreasing the palladium concentration to 10U wt. resulted
I a 0% increase in isothermal activity; increasing the platinum concen-
tration to 10 wt. 7 yielded a catalyst with twice the activity ol ksso
W1 at 25°C. These improvements were very encouraying.  However they
still were not nearly large cnough to attect spontancous catalyst ipniticn at
3°%C. Some improvement would be expected in the ignition delay of cuta-
lvsts tired at room temperature.  Such was actually obscrved when o
cobalt=alumina catalyst, containing 10 wt. Z Pd was tired in a 9 1b
thruster. Table 8 summarizes the results ot this test.

(C) lgnition Delay of Palladium
_Lobalt Hybrid Catalyst

(2,2)
(1) Ignition™ ™’
Catalvst Delay at 23°C msecs
Cobalt-Alumina Catalyst 1,200
Cobalt-Alumina + 10 wt? Pd 400

(1) Catalyst consisted of 837 cobalt - 177 A1203 packed in 1/2" x
1/2"S.8. wire baskets.

(2) Runs cowpared on the 3r¢ firiug in 5 o taruster.

(3) Ignition aelay time does not include valve response and fuel
flow dead time which is annroximatelv A0 msecs in our test

L system,

(C) The incorporation of 10 wt. % Pd into the cobalt-alumina
catalyst improved the ignition delay of the catalyst after the bed was
activated by two initial firings.t However, this improvement was insu:-
ficient to affect spontaneous ignition of the catalysts in the 5 1lb
thruster.

6.3 Isothermal Evaluation of Cobalt-
Ruthenium Hybrid Catalysts

(C) The incorporation of readily reduced transition metals
into our cobalt catalyst formulation have improved the low temperature
activity and ignition delay of the cobalt catalyst system. The experi-
mental data indicated that the incorporation o platinum and palladium
into alumina supported cobalt preparations improved the isothermal

*The Esso 5 1b. thruster does not represent a flight tvpe design.,
Ignition delay data are thus useful only on a comparative basis.

tCatalyst performance was evaluated on the third firing to avoid
any confounding effects of residual oxide.
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activity and ipnition delay ot Esso 101 type catulysts. This work wus ex-
tended to ruthenium-cobalt hybrid catalysts. Ruthenium was o particularly
attractive transition metal to work with because ot its wide avail-
ability and reasonable cost. Intormation made available to ksso

Research and Enginecering Co., indicated that there is about 150,000 trouy
ounces of ruthenium/year available, primarily ftrom two sources: the
Johunson Matthey and Co. (as a by-product ot gold and platinum refining)
and the International Nickel Co. (as a by-product of copper and nickel
refining). There is also believed to be a substantial backlog of this
metal presently availuble.

(C) Several ruthenium-cobalt-alumina catalysts were prepared
by different fabrication techniques. These included 10% ruthenium on
oxide sintered cobalt-alumina (prepared by co-precipitation), Esso 201;
a structure consisting of 12% ruthenium prepared by co-impregnation of
alumina with cobalt ruthenium solution, Esso 202; and a structure con-
sisting of 22% ruthenium prepared by co-impregnating a ruthenium on
alumina support with cobalt ruthenium solution, Esso 204, The results
of the isothermal hydrazine decomposition tests, using these structures,
are presented in Table 9 and Figure 6.

Table 9

(C) ISOTHERMAL DECOMPOSITION RATE OF
COBALT-RUTHENIUM HYBRID CATALYSTS

ydrazine Decomposition Apparent
Rate at 23°C Activation Energy
Catalyst Description cm3 (STP) /min-gm Kcals/gm-mole
Esso 201 | 10% Ru, 75% Co on 10 19
oxide sintered
cobalt-alumina
Esso 202 | 12% Ru, 33% Co 25 24
co-impregnated
alumina
Esso 204 | 22% Ru, 33% Co co- 50 24
impregnated Ru-alumina
Esso 203 | 12% Ru, 33% Co, 55% 15 24
Alumina co-precipitated
Esso 101 70% Co, 307% Alumina 75 26
co-precipitated
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Figure 6

(C) ISOTHERMAL HYDRAZINE DECOMPOSITION RATE
ON HYBRID COBALT-RUTHENIUM CATALYSTS

LB 1 T T T I T ]
Esso 204 22% Ru, Co-Ru-Co-impregnation
/ of Ru-AIZO3
L
100 — —
o -
. Esso 202 12% Ry, Co-Ru-Co- _
/ impregnation of A|203
10 — —
[ Esso 201 10% Ru on Oxide Sintered Co-Al,0 ]
| 2°3 o
— =
1 i | i 1 ! 1
3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7
1T x 103 k!

CONFIDENTIAL




CONFIDENTIAL

te
w1
i

(C) Several interesting observations may be made about the data
in Table 8 and Figure 7. First, the isothermal hydrazine decompositiou
rate of the cobalt-ruthenium hybrid catalysts was less than that of the
basic Esso 10l catalyst which contained no ruthenium. Surface area
differences were believed to be partly responsible for this dif-
ference in activity. Surface area data indicated that the
impregnated hybrid catalysts had considerably,less surface area than the
co-precipitated Esso 101 preparation. However, the magnitude of this
surface area difference could not possibly account for the entire activity
difference observed. For instance, Esso 201 had about one half the sur-
face area of Esso 101 with comparable cobalt loadings. Yet, the isothermal
activity of the Esso 101 catalyst was about seven times greater. This
implied that a negative synergistic effect exists for the cobalt-ruthenium
catalyst system. Further evidence of this is seen in a subsequent section
on the evaluati on of ruthenium-alumina catalysts. Despite the poor iso-
thermal decomposition rate exhibited by the ruthenium-cobalt hybrid
catalyst preparations, it was important to pursue evaluation of
these catalysts in motor firing studies. Significant improvements in

ignition delay might still be seen with hybrid catalysts having
appreciable noble metal area, not affected by desensitization procedures.

This hypothesis was confirmed in subsequent motor firing studies.

(C) The performance of cobalt ruthenium hybrid catalysts
appeared to be dependent on the fabrication procedure. Esso 202 and 203
had the same component formulation but different isothermal activity.
Surface area differences resulting from different fabrication techniques
were held to be a contributing factor. The lower apparent activation
energy of Esso 201 compared with other hybrid catalyst preparations was
probably also a result of fabrication differences. One possible expla-
nation for this lower activation energy is the increased pore diffusional
contribution resulting from the presintering of the substrate used on
Esso 201.

6.4 Five Pound Thruster Evaluation of
Cobalt=Ruthenium Hybrid Catalysts

(C) The ignition delay of cobalt-ruthenium hybrid catalysts
in our 5 lb thruster using hydrazine fuel was measured at several catalyst
bed temperature levels. Catalyst pellets 1/8'"D x 1/8"L were used in all
<7:ases. The results of these studies are presented in Table 10 and Figure
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TABLE 10
() TGONTTION DELAY OF COBALT-RUTHENTUM

HYBRID CATALYSTS

lgnition Delay
vatalvst Description at 23°C msec . (L2)
Esso 101 707 Co, 307 Alumina co- > 6,000
precipitated
Esso 202 127 Ru, 337 Co co-impreg- 1,500
nated alumina
Esso 201 107 Ru, 75% Co on oxide 2,000
sintered cobalt alumina
Esso 200 2% Ru on cobalt impreg- 750
nated alumina

(C) The incorporation of ruthenium into cobalt-alumina catalyst
formulations is seen to dramatically reduce the ignition delay. Further-
more, the degree to which the ignition delay is reduced depends on the
mode of preparation of the catalyst. Catalysts 202, 201 and 200 all had
approximately the same ruthenium content, but differed in fabrication
technique. Esso 200 was prepared by first depositing the cobalt on an
alumina support and then depositing the ruthenium on top of the cobalt.
In this case, maximum availability of the ruthenium surface was probably
achieved. Esso 202 utilized a co-impregnation of cobalt and ruthenium
salts. This technique probably resulted in less available ruthenium
surface. Esso 201 utilized a ruthenium impregnation of a cobalt alumina
support and, thus, should also have readily available ruthenium metal
surface. However, the cobalt alumina support was presintered yielding a
support with about one half the surface area of Esso 200. This support
surface area difference is a possible explanation of the longer ignition
delay exhibited by Esso 201 in comparison to Esso 200. Despite the
significant improvement in ignition delay resulting from the use of
ruthenium in cobalt-ruthenium hybrids, performance had not approached
that of Shell 405. Emphasis was thus shifted to the more promising
ruthenium on alumina catalysts.

(1) The Esso 5 lb. thruster does not represent a flight type design.
Ignition delay data are thus useful only on a comparative basis.

(2) Ignition delay time does not include valve response and fuel flow
dead time which is approximately 60 msecs in our test system.
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Figure 7

(C) PERFORMANCE OF COBALT-RUTHENIUM-HYBRID CATALYSTS

IN 5 LB. THRUST ENGINE
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7. (CY  RUTHENLUM BASED CATALYS| S1UDLES

7«1 Usothermal Rate Studies ot Aluming
Supported Ruthenium Catalysts

(C) A series ot ruthenium on aluming catalysts were propared
to determine whether pertormance could be improved by removing the
cobalt trom the systems  The etfect of rathenium concentration, cataulyst
support type, as well as the addition of platinum, on catulyst isothcrmal
hydrazine decomposition activity were studied.  The results are presented
in Table 11 and Figure 8 and discussed in the tollowing paragraphs.

TABLE 11

(C) ISOTHERMAL HYDRAZINE DECOMPOSITION RATE
ON RUTHENLUM CATALYSTS

Hydrazine Decomposition Apparent
Rate at 23°C Activation Energey

Catalvst Description cm3 (STP) /min-om Kcals/gm-nole
Esso 206 127 Ru on Alumina 170 19
Esso 207 23% Ru on Alumina 210 19
Esso 208 36% Ru on Alumina 360 1Y
Esso 209 33% Ru on Silica- 280 19

Alumina (6% 8102)
Esso 210 5% Pt, 33% Ru on 359 Not Measured

Alumina

(C) Catalyst isothermal activity increased with ruthenium metal
concentration and was more than 5 times as active as Esso 101 at the 367
ruthenium level. The cobalt free, 12% ruthenium on alumina, catalyst was
far more active than any of the cobalt-ruthenium hybrids having the same
ruthenium content. This data further supported the fact that there was a
negative synergistic effect exhibited by cobalt-ruthenium hybrid catalysts
toward hydrazine decomposition and that the performance of a ruthenium
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catalyst depended on the nature ot the support used 1n the tabrication,
The relative pertormance ot ruthenivm=gluming and cobalt-ruthenium=aluning
catalyvsts 1o the motor tiring studices, discussed in the tollowing para-
sraphs, vave the same concluston.  The isothermal data suppested that
hicher ruthenium levels would yield more active catalysts.  However,
measarements made in the 5 b thrust enyine indicated that there was

4 leveling ottt in the ignition delay as the 357 ruthenium content was
approached.  The activation encrpy of rutheniam gluming catalysts was
lower than that ot the cobalt-ruthenium-aluming hybrids. The hybrids
would thus be expected to be more active above 200°C.  However, at the
adiabatic firing temperature, the reactivity ot the catalyst is undoubtedly
dittusion limited. The apparent activation cnergy ot the catalysts would
then be primarily controlled by pore diftusion effects.  The use of o
silica=aluming support (Harshaw 1602) did not appear to offer any preat
advantage over alumina in terms of isothermal activity. The incorporation
of 5, platinum into the formulation by co-impregnation appeared to improve
the isothermal activity. This improvement was reflected in a very short
ixnition delay during the first firing ot this catalyst in the 5 lb
thruster. However, this activity was lost in subsequent 5 1b thrust motor
firings.

(C) The addition of 5 wt. % platinum to a ruthenium-alumina
catalyst, by means of the co-impregnation of platinum and ruthenium salts,
produced a catalyst that gave a very short hydrazine ignition delay for
the first firing. This concept was thus explored further. Ruthenium-
platinum-alumina supported catalysts were prepared by co-impregnation
of the halide salts and subsequent reduction with hydrogen. Catalysts
were prepared with ruthenium/platinum weight ratios of 3.0 and 4.5, at
a total metals content of 17 and 30 wt. %. Isothermal rate measurements
were made using these catalysts. The results are presented in Figure 9
and Table 11. The data show that the incorporation of platinum into the
alumina supported ruthenium catalyst reduces the apparent activation
energy for hydrazine decomposition. Both 17 and 30 wt. % binary ruthenium-
platinum metals catalysts gave activation energies of 14 kcal/g-mole as
opposed to 19 kcals/g-mole for the pure ruthenium catalyst. This lowering
of the activation energy also meant that the activity of the 30 wt. %
binary catalyst was higher at 5°C than that of the 33% alumina supported
ruthenium catalyst; the ruthenium-alumina catalyst was, however, still
slightly more active at 25°C.
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Figure Y

(C) ISOTHERMAL PERFORMANCE OF ALUMINA SUPPORTLD
RUTHENIUM-PLATINUM CATALYSTS
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Table 12

(C) ISOTHERMAL PERFORMANCE OF  ALEPMINA SUPPORTLD

RUTHENIUM-PEATINUS CATALYS TS

- iF = = \{ﬁ—‘“_l-_ -
| Iy - "‘, . . o i ' . t ;;m“'l.
| Femperature l**\ & o Ly Tt L B o Activation fnerys
Catalyst Composition o 1 oem3 (STP)/min-pn o QﬂP]vws-ming Feal/pmmole
Rutheniuwm=1lat inun-Alumina }) 30 78 | I
17wt Metals Ru/i't = 3.0 25 170 440
By 05 25 170 440
Ruthenium=Platinum-Alumina 5 950 130 14
30 wt L Metals Ru/Pt = 3.0 25 270 700
|».5 25 270 700
|
1335 Ruthonium-Alumina S 30 78 19 [
25 350 910

*Volume of product gas STP per volume of catalyst per minute.

(C) The isothermal data imply that the binary ruthenium-
platinum alumina supported catalysts would provide a shorter hydrazine
ignition delay at temperatures in the vicinity of 5°C. This is not counting
the instantaneous possible hypergolic effect resulting from the presence
of platinum oxide. This effect cannot be defined in the isothermal reactor.
[t can only be detected in catalyst bed ignition studies. We have not
tested the start-up characteristics of these new ruthenium platinum-alumina
catalysts at 5°C. Our present test facility would have to be modified
to do so in a reliable manner. However, preliminary motor firing tests with
the 30 wt % ruthenlum-platinum catalysts at 25°C did not show any advantage
over pure ruthenium-alumina catalysts. In addition, the first start
platinum oxide hypergolic effect was much less pronounced than that
observed with the 5 wt % platinum, 33 wt 7 ruthenium on alumina catalyvst
(£sso 210). Thus, though this darea offered further potential to reduce
the low temperature hydrazine ignition delay, we felt that we could best
utilize our effort by devoting full time to the study of other thermally
stable substrates for ruthenium.
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/.2 Five Pound lhruster Evaluatson ot Aluming
Supperted Ruthentum Catalysts

(C)  The high low temperature isothermal activity of cobalt
tree rathenium on aluming catalvsts was translated into o signiticant
reduction in iynition delay.  Tests on 1/8"D x 1/8"L pellets tabricated
by ruthenium salt impregnation ot pre-formed Harshaw 1404 alumina yave
emine start-up pertormance which approached that of Shell 405.  The
results ot these tests are presented in Table 13 and Figure 10 and dis-
cussed in the tollowing paragraphs.

Table 13

(C) 1GNITLION DELAY OF ALUMINA SUPPORTED RUTHENIUM

Ignition Delay
Catalyst Description at 23°C msec. (1,2)
Esso 205 337 Ru on Alumina 120
Esso 206 12% Ru on Alumina 620
Esso 207 23% Ru on Alumina 220
Esso 209 33% Ru on Silica-Alumina 100
6% Silica
Esso 210 5% Pt, 337 Ru on Alumina 5 (first firing)
100

(C) The ignition delay was seen to depend on the ruthenium
concentration, decreasing as the catalyst ruthenium content increased.
The incremental reduction in ignition delay in going from 23 to 33%
ruthenium was much less than that in going from 12 to 23%. Data on a
higher ruthenium concentration catalyst further indicated a leveling
off of the ignition delay. Thus, very high ruthenium loadings ( >50%)
are not expected to result in any further significant reduction in
ignition delay.

(1) The Esso 5 lb. thruster does not represent a flight type design.
Ignition delay data are thus useful only on a comparative basis,

(2) Ignition delay time does not include valve response and fuel flow
dead time which is approximately 60 msecs in our test system.
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(C) PERFORMANCE OF RUTHENIUM CATALYSTS IN 5 LB, THRUST I NGINE
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(Y The dncorporation ot platinum, by means of the co-fuprey
nation ot platinum and rathenium salbts, produced o catalvat that showed o
very short fgnition delavy tor the tirst ticing. However, subocquent tirning
Jid not show any advantage over the platinum tree catatvst having o comparab be
ruthenium content. One possible explanation tor the very short dgnition
Jelav observed during the tivst tiring of the platinam rutheniun catidvet
was the relative ease in which platinom oxide was reduceds  All catalyste,
prepared by hvdropen reduction, dre subsequently exposed to air and, Lence,
have a thin oxide laver on the surtace.  This oxide, which is casily reduced,
reacts with hvdrazine in a bipropellant mode tor a fraction ot a second
givivg the svstem an extra "kick'. Platinum oxide is casier to reduce than
rutlenium oxide and hence may have accounted tor the rapid start.  The
fgnition delav during the first tirving of platinum tree ruthenium catalyats
was usually lower than the next tew subsequent tirings. The ditterence,
however, was not nearly as great as that observed with the ruthenium-platicue
catalvst.  Fucther evidence of surface oxide effects was obtained by re-
admitting air into a catalyst bed at room temperature after it had been
fired a number of times. A significant reduction in ignition delay,
(usua'lv about 50%)and ignition spike pressure was observed in each case in
witicn air was admitted to the reactor bed. However, the shortened ignition
delav effect is, again, only present for the initial firing after exposure to air.

7.3 Isothermal Performance of Tungsten Carbide
Supported Ruthenium Catalysts

(C) Tungsten carbide possesses several properties which make it
an excellent candidate for a high temperature thermally stable catalyst
st:pport. It has a much higher melting point than alumina (2780°C as
opposed to 2000°C) and thus should be more resistant to sintering than
alumina. It has a much higher density than alumina (15.7 gms/cm”® as opposed
to 2.6) and thus has the potential to store more active catalyst in a fixed
volume. !' should be stable in a reducing atmosphere at high temperature.
Most syntletic procedures utilize the reaction of tungsten with a hydro-
carbon in a mixture of H2 and N2 at temperatures rangicg from 1,000 to
2,200%C. However, the high temperatures required for the synthesis
of WC limit the surface areas that can be obtained with this material.

This appeared to be its chief disadvantage. Though the maximum surface
area of WC available today is about 10 mé¢/gm, it was felt that the material
possessed enough encouraging properties to warrant investigation. Tt was
felt that Company potential unique technology could be used to

increase the WC surface area if ruthenium was shown to be active toward
hydrazine decomposition when used in conjunction with a WC support.

(C) Thus, WC supported ruthenium catalysts were prepared at
the 10, 23 and 30 wt. % ruthenium level using ruthenium halide impregnation
and hydrogen reduction. Samples of catalyst powder were evaluated in the
isothermal reactor at several temperature levels. The results are pre-
sented in Figure 11 and Table 14.
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(C) 1SOTHERNMAL PEREORMANCE OF TUNGSTEN CARBIDE SUPRORTED
RUTHENIUN CATALYSTS
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Table 14

(C) TSOTHERMAL ACTIVITY OF RUTHLNTUM=TUNGSTEN
CARBIDE CATALYSES

APPA.H.UHL 7 Hydrazine vccomposition Rawe at LON ARt ]
Activation knergy p—-+ e C o & L
Catalvst Composition Reals/p mole en3 (STP) /mﬂﬂl end GTPY/ e opin#
WC substrate alone 0 0
10% Ru on WC 25 1 16
235 Ru on WC 13 L8 345
307 Ru on WO 13 38 596
407 Ru on WC Not Measured 13 204
337% Ru on Alumina 19 350 910

* yolume of product gas STP per volume of catalyst per minute

(C) The data indicated that tungsten carbide supported ruthenium
catalysts had considerable activity toward hydrazine decomposition and the
decomposition rate appeared to be very dependent on the ruthenium concentra-
tion, increasing markedly between 10 and 30% ruthenium and then apparently
decreasing at the 40% ruthenium level. The absolute act1v1ty of these
catalysts, on a mass basis, is not great--only 38 cm3/gmemin as compared
with 350 cm /gm-min for alumina supported ruthenium at about the same 30% i
metal loading. However, the much higher density of tlie tungsten carbide
support makes this catalyst look much more attractive on a volume basis.
Since most potential applications for the hydrazine monopropellant system
are volume limited (their design and size are fixed by other factors) a
more meaningful comparison of catalysts can be made on a volume basis.

High support density cannot fully be translated into catalyst storage
savings because of catalyst pill porosity and the bulk density factor.
However, the activity per cm3 does appear to be a more practical figure

of merit for hydrazine decomposition catalysts. When compared on a

volume basis, the activity of the 30% ruthenium on tungsten carbide
catalyst at 25°C is less than one half that of the 33% ruthenium on alumina.
This is very encouraging in view of the fact that the tungsten carbide sup-
port had only 10 m /gm of rsurface area. If tungsten carbide supports can
be prepared with surface areas of 20-30 m /gm, the activity of the 307%
ruthenium loaded catalyst should be equivalent to that of 33% ruthenium

on alumina on a volume basis. It is recommended that further work be
conducted on the WC substrate,
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7.4 pPerformance of PIN Supported
Ruthenium Catalysts

(U)  Esso Research developed a unique refractory catalyst
support material which has both high surface arca and resistance to
sintering at high temperatures in a humid environment. The stability
of this support to sintering in a 807% H2-207 Hy0 at 1100°C environment
is shown in Table 15.

Table 15

THERMAL STABILITY OF ESSU PIN SUPPOKT
Samp les Steamed for 1/2 Hour in 807 H2-20% H,0 at 1160°¢

BET Surface Area
ml/gm %Z Decrease

Support Before After in Surface Area
Esso PTN* 159 121 24
Al)04 152 ;0 59

(H-1404)
Al1703-5109 211 92 56

(H-1602)

*Esso PTN is a specially prepared form of Boron
Nitride which was developed under Company-sponsored research.

(U) The very encouraging results achieved in this sintering
test for the PIN material clearly made it a potential candidate support
for the non-strategically limited ruthenium metal. However, it remained
to be seen whether ruthenium would be active on the PIN support and
whether catalyst pellets of sufficient strength could be fabricated.
Thus, ruthenium was deposited on the surface of the PIN support by halide
salt impregnation and hydrogen reduction. Catalysts were prepared at
the 23 and 45% ruthenium metal loading. The results of isothermal rate
measurements using these catalysts are presented in Table 16 and Figure 12.

UNCLASSIFIED




CONFIDENTIAL

- 9 -

Table 16

(CY ISOTHERMAL ACTINVITY 0P PN SUPPORTED

_ RUTHENIUM CATALYSTS

Apparcent
Activation Energy

Hydrazine Decomposition Rate at 25°C

RN

- : 4 Sll’ri ave Arca |
Catalyst Composition Keals/g-mole e (STP) [min-gm cm 3 STP/emd-mink mJ/dn |
23 wt L Ru on PIN 18 270 600 77 :
45 wt L Ru on PTN 18 270 600 44
33wt & Ru on 19 350 910 773
Alumina
-

* volume of product gas STP per volume of catalyst
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W)
Fivure 1)

(<) (SOTHE RMAL PERFORMANCE G PIN AND £100 SUPPORTED
RO THENIUN CATALYSTS
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As can be seen trom the data, the PIN supported ruthenium catalyst pos-
sesses appreciable activity. thouyh both the 23 wto 7 and 49 wt. /7 Ru
catalyvsts were less active than the aluming supported 33 wt. / rutheniun
catalyst, the high level or activity was stili extremely encouraying.
Stuce the surtace arca ot the base PIN support usced was low (80 mé/,m),
we telt that the activity could be improved.  The fact that no noticeable
Increase in catalyst activity was observed in increasing the ruthenium

concentration trom 23 to 45 wte 4 s partly explained by an apparent loss
in surtace area.  The 43 wt.o 2L ruthenium catalyst had o total BET surtace
. / ) 0y 3 y - )y R N
area ol 44 m</pm as opposed to /7 mz/gm for the 23 wt. % ruthenium cata- {

lyst. A change in tabrication conditons such as ruthenium halide solution
concentration and temperature may offer alternate ways of achieving higher
activity at a high metal toading.

(C) The refracrory support, PTN, was prepared in a
large quantity (100 gms) and was used to fabricate a scaled-up batch
of ruthenium=PTN catalyst. As with the earlier small batches, ruthenium
metal was deposited on the refractory PIN support by a series of ruthenium
chloride impregnations and calcinations followed by reduction with
hydrazine. A large batch of PIN supported ruthenium catalyst was prepared
at the 40 wt. 7% metal level and tested in the isothermal decomposition rig.
The results are compared with those obtained using catalysts prepared in
small quantities in Figure 13.

(C) The scaled-up catalyst preparation showed somewhat higher
hydrazine decomposition activity than that of the material processed in
smal! batches. Since very little difference in catalyst activity was
observed amony small batches containing 23 to 45% ruthenium, the apparent
improvement in catalyst activity, observed for the scaled-up batch, was
not believed to be due to differences in ruthenium average bulk concen-
tration. Neither was it believed to be a result of differences in
catalyst surface area which were substantially the same for large and
small batch preparations. A more likely explanation was in the improved
dispersion of the metal on the surface of the large batch of PIN material.
Much higher solution concentration gradients and high localized deposits
of ruthenium can be expected when small batches of catalyst material are
processed by a multiple impregnation technique.

CONFIDENTIAL




- 42 -
Figuru 13
(C) ISOTHERMAL PERFORMANCE OF SCALED-UP RUTHENIUM-PTN CATALYST
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(U)  PIN supported ruthenium catalyst pellets (L/8"L = 1/8"D)
were prepated by means ol oa Stokes Pellet Press. Pellets us tormed trow
the press had low crush strength.  Thus, the sinter strengthentny tech-
nigque, successtully cumployed with the cobalt=aluming catalysts, was
applicd to the Ru-PIN system.  Pellets were subjected to sinter treat-
ments ot ditterent temperatures tor a speciticd time 1v g tube turnace.
Argon pas was used to protect the pellets against ovridation.  The
eftect vl sintering treatment on catalyst pellet crush strength is
shown in Table 17.

EFFECT OF SINTER STRENGTHENING ON CRUSH
_ STRENGTH OF Ru-PTN CATALYST PELLETS
— - _
! Average Pellet Crush
| Stnter Penperature ¢ | Sinter Time Mins. | Strengeh Lbs.s
——————————— No Sinter Treatment -—-—--------- 7.5
1200 30 8.5
1300 30 4.0 i
120 11.0
l 360 5.0

*Average of (10) 1/8" D Pellets

(U) The data in Table 17 indicate that cousiderable improvement
in Ru=PIN pellet crush strength can be achieved through the sinter
strengthening technique. Pellets sintered at 1300°F for 30 minutes have
almost twice the crush strength as pellets receiving no sinter treatment.
Increasing the sinter times, however, produced incrcasingly weaker pellets.
This was contrary to what was expected and observed with cobalt-alumina
catalysts.
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7.5 Pertormance ot Retractory Oxide
Supported Ruthenium Catalysts

(C) Several refractory oxides have properties that make them
potential candidate thermally stable supports tor ruthenium.  These in-
¢lude tungsten oxide, magnesium oxide, and zirconium oxide. These materials
have very high melting points, are chemically stable at high temperatures
and can be prepared in high surtace area. Thus, several of these materials
were impregnated with ruthenium halide solution to the 30 wt. 7 metals
level, reduced with hydrogen and tested in the isothermal riy. The results
are depicted in Table 18 and Figure 14.

Table 18

(C) PERFORMANCE OF REFRACTORY OXIDE SUPPORTED
RUTHENTIUM CATALYSTS

Catalygt Surface Isothermal NoH, Iecomposition
Catalyst Area m*/pm Rate cm? (§1$)/min-gm at 25°(
30% Ru on Zr0, 37 250
307 Ru on w03 23 163
30% Ru on Mg0 21 500
307% Ru on MoQq 14 Negpligible Activity
| 33% Ru on A120‘3 70 { 350
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Figurc 14
(C) ISOTHERMAL PERFORMANCE OF REFRACTORY OXIDE SUPPORTED RUTHENIUM CATALYSTS
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(C) Ditterences in catalyst surtace arcd cannot erplain this
wide ramee ot results in hydrazine decompositwa activity.  In tact, the
most active hydrazine decomposition catulyst, 3UL Ru on M0, had a4 surtace
drea ot oonly 21 w/gm.  The results are more likely due to the strony
chemival interaction ot catalyst and substrate which strongly determines
the resulting supported catalyst hydrazine decompusition activity. The
isothermal hydrazine decomposition activity ot the magnesia supported
ruthenium catalyst was high enough to attect spontaneous hydrazine ignition
at temperatures as low uas 5°C. Thus, it was considered a very promising
system tor this project and was subjected to turther evaluation,

7.0 Preparation and Pertormance of High
Surtace Area Magnesia

(U) High surface area magnesium oxide was prepared by calcining
MgCO3 and My (OH)y under specified coaditions. Iwu temperature levels and
two calcination duration periods were evaluated. The BET surface areas
resulting from specitic process treatments are presented in Table 19.

Table 19

EFFECT OF PROCESS CONDITIONS ON THE SURFACE
AREA OF RESULTING MgO SUBSTRATES

Source of Run Calcining Calcining Magnesia BET
Magnesia Identification Temperature, °F Time, hrs. Sur. Area mz[gml
Mgc03 B 1000 2 114

A 1000 15 216

D 615 2 62

C 615 15 90
Mg(on)z F 1000 2 135 |

E 1000 15 85

! Vitro Magnesia 60

(U) The MgO substrates resulting from MgCO3 decomposition
showed surface areas ranging from 62 to 216 mé/gm, surface areas in-
creasing with the severity of treatment. Substrates resulting from
Mg(OH); decomposition at 1000°F showed a decrease in surface area with
an increase in calcining time. Preliminary tests at 615°F indicated
this temperature level was too low to affect significant Mg (OH) 2 decom-
position. The lower surface area resulting from the longer calcination
period, using Mg(OH)) as the source, implies that the H20 formed during

decomposition may have catalyzed sintering. The results of our
steam sintering tests discussed later in this scction support this theory.

CONFIDENTIAL




CONFIDENTIAL

o "./ _

(C)  The process conditions yiclding the highest surtace areag
MO (Run A) was used to tabricate an Ru=Mp0 catalyst gt the 30 wt. 7
metal level.  This catalyst was prepared in g similar manner to the
Vitro MgO supported catalyst using multiple ruthenium hal ide solution
lwpregnation, calcination and hydropen reduction.  Isothermal catalyst
activity tests were run on the high surtace area MpO-Ru catulyst. The
results are compared with the pertormance of the Vitro MgO supported Ru
catalyst in Table 20.

Table 20

(C) PERFORMANCE OF MAGNESTA
SUPPORTEDR RUTHENIUM CATALYSTS

r

f Substrate Surface | Temperature {Isothermal NoH4 Decomposi-

Catalyst Area mz/gm °C tion Rate cm” (STP)/min-¢m
30% Ru on Vitro 60 1 25
Magnesia 15 125
25 500
30% Ru on Mg0O 216 1 50
(MgO from Prep. 15 163
A above) 25 500

The high surface area MgO supported Ru catalyst showed considerably higher
activity than the Vitro MgO supported Ru catalyst at low temperatures;

no difference in activity was noted at 25°C. The high surface area MgO
supported Ru catalyst should be active enough to affect spontaneous hy-
drazine ignition at 5°C. A large batch of high surface area MgO was
prepared and was used in pilling studies. The results of sinter
strengthening experiments on 1/8"D x 1/8"L Ru-Mg0 catalyst pellets were
discouraging. Cracks were formed in the catalyst pellets during the sinter
strengthening process. One possible explanation for the crack formation
was a further decomposition of some remaining MgCO3 during the sinter
strengthening operation. It was felt that an acid treatment might help
remove MgCO3 that has not been completely removed during the calcination
step. Acid treatment of the MgO formed from calcination of MgCO3 or
Mg(OH), might also provide additional substrate surface area. The re-
sults of an acid leaching treatment are discussed in the following
paragraphs.
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(C)  Mg0 substrate samples produced trom both Mg (OH)y and MOy
sources were treated with .05 M phosphoric acid. Phosphoric acid is g
pood halide free leachant and this treatment of refractory oxides has
also been shown to inhibit sintering 1n a HyO environment (2). TIreatment
consisted of equilibrating calcined substrate materials with 0.05 M
phosphoric acid, drying at 250°F, and calcining at 750°F tor only 1
hour. This procedure was conducted twice with cach substrate sample. The
resulting change in substrate surface area is piven in Table 21.

Table 21

LFFECT OF PUOSPLORLIC ACLD LEACLING ON
MAGNESIA SUBSTRATE SURFACE AREA

BET Surface Area mz/gm
Substrate ldentification |Before Leaching | After Leaching i

MgO A 216 | 252
(From MgCOB) | j
I {

| MgO E 85 ] 252
|

(From Mg(OH),) ;
B {

(C) The data presented in Table 21 show that the leaching
treatment produced a significant increase in substrate surface area for
both samples. The increase is much greater for the substrate initially
produced from Mg(OH)y decomposition indicating that this substrate had a
greater fraction of the source which was not decomposed by calcination.

As in our calcination studies, we wanted to see if the higher surface area
produced by the acid treatment could be translated into higher supported
ruthenium hydrazine decomposition activity. Thus, a portion of

a phosphoric acid treated substrate was used to fabricate a Ru loaded
catalyst. A catalyst containing about 30,0 wt 7 Ru on phosphoric acid
treated, MgCO3 calcined substrate (Run A) was fabricated by the standard
multiple ruthenium chloride solution impregnation technique followed by
calcination and reduction. The hydrazine decomposition activity of this
catalyst was measured in the isothermal test rig. The results are compared
with the activity of a catalyst prepared from calcined MgCOj which

had not been acid treated in Table 22. The acid treated catalysts were
found to be less active than catalysts prepared from the calcined subslrate.
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Table 22

(C) PERFORMANCE OF ACID LEACHED MACGNESIA
SUPPORTED CATALYSTS

Substrate BET 1sothermal NoH,
Surface Area Decomposition Rate
Catalyst mz/gm Temperature °C | cm?  (STP)/min-gm
!
307% Ru on Acid 252 1 . 25
Treated Mg0 15 125
— - — -
30% Ru on as 216 1 50
Calcined MgO 15 163
i

(C) Magnesium oxide appears to show considerable promise as a
support for ruthenium. The activity of the MgO-supported ruthenium
toward hydrazine decomposition is quite high and the substrate can be
prepared in high surface area. However, several questions exist pertinent
to the physical strength of MgO granules and pellets. Further work in
this area is required to define the magnitude of this problem.

7.7 High Temperature Stability of Various Hydrazine
Decomposition Catalysts and Substrates

(C) Several catalysts and substrates were subjected to high
temperature sinteringtests in N2-H2-NH3 and H2-H20 atmospheres respec-
tively. The results of these tests are presented in Tables 23 and 24.
Of the bstrates tested, the tungsten carbide appeared to show the
highes. cesistance to sintering in both the water free and water cone-
taining environment, decreasing less than 10% in surface area
during both test periods. The PTN material was the second most
stable support tested, though a considerably greater loss in surface
area was observed in comparison to our first sinter stability test run
on PIN reported earlier in this program. This difference in stability
is most likely a result of slight variations in PTN composition from
batch to batch and not a result of the difference in the gaseous ambient
used in the tests. This is borne out by the fact that the PIN desur-
faced about the same amount in both current stability tests in a Hz-Ng-
NH3 environment and in the H2-H20 environment. The fact that the PTN and
WC support were as stable in a gaseous environment containing 20 vol. %
H20 as they were in a Hy0 free ambient implies that these substrates may
be used with fuels containing hydrazine nitrate.

(C) The PTN supported ruthenium catalyst at the 23 wt. % metal
loading was almost as stable as the metal free substrate itself and also
showed little difference in surface area loses in both a water free and
water rich gaseous environment. The tungsten carbide supported ruthenium
catalyst, on the other hand, decreased in surface area consid. rably in
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both tests with a more drastic loss taking place in the Hy-H20 gas test.
This loss is believed to be a result of the fact that the high loading of
ruthenium deposited on the low surface area WC substrate was probably

not well dispersed, allowing ruthenium crystallites to sinter together
easily. This is further supported by the fact that the 30 wt. % ru-
thenium on tungsten carbide catalyst showed much higher initial total
BET surface area than the substrate itself, indicating that a good
portion of the ruthenium produced was "unsupported' and actually physi-
cally mixed with the tungsten carbide.

(C) The refractory oxide substrates and supported ruthenium
catalysts showed very poor stability characteristics with the exception
of the Harshaw 1602 alumina-silica substrate which was reasonably
stable. The very active magnesia supported ruthenium catalysts
and the magnesia substrates themselves were notably unstable, desurfacing
sharply in both tests, though to a greater extent in the Hy-H)O atmosphere.
The standard Harshaw 1404 alumina substrate desurfaced considerably in the
water free NH3-Np-H, environment and almost completely in the Ho-Ho0
ambient. Catalysts fabricated with Harshaw 1404 alumina will have
an extremely short life when hydrazine nitrate is used in the fuel blend.
Zirconium oxide and tungsten oxide substrates were also unstable in
the Ho0 containing environment though considerably more stable than the
Harshaw 1404 alumina.
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(C)  HIGH TEMPERATURE STAB1L1TY OF HYDRAZINE
DECOMPOSTTION CATALYS'TS

Test Temperature - 1100°C
Time - 1/2 hour

Gas Environment - 25 vol % N,, 25 vol % H2, 50 vol 7 NHj

Total BET
Surface Arca m?/pm
Catalyst or Substrate Before After
wC 2.3 2.1
30% Ru on WC 11,2 1.5
PTN 73.4 38.4
23% Ru on PTN 77.0 24.7
MgO from Calcined MgCO1 216 9.3
MgO from Calcined Mg(OH)) 85.1 0.1
30% Ru on MgO from MgCOj 21.0 1.2
Vitro MgO 60.0 3,2
407% Ru on MgO 11.8 2.6
Vitro Zr02 25 6.2
30% Ru on Vitro Zr0j 12 2.0
Vitro W03 38 5.4
30% Ru on W04 12.0 <1.0
Harshav Sintered Al205 (1404) 95 12.6
Harshaw Sintered A1203-SiO2 145 46
(1602) i
Table 24
(C) HIGH TEMPERATURE STABILITY OF HYDRAZINE
DECOMPOSITION CATALYSTS
Test Temperature -~ 1100°C
Time - 1/2 hour
Gas Environment - 80 vol % H,, 20 vol % HZO
Total BET
Surface Area m“/gm
Catalyst or Substrate Before After
weC 3.0 2.7
30% Ru on WC 11.2 .3
23% Ru on PIN 77.0 21.8
Vitro MgO 60.0 7.5
307 Ru on Vitro MgO 18,7 6.0
Vitro WO 38.0 1.6
30% Ru on WO3 12 1.9
Harshaw Sintered Al903 (1404) 95 i .6
Harshaw Sintered A1203-Si0, 145 45
(1602)
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8. PROMOTEN RUTHENIUM CATALYSTS - THE
ESS0 500 SERIES

(C) Cousiderable evidence is present in the literature to indicate
that the incorporation of foreign ions into y-alumina can substantially
improve the thermal stability of this refractory oxide. For example,
Krischner, et al. have found that the incorporation of alkaline earth
ions into y-alumina markedly enhanced its thermal stability (15).

Similar observations have been made in our Company high temperature
petroleum processing catalyst studies. On the basis of this information,
and the fact that hydrazine decomposition appears to increase with
increased substrate basicity, we prepared a number of "doped" substrate
catalysts which we called the Esso 500 series. These catalysts have been
extensively tested in our 5 lb. thruster and isothermal reactor and
characterized in our laboratories. One of them was evaluated by Air
Force personnel in 25 1b. and 5 1b. thrust engines. The results of these
tests are discussed in the following paragraphs.

8.1. Characterization of the Esso
500 Series Catalysts

(C) The Esso 500 series catalysts have been characterized in
our laboratories. Their approximate compositions are as follows*:

Esso 500 - 5% Sro0, 5% 8102, 60% Al1203, 30% Ru
501 - 5% Ca0, 5% S102, 60%Z A1203, 30% Ru
502 - 5% La03, 5% Si0p, 60% Al203, 30% Ru
503 - 5% Ba0, 5% S102, 60% Alp03, 307 Ru
504 - 10% BaO, 5% Si02, 55% Alp03, 30% Ru
505 - 10% Ca0, 5% Si09, 55% Al203, 30% Ru
506 - 10% La03, 5% S102, 55% A1203, 30% Ru
507 - 10% Sr0, 5% Si03, 55% Al203, 30% Ru

Data have been obtained on catalyst surface area, substrate surface area,
ruthenium crystallite size and catalyst isothermal activity. These data
are presented in Table 25.

*See Appendix for detailed procedure for preparing
the Esso 500 series catalysts.
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Table Mo

() PROPERTIES OF 1SS0 00 SERIES CATALYSTS

1
'AS Fabrie- Metal Cryse
Y Isothernal cated Crush | tallite Size
| BET Surtace Arca wm™/gu | Aceivity com? Strenglh A
Catalvste Substrate | Catalyst (S1P) /min-gm at 25°C 1he. r
Esso 500 18.2.4 1.258.0 490 40 135
Esso 501 178.0 131.5 420 41 Llz4
Esso 502 185.6 128.5 455 41 124
Esso 503 184.7 123.1 385 36 111
Esso 504 175.8 116.8 630 41 126
Esso 505 181.8 118.0 420 41 165
£sso 500 lb6. 2 117.0 730 46 145
Esso 507 173914 117.5 420 43 140
Conventional
s 144.6 91.4 350
Catalyst I

*Based on 1/8" x 1/8"D Pellets

(U} The properties of the Esso 500 series catalysts, given in
Table 25, are seen to be superior to those of the conventional alumina
supported ruthenium catalysts. Both substrate and final catalyst surface
area are considerably higher than those of the conventional supported
ruthenium catalyst. Isothermal hydrazine decomposition activity of the
Esso 500 series catalysts is seen to range from 10 to 807 higher than the
conventional alumina supported ruthenium catalyst. Additional data on
metal crystallite size and on surface areas and activity after motor
firing are presented in the following paragraphs.

8.2. Performance of Esso 500 Series Catalysts
In Esso's 5 1lb. Thruster

(U) Eight different Esso 500 Series catalysts were fabricated
in 1/8" x 1/8" pellets and tested in our instrumented static 5 lb. thrust
engine. Propellant grade hydrazine was supplied to the engine at 25°C
using pulse mode propellant injection cycles of 1 second on 5 seconds off.
Reactor chamber pressure and degree of catalyst attrition during engine
firing were recorded. The results are presented in Table 26.
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Table 26

(C) PERFORMANCE OF ESSO 500 SERIES
CATALYSTS IN A 5 LB. THRUST ENCINE(D)

% Change in Catalyst Loss

Catalyst Bed Pressure Drop Wt Z/Qpp:__ﬁﬂ
Esso 500 None 0.15

Esso 501 None 0.17

Esso 502 None 0.13

Esso 503 None 0.12

Esso 504 None 0.052

Esso 505 None 0.078

Esso 506 None 0.038

Esso 507 None 0.083

(1) Ignition program - 1 sec. on-5 secs. off - 40 total pulses.

(C) As can be seen from the data in Table 26, the Esso 500 series
catalysts all performed very well in the pulse mode operation of our 5 1b.
thruster. All catalysts showed excellent mechanical strength and
resistance to attrition during engine firing as indicated by the low level
of catalyst lost and bed pressure drop stability. These very encouraging
results using the Esso 500 series catalysts prompted us to request that
the Air Force evaluate one of them in actual flight type hardware. We
believed that such a test was essential before studies in this area were
pursued further.

8.3. Air Force Engine Firing Evaluation
of Esso 500

(C) About 50 gms of Esso 500 1/8" x 1/8" pellets and 25 gms of
Esso 500 20-40 mesh granules were sent to Edwards Air Force Base for motor
firing evaluation in a 25 1b. thrust flight type monopropellant engine.
The Air Force test results using a bed composed of about 10 vol. 7% granules,
the remainder pills, were extremely encouraging. Esso 500 was found to give
ignition delays comparable to Shell 405 with propellant grade hydrazine
at 30°F and 100°F. Furthermore, no steady-state performance degradation in
engine chamber pressure was observed during 350 secs. of hydrazine fuel burn
using 2000 pulses of fuel injection. Low catalyst attrition was observed
during this firing program and the catalyst was observed to have very good
strength properties.

8.4. High Stability of the Esso 500
Series Catalysts

(C) The promoted substrate and final catalysts for the Esso 500
series have extremely high stability. Catalyst surface area, isothermal
activity and pellet crush strength all showed little or no change after four
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minutes of firing; the catalyst evaluated by the Air Force, and which
received 24 minutes of total firing also showec no loss in surface

area. This data is presented in Table 27 and in Figure 16 which depicts
the remarkable surface stability of Esso 500 in contrast to Shell 405.
Esso 500 is seen to maintain its original "as fabricated" surface area
during 24 minutes of total firing time. Shell 405, on the other hand,
drastically desurfaces during the first 5 minutes of firing. This
unique surface area stability of Esso 500 is a property associated with
its unusually stable promoted substrate. It is suggested that surface
area stabilization may be affected by the alkaline earth ion retardation
of the transformation of y-alumina to a-alumina.
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Figure 15

(¢) SURFACE AREA STABILITY OF ESSO 500

TOTAL RUN TIME - MINUTES
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APPENDIX A

(C) CATALYST FIRING DATA - 5 LB. THRUST LNGINE

Catalyst No. 428-73
_ (Esso 200)

Description: 12% Ruthenium on 3% Cobalt
Impregnated Preformed 1404 1/8"

Alumina
Run No.

1 2 3 b 9 6
Fuel Temp., ¢ mrmmmmooTmoEmmmTT 94 —memmmmmmmmmmmmmmm o
Bed Start-up Temp. °C 24 24 60 70 60 60
Bed Inlet Steady Temp. °C 158 310 240 235 245 230
Bed Center Steady Temp. °C 158 300 760 915 915 915
Bed Inlet Steady Pressure, psig 0 spike 180 162 150 145
Bed Outlet Steady Pressure, psig 0 spike 115 115 115 122
Bed Pressure Drop, psi - - 65 47 35 23
Ignition Spike Pressure, psi  TTmTTTmTTTTTTTTT not recorded ~———=--—==-==<TTTTTT
Ignition Delay msec.* 4,000 7,800 1,000 500 400 700
Wt. % Catalyst Loss and Fines/Cold Start  ====—==="="77T77777 3.2 mmmmmmm——m————=smmmosoT TS
Pulse Duration, sec. 2 2 15 15 15 15

Remarks

*Ignition Delay time does not include valve response
and fuel flow "dead" time which is approximately 60 msecs

in our test system.
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(C) APPENDLX A

Catalyst No., 428-74
o Esso 201)

Description: 10% Ruthenium on CO-
Precipitated Oxide Sintered
Cobalt Alumina (757% Cobalt)

Run No.

LI 2 3 4 5
Fuel Temp., °C e 25 mmmmm e
Bed Start-up Temp. °C 25 60 65 65 65
Bed Inlet Steady Temp. °C 375 510 220 850 900
Bed Center Steady Temp. °C 385 635 845 850 860
Bed Inlet Steady Pressure, psig 25 27 120 105 105
Bed Outlet Steady Pressure, psig 20 25 80 100 100
Bed Pressure Drop, psi 5 2 40 5 5
Ignition Spike Pressure, psi --- not recorded --
Ignition Delay msec. 4,500 1,100 900 1,000 1,100
Wt. % Catalyst Loss and Fines/Cold Start -— 0,5 ===mmmmmmem e
Pulse Duration, sec. 2 2 15 15 15
Remarks

CONFIDENTIAL




CONFIDENTIAL

6!l

ST ST 6°% 6°% 6"y 8% 8% Sy
|||||||||||||||||||||||||||||||||| 9°0 ——- — e
006°T 00T 0sT 0sT 00T 002 00§°T 0s? 009 00,y
||||||||||||||||||||||||||||| -- papiodai jou

- 0¢ VAl 8T 81 8 0 S - -
= 00T 001 S6 08 [44 S9 26 Y4 o1
F= 07T 7 [ €11 86 08 69 L6 194 o1
=5 ST6 083 S16 %8 S8 18 o%¢ SYYy GCT1
= [A%4 0%¢ 81 061 ove 08T ove 0S 159
sz 99T OtT LTT 061 00T S¢e 00T LS L4
................................... <z
01 6 8 L 9 S ki € 4 1
“ON uny

eutunyy ,,8/1-%0%T
uo pajeufaadur-Q) 3ITLQOH

%€€ ‘wniuayany %z1

:uo13dTa0S9q

(Z0z ossid)
08-87% "ON 3sATeied

V XTaONAdAV

(D)

syaeway

*09s ‘uorierang asind

Jie3lg pro)/saurj pue ssoT ISATEIE) % °IM
*o9sw AeT3g uorlTulI

1sd ‘sanssaag a3y1dg uor3lTuly

1sd ‘doag @2anssaad poag

81sd ‘sanssaiag Ape23s 13TInQ pag
81sd ‘sanssaig Apeais 31aTul pag
9, -dwsy Lpes1g 123ua) pag

3, "duo] Apeais ISTUIl pag

9, -dwayl dn-jae3s pag

9, ¢°dway Tong

CONFIDENTIAL




e
"‘T——-—

CONFIDENTIAL

(C)  APPENDIX A

Catalyst No. 428-78
- .(.iis‘so‘ 205)

Description: 324 Ruthenium on
Pretormed 1404-1/8"
Alumina

S LR e —

L8 2 3 - 1) o
Fuel Temp., °C e 5 — e
Bed Start-up Temp. °C 5 25 25 40 60 80 100
Bed Inlet Steady Temp. °C 220 210 210 210 215 215 215
Bed Center Steady Temp. °C 900 845 845 845 845 845 840
Bed Inlet Steady Pressure, psig 112 110 110 110 122 117 113
Bed Outlet Steady Pressure, psig 110 110 107 107 112 100 110
Bed Pressure Drop, psi 2 0 3 3 10 17 3
Ignition Spike Pressure, psi = —==me—e———m———o not recorded -=—————--———-—--
Ignition Delay msec. 200 100 160 60 20 15 10
Wt. % Catalyst Loss and Fines/Cold Start = -=-=—-——————mm——eeee- 1.7 === e e
Pulse Duration, sec. 00 eeeecec e e S mmmmm e e
Remarks --~-- Half Bed Used with 1404-1/8" Filler ----
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(C) APPENDIX A

PERFORMANCE OF FESSO 500 SERIES CATALYSTS 1IN
THE 5 LB. THRUSTER

Data Code

P, = Hydrazine Tank Pressure, psig

P, = Upstream Reactor Chamber Pressure, psig

P. = Downstream Reactor Chamber Pressure, psig
AP = Bed Steady State pressure drop, psi

T, 4 = Bed ignition temperature, °C

(Bed)

Tl = Upstream Reactor Chamber Temperature, °C

T2 = Downstream Reactor Chamber Temperature, °C
Spike - Ignition spike pressure - Reactor Chamber pressure, psi
DUR = Hydrazine pulse duratiom,s. :s.

DT = Ignition Delayf msecs.

*Ignition Delay time does not include valve response and fuel
£low dead time which is approximately 60 msecs in our test system.
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(C)  APPENDIX K

CATALYST PREPARATION PROCESSES g

Process for Preparing Esso 101 Hydrazine
Decomposition Catalysts

Basis 100 gms of Final Catalyst
e Add 443 gms of Co(NO3)2:6 HpO and 229 gms of 41(NO3)-9 H,0
to 1000 cm3 of distilled Hy0.
o To this solution add 120 gms of NH4HCO 3.
e Allow to stand overnight.
e Heat solution to 150°F.
o Add an additional 175 gms of NH4HCO3.
e Filter solution in a Buchner Funnel.
e Dry filtrate for 18 hours at 120°C.
e Calcine for 4 hours at 750°C in air.
o Press into 1/8" D cylindrical pills.

® Reduce at 950°F for 6 hours in hydrogen.

e Passivate by slow, careful drying in methyl alcohol.
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(C)  APPENDIX B (Cont 'd)

Process for Preparing tsso 500 Spontaneous
Hydrazine Decomposition Cat alysts

High purity silica-alumina is heated to 1800°F for 5 hovrs in air to
stabilize the substrate lattice.

A solution of "dopant" salt is prepared by dissolving 50 gms of an
alkaline earth nitrate salt in 1 liter of deionized H20.

The stabilized silica-alumina is saturated with the dopant soclution,
dried in air at 250°F for 2 hours and calcined at 750°F in air for
5 hours. This procedure is repeated until the desired dopant level
is reached.

A ruthenium trichloride solution is prepared by dissolving 25 gms
of RuClj in an isopropyl alcohol-Hy0 mixture (90 vol. 7% isopropyl
alcohol).

The doped substrate is saturated with the ruthenium trichloride

solution, dried at 250°F for 2 hours and calcined at 750°F in air

for an hour. This procedure is repeated several times until the

desired metal level is reached. 30 wt % Ru in the Esso 500 series. {

The calcined catalyst is reduced in flowing hydrogen for 5 hours
at 1000°F.
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