AD NUMBER

AD499752

CLASSIFICATION CHANGES

TO: UNCLASSIFIED
FROM: CONFIDENTIAL

LIMITATION CHANGES

TO:
Approved for public release; distribution is unlimited.

FROM:
Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; 09 SEP 1949. Other requests shall be referred to U.S. Naval ordnance Lab., White Oak, Silver Spring, MD.

AUTHORITY

30 Sep 1961, DoDD 5200.10, per document marking USNSWC ltr dtd 4 Dec 1974

THIS PAGE IS UNCLASSIFIED
THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
From: L. W. Kissinger
To: Explosives Division Files

Subject: Chlorination of 2,2-Dinitropropane and the Preparation of Related Derivatives of 2,2-Dinitropropane. NO. 149

Abstract: The photochemical chlorination of 2,2-dinitropropane is extremely slow. 1-Chloro-2,2-dinitropropane was produced in about 20% yield, together with a small quantity of a polychloro-compound of unknown structure. 1-Chloro-2,2-dinitropropane has also been prepared from 2,2-dinitropropanol, and 2,2-dimethoxy-1,3-propanediol, an intermediate in the preparation of 1,3-dichloro-2,2-dinitropropane, has been prepared from dinitromethane and formaldehyde.

Fwd: The data presented here are for the information of the Explosives Division. They may not represent the judgment of the Laboratory.

(b) Smith and Walton, NOLM 10335, p. 14.
(c) Kissinger, NO.LM 10506.

I. INTRODUCTION

1. It is believed to be of interest to study the detonation of experimental high explosives whose reaction products differ materially from those formed from conventional service explosives. Efforts to prepare explosives for which the mean molecular weight of the detonation products is substantially different from that of, say, TNT have led to attempts to prepare hydrogen-free explosives. With the purpose of keeping the molecular weights to be averaged as nearly alike as possible, a series of explosives with a part of all of the hydrogen replaced by halogen are being prepared by the Organic Chemistry Section. Preliminary work on the preparation of halogen derivatives of 2,2-dinitropropane is reported here.

II. Photochemical Chlorination of 2,2-Dinitropropane

2. Very little work appears in the literature on the halogenation of nitroaliphatic compounds in which the attack is on a carbon not attached to a nitro group. Riley and McBes (reference a.) studied the photochemical chlorination of mononitroaliphatic compound and were able to prepare mono-chloronitro derivatives in which the chlorine atom appeared in the 1 and 2 position with respect to the nitro group.
3. The photochemical chlorination of 2,2-dinitropropane was studied under a variety of conditions. Under the conditions (described below) in which the most chlorination was observed the rate of chlorination was impractically slow. After 170 hours of chlorination only an equivalent of 1/2 atom of chlorine was introduced. Fractionation of this material resulted in the recovery of 1/2 percent of unreacted 2,2-dinitropropane and about 20 percent of 1-chloro-2,2-dinitropropane. A small fraction of material was obtained which, on analysis for chlorine, was probably a tri- or tetrachloro derivative. Nitrogen analyses however showed that only half the required chlorine remained indicating that during this prolonged chlorination at least one of the nitro groups suffered replacement.

4. The conditions under which the above described products were obtained involved heating under reflux a solution of 2,2-dinitropropane in about 4 volumes of dry carbon tetrachloride in a round-bottom flask illuminated by two sealed-beam auto spot lights (60-400A each). The chlorine was introduced into the flask through a fritted glass filter stick after preliminary drying with concentrated sulfuric acid.

5. As the chlorination of 2,2-dinitropropane proved to be so slow and another section was having difficulty in causing the explosion of 2,2-dinitropropane itself to propagate (see reference b.), this approach was dropped.

III. Preparation of Related Derivatives of 2,2-Dinitropropane.

6. Concurrent with the chlorination of 2,2-dinitropropane the preparation of 1-chloro-2,2-dinitropropane (III) and 1,3-dichloro-2,2-dinitropropane (VI) by way of the corresponding alcohol was undertaken. 1-Chloro-2,2-dinitropropane (III) and, at the time of writing, the intermediate glycol, 2,2-dinitropropanediol-1,3(V), needed for the preparation of (VI) have been prepared.

(A) 1-Chloro-2,2-dinitropropane (III).

7. 1-Chloro-2,2-dinitropropane (III) was prepared by the action of phosphorus pentachloride on 2,2-dinitropropanol (II), which is readily obtainable from 1,1-dinitroethane and formaldehyde. The action of phosphorus pentachloride on 2,2-dinitropropanol (II) results in the formation of the desired chloro compound (III) in about 30-35 percent of the theoretical yield, accompanied by 15-20 percent of the theoretical yield of the phosphate ester of 2,2-dinitropropanol (IV).

8. The conditions under which these compounds were prepared were as follows:

(a) 1,1-Dinitroethane (I) was prepared as described in reference c.

(b) 2,2-Dinitropropanol (II) was prepared by heating under reflux a solution of 1,1-dinitroethane (I) in 1-1.5 molecular equivalents of 36 percent aqueous formaldehyde for 3-6 hours. The dinitropropanol was extracted from the cooled solution with ether and fractionated by distillation under reduced pressure. A fraction boiling at 76-80°C at 2 mm. was obtained. Nitrogen analyses were correct for 2,2-dinitropropanol (II). The yield, nearly quantitative, was unaffected by the presence of dilute sulfuric acid. 2,2-
Dinitropropanol (II) melts at 79-81°C, is waxy in appearance and seems to be quite hygroscopic. It was previously prepared under an OSRD contract (reference 2).

\[\text{NO}_2 \]

\[\text{CH}_3\text{CH(NO}_2)_2 + \text{HCO} \rightarrow \text{CH}_3\text{O} - \text{CH}_2\text{CH} \]

\[\text{NO}_2 \]

(I) (II)

9. The chlorination of 2,2-dinitropropanol was accomplished by carefully mixing the alcohol with 1.5-2 molecular equivalent of phosphorus pentachloride with cooling. After the addition was complete the reaction mixture was allowed to warm to 40-50°C. spontaneously or if necessary it was heated to about 50°C. for about 1/2 hour. The solution was poured into ice water and the 1-chloro-2,2-dinitropropane (III) extracted with ether, dried over calcium chloride and fractionated by distillation under reduced pressure. 1-Chloro-2,2-dinitropropane boils at 75-77°C. at 5 mm.; it is waxy in appearance.

10. The analytical data obtained from Oakvold Laboratories on a sample of this compound are:

<table>
<thead>
<tr>
<th>Found</th>
<th>Calc'd for III</th>
</tr>
</thead>
<tbody>
<tr>
<td>% C</td>
<td>21.35, 21.57</td>
</tr>
<tr>
<td>% H</td>
<td>2.86, 2.93</td>
</tr>
<tr>
<td>% N</td>
<td>14.33, 14.42</td>
</tr>
<tr>
<td>% Cl</td>
<td>21.36, 21.27</td>
</tr>
</tbody>
</table>

11. After ether extraction of the 1-chloro-2,2-dinitropropane (III) as described above, an ether - water insoluble crystalline material melted, after crystallization from chloroform, at 135°C. Its elementary analyses are in agreement with the phosphor salts IV.

<table>
<thead>
<tr>
<th>Found</th>
<th>Calc'd for IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>% C</td>
<td>21.90, 21.93</td>
</tr>
<tr>
<td>% H</td>
<td>3.24, 2.86</td>
</tr>
<tr>
<td>% N</td>
<td>17.30, 16.90</td>
</tr>
<tr>
<td>% P</td>
<td>5.12, 6.15</td>
</tr>
</tbody>
</table>

- The low nitrogen is in poor agreement with the calculated. However, this seems to be typical of many nitrogen determinations of these polynitroaliphatic compounds.
(B) 1,3-Dichloro-2,2-dinitropropane.

12. At the time of writing 2,2-dinitropropandiol-1,3 has been prepared by the action of formaldehyde on dinitromethane. Its reaction with phosphorus pentachloride is in process of being studied and will be reported upon in a subsequent NOIM.

IV. Acknowledgment:

13. The writer wishes to acknowledge the experimental work in this study above by Mr. Dean W. Jensen and Mr. Francis Taylor, Jr.

L. W. Kissinger

LMK: akm