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vol, 7, Chapter 5, Berlin, 1627,

(e) I. P, Segal, A pothod for computeticn of tho rressure
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The suthors wish to thenk Dr, Yax Y. ¥unk for sever:)
vary 13lwrdusting conversations.

tho orcinnry notation of tensor analysis, e. g.,
t t,mso" Tieid of rank 5, contravariant of raax 2,

covarignt of rank 3, ali indices runring indspendent-
1y fron 1 to 3,
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hg s %‘j, Aij; A"j nixed, covariant, and contravarlent coo
‘ ) ponants of the same tersor “leld,
Lttty + covarlent derivative of A It: with respect to %k,
*ewsg) B o6 i
e8P 1 sse 5.
I ¢ contravariant derivative of & ~~ = with respect to x7.
fh b Cirilstoffel symvols of the secand kind
Lof 3

0 if any two superscripis or any twe subscripis
ere 2qual or if the £y ere not the same mrhers

o a . as the by;
"1 2 i

3 1f b, bz e mey be ohtained frem e, 85 .. 8
Dy byl. by by efl eVea pePmutation; ;

it
e

it bl b2 oa hk ray be cbtained from 8y 85 .. 8

.

We employ a2iso the speclal notations of Murnaghen (ref, a), which are
explained in section IX. Tn poarticoniar, indices written %o the right danole
Fulsrizn tensor components, aivile indices writtgn tov the 1af% denole
Lagrangian tensor components, For example, ,,o” denctes the covuriart
derivative with reanset to t?e Isgranziasn cobrdlinate da  of the Dulerisn
conteavarient voctor ficld a7,

I, Iatroductica

4 nemtonian contimu we sh2ll define ss a flnlite or Infinite closed re-
gicr of Zuclidear thwase dirensiomal sonco, at aach point of which, with the
po3sinla excepticn of lucietsd szts of poinie of dinenpicn leas than three.
thars axiat the following -rimitive characterisvic functiong:

e

density g
strass tensor Tij 3
intarpal energy por unit mea: e
spzcific entropy 83
heat-flou voctor ng
end whozs topological tranaformation in tiws in%o a finite nucber of othor

clossd reglons Lo goveriwd by the principles of coucervation of mass. momene
tum, ard energy,
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L pwoes s are;, L) 1o stale the tirce fuvaercninl peinelplss in
4 -~ 2~ . a .
thacir rost 'E",'..éiai"'%l forny  (B) to fon.ulate the sgvations govaraing paefuetly
elastd: bodiasy G} o forrulabs e squations governiny viz.ous flulds,

Gur tresateront 1s nob rost-leted o tomogsneous or lsobtropie fr:udies, noy arg
w3 ceresraaed itk the lipHar apprexizetions em;‘smﬁ in the clagsical theorice.
In our troate:os of pecilestly elastic eolids w2 follow iwrangian {ref a),
shnss potablon g.du;,,u*. g:s-.nn%lmxrg his reoulte so0 thet the: J.}‘[Mj te
nonhosogesacus 1nd non-uriformiy hetted bodies., Troa our pf"u b of view o dis-
twi uinnlpg cnacecteristie of hurnaghan's werk iz shel he dedines an elasti:
olid nev by cny pacticndar stiserestraln reletions, iiuear o otherwise, b1t
by qpc‘cuj,ipg tant the froe energy Sunebien must daverd oanly upon vhe gradizats
of the delorpitlon and thut the temperature he consiant duris i the deforrationg
e Shve ivee padhematicel oxpeesslen o cur intnitive concept of nerfect
el~shleity, Jhe clasriesl J.in say looke's law then sppesrs in his theory as .«
first-order eorpovimatics, The noda chject of the p:»*er.ut parer i3 to prezoot
g siwllar forasiation of bhe theery of Vl“cn.*.‘- '%.u.iisg Yie peok a rathome i
oat FTars ﬂ?f‘: for the intulilvye zoncept of 2 fuld andé ure lsd to soecliiy
whe manner e o¥ish the dlssipaiion fmxc‘tion aty Gepend upon the volocity ria
dleats, vllﬂ messure a2vrd the temparature; he ciaasiead linear Ssvier.
"ﬁmz 83 inw anpsors v o theory as o Sivst-osdar appredipation, Our gane: o
“ion funcllion, iF broken off efser the cable terms, desomes identilernd
Mrineous® porvinn of the dilsipatlen funetion for siip flow eelau-

¥ih &
lzted by heusiy {quoted fn val, b, p, 65%) from <he Xipetic theory of gascs

7y - .- 8
Let ‘a ma tre initded or lagre ug;:.anrcoc»r: ~tes of a poipt in an eroi-
wriry fuclidoan covrdinete syotem; snd x° the f‘i,n.l ur Fulszian coordimato:

o) the game wolnh.  Tie motdon  of <te meterisi con t* g is expresset s
':,ma-g nee o f;.pclv:‘gaﬂ' transTormetiong, ¥ v i (* By 0, 8, L),

oo e e? ), where b e bthe time. & moving point, identificd
oy Alea ; s T, 71l often T salled e garid clg. The o

Driecian strain horsors 71'[ 537G er ore ds

0 =
T ey
PR T ;

Al 3 i . ar /% ) }
{ e g & g2 o8 ens e S e 5
{ S = sz, j W~ g Ler s - A '{_' ;
ol o ¥ e ax" g £
- . T A £ X .-»( L Vel
{:{*""/ -":".“,} . EP) & -
weze 100g) Ge the suwred clewent of ave leugra at « specified ivitial - v
Lo.osat (30) L= thae at tire €,
Ty overpasente of the yulocloy wector V& oare piven by the deiindtion
s = -—.‘?’I— )’ : ¥ 5l
g = ) WY 4
“5 - /‘ e 3o
o ADIE TG wy: GOLR O sAT




vhere subseript, variables tre held constant in the rartial differentiatism,
and the components of the tccalerntion veetor Al ire givea by the definitior

The materis) Lderdvatdve J£/8r of & function of the Eulerian variabies is
given by the definiiion

F_IaL o
<L ..ﬁm. o f,( Voo (5)

-

&t = ) :!‘ZL‘;(; b e o
Then

“ _é_g.{f , ";:-. M : | {6)
V = il 4 ’4 é‘z‘

e ghall taeltly assume that the velocity end ths acceleration, as wel:
28 warions other funeticns leier to be defined with the aid of dift‘erentintim,
exist and ars conbinuous functions of space and {ime sxcspt possibly on certei;
singular surfaces » lnee, er peints, The various differential equations which
we shall deduce are not to de cipected 4o rerain valid op neaningful at thegs
excepiional locationg » Whars thoy mist bs replaced by suitable irit or trang-
fer conditions,

“he components of the deforration Tate tensor ¢ ij are glven by the
definition

= ..i. 7, \',{ \ ) \
l‘.n‘:: P A (%J "IL' \'J."' } {7)
urnaghen (ref, %, P.243) has shown that
i = /.« xi/ (8)
2wy ey P, p - o o »
R g et ),

it teing supnosed that ¢hs “ulerian ccordinate systam jo not I motion relatic-
to the cbesrver, 1n the lizeoy thanries of plesticity (e.g. zaf, J) it ig
custorary to aporoximate fho eerponento of the gtraiserate Yoraor J€; 4

by the componeris of the defornmetion rate tensor “1js Pul in any exaet cone
sldoretion the tko seta of tersor couponente must be distinguisned, a
fecenzary and suficient condition thei a given displacoment be rigid is

Elj =0 . (9)

If & body be moved rigidiy Juring a £i+ize interva) of timo, ths coaditicn
{9) %111 be satis’led ani honee s1go

LA {10)
dz
UNCLASSIFIED 5w NOLi 9223
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throughout the intervel, It is poasibls, howaver, that a body may be in
rigid motion at & glven instant, although at isstants befere and after it is

- deformed, The eriterion for instantaneously rigld metion cannot he ihe
equazion (10), since the components of the strainerats tensor ere by equa-
tion (8) functions of the componsnts of the sirain tensor, which are computed
with respeat to & fixed initial configuration whieh ean in no wey influence
the kinsmatics of the presont instant, A pecessary and sufficlent cordition

for i?etantaneously rigid motlon is given by the equations of Killing (ref., 1.

P.w :

€ =9. {11)
The components of th: deformation-rate teonsor are in fact the time rates ol .

changs of the corpomsats of the strain tensor when the referonce configure-
tion with respect to which the components of the gtrain tensor are compuied

is ths infinitesimally yreceding ons; that is, 1f & ¢y (tp,t;) are the com-
gonenis of the strain tensor compui ad at the tine ty 1 th "'espect to the con~
figuration st time tl, then
Lu— €y ({af‘iﬁ '(-L.z.)"‘ ﬁii(f},_,fl;) 12)
tro 2
wnile
Sei (), Eltratt)-eilt i) (12)
4t fiwo A

The lew of force of a perfectly elastic body, which respordis only to its de-
formetion from a preferred initisl stete, we shall thus expect to employ the
corponents of the strain Senser £ 45, The law of foree of a tyye of plastic
body vhich respords bolth %o & prefefred initisl state and to the rate at
which it 1s being deformad from thet stote we shall supect to employ both the
corrpnnent.; of the strain tensor '(.. and the comporents of the strain rate
gansor 4 ¢& Ezjs 3‘2’ » The law of force gor a fluld, which exhibits no response
shatevor to any preferred state tut resists be,.ng instanteneously deformed,
we shell expact to employ ouly the componsnts of ithe defornationerate “ensor

£
ITI, Conservation of Mass

Several diffeorent mathemstical erpresslonn of the prinedple of congeria-
tion of mags arc nesd in tha mezhanics of contimma (ref, a, pp. 2£4=246;
ref, &, pp, 142-158}; of thzge ve shall reguaire two:

P EONT-TLHF T, e
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in these expressions 2 is the present denalty; 7, the density at time %3
: 5y, I, %3 respactivaly J:«e sum ¢f the one-, two- and thn=a-r:med princinal
m nora of the strain mat:-ix corputed with respect ta tire t,:

Lzex, Exdl eXef , Lzl (26)

IV, Congervation of Momentur

Lot TH be the components of the giregs temser ard Fi the components of
external force per uait volume, Thea in the absence of an externul noment
fieldé the prineiple of conservation of momentur states that (ref., a, pp,24be

n]"é)
TV=T (17)
fot . < )
7 ,«+F "'/D"? . {18)

Let 7be any scalsr function of the Fulerian cvordinates and the time,
Components Wii of & fluid a%ress tensor are given by the definition
'r";l— o
W, = '7'({ J ” ( 9(
The equations (17) and (.2) now tecome

Vt/"l-:?- M/}a’.l (20)

7 X = 5 o 7. (21"
V/&. T+ ,./)rh ‘ ’

4

Theae reaults are independent of what purticuiasr function v 1s used in squa- g
tion (19), e shall asee later that it is usnally convenient to let 77 be the :
thezpodynamic pressure s to be defined presently, although sometimes it j -
is the gtross pressure g:‘.v'en by the definiticn

‘b = —2;"’7": . (22)
V. Copservation of Fuergy. JIhermodynemics.

di
o
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oy

e

cvprtei-ent 1ol A

gpergy of the {iald of boly force egeinst which the particle does work, uot
as onergy of the verticle ‘tmlx,, Thuu tha tohel sporgy of & finlte volowe
of the continuun is the intepral of ofc v‘“‘/‘)uvw the volume, Then vhe
orinciple of cwnmrvntlun of 60T LY ptates thet Zbe rete ti which euergy is
lest by an arbiteary fLmt' wolums ol ths gontimmunm i3 equal to the rate at
whick vork is dewne apainst body forees plug the pate ot whiel the stress ten-

sor does asrk vpon the aen"zd&r;y asurfues plus the rate et which hoat energy
flows cut across the boundary suriecs:

e “*M“""jﬁ T4 f/-f A8y, (20
Y ]

5

i ¥ =
whero §7 are the ecrpomaute of trs heab-Tiow veetor per umt arua, measured
in mochanieal vnits, In protlams of simple comducticn,

R £ {0z
(P8 =K S, . {(24)

&

vhere T is the temperature and %  the coeflicient of heat coaduch

ueklvity, buy
wo ehall nod use this assumption, letiing Ky de suffieclantly gewrsl to ine

clnde heal Uessas by redlaticon, ete, 11 we f*m;.hy the divergence theursm to
the sarfzee intarrals in forgals (23), yorform the diffsrantiation om the
laZt, and souate the invegrand in the r.'fmla.,;nv volunre Integrl to zero,; we
obtain th: lorriia of fckeret und of Huznl {xef. 43 ref. 9, p. 5):

,-{ X = =2 ot v..’ &y A
’/;‘-;{.g _,L/Q ’f”‘,q’: -~ .L E,';} ot 7 ¢ %/’. e J.""'Jfa :L;’;"*/\ o }i’.‘l en o (2‘5)

i

Siemlifying this eyueticr with the 2id of the dymamlieal equellons {z7) ard
(1¥) w2 find that

fal
o T
=l

- , =< (26)
s E ,;' gl ,!?’ uh

L

This .2 ths r-.-e-::}uanic:nl form of Lie prineiple of sunsgsrvetion of erergy. An
equivelunt forumla has Yaor given by sargules, Lemb, and Steuwart irefl, b,
p.64F: refy 1, p.159),

s now sketea the postn atlon sevsdsuection of s henowenologic:l theory
of ticrzodyvamize which, whils loes diraectly motivaisd physicelly, we prefer
beeanse of i3 mathematienl sinviicity 2and °-1m'15. to e wore conventional
expetitions soploying differanticd i{neracents ard pory lmwedielsly familier

printiive concepts, 5

The thermolyleric Fri ineiple of consarvetlor of saergy is an indopindant
postulele stating that she inilernel enerzy ¢f o glven partiele wmy bo core
siderel at 81l tiwer o function of its d:m&\iu} endt uonea privitive ‘!"'\1&1"
fanction of the *a exl 4 hien wo saigll wall e opogifie enbrovg.

URGLASSIFIEG -fhe NOLW 9223




7((6/5,./0, D’(,) IB(-?)I.”)E(R}):OJ . (27)
vhere tha ters B(q),3 2;....,8 (1) are given functions of the lagrangian
variibles only. Theae p&r meters wére lntroduced apparently by V., 3jerknes

(ref, £, pp. 81»83) to represent continuous inhomogensity, such as e distri-
bution of salinity in witer or humidity in aiy, A discontinucus inhomogeno-
ity, such as surfsce of separation between water and mercury, is not repreasent-
ed by Bjerknes's parameters, but appeirs in the mathematical treatment cs a
surface of discortimuity across which the differential equaticis are replaced
by suitable transfer econditions, The equation {27) is called the galoric
equation of state; specifiying the form of the Munction specifies the physi-
cal vature of the contimwmun, If the perameters B 1%,3 2)?eessBry) do DOt
ectvally oceur in the equation (27), the contimwm ie éo&oggneoﬁa;

The eguatior (27) f{s forwulsted on the lagrengian plan, To obtain a cor-
responding Fulerien equation of state, we differentiate ths equation (27) k-
times with respsct %o tine (ref. f, p,82), and then eliminate the parameters
B(i) from the resuliirg k + 1 equetions, obtaining an end formuls of the typs

J‘:’. gk .;'tf, &~/ . & ” _ (28)
géﬁ’?ﬁ; %{21%{5/ 1§t ""le)—o'

Thus the Euleriaen %ﬂuation of gtate is not a secalar equation but & differen-

tisl equatior of k‘mﬁ order,

st the spacific wolure dbe 3

vz ﬁ—- h {29)

The tempersture T and the thermodymamic pressure P are two new ctate
variablas given respectively by the definitions

)
= (%’#5- ) (30)
c€ v, 6., 20, Y

/
7#
P (s |
T T\oY Je, e, e, ! (31)

The theracdynanic pressvrs g does pot nzcessarily have any ennnection whate-
aver with the shrase ressv m(J given by the definition (22), We shall
herenforth supposs that o a s arae always funoctionally relatsd, so thet
the definition (30) is slways meaningful,

e, C be a given curve in the o,v,la,za,:*a space, whoss poluis are
pararotrized with the parameter ) ., If me difforentiate the ejuation of
atats [27) elonz C and exploy the definitions (30)and (31) of pressure ard
texpirature we find that

ONCL:.SE IFIED -G FOLE 9223
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if me reatrdet ocur atteation to curves o along which ,a.( ‘CZ., x '
that is, to curves represcnting changes underscine by a glven mrtic’le, we re-
duce the equation 32; to tha simpler form

e E :,;__,(/a(g) B ’%/ . (33)
) AR el v YR & b ) S

In other words, the! ox fla '
’ s, B by

¢ 4 dz , B ¥ (34)

o e 2 -
i F 5L T F

is valid ir sny continraw, homozeneous or nob. Henes

a3 .. AR 9
7" (é éz (35)
Tre oguation (15) 1a the usuel post ilated form of the firet liw of therno~
dywailes, which we here regerd instead as @ corseguenes of the postulated
exisSence ¢ a ealarde equation of siate (27) end the definiticno (30) and
(31;. It is this mlation videh justifies physicully our use of the words
Maieratuze™ end ¢ m‘evs&. ro¥ for the guantities 7 and E& as given by the
fermnl definitions (90} ard {31).

In the s—wolal caes vhem the coatinoum is hozogsneous tha eqration {20)
nesmen

&E o f.. — I --»-1{ {36

cfd:&' ' -( ' / ‘{" j "
whsro vow the differsntianiion 1g along an srblivaery curve § in the g,s,v
spree, This gietorent 1z auch stronger than tert emdbodisd in equation \:‘5);
since Hhe chanzea lneledad are nc’h geroly those suffered by e glven particls,
but way involve pregage te & meighboring prrilels, Tortumatcely we shill not
pecd S0 uge equation (28] o au, so thal, e developmenta will be valic for
inhoroganecus modie., :

ot ug now substitate the definmition (19) of the ienzor compoaents pli
ard whe therrodyamde cnesrgy eqassion (35) into the sechoalesl erergy egua-
tion “t).O}

-

é‘a /* b /'i hogli 77'{/3‘ + } '1"’ "7’ ;j )
22 e - IR P - : 5T (37\
ik V405 ¥ )
whero the d;sm.,gg,_up___n fuaction %\' is given by the definition
URC A33IFTED -10- RCLM 9223
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‘é' s M, = ~ {38)
L ~x T
fith the 2id of the equation of contimuity (15) the oguation (37) bacomes

rds _f x «
ﬁfg"; *(P-F/‘ Vn( '/55'* H e v (29)
In the deTinition {19) of the components W%j of the fluld strezs tenser the

scalar function T was left arbitrary, Let*us now dofine it to be the therme-
drnanic pressure P » ‘Then the energy equation (39) becomes simply

/97};%;‘- ".‘.g -!-ﬂajd ’ (40}

Tre equation (0} cdmits e simple physlcal interpretation: the rate at which
heat is zecusulated by o psriicle squals the rate at which work is being done
by ths stress in deforming the contimum at the present locatior of the
particie plus tha vate 2t which hoat is being added %o tho pariticle,

The free energy @ ie e thermodymemic varisbie given by the definiticn
gee- 27 (41)

Ir terus of @ tha energy eywation {26) beoomesn

3 3E s I6isl o~ (42}
Y A3 oy B 5 3 :
e A R

The loft side is the rate of incresse of mecharionl onergy of a given pzrticls,
while the riphi =ide 13 the roto at which heet is deing taken away from that
pariicis. To deduee the ejuatlon (42) we have nobt used the first law of
thermodyrsaice (27) or the concopts of entropy and temperatura, The equsiicn
{42) in fact 18 a pere restutevont of the mechanical energy equation {(26),
Aividirg tue intsrral energy into ¢ “mechanical psrt?, which wo may esll €,
and a "e¢sjoric purt,® which we ray eall sT, It is only in the applicstion

of tha equatdon [4%) es in pert IX, that we use the meaning of s and T to
gulde up in selecting proper postulates for sweeiel models of contimua,

A contiavur ic sald to be lncomimessible if the density of esch particle
eucing constent:

e

. - \
‘53 ; !
rﬁ .’-/_..;'l {Z),/, ) Zj‘{ﬂ )J O E gl /J/{/q:' } . (‘&3)
The enloric eauadion of shate of such = conbinnun 343 then of the forn
-/, o = td, —.‘1 \ A
C{e.o, Bey, By, -, By jzo (i)
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The thermedynant e prensure given by definition (1) is slways zero, and all
the thermedynnnie squaticns we havs derived so fay remain corrcet for Ineom-
pressible continus ip fﬁ 1z put equal to zero. Since the contimity equa-
tion (i5) becomes ’

%
V.. =0, (45)

the general enorgy equation (39) assumes the foprm (40} irdependently of the
choise of ;7.  Thug ir ths theory of incompressible eontime the function
7" in the definitior (1) may remain undefined, We shell see at the end
of Part XTI that in the clagsical linpap theory of viseoys incorpressivle
fluids the force lew requires 7~ 4o be the stress pressure /&" . -

VI. Seeond Lawn of ‘Ihermodmxgics,

One form of the second 1aw of thermodynsmics states that in en adiabatic
process, the entropy Goss not decrease (ref, I » P.52). Applying this
postulate to a single partiele we conclude from the enorgy equation (40)that

P20 (46)
ir
Hoe = (47)

For continuovs madig in which the diosipation function _@' is indepunient of
H%, the inequality (£8) muoi be valid without sxceptién, 2 consequencs of
the inequality (46) ang ths enorzy equation (40) 38 .

f/,.a‘/“;_ég- £r-2 jS/H“dS,( ; (48)
% -

Ry
that i, heat orarey s abserbed (with a consequent sniropy issrease but with-
OU% an accomps ving mechapicsl effset) by the rarticles interior to any closud
surfess S gt o »ate at ieast equal to that at ®hich heat epep flowz into
S frov the Strrourdlngs. Thus media iy whiech the inequality {46) holds
withmt restrietion cannot serve as heat enginse, for they canmiot convert
Lhermel energy dnte Bechanicel energy, It follows that (46) 1s not g genera’
statouent of the scoond law of thermodynamics for contimous media; g1 holda
only sehjest te she restrintion (47),

YI1. Gsperal Nea!tng;angggyﬁcg of Contirua,

e have stated qli the Jrineiplas which govern tho behsvior of an arpi.
Lrary Mewtonian continuum, Ve have thus obtained nine scalsr squsiiong and
ore inequality,

Conservation of g

$& L (
..,3_45_/._.6 -+ | =0 . 49)
AF gl
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Cotnservation of Youenbtur:
Yty el (50)
ol -k _ < |
T F = 0A (51)
Conservation o epergy:

(52)

e - or
a4 ‘;“'“ﬁgdfg+ﬂlﬁ .

Y

X i g Iy A Rt
F £ ) f{iﬁ, %’?‘5 o, ftﬁ,e,s,/?) =g, P

7

Second Jaw of Tharmedymamics: )
Fzo. (54)

4211 the above ngustions ars written on the Fulerlan plan,, They form 2 systen
of 2 equations 1a 18 independent variebles © , e,s, vi,pt B, 1f a8 in
serc olectropapraetic phsnomena the force field deponds uporn other filelde
wkich are in tawa influenced by the motion of the comtinvmm, the number of
dependent variables is increased, W%e assume hers that the components of the
externsl field F! sre given functions of space snd time, Then to obtain a
deteiminate syston we must edd 9 more equations.

Fo furtker phaysiesl yrinciples are avellable, 30 we must conclude that
ke notlon of o JYewbounlan eonfimuue is in general indeterminste, Whils o
chosen specific Porm for ihe function f in the equetion of state (53) may
well indicste ceriein fondamental vhysieal characteristles of the continuum,
it cimmot completely summerisze the mseroscoplo properties resulting from
cheninel ctnpositicn arnd toe atate of npgprepation of the elementary particles,
In order to cbtein a dslerminate gystem of ejqueticas without raesort to a firs
structury of theory we zensralize our exyerience with nmmerovs physieal
bedies and conetuch, within “he {ramework of the mochanics of contipua out-
lined ge fer, varicus phesovenclogical models, ideal cortinua which embody
atsiractiors of shs bokhavior of classes of actual bodies, The simplest of
those rodels ars the glastic noljd and the yiscous fiuid, which we ghall
discuss presently,  In defining a model it i customiry to poatulate oxpiesw
sions for T1J upd B 4n Zerme of other variablee, H> will depond upon the
tompereture T, walch &1 rot cceur in the ecustioms {49) %o (53), so it will
to nzcassary to udd the definition (30). We my in fact elininate s fros
the calerls esvaticn of state {27) with the aid of the definition (30), then
elininnte the Gjarknes warametors as tofcore, ard thus deduce an equation of
the foum

£l S T e 4T s (55)
L(érw y .'S‘?“T, SZ(,&‘ J?g,}.tJ e, g,t ie‘/JT =0, .
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which wo may enpioy in plage of the equation of state (53), Tho specification
of the stress tensor must satisfy %he symetry relations (50) and the inequa-
11ty (54). We may now eliminete T3J and HL from the equations (49) (51) (52)
and (55), which becomes & aystem of six equations in the six dependent
variables Pr e, vi,

¥III. The Classical Linear Theories,

The slassiesl theory of elastieity is based upon & poatulated }inear
relation betwoon stress end strain:

_..f = LAO( > 13 (56)

vhere the Ci{ ave constente of the msteriel s while the clasaical theory of
viscous flulds is based upon & postulated linear relation betwsen viscous
gtress and delorpation rate;

Vet et 0]
W’J = JP B Ty
wiera the m are constants of the fluld. There is a complete formal ana-
logy between ths two theories when the theory of slasticity is siwplified by
tho further assumptions of small displecements, so thet the Eulerisn and
Lagrangian deseription of the deformation approximately cotlesce, ond the |
furthor essumption of gmall displacsment gradlents (or equivalently, small
strain), so that the strain compomenis mey be approximated by linear expres-
sions in the displacement gradients. Then inm roctangular Cartesian coordi-
nates the slrose-strain reiations for iszotropic ma erials bocons

Tix 2 (A +20) f—,% + A "‘QV ) (56)

av
"z’ ‘/‘*‘ & "A' i
waers u,v,w, ere thu compononts ri‘ gl splecement and X and A the glaghic
gﬂmchs of Lan3, In the zlassical theory of isotropic viscous fiuids
the visoous-stress-deforration rate relations in rectangnler Cartesian
{Ivlorisn plan) coordinstas are |

4
V\lﬂ((,a —(/\4" &Vw “““)‘( ; +QSZ‘,U (59)

\’Vyu ... (GHJ' . f.%‘\

VAR
whers 1or Vy,Vy. Vs are t}m mpoveats of the voloeity vector and A amd 4«
are the con.aFt‘ clonty_of vingosity. In contrast to ths approximate equatiors
(56), the ocustions (59) Tequice no goometric or kineiatic approxizations,

The clsaricel eppreach to special models of continua bas been strongly
irflaenced by tic desire to obtein a finel formvlation consisting of simple
differardiel equations which ia cimpls special applicetions - 5 be solved
gxplicitly in torms of simple nod fowmilisr speciel functions, The avalle-
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bility of high-speed computing mechinee and of sppropriate dechnigues of
nrumerical Integration suggests that the modern appromch should emphusize
correciness end gererality rathor than formsl simplicity. Fostulated rela-
tlons of the form (58) and (60) obscure the conceptunl basis of the theories
of elastieity anl {1luid meshanics, because they obtrude their iimsarity and
simpliclty, In this paper we shall seek & more physical spproach to the
classical continuup theories by probing and elarifying the intuitive physi-
cal concepts of alastisity end fluidity and then glving them mathematical
form, We shall ces that the relations (58) and {59) then appear, ae their
linearity suggests, as first-order approximetions in physienlly meaningful
and inclusive general theorles,

IX, TIhermally Siwple Bodiss,

A continuum in which heat energy is not converted into mscheniocal
ensrgy and mechanicel encrgy is mot converted into heat energy will be called

thermally simple. The conservation of heat euergy 1s expressed by postulate
1ng the equation

CfT
P ?L’ +H = (60)

It then follows from the energy equation (42) that
{ 61

In proﬂleme of simpls hent conduction, defined by the relstion (24), the
heat equation (60) becomes |

P LT - (T ) “’2)

Cnly in spaaisl cases, 6.2., the motion of a perfectly elastic body whose
elantic eoefficisnts ave rot functions of T or 8, can the motion of a
theymally simple body be dotermined without the aid of equation (62), When
the motion is known, ,f“ is known, and then the equation (62) end the equa-
tion of state

4 A &S- 4’7— i{'bl ,7,_
3‘(52' )62{,‘ é\(:k)d?uw o2 /'3, T) o

form A gystem of tro equaticpe from which the two dopendent verliables s and
T rouy be computed, In problema of heat corduction without motlon the system
becorus simply

030 = T ) (54)

(63)
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The siuplest possible c2sze is that of a homogeneous body subject only
to reversible heat flow, Then

5=85 - (66)
ghe equation (65) now becomes the ordinary equation of the corduction of
eat:

‘7“‘ ...__/ - A &7

=7 (1) -

Spacifying 0 23 & function of the %! ond ¥ as 1 function of the X! amd
T then renders the equatien {67) a single 4iff ..c.:ial equation in 2 sipgle
depardient variable T,

X. Perfoetly Elastic Solids,

Eany act:al bodies bshave In & moenner ealled "perfectly elastio? when
thoy are sublzeted to sufficiently small loads. The body offers no internal
renistance to rigld body motions, The strain produced by & given load is
independent o7 the rate at which the load is applied, and whan the load is
romoved, ihe hody relturns to its initisl eonfiguration, Ro ratter how macy
times loaded and unloaded; 1ts response to the same lecad &= always the sewe.
In shert, an olastic body reaponds to its present strain from itz preferred
initlal state but oxhibits no response whatever to its rate of deformation
or tc its pas’ states of strain, Often not stated explicitly but eassantial
t> the definitlon, is the requirement that during the deformation mechanical
and thermal onergy are not interconvartible,

#a shall now give a praclse matheratical fora to this scwewhat vague
cornespt of a3 j@rfoctly elastic body. The emergy requiremont demands that
e perfectly elastic body be theruelly simpls, so we have equations (€0) and
(51}, The recuirement that the body respond only to its strainm from a pro-
ferred initial ctaie demanda tha the free emsrgy # dopend only upon ths
thermodynemic stata, the comporents *a, 4 of the gradients of the deforma-
tion, the conmporents si;c amd g4y of 'ngo Lagrangian and Eulorian wetric
tensors respactively, gnd the inflomogeneity parameters B{i)’

#2800 9,0, e B, By, Bry)

The oceurrence of ﬁ gives o comnlete dependence upon the state, becsusc i
its2lf iz a state wariable and the introdustion of a second state veriadble
in the fumcticnzl torm (68) would necessarily rednce that relation to a
goneral squation of state rather than s defining assumption from elsstic

(63)

body, The terperature T would be s more natural reyresentative of the staix

than the densivy /," , but 1t is not apparent hes  the subsequent analysio
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could then be performed withont Murmaghants umnocessarily restrictive as-
punption that T 4s beld constant during the motion, ¥Ws sliall see that ve
mey exploy J row.yet by e suiteble device reintroduce T later, when the
analysis ié ecaplets,

Since the strain components €£;; are funetions of 813 and 19., j only, the
equation of ccntinuity (14) states that

/J‘..'/O %’g"‘j"a"j . (69)
The initial density A4, 1s a functlon of the Lagrangian variables ia only, so
it may be regarded as one of the parameters B(i), Then by replecing ,© by

its functional form (69) in the formula (68) we see that @ must have t
mnc‘bioml form

¢ =¢ &;Q' ?if.f "Qj,'B(') ) B(z)_,' ) -B(k) ) , (70)
Since @ is an Fulerian scalsr and the only scalar functions of the tensor
components ggy are mmerical functions, the form {70) muat reduce to
. . 71
The energy equation (61) implies that
%z% =0 when afl the Eq 0 . (72)

In the funmctional form (71) only tbe gradients la, § depend upon the time,

so that
§6 .24 S8, . (73)
§+ 3("‘21’,) S+

From this poirnt Murpaghan's analysis needs no modification in order to re-
re.in valid under our slightly more gemeral assumptions, By insertion of
the formla (73) into thc condition {72) we may show that (ref, &, pp.246-247)

$=4(iC.i%, Buy, By Buwy). (74)

Hence agein ueing the energy equation (61) wo may finally deducs (ref. &
pP.256-257, 247-249) the genoral Lagrangian stresa-strain relations:

. ,2 Z ; (75)
T iy bx Nax')
the general Euleria? straeo-s;_zin relations:
7-‘./ =2 LI
/03("'{/') (ah )( 2 ), (76)

whare
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Y3 5‘1«)( 7 >) {77)
and the stress-strain rslations for isotropic media:
T 25 (28 —2ci 24 (78)
d OE; TP
% ¢an be shown that the last formls is consistent with the symmetry re-

quirements (17) (ref, a, pp, 248-249), 1If in the isotropic csse the fumetion
f’o¢ is expanded in a powsr series in the invariants (16),

PYTW =" SEVS ) o 200 3 A% ST

where the coefi'lcientso ,,\{,:4,1, m, N,..., aTe functions of the Lagrangian
coordinates only, the stress-strain relstions (73) becoms (ref. a, pp. 250«

251) <
7% = [ (e M # (olm-A=t JI 3 (e 20 J5;

* - (80)
+[2(u-ot ) -(m4a) +ou-220L, Je = 4u €L &7
"'MI\? fj“k‘ 152 /
whore the tensor components 5’]“' are computed from the equations
oé A i (81)

\ & =

| J
In the formmla (80) we have written down only %erms up to and including those
of sacond order in the components £f , If we add the artificiaml reguirr -
ment that the inltial siress must venish, we find that «=z0 . Under the
hypothesss of swall strain and small displacement the general stress-strain
relations reducs to the classieal formulas (58), which now appears as a
firet-order approximation !n an exaet theory which corpletely embodies the
notion of psrfaoct 3lasticily.

Since @ 19 & state varisble there exists an equation of state of the

form
v (¢’T B{;), ‘?(2):' ) Bfk)) p (82)

The expression (68) becomss

I 7 \E)
P GiC.95:2 @7 81y, By, Bin) ai, 8, &),‘“1&)).

Sodving this ecuation for #f we find that
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$=804C.940.T, ‘@, By, By, -, Buy). &

Thus @ 15 a function of T, Since T does not occur in I,, I,, or I3 it
follows from the expansion (79) that in general the coefficiehts & A ) &
1,m,n are functions of temperature as well as of initial density A and
other inhomogeneities represented by the B g)c The depsndence of the coef-
ficients of slasticity upon the temperaturé Llnnot of itself desoribe thermo-
elastlic effects, which we have expressly excluded by the postulate that a
perfedtly elestiec body is thermally simple, The effect of non-uniform heat-
ing upon a body which cammot realize conversion of thermal into mechanical
encrzy is rather to introduce an elastic inhomogeneity, so that it is not
surprising that we were ablie to include these thermal effects in a develop-
ment valld for inhomogensous bodies,

By expressing the components of the tensor 74 4n terms of other
varisbles we 1ave added 6 of the 9 more equations which we found in part VII
to be necessary to secure & determinate set of equations for the motion of
a lewtonian continuum, If the coefficlents of elasticity are not functions
of T the equation of contimuity (14) and the dynamicai c~cuations (18) may
Re 5eg§rded &8s a ﬁy:ﬁemoof four equations in the four dependent varisbles

8,“a,"2, £ OF XXX, 0, according as Eulerian or Lagrangisn deserip-
tion is employed, The motion is then determined from purely mechanical
considerstions, and once it is known it may be substituted into the thermal
enorgy equation (80) if we wish to determine the temperature distribution
as well, provided we add the re 3 neocessary equations by specifying
the heat-flow field cowponents H* as functions of the other variables and
employ & suitable equation of state (63). If the coefficients of elasticity
depend on the temperature, however, the problem of determining the motion
cannot bs solved without incidentally determining the sccom texpera-
ture distribution, and all the differential equations (1,) (18) (60) (63)
gust be solved aimmltaneously, This diviasion of problems of elasticity
into two classes eccording as the motion does or does not depend upon the
thernel erergy equation correspomis axactly to Bjerknes's (ref, f,p. 84)
division of probleme of fluid mechanics into the classes of "pure hydrody-
vamice" and “physical hydrodynemics®,

II, Viscous Fluids

In a very rough way we conceive a viscous fiunid as a continum which
when at rost experiences a state of stress in which the normel components
in alli directions are equal and in which there are no shsaring components,
but which when s=ut Jected to change of shaps experiences "viscous stresses”,
The viscons ctresses ere independent of the history of the fluid, There
is no preferred initial stats to which the fluid tends to return if the
forces producirg the rotion be removed, It ie therefore impossible that the
viscous strosses be functions of the components of the strainerate tensor
(8), since ttese, in turn, depend upon the components of the strsin tensor,
In contrast to a perfectly elastic body, which responds only to its strain
from & preferred initial state independently of all its history between that
otate and its present one, a viscous fluid responds only to its mresent
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strain from the infinitesimally preceding state, in other words to its rate
of deformaticn, The rate of viscous dissipation of energy chould thersfors
be a function only of the components of the deformation rate tensor {7) and
possibly also of the thermodynamic state, and should vanish if the defornma-
tion rate couponents wvenish, We may put the preceding physical considera-
tlons into a preciss mathematical form thus:

élt é(é’j".a r.P.T, Buy, By, -s Bew), (853
yizo iF allte Efz0. (36)

The dissipation function § is not a state variable, so two state variaples
must occur in it in order that its dependence upon the thermodynamic state

be as general as possible, We have chosen the temperature T and the therro—
dynamic pressure 5) &s a matter of convenience., As we stated earlier, the
function 77 in the definition (19) of the tensor components Wid is to be taken
as the thermodynamic prsasure for compressible flulds, end for imcompress-
ible fluids left undelined, We have included the stress pressure O  in the
forz (85) so that even in the incompressible case, when £ = 0, some sori of
pressure will eppear in &

Viscosily was dlscussed by Mexwsll in terms of the following ideal ex-
periment, Let a viscous fluid be confined within & chamnel bounded by two
perallel infinlte walls, one of which iz moving relatively to the other with
a constant velocity, The fluid will edhere to the walls and the retarding
force will be proportiomsl to the relative welocity and to the area in eon-
tact, and Inversely proportional to the distance between the walls, That is,
there exists a modulus Aly such that

relntive veloelty of two walle
distance between walls

Foree on wall = 3, {ares in coatact).(£7)

e shall not employ the relation (87) us an actusl algebraic formuls, nor
shall we utillize the ideal exporimont just describved to assist us in ovr dei-
irition of a viscous fluid in any way excopt to postulaie:

There exists a material constent /4(,, of the dimensions

mass — r3e’
[/u‘ij s length time =

The postuletes (85) (86) end (88) we shall take as the defining postu-
lates of a viscous fluid,

Let é' be expanded in a power series:
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where the coefficients ara of the form

(.'[g"‘}ﬂ I'L,‘ i ‘{ 'M"

e’Qo)
a e \(

= 'm » g
C]: IrS “'j'h - J Jar ((" 4 (,U s /d',,_u et JFJP)T:%) Bﬁ) B(u\))
The postul=te (85) and the formula (38) then imply that

A : 2.0 - (1)

For the succesding dimension2l argument, let us suppose all formulas

taken in reclengalar Cartesizn coordinates, go that all tensor components
egsume their proper physical dimensicns, Then since

,:@} Eu{:j;g? {bine e ’ [fiﬂ = -_Fi%;.}“ d {92)

1t follows from formula (89) that

r REir) - T s (03)
Frou formnla (90)
&4 (P P.T, By, Buy, . B). (95)
Then by the postulate (8%)
,“5‘;:! =4 (bR, 8o, Buyy+s Bs), (95)

whers the funection 4 42 dimensionless. The paramoters By, we shall take
dimansionless, a3 if they are not dimenslonless thay wey bé &ivided by &
reforsnce quantity of tho ssme dimeasior, Than sinse the dimensionless
relation {95) comnects threo guantlities of two irdepsndent dimensions, it
mst not involve the terperature T at all unlesa there eximts a reference
temperature 7, and ther it must be of the form

- c“
s = f(f 7;‘" 86); 8('2);“',1 B(k))' &)
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Yow ‘rom forpula (90)

(zu“:« :‘,::;:’: (Clu o '77"':; &’f}, Zey, s B(y),) 5 {97]

Not counting quantities that are dimena; nless, wo may d thia formuls
as a relaticn among the quantitiea Cgy of divension ?::su];’{}engtﬁl
[time[, the guantity C1JX of dimemston [mase J/ [lemgth], 2ndt
praoatre g') of dimension T.pas., / ["ength Ltim;z. Since thege 3% & 2

euautitiﬂ are all expressible ln tprma of the two fundamsn dinensions
%maa']ﬂlength;] snd  [tire], there zust be a relation among 3% dimension-
Tess ratics formed frca taem:

F -
(L J)_ (%8)
\ = Oc
By the formmla (9%) wo may sxpress this result ir the form

P T
T, By By s ), O

where ve have omitied to write the 3% quantitles Uij/w, explicitly in the
function f &t the right aince they ere dimensionless functions of the other
arguments of £ This reascning can be repenied for the coefficiente of
aach order, so that we obiain as our final fora for the dissipation functioa

ey PNy )
o é A4 AN Koy o .
) = .‘—-2-:“ 3 7% mﬁ» ﬁ'“ 1
? ~ e ma /3;/3;,"',9». £°¢' I3 . & o, 7 (100)

whera

Q’,C!‘a"‘dﬂ\ o, R ! L= (9 A) 3 \*.
fl(g . = " F,ﬂ.. ﬁ f) ’ 'T' s 8{’)/ 55)1""’ &k) "l (101)

/ l/:h.“'ﬁm

and 1is dimancionlssan,

A fluld 1s isotrople if @ 1s invariant in form under transfermations
of the Bulerian ccordinntos, Sinece eny iavariant function of & 3 rowed squure
matrix is o function of shrew independant invariants of that patrix, snd since
thr quaniitieas

s.

-/3 - ¥
“‘d E,@e.{,i’g ,..5( '

forn such a sot of invarlants, for isotrople fluids @? sust be of the form:
= ce =z«
FNET +2uETED i E Y BT E 6y HGESE0E

{102)
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where X%d J /z//xu ARSTRY K3y0005 are dimensionless functions of

P /py T4, B(1), B(2)seers B(k%. A apd i we shall call "firsteorder co-
efficlents of viscosity," Kj, K,, Ko "second-order ccefficients of vis-
cooity", etc, Of course the coe%ficgentg of viscosity A and 4 used here
have no reletion to tho constents of lamé A and 4 used in"the theory of
aelasticity,

The expansion (102) is the analogue for viscous fluids of Vurneghan's
forsmls (79) for perfectly elastic solids, With the aid of the definition
(33) we may deduce from it the following viscous-stress - deformstion-rate

reiations: 1 5 - Ly e {
Wf- =) g: Q‘*lﬁgj‘*% [!\lkﬁ.g)a&'

- | L =t (103)
’}’ng—.‘é’j’{'KSEq Ej]"'"' ,

The classical Favier-Stokes equation (59) thus appeers as & firsteorder
linear approximation, In the theory of elasticity the eriterion for breake-
ing off the expansion (79) after the quadratic terms is simply that the
strain be small, To formulate an anmalcgous criterion for viscous fluids
let us introduce the dimensionless mmber U
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Then the linear Navier-Stokes equation 1s & sufflecient approximetion if
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1 3 Thus the classical linear theory msy bo expected to become inadequate for

‘ : very viscous iluids, for fluids subjected to very low pressures, or for
fluids belng very violsntly doformed, - If we suppose that X; 2 2 , then for
wator et a stress~pressure of one atnosphere the enormous distcrtion rate )
of 2,000,000 see™l 1s required in order that ¥ bo of the order of 1,
Buraott's derivation of the cquetions of slip flow from kinetic thsory gives
viscous-otreas = deformntion-rate relations which essontially agree with the
formuls (103), as far as ths latter goes, bub include also terms involving
gradients of tha thermedypamic state winich the present theory does not ine
clude, since they do not satisfy the defining postulate (85). Burnett's H
i result inrdicites that when & gas becomes sufficiently rarefied that it
'_ ceases to obey the Navier<Stokes equations it ceases also to exhibit some
of the fundamwentel propertios of fluids (ref, b).

From the formula (103) we see that
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Then from the definitions (19) and (22) since 77=P it folloms that for
compressible fluids

(p-p)= (3,\+:/a)[‘;+,£."[(;(,+x2)]:‘€,./<3 £y Ely... aon

Thus the therwmodynamic pressure P end the stress pressure f are in
gensral unequal, In order thet P:/? the coefficlents of each term in the
expanaion (107) mmst vanish:

3X +R MU0, (108)
3’(, +)<,1 =0 J
Ks =0, -

The first of those conditlons on the material constants of the fluid 1s the
classical Stokes relation, It is easy to see that in gemeral the number of
independent rih order coefficients of viscosity is equal to the mumber of
different partitions of r "as a sum of multiples of 1, 2, and 3, but if

P % P thore will remein only one independent coefficient of viscosity of
each order, Duhem (quoted in ref, g, p. 498) has shown that for the

classical linsar theory the second lsw of thermodynamics (48) is equivalent to t

to the conditions

ME O, 3A+2UEC . (109)

His analysis is not easily extended to the general case, and it is not

clear what are the proper gemsralizations of these inequalities. For in-
conpressible fluids the function 77 has not been specified and the continu-
ity equation (45) implies that I,z0 . Instead of equation (107) we have

a
A(7-p)= G K 5 Elae o

Hence in the classical linear theory of incompressible fluids even though
the function 77 in the definition (19) was left perfectly gemeral the
pature of the Ravier-Stokes equation forces it to be the stress pressurs,

but in the gensral theory the equality 7= /3 is equivalent to a sequence
of reiations among the coafficlents:

Ky=S"" (111)
XII, Conglusion
The familiar anmnlogy between the theory of elasticity and the theory
of viscous fluids reats upon the rather superfiecial similarity of the class-

ical linear force laws (58) and (59). A more physical and less heuristic
formlation of these two models of Newbonian contimua reveals them to be
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rather opposites than analogues, Aun elastic body is a conservaiive mechan-
ical syster which responds only to present strain from e prefer.ed initiel
state and which cannot interconvert mechanical and thermsl emergy, while &
visoous fluid is a dissipative mechanical systen in which the rate of dis-
sipation of energy depends only upon the instantaneous rate of deformation.
Fhen these concepts are expressed in mathematical tarms we obtain the
generel non-linear foree laws (30) and (102), respectively, betwsen which
no formel snalogy is apperent, The two theories now exhibit a deeper kin-
ship, however, in that cech is the tooory of e special medel of a Newtonian
contimmm subject to all tho general laws listed in part VII, and each is
defined by specifying the functional dependence upon suitable variables of a
soaler function representing the energy or rats of dissipaticn of energy,

C., A. Truesdell

R, N. Schwartz
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