NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
OPERATION PLUMBBOB

NEVADA TEST SITE
MAY-OCTOBER 1957

Project 26-4f

PHOTOGRAPHIC ANALYSIS OF EARTH MOTION,
SHOT RAINIER

Issuance Date: July 7, 1958

UNIVERSITY OF CALIFORNIA RADIATION LABORATORY
LIVERMORE, CALIFORNIA
PHOTOGRAPHIC ANALYSIS OF EARTH MOTION, SHOT RAINIER.

By

Staff of Edgerton, Germeshausen & Grier, Inc.

Edgerton, Germeshausen & Grier, Inc.,

Las Vegas, Nevada

May 1958
ABSTRACT

The purpose of Project 26.4f was to record photographically earth motions resulting from the underground detonation of the Rainier device. A reference light on a tower near Surface Zero was observed to rise nine inches at 390 msec after zero. This result is in agreement with results obtained by other projects under Program 26.
CONTENTS

ABSTRACT .. 5-6
SECTION 1 OBJECTIVE 9
SECTION 2 INSTRUMENTATION 9
SECTION 3 RESULTS 11
APPENDIX CURVE SMOOTHING WITH UNEQUAL INCREMENTS OF t 17

ILLUSTRATIONS

Fig.
1 Station Layout for Project 26.4f 13
2 Displacement of Reference Light vs Time (Raw Data Points) 14
3 Displacement of Reference Light vs Time (Raw Data Points and Interpolated Points) 15
4 Displacement of Reference Light vs Time (Interpolated Points) 16

TABLES

1 Camera Summary for Project 26.4f 10
OPERATION PLUMBBOB - PHOTOGRAPHIC ANALYSIS OF EARTH
MOTION - SHOT RAINIER PROJECT 26.4f

1. OBJECTIVE

Project 26.4f was required to provide photographic coverage of the area in the neighborhood of Surface Zero on the underground shot, Rainier. This coverage was intended as back-up for other projects under Program 26. The project was required to provide analysis of the film records only in the event that corroboration of other results was desired.

2. INSTRUMENTATION

The major points of interest were the tunnel portal and a point halfway up the east slope of the mesa, at which point the device was closest to the surface. Additional points were located along two lines up to 800 ft distant from Surface Zero. To accomplish the photography of these areas, three photostations were selected, as shown in Fig. 1. Station Les, on a ridge east of the tunnel portal, was intended to record action at the portal and the weak spot halfway up the slope. Station Doe, located on top of the mesa about 9000 ft northwest of Surface Zero, was placed so as to obtain maximum record time before the ground shock disturbed the camera truck. Cameras at this station photographed an 800-ft line of targets running west from Surface Zero. The third station, Station Kump, was located about 4000 ft south of Surface Zero. This station photographed a 400-ft line of targets running south from Surface Zero. It also recorded a side view of the action on the slope and at the tunnel portal. Table 1 lists the cameras and their primary objectives for the three photostations.

To cover the possibilities of ground excursion from a few inches to several feet over time intervals (during which the motion took place) from less than a second to several seconds, it was necessary to provide frame rates and lenses for a wide range of action. In general, cameras with long focal length lenses were set to record short, rapid motions, while cameras with shorter focal length lenses were employed to record gross motions.

Since the shot was to be fired at about 1000 PDT, cameras at Station Doe would be facing directly into the sun. To overcome the effects of the resultant back-lighting and reduced contrast, it was
Table 1 - CAMERA SUMMARY FOR PROJECT 26.4f

<table>
<thead>
<tr>
<th>Station</th>
<th>Camera</th>
<th>Lens Focal Length (mm)</th>
<th>Speed (frames/sec)</th>
<th>View</th>
</tr>
</thead>
<tbody>
<tr>
<td>Les</td>
<td>Eastman</td>
<td>25</td>
<td>1000</td>
<td>Weak spot</td>
</tr>
<tr>
<td></td>
<td>Eastman</td>
<td>25</td>
<td>1000</td>
<td>Portal</td>
</tr>
<tr>
<td></td>
<td>Mitchell</td>
<td>50</td>
<td>100</td>
<td>Portal, weak spot, 12-300</td>
</tr>
<tr>
<td></td>
<td>Mitchell</td>
<td>35</td>
<td>24</td>
<td>Portal, weak spot, 12-300</td>
</tr>
<tr>
<td>Doe</td>
<td>Mitchell</td>
<td>305</td>
<td>100</td>
<td>SZ towers</td>
</tr>
<tr>
<td></td>
<td>Mitchell</td>
<td>305</td>
<td>100</td>
<td>SZ towers</td>
</tr>
<tr>
<td>Kump</td>
<td>Eastman</td>
<td>63</td>
<td>1000</td>
<td>SZ</td>
</tr>
<tr>
<td></td>
<td>Eastman</td>
<td>63</td>
<td>1000</td>
<td>Weak spot</td>
</tr>
<tr>
<td></td>
<td>Mitchell</td>
<td>75</td>
<td>100</td>
<td>SZ general</td>
</tr>
<tr>
<td></td>
<td>Mitchell</td>
<td>152</td>
<td>100</td>
<td>Weak spot</td>
</tr>
<tr>
<td></td>
<td>Mitchell</td>
<td>305</td>
<td>100</td>
<td>SZ towers</td>
</tr>
<tr>
<td></td>
<td>Bell & Howell</td>
<td>50</td>
<td>24</td>
<td>SZ, weak spot</td>
</tr>
</tbody>
</table>

decided to use three 300-watt lamps on top of each of the towers being photographed. Two of the lamps were aimed toward the station primarily photographing that line, and the third was aimed toward the station photographing the other line. The towers themselves were 17 ft high, to insure that the targets would be visible over the 12 ft of scrub vegetation on the slope. Since there was a possibility of failure of the lights, the towers were draped with salvage white parachute nylon and the tower legs were painted white for better visibility.

Because no light from the device itself was expected, an alternate means of recording the time of the detonation on film was required. A board was placed near Surface Zero with flash bulbs facing Stations Kump and Doe. The bulbs, fired on the zero signal, gave a visible light flash which was recorded on the film.

Each photostation consisted of one 6 x 6 truck in which the cameras were mounted. A generator at each station provided 120 v dc to the cameras. Timing signals to start and stop the cameras were automatic. The high-speed cameras used 200-cycle markers to record camera speed; the low-speed cameras used similar 12.5-cycle markers.

3. RESULTS

Only one of the film records, EG&G Film No. 43773, was suitable for earth motion analysis. This film, exposed at Kump Station, was obtained by a Mitchell camera equipped with a 305-mm focal length lens and running at 100 fr/sec. A combination of factors prevented usable information from being recorded by the other cameras. The shorter focal length lenses used on the other cameras at Kump Station and on all the cameras at Les Station, coupled with the low magnitude of the motion itself, caused these records to show only a slight movement of the reference light. The motion was so slight that no accurate
measurements were possible. At the third station, Doe, these factors were complicated by the additional distance of this station from Surface Zero.

Analysis of the one suitable record indicates that the maximum change in level of the reference light was a rise of 9 in., occurring at 390 msec. The raw data show considerable scatter, undoubtedly attributable to fluctuations in the position of the film at the gate and to subsequent movement of the reference edge of the frame. To enable a best fit curve to be constructed through the measured points, the data were smoothed by an increment method defined in the Appendix. Figures 2, 3, and 4 show the displacement of the light vs time. Figure 2 shows the raw data points; Fig. 3 shows the same points plotted together with the smoothed data points; and Fig. 4 shows only the smoothed data points. The curve of displacement vs time is the same for all three plots.

Deflections were measured from the edge of the frame, and the film measurement was related to actual motion of the reference light by the photogrammetric formula

\[
d = \frac{R_{oa}}{f} (x - x_0)
\]

where
\[
d = \text{displacement of the light from the pre-shock arrival position (in.)}
\]
\[
x = \text{measured position of the light with respect to the frame edge (10^{-3} in.)}
\]
\[
x_0 = \text{stable position of the light with respect to the frame edge (10^{-3} in.)}
\]
\[
R_{oa} = \text{range along the optical axis (m)}
\]
\[
f = \text{lens focal length (mm)}
\]

Although expansion of the shock wave along the surface of the ground was apparent both in the original negative and in projection prints when these were inspected at normal speeds, it could not be resolved in a frame-to-frame analysis; therefore, no measurements of shock wave propagation could be made.
Fig. 1 - Station layout for Project 26.4f.

Coordinates in thousands of feet, NTS grid system.
Fig. 3 - Displacement of reference light vs time (raw data points and interpolated points).
APPENDIX

CURVE SMOOTHING WITH UNEQUAL INCREMENTS OF t

\[d_0, d_1, d_2 \ldots d_n \text{ denote raw data points. } d'_1, d'_2 \ldots d'_n \]
\[\text{denote data points obtained by smoothing function at times } t_1, t_2 \ldots t_n. \]

Since \(d_0, d'_1 \) and \(d'_2 \) lie on a straight line, it follows that:

\[\frac{d'_1 - d_0}{t_1 - t_0} = \frac{d'_2 - d'_1}{t_2 - t_1} \]

hence

\[d'_1 = \frac{d_2 (t_1 - t_0) + d_0 (t_2 - t_1)}{t_2 - t_0} \]

and

\[d'_2 = \frac{d_3 (t_2 - t_1) + d_1 (t_3 - t_2)}{t_3 - t_1} \]

\[d'_n = \frac{d_{(n+1)} (t_n - t_{(n-1)}) + d'_{(n-1)} (t_{(n+1)} - t_n)}{t_{(n+1)} - t_{(n-1)}} \]
DISTRIBUTION

Military Distribution Category 5-22

ARMY ACTIVITIES

Asst. Dep., Chief of Staff for Military Operations, D/A, Washington 25, D. C. ATTN: Asst. Executive (R&SW) 1
Chief of Research and Development, D/A, Washington 25, D. C. ATTN: Atomic Division 1
Chief of Ordnance, D/A, Washington 25, D. C. ATTN: OORDTX-AR 1
Chief Signal Officer, D/A, P&O Division, Washington 25, D. C. ATTN: SIGRD-8 1
The Surgeon General, D/A, Washington 25, D. C. ATTN: MEDNE 1
Chief Chemical Officer, D/A, Washington 25, D. C. 2
The Quartermaster General, D/A, Washington 25, D. C. ATTN: Research and Development 1
Chief of Engineers, D/A, Washington 25, D. C. ATTN: ENGB 3
Chief of Transportation, Military Planning and Intelligence Div., Washington 25, D. C. 1
Commanding General, Headquarters, U. S. Continental Army Command, Ft. Monroe, Va. 3
President, Board #1, Headquarters, Continental Army Command, Ft. Sill, Okla. 1
President, Board #2, Headquarters, Continental Army Command, Ft. Knox, Ky. 1
President, Board #4, Headquarters, Continental Army Command, Ft. Bliss, Tex. 1
Commanding General, U. S. Army Europe, APO 403, New York, N. Y. ATTN: OPOT Div., Combat Dev. Br. 2
Commandant, Command and General Staff College, Ft. Leavenworth, Kans. ATTN: ALLLS(AS) 2
Commandant, The Artillery and Missile School, Ft. Sill, Okla. 1
Secretary, The U. S. Army Air Defense School, Ft. Bliss, Tex. ATTN: Maj Ergen V. Roth, Dept. of Tactics and Combined Arms 1
Commanding General, Army Medical Service School, Brooke Army Medical Center, Ft. Sam Houston, Tex. 1
Director, Special Weapons Development Office, Headquarters, CONARC, Ft. Bliss, Tex. ATTN: Capt. T. E. Skinner 1
Commandant, Walter Reed Army Institute of Research, Walter Reed Army Medical Center, Washington 25, D. C. 1
Superintendent, U. S. Military Academy, West Point, N. Y. ATTN: Prof. of Ordnance 1
Commandant, Chemical Corps School, Chemical Corps Training Command, Ft. McClellan, Ala. 1
Commanding General, U. S. Army Chemical Corps, Research and Development Command, Washington, D. C. 1
Commanding General, Aberdeen Proving Grounds, Md. ATTN: Director, Ballistic Research Laboratories 2
Commanding General, The Engineer Center, Ft. Belvoir, Va. ATTN: Aast. Commandant, Engineer School 1
Commanding Officer, Engineer Research and Development Laboratory, Ft. Belvoir, Va. ATTN: Chief, Technical Intelligence Branch 1
Commanding Officer, Picatinny Arsenal, Dover, N. J. ATTN: ORDBB-TK 1
Commanding Officer, Army Medical Research Laboratory, Ft. Knox, Ky. 1
Commanding Officer, Chemical Warfare Laboratories, Army Chemical Center, Md. ATTN: Tech. Library 2
Commanding Officer, Transportation R&D Station, Ft. Eustis, Va. 1
Director, Technical Documents Center, Evans Signal Laboratory, Belmar, N. J. 1
Director, Waterways Experiment Station, PO Box 631, Vicksburg, Miss. ATTN: Library 1
Director, Armed Forces Institute of Pathology, Walter Reed Army Medical Center, 6825 16th Street, N. W., Washington 25, D. C. 1
Operations Research Office, Johns Hopkins University, 6936 Arlington Rd., Bethesda 14, Md. 1
Commanding General, Quartermaster Research and Development Command, Quartermaster Research and Development Center, Natick, Mass. ATTN: CBR Liaison Officer 2
Commandant, U. S. Army Aviation School, Fort Rucker, Ala.	1
Commanding Officer, Diamond Ordnance Fuze Laboratories, Washington 25, D. C. ATTN: Coordinator, Atomic Weapons Effects Tests	1
Commanding General, Quartermaster Research and Engineering Command, U. S. Army, Natick, Mass.	1
Technical Information Service Extension, Oak Ridge, Tenn.	6
NAVY ACTIVITIES	
Chief of Naval Operations, D/N, Washington 26, D. C. ATTN: OP-36	2
Chief of Naval Operations, D/N, Washington 26, D. C. ATTN: OP-OSEG	1
Chief, Bureau of Ordnance, D/N, Washington 26, D. C.	1
Chief, Bureau of Ships, D/N, Washington 25, D. C. ATTN: Code 348	1
Chief, Bureau of Yards and Docks, D/N, Washington 25, D. C. ATTN: D-440	1
Chief, Bureau of Supplies and Accounts, D/N, Washington 25, D. C.	1
Chief, Bureau of Aeronautics, D/N, Washington 25, D. C.	2
Chief of Naval Research, Department of the Navy, Washington 25, D. C. ATTN: Code 811	1
Commander-in-Chief, U. S. Atlantic Fleet, U. S. Naval Base, Norfolk 11, Va.	1
Commandant, U. S. Marine Corps, Washington 25, D. C. ATTN: Code AO3H	4
President, U. S. Naval War College, Newport, R. I.	1
Superintendent, U. S. Naval Postgraduate School, Monterey, Calif.	1
Commanding Officer, U. S. Naval Schools Command, U. S. Naval Station, Treasure Island, San Francisco, Calif.	1
Commanding Officer, U. S. Fleet Training Center, Naval Base, Norfolk 11, Va. ATTN: Special Weapons School	1
Special Weapons Unit, Pacific, U. S. Naval Air Station, North Island, San Diego 35, Calif.	2
Commanding Officer, U. S. Naval Damage Control Training Center, Naval Base, Philadelphia, Pa. ATTN: ABC Defense Course	1
Commander, U. S. Naval Ordnance Laboratory, Silver Spring 19, Md. ATTN: EE	1
Commander, U. S. Naval Ordnance Laboratory, Silver Spring 19, Md. ATTN: R	1
Commander, U. S. Naval Ordnance Test Station, Inyokern, China Lake, Calif.	1
Officer-in-Charge, U. S. Naval Civil Engineering Res. and Evaluation Lab., U. S. Naval Construction Battalion Center, Port Hueneme, Calif. ATTN: Code 763	1
Commanding Officer, U. S. Naval Medical Research Inst., National Naval Medical Center, Bethesda 14, Md.	1
Director, Naval Air Experimental Station, Air Material Center, U. S. Naval Base, Philadelphia, Pa.	1
Director, U. S. Naval Research Laboratory, Washington 25, D. C. ATTN: Mrs. Katherine H. Case	1
Commanding Officer and Director, U. S. Navy Electronics Laboratory, San Diego 62, Calif. ATTN: Code 4223	1
Commanding Officer, U. S. Naval Radiological Defense Laboratory, San Francisco, Calif. ATTN: Technical Information Division	2
Commanding Officer and Director, David W. Taylor Model Basin, Washington 7, D. C. ATTN: Library	2
Commander, U. S. Naval Air Development Center, Johnsville, Pa.	1
Commanding Officer and Director, U. S. Naval Engineering Experiment Station, Annapolis, Md. ATTN: Code 155	1
Commander-in-Chief Pacific, Pearl Harbor, T. H.	1
Commander, Norfolk Naval Shipyard, Portsmouth 8, Va. ATTN: Code 270	1
Technical Information Service Extension, Oak Ridge, Tenn. (surplus)	5
AIR FORCE ACTIVITIES	
Director of Operations, Headquarters, USAF, Washington 25, D. C. ATTN: Operations Analysis	1
Director of Plans, Headquarters, USAF, Washington 25, D. C. ATTN: War Plans Div.	1
Director of Research and Development, DCS/D, Headquarters, USAF, Washington 25, D. C. ATTN: Combat Components Div.	1
Director of Intelligence, Headquarters, USAF, Washington 25, D. C. ATTN: APOD-INB2	2
Asst. Chief of Staff, Intelligence, Headquarters, U. S. Air Forces-Europe, APO 833, New York, N. Y. ATTN: Directorate of Air Targets	1
Commander, 497th Reconnaissance Technical Squadron (Augmented), APO 833, New York, N. Y.	1
Commander-in-Chief, Pacific Air Forces, APO 853, San Francisco, Calif. ATTN: PPCIB-MB, Base Recovery	1
Commander-in-Chief, Strategic Air Command, Offutt AFB, Omaha, Nebr. ATTN: OAWS
Commander, Tactical Air Command, Langley AFB, Va. ATTN: Documents Security Branch
Commander, Air Defense Command, Ent AFB, Colo.
Assistant for Operations Analysis, DCS/Operations. ATTN: Missile Survival Study Group (Mr. Tuttle), Headquarters, USAF, Washington 25, D. C.
Commander, Air Research and Development Command, Andrews AFB, Washington 25, D. C. ATTN: RDDN
Commander, Air Proving Ground Command, Eglin AFB, Fla. ATTN: Adl./Tech. Report Branch
Director, Air University Library, Maxwell AFB, Ala.
Commander, Air Training Command, Randolph AFB, Tex.
Commandant, Air Force School of Aviation Medicine, Randolph AFB, Tex.
Commander, Wright Air Development Center, Wright-Patterson AFB, Dayton, Ohio. ATTN: WCOSI
Commander, Air Force Cambridge Research Center, LG Hanscom Field, Bedford, Mass. ATTN: CQOST-2
Commander, Air Force Special Weapons Center, Kirtland AFB, N. Mex. ATTN: Library
Commander, Lowry AFB, Denver, Colo. ATTN: Department of Special Weapons Training
Commander, 1009th Special Weapons Squadron, Headquarters, USAF, Washington 25, D. C.
The RAND Corporation, 1700 Main Street, Santa Monica, Calif. ATTN: Nuclear Energy Division
Commander, Second Air Force, Barksdale AFB, La. ATTN: Operations Analysis Office
Commander, Eighth Air Force, Westover AFB, Mass. ATTN: Operations Analysis Office
Commander, Fifteenth Air Force, March AFB, Calif. ATTN: Operations Analysis Office
Commander, Western Development Div. (ARDC), PO Box 282, Inglewood, Calif. ATTN: WDSIT, R. G. Weitz
Technical Information Service Extension, Oak Ridge, Tenn. (surplus)

OTHER DEPARTMENT OF DEFENSE ACTIVITIES
Director, Weapons Systems Evaluation Group, OSD, Rm SE1006, Pentagon, Washington 25, D. C.
Chairman, Armed Services Explosives Safety Board, D/D, Building T-7, Gravelly Point, Washington 25, D. C.
Commandant, Armed Forces Staff College, Norfolk 11, Va. ATTN: Secretary
Commander, Field Command, Armed Forces Special Weapons Project, PO Box 5100, Albuquerque, N. Mex.
Commander, Field Command, Armed Forces Special Weapons Project, PO Box 5100, Albuquerque, N. Mex.
ATTN: Technical Training Group
Commander, Field Command, Armed Forces Special Weapons Project, P. O. Box 5100, Albuquerque, N. Mex.
ATTN: Deputy Chief of Staff, Weapons Effects Tests
Chief, Armed Forces Special Weapons Project, Washington 25, D. C. ATTN: Documents Library Branch
Technical Information Service Extension, Oak Ridge, Tenn. (surplus)

ATOMIC ENERGY COMMISSION ACTIVITIES
Edgerton, Germeshausen and Grier, 160 Brookline Ave., Boston 15, Mass. ATTN: Mr. Herbert E. Grier
Edgerton, Germeshausen and Grier, 1622 South A Street, Las Vegas, Nev. ATTN: Mr. Robert B. Patten
Los Alamos Scientific Laboratory, Report Library, PO Box 1863, Los Alamos, N. Mex. ATTN: Helen Redman
University of California Radiation Laboratory, PO Box 808, Livermore, Calif. ATTN: Clovis G. Craig
Weapon Data Section, Technical Information Service Extension, Oak Ridge, Tenn.
Technical Information Service Extension, Oak Ridge, Tenn. (surplus)

19