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FOREWORD 

This report represents work performed by the Research and Technology 
Laboratories of the Avcc Corporation Space Systems Divis.on,  201 Lowell 
Street,  Wilmington,  Massachusetts,  for the Avco Everett Research Laboratory, 
Everett, Massachusetts,   supported by the Advanced Research Projects Agency 
monitored by the Army Missile Command,  United States Army,  Redstone 
Arsenal,  Alabama,  under Contract No. DA-01-021-AMC-12005 (Z) (part of 
Project DEFENDER). 
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ABSTRACT 

A kinetic 8tudy of the tetrafluoroethylene-difluorocarbene radical reaction was 
conducted in excess nitrogen behind incident shock waves over the temperature 
range from 1200 to 1600° K at total gas concentration around 1. 15 x 10" ^ 
mole/cc.    The rate of formation of CF2 was observed spectrophotometrically 
and is reproduced by the rate law: 

1/2 d [C F21 

dc 
kf[N2Hc2F4J - krlN2HCF2][CF2] 

! 

with 

N,                                  in   -6.36+0.55      -74900+3000 
k, 2   = (4.08 +   0.72) 1040 T " e  =  

cc/mole-sec 
RT 

and 

k* 2   - (2.05 +   0.47) 1038 T 
-6.36+ 0.55      -1840+ 263 

e 
RT 

cc 2/mole2 sec 

Comparisons between the tetrafluoroethylene-difluorocarbene thermal 
equilibrium constants in N£ and Ar shocks indicate that N2 is vibrationally 
unrelaxed during chemical relaxation.    The temperature determined from the 
chemical equilibrium constant and the time to reach 0. 98 chemical equilibrium 
after shock compression are used to calculate the N~ relaxation time.    The 
results show that N2 vibrational relaxation in the 1:00 tetrafluoroethylene-nitro- 
gen mixture is about 10 to 50 times faster than in pure nitrogen. 
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I.    INTRODUCTION 

A shock tube kinetic study of the thermal dissociation of tetrafluorethylene in 
argon diluent was reported earlier. *   Equilibrium and second-order rate constants 
for the reversible reaction 

C2F4 

Ar 
2CF. 

were determined by employing a spectrophotometric technique to monitor the 
production of CF^ radicals in absorption at 2536A.    A similar kinetic investi- 
gation of the C2F4 dissociation has been c irried out in excess nitrogen in order 
to assess its collision efficiency as a second body.    It was of interest also to 
note the effect of C2F4 impurity on the vibrational relaxation of nitrogen mole- 
cules.    Calculations had shown that over the temperature range of thi3 study 
and near one atmosphere total pressure the C2F4 chemical relaxation would be 
about 100 to 1000 times faster than vibrational relaxation of pure N£.    Hence, 
the measured C2F4 equilibrium constant was used to obtain the temperature 
behind the shock wave,  after a known time,  to estimate the N2 vibrational 
relaxation time. 
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II.    EXPERIMENTAL 

The shock-tube and optical absorption-spectroscopy apparatus used in these 
experiments was identical to the setup described in Reference 1.    The con- 
centration of CF2 radicals generated behind the shock wave was determined 
from Beer's law according to the expression 

I/ID - e*p(-*L[CF2]) 

- exp (-2(Lap2l k^Fjlj) (1) 

where I0 and I are the incident and transmitted light intensity; c is the molar 
extinction coefficient in cubic centimeter per mole-centimeter; L = 3.91 centi- 
meters, the path length of light through the shock tube; a is the degree of C F 
dissociation; PI\ is the density ratio across the shock; and [C2F4 ]j is the 
concentration ahead of the shock front.   Measurements of the CF2 radical UV 
absorption were made at 2536A where 1 was taken to be (1. 25 ± 0. i0)106 
cc/mole-cm over the temperature interval 1200* to 1600°K. 2   A general profile 
of the CF2 absorption behind a nitrogen shock wave is indicated by the oscillo- 
gram record in Figure 1.   It is observed that after chemical relaxation, the 
CF2 equilibrium absorption appears to overshoot slightly at first, and then to 
decay gradually later on.    The effect here is attributed to the C2F4 equilibrium 
following the decrease in temperature behind the shock wave as ehe N2 mole- 
cules vibrationally relax«    This behavior was not observed behind similar shocks 
in argon. 

The shock conditions of temperature and density ratio were calculated from 
the Rankine-Hugoniot equations with the incident shock velocity and the state 
of the gas ahead of the shock, and as a /unction of the degree of C^F4 

dissociaf n behind the shock wave. J   The dissociation energy of C2F4 was 
taken to H»i 74. 9 kcal/mole (Reference 1) so that the temperature drop behind 
the shock wave due to complete dissociation was 100*K for the 1:100 (mole 
ratio) C2F4-N2 mixtures used«   For the sane degree of dissociation» the 
difference in temperature between vibrationally unrelaxed and relaxed N2 
shocks was about 70*K.   Attenuation of shock velocity under conditions of 
interest amounted to a decrease of 0. 22 ± 0. 08 percent per 20 cm length of 
tube, which introducted at most a 5*K uncertainty in the analyzed data. 

"■. ';, 
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IIL N2 VIBRATIONAL RELAXATION 

Vibrational relaxation of molecules in gas mixtures involves energy to be 
exchanged between t r an si ational- vibrational and vibrational-vibrational degrees 
of freedom.   Most polyatomic molecules with many vibrational modes usually 
exhibit short relaxation times of less than one microsecond at pressures around 
one atmosphere. 4   This behavior ia attributed to the efficient transfer of 
'.ran si ational energy to the low-frequency vibrational states followed by rapid 
internal distribution to the other modes of the molecule.   For bina> y gas mix- 
tures where near-resonant and resonant vibrational-vibrational exchange 
occurs, it is found that the faster relaxing molecule goes first to some fraction 
of its filial equilibrium energy and then proceeds to equilibrium at the same 
relaxation time with the slower relaxing molecule. Df   . 

In reference to the vibrational relaxation of a dissociated C2F4-N2 gas mixture, 
the vibrational relaxation time of C2F4 (0.014 microsecond at 373°K and one 
atmosphere)^ is about 105 times smaller than that of pure nitrogen.   A com- 
parison of the vibrational frequencies of the CF2 radical? (668    1202,  1222 cm"1) 
with that of N2 (2330 cm"1) tends to suggest a shorter relaxation time for CF2. 
If it is assumed that behind a shock wave the C2F4 and CF2 molecules are in 
vibratio.iai equilibrium at the local translational temperature and that N2 is the 
slowest vibrationally relaxing component, the change in translational temperature 
due to N2 vibrational excitation is approximately given by^ 

T-Tr 

To-Tf 

-t/r eff (2) 

where subscripts o and f refer to the shocked translational temperature before 
vibrate   il relaxation arid at equilibrium, r^    is the effective N2 relaxation 
time.   The temperature dependences of the vibrational relaxation time cf pure 
N2 and the dissociation rate of C2F4 indicate that chemical relaxation is 
between two and three orders-of-magnitude faster that pure N2 vibrational 
relaxation for the temperature range of this study.    Thus,  in calculating the 
effective vibrational r  'ax at ion time,  the initial and final translational temp- 
eratures are taken to be those of the chemically relaxed gas.   A time corres- 
ponding to 0.98 chemical equilibrium of each run is used as a standard period 
at which to evaluate the equilibrium constant.   With the measured C2F4 
equilibrium constant (Figure 2) and the equilibrium data of Reference 1, the 
translational temperature of the gas is determined.    The experimental results 
are plotted in Figure 3 with the respective chemical relaxation times of the 
C2F4 dissociation reaction,  and are compared to N? relaxation times in pure 
nitrogen. 5 
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IV.   C2F4 DISSOCIATION KINETICS 

The thermal dissociation of C2F4 in N2 is described by the rate expression 
for the forward and reverse processes 

-d[C2F41       j   dlCF2l 
  =~  —  - kf[N2Hc2F4]  -kr[N2][CF2][CF2) (3) 

dt dt 

or in terms of the degree of dissociation 

da . 
— - kf[N2](l-a)  -  4kf/Keq{[N2][C2F4]0a

2) (4) 

where the reverse rate constant kr has been replaced by the ratio kf/Kgq and 
[ C2 F4 ] 0    is the concentration behind the shock wave prior to dissociation. 

The experimental values of a were determined from the oscillogram records 
by means of Equation (1) and the shock-tube performance data.   An analysis 
of the initial slope yielded kf, and the CF2 equilibrium absorption gave Keq. 
To compute the kinetic profile of a behind the shock wave, Equation (6) was 
integrated and solved on an IBM 7094 machine with the empirical values of kf 
and Keq.    The coincidence between the experimental values of a and the calcu- 
lated profile (Figure 4) is considered to be further evidence in support of the 
proposed rate law and dissociation mechanism. 

The results of the equilibrium and forward rate constants from the present 
experiments are compiled in Tables 1 and II.    The forward rate constants are 
plotted against reciprocal temperature in Figure 5 and are least squares 
fitted by the function 

«?'   - (4.08 t   0.72) l0«>T-6.36 + 0.55 . Z™» t 3000 (5) 
RT 

cc/mole sec, 

taking the minimum dissociation energy to be 74.9 ±3.0 kcal/mole.    The 
forward rate constants in N^> are found to be about 1.3 ± 0.1 times higher than 
the ones in Ar.-A least-squares fit of kf/Keq = kr (Figure 6), with the collisional 
temperature dependence T-6.36 * 0-55 of Equation (5) gives 

kf2   - (2.05  ♦   0.47) 10* T~6'*t 0.55 e  -
1840  *   263 

' " RT 
(6) 

2/aole2 

for the reverse rate constant.    The standard deviation of the pre- 
term indicates the scatter of experimental points from the fit values. 
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TABLE II 

C2F4-CF2 THERMAL EQUILIBRIUM 
BEHIND N? SHOCK WAVES* 

Run No. T_ 
2eq 

(°K) 
«eq (C

2
F/q        7 

(mole  /cc)10 (mole/cc) 

1 1225 0. 193 1.30 5.96 x 10"9 

2 1230 0. 171 1.29 4.57 x 10"9 

3 1235 0. 175 1.30 4.81 x 10"9 

4 1250 0. 204 1.30 6.62x 10"9 

5 1270 0.220 1.30 8.10 x 10"9 

6 1275 0. 197 1.31 5.55 x 10"9 

7 1280 0.252 1.31 i. 12x 10"8 

8 1315 0.349 1.34 2.54 x 10"8 

9 1325 1.352 1.34 2.63 x 10"8 

10 1330 0. 367 1.34 2. 89 x 10"8 

n 1330 0.341 1. 34 2. 32 x 10"8 

12 1350 0.413 1. 23 3.55 x 10'8 

13 1380 0.472 1. 10 5.45 x lO*8 

14 1395 0. 506 1. 11 5.76 x 10"8 

15 1415 0.544 1. 11 7. 20 x 10"8 

16 1480 0.750 0.855 1.93 x 10"7 

17 1485 0.804 0.855 2.82 x 10"7 

♦Vibrationally unrc.axed N   . 
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V.   DISCUSSION 

The presence of a small quantity of C2F4 in excess N2 appears to enhance 
the vibrational relaxation of N2 molecules.    The apparent N£ vibrational 
relaxation time was obtained on the assumption that the C2F4 and CF2 molecules 
were in vibrational equilibrium with the translational gas temperature so that 
the measured chemical equilibrium constant could be used as a temperature 
indicator during N2 vibrational relaxation.   Since the vibrational histories of 
C2F4 and CF2 were not measured in the experimentr, the present data does not 
permit an estimation of the relative importance of the translational-vibrational 
and vibrational-vibrational exchange processes between N2 molecules and C2F4 
or CF2.   However, it may be pointed out that near-resonance vibrational - 
vibrational exchange between N2 and C2F4 may be possible because of the 
C2F4 vibrational frequency*? at 1872 c m~*.    This behavior suggests itself in 
view of the near-resonance vibrational-vibrational coupling exhibited by N2 
and NO whose fundamental frequency is 1876 cm"*.   More importantly,  it is 
noticed from Figure 3 that the apparent N2 relaxation time appears to have 
nearly the same temperature dependence as the chemical relaxation time for 
CF2 formation.   This observation tends to suggest near-resonance vibrational 
coupling between CF2 and N2 in which exchange a ?.-quantum jump process would 
be required.   For the mixture, the apparent probability per collision of vibra- 
tional energy transfer between C2F4 (2?0.5 dissociated) and N2 is calculated to 
be 4.28 x 10"5 at 1350°K as compared to 5.86 x 10"8 for pure N2.    The collision 
frequency of N2 with both C2F4 and CF2 was taken to be the same. 

In regard to the C2F4 dissociation kinetics,  the average of the ratio of the 

Ar forward rate constants in N2 and Ar diluent kf NV'kf   is 1.3 ± 0.1 which may be 
compared to the value 1.49 ± 0.07 found by Volpe and Johnston1" for the 
unimolecular decomposition of NO2CI,  and the value 1.7 given by Johnston11 

for the decomposition of N2O5.    The ratio of the relative velocities of approach 
of N2 and Ar in the C2F4 dissociation is calculated to be 1.23.    Analysis of the 
pre-exponential coefficients in terms of classical collision theory, ^ shows that 

the steric factor for Ar 'PAr = 0.62) is slightly higher than that for N2(PN2 = 0.47). 
The collision diameter of C2F4 was taken to be 5.8A (Reference 1) and those of 
N2 and Ar,   3.7 5A and 3.4A respectively. 

-13- 
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