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This report represents work performed by the Research and Technology
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Street, Wilmington, Massachusetts, for the Avco Everett Research Laboratory,
Everett, Massachusetts, supported by the Advanced Research Projects Agency
monitored by the Army Missile Command, United States Army, Redstone
Arsena!, Alabama, under Contract No. DA-01-021-AMC-12005 (Z) (part of
Project DEFENDER).
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ABSTRACT

A kinetic study of the tetrafluorocthylene-difluorocarbene radical reaction was
conducted in excess nitrogen behind incident shock waves cver the temperature

range from 1200 to 1600° K at total gas concentraticn around 1, 25 x 10-5 ‘
mole/cc. The rate of fcrmation of CF, was observed spectrophotometrically

and is reproduced by the rate law:

1/2d[CF,)

™ = kN {CyF 4l - K INJJICF)IICF))

with

o Qe

-6.36+ 0.55  —74900 + 3000
e —————————————————

N, 40
. ke2 = (408 + 0.72) 1090 T
(o = (408 2 0.72) RT

cc/mole-sec
and

ot L onnb S

;636055 1840+ 263
e
RT

N
k2 = (205 & 0.47) 108

I+

cc?/mole? sec

Comparisons between the tetrafluoroethylene-difluorocarbene thermal

. equilibrium constants in N, and Ar shocks indicate that N, is vibrationally

] unrelaxed during chemical relaxation. The tempesrature determined from the
chemical equilibrium constant and the time to reach 0. 98 chemical equilibrium
after shock compression are used to calculate the N, relaxation time. The .
results show that N, vibrational relaxation in the 1:00 tetrafluoroethylene-nitro-
gen mixture is about 10 to 50 times faster than in pure nitrogen,
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I. INTRODUCTION

A shock tube kinetic study of the thermal dissociation of tetrafluorethylene in

argon diluent was reported earlier. ! Equilibrium and second-order rate constants
for the reversible reaction

Ar
CFy == ZCF2

were determined by employing a spectrocphotometric technique to monitor the
production of CF, radicals in absorption at 2536A, A similar kinetic investi-
gation of the C¥4 dissociation has been cirried out in excess nitrogen in order
to assess its collision efficien¢y 2s a second body. It was of interest also to
note the effect of C;F4 impurity on the vibrational relaxation of nitrogen mole-
cules. Calculations had shown that over the temperature range of ihis study
and near one atmosphere total pressure the C2F4 chemical relaxation would be
about 100 to 1000 times faster than vibrational relaxation of pure N,. Hence,
the measured C;F4 equilibrium constant was used to obtain the temperature
behind the shock wave, after a known time, to estimate the N, vibrational
relaxation time,




1I. EXPERIMENTAL

The shock-tube and optical absorption-spectroscopy apparatus used in these
experiments was identical to the setup described in Reference 1, The con-
centration of CF) radicals generated behind the shock wave was determined
from Beer's law according to the expressicn

/1, = exp (- ¢L [CF,])

= exp (~2¢Lap,, [C2F4]1) (1) .

where Iy and I are the incident and transmitted light intensity; ¢ is the molar
extinction coefficient in cubic centimeter per mole-centimeter; L = 3,91 centi-
meters, the path length of light through the shock tube; a is the degree of CZF4
dissociation; py; is the density ratio across the shock; and [C2F4 ], is the
concentration ahead of the shock front. Measurements of the CF) radical UV
absorption were made at 2536A where ¢ was taken to be (1, Zg + 0,10)106
cc/mole-cm over the temperature interval 1200° to 1600°K, © A general profile
of the CF absorption behind a nitrogen shock wave is indicated by the oscillo-
gram record in Figure 1, It is observed that after chemical relaxation, the
CF2 equilibrium absorption appears to overshoot slightly at first, and then to
decay gradually later on. The effect here is attributed to the C2F4 equilibrium
following the decreas> in temperature behind the shock wave as che N2 mole-
cules vibrationally relax, This behavior was not cbserved behind similar shocks
in argon, :

The shock conditions of temperature and density ratio were calculated from
the Rankine-Hugoniot equations with the incident shock velocity and the state
of the gas ahead of the shock, and as a function of the degree of C,F4
dissociat’ m behind the shock wave, > The dissociation energy of C2F4 was
taken to b3 74. 9 kcal/mole (Reference 1) so that the temperature drop behind
the shock wave due to complete dissociation was 100°K for the 1:100 (mole
ratio) C2F4-N2 mixtures used, For the san e degree of dissociation, the
difference in temperaturs between vibrationally unrelaxed and relaxed N3
shocks waes abou: 70°K, Attenuation of shock velocity under conditions of
interest amounted to a decrease of 0,22 £ 0, 08 percent per 20 cm length of
tube, which introducted at most a 5°K uncertainty in the analyzed data.’
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Figure 1 UV ABSORPTION PROFILE OF CF, RADICAL BEHIND INCIDENT SHOCK WAVE
INTO 1:160 C,F ,~N, GAS MIXTURE. P} =5.0 CM HG. U, = 1.472 mm/pSEC. T,
(UNRELAXED Np) = 1290°K. WRITING SPEED = 20 uSEC/CM

——

-3-




IIL N2 VIBRATIONAL RELAXATION

Vibrational relaxation of molecules in gas mixtures involves energy to be
exchanged between translational-vibrational and vibrational-vibrational degrees
of freedom, Most polyatomic molecules with many vibraiional modes usually
exhibit short relaxation times of less than one microsecond at pressures around
one atmosphere.4 This behavior ig attributed to the efficient transfer of
translational energy to the low-frequency vibrational states followed by rapid
internal distribution to the other modes of the molecule. For binas, gas mix-
tures where near-resnnant and resonant vibrational-vibrational exchange
cccurs, it is found that the faster relaxing molecule goes first to some fraction
of its fiual equilibrium energy and then proceeds to eguilibrium at the same
relaxation time with the slower relaxing molecule, 5,6,

In reference to the vibrational relaxation of a dissociated C2F 4-N; gas mixture,
the vibrational relaxation time of C;F 4 (0.014 microsecond at 373°K and one
atmosphere)4 is about 105 times smaller than that of pure nitrogen. A com-
parison of the vibrational frequencies of the CF, radical? (668. 1102, 1222 cm~l)
with that of Np (2330 cm-1) tends to suggest a shorter relaxation time for CF,.
If it is assumed that behind a shock wave the C2F4 and CF molecules are in
vibrativnal equilibrium at the local translational temperature and that N2 is the
slowest vibrationally relaxing component, the change in translational temperature
due to N, vibrational excitation is approximately given by8

T-T¢ -t/reff (2)

e

To - T¢

where subscripts o and f refer to the shocked translational temperature before
vibrati. -1l relaxation ard at equilibrium. r_. is the effective N, relaxation
time. The temperature dependences of the vibrational relaxation time cf pure
N2 and the dissociation rate of C2F 4 indicate that chemical relaxation is
between two and three orders-cf-magnitude faster that pure N2 vibrational
relaxation for the temperature range of this study. Thus, in calculating the
effective vibrational r "axation time, the initial and final translational temp-
eratures are taken to be those of the chemically relaxed gas. A time corres-
ponding to 0.98 chemical equilibrium of each run is used as a standard period
at which to evaluate the equilibrium constant. With the measured C2F4
equilibrium constant (Figure 2) and the equilibrium data of Reference 1, the
translational temperature of the gas is determined, The experimental results
are plotted in Figure 3 with the regpective chemical relaration times of the
C,F4 dissociation reaction, and are compeared to N relaxation times in pure
nitrogen, 3 '
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IV. C2F4 DISSOCIATION KINETICS

The thermal diasociation of C2F4 in N, is described by the rate expression
for the forward and reverse processes

de 2

= k[Nl [CyFy) -k INJJ[CF,)ICF,) (3)

or in terme of the degree of dissociation

da
bl N (1-a) ~ dikg/K, (INJ)[CyF g a?) (4)

where the reverse rate constant ky has been replaced by the ratio kf/Keq and
[ Cy F4l 0 is the concentration behind the shock wave prior to dissociation,

The experimental values of a were determined from the oscillogram records
by means of Equation (1) and the shock-tube performance data. An analysis
of the initial slope yielded k¢, and the CF, equilibrium absorption gave Keq-
To compute the kinetic profile of a behind the shock wave, Equation (6) waa
integrated and solved on an IBM 7094 machine with the empirical values of kf
and Keq. The coincidence between the experimental values of a and the calcu-
lated profile (Figure 4) is considered to be further evidence in support of the
propcsed rate law and dissociation mechanism.

The results of the equilibrium and forward rate constants from the present
experiments are compiled in Tables I and II. The forward rate constants are
plotted against reciprrocal temperature in Figure 5 and are jeast squares
fitted by the function

. ~74900 + 3000
k2 - (408 & 072 1090 77636 £ 055 TTO0 Rtrs i

cc/mole sec,

taking the minimum dissociation energy to be 74.9 * 3.0 kcal/mole. The
forward rate constants in N, are found to be about 1.3 + 0.1 times higher than
the ones in Az, A least-squares fit of kf/Keq = kr (Figure 6), with the collisional
temperature dependence T-6+36 * 0.55 ¢ Equation (5) gives

. -18 26 6
2 _ (205 + 0.47)10%8 1636055 71840 & 263 (6)

k
f RT

3
cc?/mole? sec

for the reverse rate constant. The standard deviation of the pre-
term indicates the scatter of experimental points from the fit values.
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. TABLE Il

CoF4-CF2 THERMAL EQUILIBRIUM
BEHIND N, SHOCK WAVES*

eq
fun e (OZKe)q “eq :Sn%li‘g)lcc)lo :(r:collljlﬁc)
1 1225 0.193 1.30 5.96 x 10”7
2 1230 0.171 1.29 4.57x 1077
3 1235 0.175 1.30 4.81x 1077
4 1250 0. 204 1.30 6.62x 10"
5 1270 0. 220 1.30 8.10 x 1077
6 1275 0.197 1.31 5.55 x 1077
7 1280 0. 252 1.31 lL12x 108
8 1315 0.349 1.34 2.54 x 1078
) 9 1325 1.352 1.34 2.63x 108
10 1330 0.367 1.34 2.89 x 1078
1 1330 0. 341 1.34 2.32x 108
12 1350 0.413 1.23 3.55x 10"
13 1380 0.472 1.10 5.45 x 10”0
14 1395 0. 506 1.11 5.76 x 107
15 1415 0.544 1.11 7.20x 1078
16 1480 0. 750 0. 855 1.93x 107"
17 1485 0.804 0.855 2.82x 10"

*Vibrationally unrc.axed N _.
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V. DISCUSSION

The presence of a small quantity of C2F4 in excess N, appears to enhance

the vibrational relaxation of N; molecules. The apparent N, vibrational
relaxation time was obtained on the assumption that the C;F4 and CF, molecules
were in vibrational equilibrium with the translational gas temperature so that
the measured chemical equilibrium constant could be used as a temperature
indicator during N, vibrational relaxation. Since the vibrational histories of
C2F4 and CF3 were not measured in the experimentc, the present data does not
permit an estimation of the relative importance of the translational-vibrational
and vibrational-vibrational exchange processes between N, molecules and C2F4
or CF;, However, it may be pointed out that near-resonance vibrational-
vibrational exchange between N, and C,F4 may be possible because of the

C2F4 vibrational frequencyd at 1872 c m=1. This behavior suggests itself in
view of the near-resonance vibrational-vibrational coupling exhibited by N,

and NO whose fundamental frequency is 1876 cm-l, More importantly, it'is
noticed from Figure 3 that the apparent N; relaxation time appears to have
nearly the same temperature dependence as the chemical relaxation time for
CF2 formation. This observation tends to suggest near-resonance vibrational
coupling between CF, and N, in which exchange a 2-quantum jump process would
be required. For the mixture, the apparent probability per collision of vibra-
tional energy transfer between CZF (=0.5 dissociated) and N is calculated to
be 4.28 x 10”2 at 1350°K as compared to 5.86 x 10-8 for pure N»., The collision
frequency of Nj with both C2F 4 and CFj was taken to be the same,

In regard to the C,F, dissociation kinetics, the average of the ratio of the

forward rate constants in N; and Ar diluent k; N,/kf is 1.3 2 0.1 which may be
compared to the value 1.49 * 0,07 found by Volpe and Johnstonl for the
unimolecular decornposition of NO2C1, and the value 1.7 given by Johngton!l
for the decomposition of N;Og. The ratio of the relative velocities of approach
of N> and Ar in the CpF 4 dissociaticn is calculated to be 1.23. Analysis of the
pre-exponential coefficients in terms of clagsical collision theory, 12 ghows that

the steric factor for Ar (PAT = 0.62) is slightly higher than that for N2(PN; = 0. 47).
The collision diameter of C2F4 was taken to be 5.8A (Reference 1) and those of
Nz and Ar, 3.75A and 3.4A respectively.
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