AD NUMBER

AD487598

NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; APR 1966. Other requests shall be referred to US Army Missile Command, Attn: AMSMI-RS, Redstone Arsenal, AL 35809.

AUTHORITY

US Army Missile Command ltr dtd 24 Aug 1971

THIS PAGE IS UNCLASSIFIED
METALLURGICAL EXAMINATION OF BULLPUP "A"
PROPULSION UNIT S/N 4800 AFTER THREE YEARS OF STORAGE

by
J. T. Davideon

April 1966

DISTRIBUTION LIMITED
SEL NOTICES PAGE
DISTRIBUTION LIMITATION

This document is subject to special export controls, and each transmission to foreign governments or foreign nationals may be made only with prior approval of the Command, Attn: AHSMI-RS.

DISPOSITION INSTRUCTIONS

Destroy this report when it is no longer needed. Do not return it to the originator.

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.
METALLURGICAL EXAMINATION OF BULLPUP "A"
PROPULSION UNIT S/N 4000 AFTER THREE YEARS OF STORAGE

by
J. T. Davidson

DA Project No. 1X242403D231

DISTRIBUTION LIMITED
SEE NOTICES PAGE

Materials Engineering and Development Branch
Structures and Mechanics Laboratory
Research and Development Directorate
U. S. Army Missile Command
Redstone Arsenal, Alabama 35809
ABSTRACT

A tactical BULLPUP "A" prepackaged, storable, liquid propulsion unit was metallurgically examined after three years of storage. The examination was conducted relative to the storage requirements of the LANCE missile system (currently being developed by the U.S. Army Missile Command, Huntsville, Alabama) which utilizes materials and propellants similar to those employed in the BULLPUP "A."

The purpose of the evaluation was to acquire "real-time" storage data based on long periods of exposure.

The examination revealed that containment of MAF-1 fuel and inhibited red fuming nitric acid oxidizer by 2014-T6 aluminum alloy tankage for more than three years had not affected the mechanical, physical, or chemical properties of the materials to a degree that would affect tactical performance.

ACKNOWLEDGMENT

The author wishes to express his appreciation to Mr. Le Sumner for his valuable assistance in performing the metallography for the evaluation and also to Mr. Robert Cannon for performing the stress-free machining and sectioning operations that were responsible for the successful residual stress analysis of the unit.
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. Procedure</td>
<td>2</td>
</tr>
<tr>
<td>3. Discussion</td>
<td>2</td>
</tr>
<tr>
<td>4. Conclusion</td>
<td>6</td>
</tr>
</tbody>
</table>
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BULLPUP "A" Prepackaged Liquid Propulsion Unit S/N 4800</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Propulsion Unit S/N 4800 After Removal of Fairing Cone and Exterior Paint, Forward View</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Propulsion Unit S/N 4800 After Removal of Fairing Cone and Exterior Paint, Aft View</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>Propulsion Unit Installed in Lathe for Residual Stress Analysis Cutting</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>Low Stress Drive Fixture</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>Low Stress Steady-Rest Tail-Stock Fixture</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>Residual Stress Strain Gage Installation, General View</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>Typical Strain Gage Installation, Three Separate Gages</td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>Forward Section of Oxidizer Tank After First Cut</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>Deposits on Interior of Oxidizer Tank</td>
<td>15</td>
</tr>
<tr>
<td>11</td>
<td>Deposit on Aluminum SPGG Tube</td>
<td>16</td>
</tr>
<tr>
<td>12</td>
<td>Deposit on Oxidizer Tank Solid Propellant Gas Diffuser and Deflector</td>
<td>16</td>
</tr>
<tr>
<td>13</td>
<td>Deposits from Oxidizer Tank Solid Propellant Gas Diffuser and Deflector</td>
<td>17</td>
</tr>
<tr>
<td>14</td>
<td>BULLPUP Propulsion Unit S/N 4800 After Three Years of Storage, Sectioned View</td>
<td>18</td>
</tr>
<tr>
<td>15</td>
<td>Forward End of Oxidizer Tank, Sectioned, Close-Up View</td>
<td>19</td>
</tr>
<tr>
<td>16</td>
<td>Forward Dome Weldments</td>
<td>20</td>
</tr>
<tr>
<td>17</td>
<td>Burst Band to Forward Dome Weld Fusion Zone</td>
<td>20</td>
</tr>
<tr>
<td>18</td>
<td>Burst Band to SPGG Tube Weld Fusion Zone</td>
<td>21</td>
</tr>
<tr>
<td>19</td>
<td>IRFNA Contact Surface at Burst Band to SPGG Weld HAZ</td>
<td>21</td>
</tr>
<tr>
<td>20</td>
<td>IRFNA Contact Surface at Burst Band to SPGG Tube Weld HAZ</td>
<td>22</td>
</tr>
<tr>
<td>21</td>
<td>Stainless Steel Solid Propellant Gas Diffuser and Deflector, in Two Pieces</td>
<td>22</td>
</tr>
<tr>
<td>22</td>
<td>Stainless Steel Solid Propellant Gas Diffuser and Deflector</td>
<td>23</td>
</tr>
<tr>
<td>23</td>
<td>Stainless Steel Solid Propellant Gas Diffuser and Deflector Surface After Removal of Corrosion Deposits</td>
<td>23</td>
</tr>
<tr>
<td>24</td>
<td>Center Bulkhead Interface, Sectioned View</td>
<td>24</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Aluminum Oxidizer Baffle</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Aluminum Oxidizer Baffle, Grain Structure</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Aluminum Oxidizer Baffle Welds</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>IRFNA Contact Surface of SPGG Tube HAZ at Oxidizer Baffle Weld</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Aluminum Baffle to Stainless Steel SPGG Tube Weld Fusion Zone</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>IRFNA Contact Surface of Aluminum Baffle HAZ at Stainless Steel SPGG Tube Weld</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>IRFNA Contact Surface of Aluminum Shear Slide Housing HAZ at SPGG Tube Weld</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Interior Surface of Aluminum SPGG Tube That Had No IRFNA Contact</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Same Surface as Shown in Figure 32 After Three Months of Exposure to Laboratory Atmosphere</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Oxidizer Orifice to Center Bulkhead Shear Slide Housing Weld</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Oxidizer Orifice to Center Bulkhead Weld Fusion Zone</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Oxidizer Orifice to Center Bulkhead Weld Fusion Zone</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>IRFNA Contact Surface, Center Bulkhead HAZ at Orifice Weld</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>IRFNA Contact Surface, Shear Slide Housing HAZ at Orifice Weld</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>IRFNA Contact Surface, Oxidizer Orifice</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Aluminum Oxidizer Tank Wall</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>IRFNA Contact Surface, Oxidizer Tank Wall</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>IRFNA Contact Surface, Oxidizer Tank Wall</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Center Bulkhead Burst Band at Fuel Tank and Baffle Weld</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Fuel Tank Deflector to Center Bulkhead Weld Fusion Zone</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Fuel Tank Burst Band to Center Bulkhead Weld Fusion Zone</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Atmosphere Surface, Center Bulkhead</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Fuel Tank Baffle to Bulkhead Weld Fusion Zone</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Fuel Contact Surface, Center Bulkhead at Fuel Tank Baffle Weld HAZ</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Oxidizer Director and Screen Assembly</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Rivet Joint, Aluminum to Aluminum Contact, Oxidizer Director and Screen Assembly</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Corrosion on "Bucked" End of Rivet, Oxidizer Director and Screen Assembly</td>
<td></td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>52</td>
<td>IRFNA Contact Surface, Stainless Steel Screen</td>
<td>38</td>
</tr>
<tr>
<td>53</td>
<td>IRFNA Contact Surface, Stainless Steel Outer Screen Retainer Ring</td>
<td>39</td>
</tr>
<tr>
<td>54</td>
<td>Aluminum Retainer Ring, Oxidizer Director and Screen Assembly</td>
<td>39</td>
</tr>
<tr>
<td>55</td>
<td>Corrosion Site on Retainer Ring Where Aluminum Ring Contacted Stainless</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Steel Screen</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Center Bulkhead to Tank Weld</td>
<td>40</td>
</tr>
<tr>
<td>57</td>
<td>Oxidizer Tank Wall Microstructure 12 Inches from Center Bulkhead Weld</td>
<td>41</td>
</tr>
<tr>
<td>58</td>
<td>Oxidizer Tank Wall Microstructure 0.660 Inch from Center Bulkhead Weld</td>
<td>41</td>
</tr>
<tr>
<td>59</td>
<td>Oxidizer Tank Wall Microstructure 0.330 Inch from Center Bulkhead Weld</td>
<td>42</td>
</tr>
<tr>
<td>60</td>
<td>Oxidizer Tank Wall Microstructure 0.050 Inch from Center Bulkhead Weld</td>
<td>42</td>
</tr>
<tr>
<td>61</td>
<td>Oxidizer Tank Wall to Center Bulkhead Weld</td>
<td>43</td>
</tr>
<tr>
<td>62</td>
<td>Weld Metal at Oxidizer Tank to Center Bulkhead Weld</td>
<td>43</td>
</tr>
<tr>
<td>63</td>
<td>Center Bulkhead Weld Fusion Zone</td>
<td>44</td>
</tr>
<tr>
<td>64</td>
<td>Center Bulkhead Microstructure 0.180 Inch from Both Oxidizer Tank Weld and</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Fuel Tank Weld</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Center Bulkhead Microstructure 0.500 Inch from Weld</td>
<td>45</td>
</tr>
<tr>
<td>66</td>
<td>Center Bulkhead Microstructure 0.75 Inch from Weld</td>
<td>45</td>
</tr>
<tr>
<td>67</td>
<td>Stainless Steel Solid Propellant Gas Diffuser and Deflector, Photomacrograph</td>
<td>46</td>
</tr>
<tr>
<td>68</td>
<td>Stainless Steel Solid Propellant Gas Diffuser and Deflector, Microstructure</td>
<td>46</td>
</tr>
<tr>
<td>69</td>
<td>Fuel Tank, Aft End, Sectioned View</td>
<td>47</td>
</tr>
</tbody>
</table>
The propulsion unit from the BULLPUP "A", a prepackaged, liquid propulsion unit, was examined after three years and four months of storage.

The objective of the examination was to determine the extent of corrosion that might have occurred in areas having contact with propellants, at points of dissimilar metals contacts, and at weld joints.

The examination was performed under the auspices of the LANCE Project Office, U.S. Army Missile Command (AMICOM), Redstone Arsenal, Alabama, as a part of the LANCE Storage and Sludging Program, a study to determine the effects of extended storage on the functional properties of LANCE materials.

Use of the BULLPUP unit in the LANCE Storage and Sludging Program was initiated and warranted because of the basic similarity of the two propulsion systems. Both the LANCE and BULLPUP propulsion units are of tandem-tank configuration and both employ integrally welded 2014-T6 aluminum alloy primary construction material. In addition, the propellants of the two units are inhibited red fuming nitric acid (IRFNA)/mixed amine systems, and are prepackaged, i.e., the tanks serve as hermetically sealed storage containers for the propellants.

The defueling operation and the analysis of propellants (fuel and oxidizer), sludge, etc. are the subjects of a separate study conducted by the Propulsion Laboratory, AMICOM, and will be reported in detail in another report. However, the fuel and oxidizer analyses are noted in this report because they contribute to the metallurgical analysis.

The unit was sectioned for internal examination by the Structures and Mechanics Laboratory, AMICOM, as a part of the Residual Stress Analysis Program. The residual stress information is discussed briefly in this report, and will be reported in detail in another report. Photographs taken during the sectioning operation are included in this report to show the sectioning techniques employed.
The propulsion unit utilized for this examination was from BULLPUP "A" (LR58-RM-4), the Navy AGM-128 air-to-surface guided missile. Specifically, the LR58-RM-4 propulsion unit, serial number (S/N) 4800, assembly number 313207, from lot number 4, manufactured in January 1962 was supplied by the U.S. Naval Propellant Plant, Indian Head, Maryland. The unit was delivered to the Materials Engineering and Development Branch, Structures and Mechanics Laboratory, AMICOM, after the oxidizer, fuel, and solid propellant gas generator (SPGG) grain had been removed.

The internal surfaces of the oxidizer tank were examined for deposits, and two types of deposits were observed: an amber deposit on the tank walls, and a heavier, thicker, green deposit adhering loosely to the gas diffuser and deflector assembly. These deposits were collected separately and subjected to chemical analysis.

The internal surface of the oxidizer tank was optically examined for dissolution corrosion effects.

The thickness of the oxidizer tank walls was measured and recorded.

An example of each weld and weld type in the oxidizer tank subassembly was mounted and examined microscopically.

3. Discussion

The preloading propellant analysis and the loading and sealing of the propulsion unit was accomplished in January 1962. The propellants were removed from the unit in May 1965, making a total storage time (including the transport time from Indian Head to Redstone Arsenal) of three years and four months. The storage requirements for the system were -80° to +160°F.

a. Propellant Analysis

A chemical analysis of the propellants was made in January 1962 at the time of loading and sealing. Then in May 1965, after three years and four months of storage, the propellants were removed from the unit and analyzed again. A comparison of the two analyses is given below:
IRFNA

18 Jan 1962
HNO₃ (%) 83.16
NO₂ (%) 14.05
HF (%) 0.60
Total solids (%) 0.01
H₂O (%) 2.18

28 May 1965
HNO₃ (%) 83.00
NO₂ (%) 14.19
HF (%) 0.52
Total solids (%) 0.28
H₂O (%) --

IRFNA met the specification requirements of MIL-P-72554E Type III A acids.

MAF-1

18 Jan 1962
DETA (%) 50.27
UDMH (%) 40.38
ACN (%) 9.0
H₂O (%) 0.35

22 Jun 1965
DETA (%) 50.0
UDMH (%) 39.35
ACN (%) 9.3
H₂O (%) --

The UDMH was approximately 1.0 percent low, according to RMD Specification No. 4034.

A note of interest in the chemistry of the IRFNA is the apparent stability of the HF after 3.3 years of storage. The drop from 0.60 percent weight in 1962 to 0.52 percent weight in 1965 is almost within experimental error limits, and is particularly impressive when compared to other aluminum/IRFNA systems such as the 6000 series aluminum alloys which indicate HF losses of 80 to 90 percent in five years of storage. This would seem to indicate that the phenomenon of passivation of aluminum by HF (in which the HF slowly forms a fluoride passive coating on the aluminum) is less pronounced with the 2014-T6 aluminum alloy of the BULLPUP and LANCE missiles than with the 6061-T6 aluminum alloy of the LARK and SPARROW missiles. The fuel and oxidizer were drained from the unit through a 10-14M (micron) filter. The fuel filter did not display sufficient residue to warrant an analysis; however, residue on the oxidizer filter was quite heavy and was analyzed.

b. Residue Analysis

Two separate residues (deposits) were identified by color; one was white and the other, green. Semi-quantitative spectrographic analysis of the white deposit indicated 8.3 percent sodium, 18.0 percent silicon, 5.6 percent calcium, and 3.3 percent aluminum.
Analysis of the green deposit indicated 17.0 percent iron, 6.6 percent aluminum, 3.8 percent chromium, 0.71 percent nickel, and 0.23 percent manganese.

The dry deposits removed from the oxidizer tank after sectioning were analyzed and the results indicated that:

1) The amber deposits on the oxidizer tank walls and the white deposit taken from the IRFNA were the same material.

2) The green flake deposits taken from the SPGG diffuser and deflector and the green deposits taken from the IRFNA were the same material.

The tankage was decontaminated after draining in order to preserve the storage-induced fluoride passive coating on the interior surface. To this end, a long-term, low-pressure, warm, nitrogen-gas purge was employed. The adherence of the lightly attached amber deposit on the oxidizer tank after decontamination indicates that the decontamination procedure was successful.

c. Residual Stress Evaluation

Sectioning of the propulsion unit was performed as a part of the residual stress evaluation. The stress evaluation was of particular importance since the stress-corrosion characteristics of the 2014-T6 aluminum/IRFNA couple determine the ability to achieve long-term storage. Long-term storage is one of the primary areas where the state-of-the-art is long extended in the development of packaged liquid propulsion systems. Only limited experience data is available on the compatibility of the materials utilized in the BULLPUP and LANCE systems. The evaluation of the stress-corrosion characteristics of the BULLPUP propulsion unit provided data based on a long period of storage. Such "real-time" data is necessary for meaningful results and correlation of data to the LANCE design.

Stress corrosion is a complex interaction of corrosive attack with sustained tension stress at the surface of the metal that causes cracking. In the stress-corrosion cracking process there is a greater and faster deterioration in mechanical properties through simultaneous action of static tension stress and corrosion than would occur as a result of the separate but additive effects of the phenomena.
Processing techniques for both the BULLPUP and LANCE propulsion systems require the use of "as-welded" 2014-T6 aluminum alloy structures. That is, the structures are utilized without a post-assembly or postwelding, stress-relief treatment. As a consequence stresses introduced into the structures by the general assembly and welding processes remain in the structure. Of the two modes of stress, the induction stresses (those stresses induced in and by welding) are of basic importance to the stress-corrosion and long-term storage evaluation.

The mechanics of stress induction during welding indicates that heat softens the metal adjacent to the weld and causes thermal expansion of this material. Cooler metal away from the weld restrains the thermal expansion and introduces compressive stresses parallel to the weld that are great enough to cause plastic deformation. On cooling, the heated region contracts and the yield strength increases. Tensile stresses are thus introduced.

As can be seen, the role of stress in promoting stress-corrosion cracking is important. In a residual stress analysis, this is directly related to the stress-corrosion characteristics of a structural unity. Accurate determination of structural residual stress uninfluenced by sectioning or analytical processing is equally important. Consequently, great care was taken in the cutting and sectioning operation. The gentle nature of the cutting can best be illustrated by the fact that a 0.90-inch steel roll pin, used as a location pin for the nozzle to fuel tank thrust chamber couple, was able to withstand, without failure, all the circumferential forces applied during the lathe cutting of the unit. Photographs taken during various phases of the cutting operation are included as part of this report.

The relaxation technique was employed in the residual stress analysis. Seventy-two rosette-type strain gages were attached in areas of primary stress induction sites. Strain gage variations before and after cutting were used to calculate the residual figures. The predominant stress in the structure was a 12,000 psi tensile stress on the outer surface of the fuel tank wall at the center bulkhead weld.

d. Examination of Interior Surfaces

Metallographic examination of the interior surfaces of the fuel tank did not reveal any form of corrosive attack. Surfaces of the 2014-T6 aluminum alloy tank were bright, clean, and smooth.
Examination of the interior surfaces of the oxidizer tank revealed, in addition to the amber colored deposit, a slight etch condition over all surfaces. This etch was slightly more apparent at the weld heat affected zone (HAZ). The surface of the stainless steel SPGG diffuser and deflector was etched fairly heavily under the green flaky deposit.

No evidence of detrimental intergranular corrosion, galvanic corrosion, or stress corrosion was found in any area of the propulsion unit.

Incidental to this evaluation, but nevertheless important to the storage life, was the good condition of the elastomeric "O" rings.

g. Wall Thickness

The wall thickness of the propulsion unit oxidizer tank after three years and four months of storage was measured and found to be within drawing requirements. A pictorial record of the evaluation of the BULLPUP propulsion unit, including photomicrographs of representative microstructures, is included as part of this report.

4. Conclusion

After 3.3 years of storage the mechanical, physical, and chemical properties of the 2014-T6 aluminum alloy used in the construction of the BULLPUP "A" (LR58-RM-4) propulsion unit, assembly number 313207, S/N 4800 experienced no significant degradation.

Residue found in the oxidizer tank was caused by a reaction between the stainless steel SPGG diffuser and deflector assembly and the IRFNA.

Results of this evaluation support utilization of 2014-T6 aluminum alloy for the LANCE system relative to extended storage requirements and materials compatibility.
Figure 1. BULLPUP "A" Prepackaged Liquid Propulsion Unit S/N 4800

Components of the Solid Propellant Gas Generator
Figure 8. Typical Strain Gage Installation, Three Separate Gages
A. SPGG Tube
B. Oxidizer Tank Wall
C. Part of Cutting Fixture

Figure 9. Forward Section of Oxidizer Tank After First Cut

A. Stainless Steel Solid Propellant Gas Diffuser and Deflector
B. Aluminum SPGG Tube
C. Aluminum Oxidizer Tank Wall

Figure 10. Deposits on Interior of Oxidizer Tank
Deposit was lightly attached.

Figure 11. Deposit on Aluminum SPGG Tube

Deposit was lightly attached.

Figure 12. Deposit on Oxidizer Tank Solid Propellant Gas Diffuser and Deflector
A. Surface of Deposit, Light Green
B. Underside of Deposit, Dark Green

Figure 13. Deposits from Oxidizer Tank Solid Propellant Gas Diffuser and Deflector
Figure 15. Forward End of Oxidizer Tank, Sectioned, Close-Up View

A. Burst Band to Forward Dome Weld
B. Burst Band to SPGG Tube Weld
C. Solid Propellant Gas Diffuser and Deflector Assembly
A. Burst Band to Forward Dome
B. Burst Band to SPGG Tube

Figure 16. Foreward Dome Weldments

A. Aluminum Base Metal (Dome)
B. Weld Metal

Figure 17. Burst Band to Forward Dome Weld Fusion Zone
B. Weld Metal

Figure 18. Burst Band to SPGG Tube Weld Fusion Zone

C. IRFNA Contact Surface

Figure 19. IRFNA Contact Surface at Burst Band to SPGG Weld HAZ
Keller's Etch 198 X Mag

A. Aluminum Base Metal (Burst Band)
B. IRFNA Contact Surface

Figure 20. IRFNA Contact Surface at Burst Band to SPGG Tube Weld HAZ

Electrolytic Oxalic Acid Etch 3 X Mag

Figure 21. Stainless Steel Solid Propellant Gas Diffuser and Deflector, in Two Pieces
Figure 22. Stainless Steel Solid Propellant Gas Diffuser and Deflector Weld

Electrolytic Oxalic Acid Etch 198 X Mag

Electrolytic Oxalic Acid Etch 396 X Mag

Figure 23. Stainless Steel Solid Propellant Gas Diffuser and Deflector Surface After Removal of Corrosion Deposits
A. Oxidizer Tank Baffle
B. Baffle to SPGG Tube Weld
C. SPGG Tube to Shear Slide Housing Weld
D. Oxidizer Orifice
E. Fuel Tank Burst Band and Bulkhead to Fuel Tank Baffle Weld
F. Oxidizer Director and Screen Assembly
G. Center Bulkhead to Oxidizer Tank Shell Weld
H. Fuel Tank Solid Propellant Gas Diffuser and Deflector

Figure 24. Center Bulkhead Interface, Sectioned View
Figure 25. Aluminum Oxidizer Baffle

Figure 26. Aluminum Oxidizer Baffle, Grain Structure

Grain exposure unaffected by contact.
IRFNA corrosion was most severe at the HAZ surfaces.

Figure 28. IRFNA Contact Surface of SPGG Tube HAZ at Oxidizer Baffle Weld
Figure 29. Aluminum Baffle to Stainless Steel SPGG Tube Weld Fusion Zone

Degree of corrosion is the same in the HAZ of other aluminum components. Angularity of exposed grains does not appear to influence the amount of corrosion.

Figure 30. IRFNA Contact Surface of Aluminum Baffle HAZ at Stainless Steel SPGG Tube Weld
Figure 31. IRFNA Contact Surface of Aluminum Shear Slide Housing HAZ at SPGG Tube Weld

Surface generally free of attack.

Figure 32. Interior Surface of Aluminum SPGG Tube That Had No IRFNA Contact
Intergranular attack and general surface dissolution corrosion have progressed further than any nitric-induced corrosion did during the 3.3 years of storage.

Figure 33. Same Surface as Shown in Figure 32
 After Three Months of Exposure to Laboratory Atmosphere

Figure 34. Oxidizer Orifice to Center Bulkhead
 Shear Slide Housing Weld
Figure 35. Oxidizer Orifice to Center Bulkhead Weld Fusion Zone

Figure 36. Oxidizer Orifice to Center Bulkhead Weld Fusion Zone
Figure 37. IRFNA Contact Surface, Center Bulkhead HAZ at Orifice Weld

Figure 38. IRFNA Contact Surface, Shear Slide Housing HAZ at Orifice Weld
Figure 39. IRFNA Contact Surface, Oxidizer Orifice

Figure 40. Aluminum Oxidizer Tank Wall

A. Cut Parallel to Centerline
B. Cut Perpendicular to Centerline
Keller's Etch 198 X Mag

Cut Parallel to Tank Centerline

Figure 41. IRFNA Contact Surface, Oxidizer Tank Wall

Keller's Etch 198 X Mag

Cut Perpendicular to Tank Centerline

Figure 42. IRFNA Contact Surface, Oxidizer Tank Wall
A. Fuel Tank Burst Band
B. Fuel Tank Baffle

Figure 43. Center Bulkhead Burst Band at Fuel Tank and Baffle Welds

A. Base Metal (Bulkhead)
B. Weld Metal

Figure 44. Fuel Tank Deflector to Center Bulkhead Weld Fusion Zone
A. Base Metal (Bulkhead)
B. Base Metal (Burst Band)
C. Weld Metal

Figure 45. Fuel Tank Burst Band to Center Bulkhead
Weld Fusion Zone

Corrosion is more advanced on this surface than on the IRFNA contact surfaces.

Figure 46. Atmosphere Surface, Center Bulkhead
Figure 47. Fuel Tank Baffle to Bulkhead Weld Fusion Zone

A. Base Metal (Baffle)
B. Weld Metal

Figure 48. Fuel Contact Surface, Center Bulkhead at Fuel Tank Baffle Weld HAZ
A. Aluminum Retainer, Director, and Rivet; Stainless Steel Screen
B. Stainless Steel Retainer and Screen

Figure 49. Oxidizer Director and Screen Assembly

Slight IR FNA attack apparent on heavily worked rivet (A).

Figure 50. Rivet Joint, Aluminum to Aluminum Contact, Oxidizer Director and Screen Assembly
Figure 51. Corrosion on "Bucked" End of Rivet, Oxidizer Director and Screen Assembly

Electrolytic Oxalic Acid Etch 198 X Mag
Slight IRFNA attack is evident.

Figure 52. IRFNA Contact Surface, Stainless Steel Screen
Electrolytic Oxalic Acid Etch 198 X Mag
No IRFNA surface attack is evident.

Figure 53. IRFNA Contact Surface, Stainless Steel Outer Screen Retainer Ring

Figure 54. Aluminum Retainer Ring, Oxidizer Director and Screen Assembly
Corrosion has been advanced by exposure to laboratory environment.

Figure 55. Corrosion Site on Retainer Ring Where Aluminum Ring Contacted Stainless Steel Screen

Figure 56. Center Bulkhead to Tank Weld

A. Oxidizer Tank Wall
B. Bulkhead
Hardness, Rockwell "B" 80

Figure 57. Oxidizer Tank Wall Microstructure
12 Inches from Center Bulkhead Weld

Keller's Etch 198 X Mag

Hardness, Rockwell "B" 73.0

Figure 58. Oxidizer Tank Wall Microstructure
0.660 Inch from Center Bulkhead Weld
Hardness, Rockwell "B" 50.0

Figure 59. Oxidizer Tank Wall Microstructure
0.330 Inch from Center Bulkhead Weld

Hardness, Rockwell "B" 60

Figure 60. Oxidizer Tank Wall Microstructure
0.050 Inch from Center Bulkhead Weld
A. Wall Material
B. Weld Metal

Figure 61. Oxidizer Tank Wall to Center Bulkhead Weld

Hardness, Rockwell "B" 47.0

Figure 62. Weld Metal at Oxidizer Tank to Center Bulkhead Weld
Hardness at bulkhead side of fusion line is approximately Rockwell "B" 60.
A. Bulkhead
B. Weld Metal

Figure 63. Center Bulkhead Weld Fusion Zone.

Figure 64. Center Bulkhead Microstructure 0.180 Inch from Both Oxidizer Tank Weld and Fuel Tank Weld
Hardness, Rockwell "B" 53.0

Figure 65. Center Bulkhead Microstructure 0.500 Inch from Weld

Hardness, Rockwell "B" 71.8

Figure 66. Center Bulkhead Microstructure 0.75 Inch from Weld
Electrolytic Oxalic Acid Etch

Figure 67. Stainless Steel Solid Propellant Gas Diffuser and Deflector, Photomacrograph

Electrolytic Oxalic Acid Etch

No corrosive attack is evident.

Figure 68. Stainless Steel Solid Propellant Gas Diffuser and Deflector, Microstructure
Figure 69. Fuel Tank, Aft End, Sectioned View
A tactical Bullpup "A" prepackaged, storable, liquid propulsion unit was metallurgically examined after three years of storage. The examination was conducted relative to the storage requirements of the LANCE missile system (currently being developed by the U.S. Army Missile Command, Huntsville, Alabama) which utilizes materials and propellants similar to those employed in the BULLPUP "A".

The purpose of the evaluation was to acquire "real-time" storage data based on long periods of exposure.

The examination revealed that containment of MAF-1 fuel and inhibited red fuming nitric acid oxidizer by 2014-T6 aluminum alloy tankage for more than three years had not affected the mechanical, physical, or chemical properties of the materials to a degree that would affect tactical performance.