NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

FROM

Distribution authorized to U.S. Gov’t. agencies and their contractors; Critical Technology; Mar 1952. Other requests shall be referred to the Ballistic Research Laboratories, Aberdeen Proving Ground, MD 21010.

AUTHORITY

USABRL, per notice dtd 1 Sep 1989
MEMORANDUM REPORT NO. 597
MARCH 1952

FRAGMENTATION OF RING TYPE CYLINDRICAL SHELL
MADE OF VARIOUS METALS

Michael Famiglietti

BALLISTIC RESEARCH LABORATORIES
ABERDEEN PROVING GROUND, MARYLAND
Retain or destroy per AR 380-5 and AR 345-220, or comparable Navy or AF Regulations. Contractors should consult their government contracting offices regarding procedures to be followed. DO NOT RETURN

This document contains information affecting the national defense of the United States within the meaning of the Espionage Laws, Title 18 U. S. C., Sections 793 and 794. The transmission or the revelation of its contents in any manner to an unauthorized person is prohibited by law.

The findings in this report are not to be construed as an official Department of the Army position.
FRAGMENTATION OF RING TYPE CYLINDRICAL SHELL
MADE OF VARIOUS METALS.

Michael Famiglietti.

BRL-MR-597

ORD.

Aberdeen Proving Ground, Maryland
FRAGMENTATION OF RING TYPE CYLINDRICAL SHELL
MADE OF VARIOUS METALS

ABSTRACT

To study the fragmentation characteristics of shell made of various metals, a series of ring-type cylindrical shell, made of various metals, having widely different densities and physical properties, were statically fragmented. The resulting data were analyzed in conjunction with a theory governing the sizes of fragments.

The following conclusions were reached:

1. A direct variation appears to exist between the mean fragment mass and the maximum fragment mass when different materials are compared.

2. The mean fragment mass is partially dependent upon the following metallurgical properties of the shell:
 a. The density of the metal.
 b. The tensile strength of the metal.
 c. The static reduction of area of the metal.

Further, semi-empirical relations were obtained by which mean fragment mass could be predicted with some statistical accuracy from the preceding quantities, the geometry, and from the initial fragment velocity, \(v_0 \). Although the experiments all involved explosive HDX composition G3, there are theoretical reasons for expecting the same relations to hold for other explosives, whose identity may influence the mean fragment mass only through \(v_0 \).
INTRODUCTION

To study the basic fragmentation characteristics of shell made of various metals, having widely different densities and physical properties, and to determine whether shell made of metals other than steel or steel alloys can be used advantageously in special fragmentation problems, a number of series of shell have been statically fragmented.

In this report, the fragmentation data on ring-type cylindrical shell were analyzed in conjunction with a theory governing the sizes of fragments.

SHELL ASSEMBLY AND TESTING FACILITIES

The ring-type cylindrical shell were assembled from coaxial rings, stacked end to end, each ring having an inner diameter of 2.2 inches, an outer diameter of 3.0 inches and an axial dimension of 0.4 inches. The shell were loaded with Composition C-3 and end initiated by an engineer's special number 8 blasting cap through a tetryl booster (Fig. 1).

The shell were detonated with the shell axis vertical in two types of fragmentation facilities. Facility Type I (Fig. 2) consisted of 6 cane fiber board filled fragment recovery boxes, each 4' x 8' x 3' thick, placed on the circumference of a circle having a 10 foot radius and a photo-velocity recovery box, faced with either 0.022 inches dural sheet or copper screen. Dural sheet was used to face the photo-velocity recovery box except when the impinging fragments created a flash of light that made the individual fragments indiscernible.

Test Facility Type II consisted of 12 fragment and 2 photo-velocity recovery boxes placed on the circumference of a circle of 20 foot radius.

The filler of the recovery boxes was searched for fragments and the recovered fragments were weighed to the nearest grain. The weight distribution of the recovered fragments was tabulated and a mean fragment weight, weighted by weight, was determined excluding fragments less than one grain, (Table II).

Photographic velocities were obtained by a high speed motion picture Fastax camera and the form developed in the appendix of BRL Report No. 771, was used to compute initial velocities. The average fragment area in square inches projected on a plane normal to the trajectory was taken to be $2/3/81.3$, where m is the mass of the fragment in grains, and the value used for the drag coefficient was 0.58.

GENERAL THEORY

A theory, informally proposed by Dr. T. E. Sterne, which permits the determination of a semi-empirical measure of the limiting amount of internal kinetic energy, per unit mass, that a material can convert into plastic and elastic strain energy without rupture, for cylindrical shell, is based upon the following hypotheses:

H-1 - The size of a fragment is determined by the limiting amount of internal kinetic energy, per unit mass, that the material can convert into plastic and elastic strain energy without rupture.

H-2 - The mean fragment mass varies as the maximum fragment mass when different materials are compared.

CYLINDRICAL FRAGMENTATION THEORY

For cylindrical shell assembled from coaxial rings let

- $b =$ the axial dimension of a ring.
- $t =$ the thickness of a ring.
- $f =$ the length of a mean circumferential portion of a ring.
- $r =$ the initial mean radius of a ring.
- $\rho =$ the density of the metal.
- $V_o =$ the initial fragment velocity assumed to be imparted instantaneously, everywhere at once and radially.

Consider a portion of a ring of circumferential length f. Then the velocity, relative to the center of mass of the portion, of material at a circumferential distance x from the center of mass (Fig. 3) is

$$V_x = x \frac{V_o}{r}$$

the internal kinetic energy of the portion is

$$\frac{btpV_o^2f^3}{2\pi r^2}$$

and the internal kinetic energy per unit mass is

$$\frac{V_o^2f^2}{2\pi r^2}$$

Let $c =$ the limiting amount of internal kinetic energy, per unit mass, that the material can convert into plastic and elastic strain energy without rupture.
Then using \(H-1 \) the largest fragment mass is

\[
M_{\text{max}} = \frac{\sqrt{2b/t} \cdot a^{1/2} \cdot \text{bptr}}{v_0}
\]

...(1)

Using \(H-2 \) the mean fragment mass is

\[
M^* = K \frac{\sqrt{2b/t} \cdot a^{1/2} \cdot \text{bptr}}{v_0}
\]

...(2)

where

\(M^* \) = the mean fragment weight, weighted by weight.

\(K \) = a constant independent of materials, explosives, and geometric proportions.

If \(b, t, \) and \(r \) are expressed in inches, \(\rho \) in grams per cu. cm., \(M^* \) in grains, \(v_0 \) in ft/sec and if \(c \) is a constant equal to \(K^2 \times 10^{-6} \), after a slight rearrangement equation (2) becomes

\[
c^2 = \left[\frac{M^* \cdot v_0}{4.515 \cdot \text{bptr}} \right]^2 \times 10^{-6}.
\]

...(2A)

ANALYSIS

To test the validity of \(H-2 \) the mean fragment masses were plotted against the maximum fragment masses. An examination of the resulting plot (Plot 3) indicated that the data supports \(H-2 \) and that the variation is apparently direct.

The mean fragment mass, initial velocity, and physical properties of each shell were systematically substituted in equation (2A) to obtain experimental values of \(c^2 \) (Table III).

Various attempts were then made to establish a functional relationship between \(a \) and the known metallurgical properties of the shell so that predictions of mean fragment weight could be made. The relationship that yielded the best result was obtained by considering:

\[
a \propto \frac{s}{\rho}
\]

...(3)

where

\(s \) = the static tensile strength of the casing;

\(\rho \) = the density of the metal.
The percent of dynamic strain at rupture.

- the amount of permanent extension experienced by the metal during rapid stressing expressed as a percentage of the original gage length.

To determine the dynamic strain of a particular casing material at rupture in the absence of a stress strain relationship, the following assumptions were made:

H-3 - The density and the volume of the casing remain unchanged.

H-4 - The axial dimension of a ring remains constant.

Let

\[t = \text{the initial thickness of a ring.} \]

\[T = \text{the thickness of a ring at rupture.} \]

\[r_1 = \text{the initial inner radius of a ring.} \]

\[R_1 = \text{the inner radius of a ring at rupture.} \]

\[r_2 = \text{the initial outer radius of a ring.} \]

\[R_2 = \text{the outer radius of a ring at rupture.} \]

\[\bar{r} = \text{the initial mean radius of a ring.} \]

\[\bar{R} = \text{the mean radius of a ring at rupture.} \]

\[\bar{c} = \text{the initial mean circumference of a ring.} \]

\[A_D = \text{the percent dynamic reduction in cross sectional area of the fragments.} \]

\[\varepsilon_D = \text{dynamic strain at rupture.} \]

Then using H-3

\[R_2 + R_1 = \frac{r_2^2 - r_1^2}{R_2 - R_1}, \]

and H-4 yields

\[T = t(1 - \frac{A_D}{100}). \]

Thus

\[\bar{R} = \frac{r_2^2 - r_1^2}{2t(1 - \frac{A_D}{100})}. \]
By definition

\[\varepsilon_D = \frac{D - \bar{D}}{\bar{D}} \times 100 \]

Upon substitution and simplification

\[\varepsilon_D = \frac{A_D}{A_D - 100} \]

Hence (3) becomes

\[\alpha \propto \frac{A_D}{A_D - 100} \quad \ldots \text{(3A)} \]

To enable a determination of \(\alpha \) from static data, the experimental values of \(A_D \), which were obtained by measuring the reduction of area of approximately 50 percent of the recovered fragments, were plotted against \(A_s \) (Plot 2) where

\[A_s = \text{static reduction of area.} \]

\[\alpha = \text{the percent reduction of area extracted from a handbook or obtained from a conventional tensile test.} \]

The resulting scatter diagram indicated a linear trend which was assumed. The line

\[A_D = 1.05 A_s - 1.08 \]

was obtained by least squares where both variables were considered to be in error.

Thus (3A) becomes

\[\alpha' = \frac{\bar{\alpha}}{\bar{\alpha}} \left[\frac{100 (1.05 A_s - 1.08)}{100 - (1.05 A_s - 1.08)} \right] \times 10^{-5} \quad \ldots \text{(3B)} \]

The semi-empirical values of \(\alpha' \) obtained from equation (2A) were plotted versus the \(\alpha' \) values obtained from (3B), (Plot 3). The equation of the regression line of \(\alpha' \) on \(\alpha' \) was determined and the correlation coefficient was computed to be 0.68. The probability that such a correlation should arise, by random sampling, from an uncorrelated population was computed, by Students t test of significance, to be less
than 0.01. Thus, it appears that the limiting amount of internal kinetic energy, per unit mass, that the material can convert into plastic and elastic strain energy without rupture, and therefore the mean fragment mass, is partially dependent upon the density, the tensile strength, and the static reduction of area of the metal.

ACKNOWLEDGMENTS

Dr. T. E. Sterne suggested that the fragmentation of metals of widely different physical properties should be investigated and made helpful suggestions for the treatment of the data. Mr. N. A. Tolch and Mr. Norman Brown planned the broad program and designed the shell casings. Mr. F. A. Weymouth directed the accomplishment of the experiments.

SUMMARY

When the fragmentation data on ring-type cylindrical shell, made of various metals, were used in conjunction with a theory governing the sizes of fragments, the following conclusions were noted:

1. A direct variation appears to exist between the mean fragment mass and the maximum fragment mass when different materials are compared.

2. The mean fragment mass is partially dependent upon the following metallurgical properties of the shell:
 a. The density of the metal.
 b. The tensile strength of the metal.
 c. The static reduction of area of the metal.

3. If hypotheses H-1 and H-2 were correct, the equation

\[
\left[\frac{E^2 W \nu}{4.515 \text{ bptr}} \right]^2 \times 10^{-6} = 62.4 \frac{\rho}{A_s} \left[\frac{100 (1.05 A_s - 1.08)}{100 - (1.05 A_s - 1.08)} \right] \times 10^{-5} + 224
\]

should enable predictions of mean fragment mass to be made for other metals provided correct values of \(\nu \) were employed.

Although the experiments all involved explosive RDX Composition C3, there are theoretical reasons for expecting the same relations to hold for other explosives, whose identity may influence the mean fragment mass only through \(\nu \).

Michael Famiglietti

Michael Famiglietti
<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>ABR.</th>
<th>COMPOSITION</th>
<th>DENSITY* GMS/CT. CM.</th>
<th>TENSION STRENGTH PSI</th>
<th>YIELD STRENGTH PSI</th>
<th>STATIC ELONGATION %</th>
<th>STATIC REDUCTION OF AREA %</th>
<th>HARDNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnesium (Commercially Pure)</td>
<td>Mg</td>
<td>Mg. 99.5%</td>
<td>1.74</td>
<td>20,000</td>
<td>--</td>
<td>9</td>
<td>9</td>
<td>BHN 90</td>
</tr>
<tr>
<td>Magnesium Alloy (Downmetal B)</td>
<td>Mg.A.</td>
<td>Al. 7.7% Zn. 0.3%</td>
<td>1.31</td>
<td>12,000</td>
<td>30,000</td>
<td>14</td>
<td>22</td>
<td>BHN 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mn. 0.2% Remainder Mg.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BHN 21.5</td>
</tr>
<tr>
<td>Aluminum (Type 2 30)</td>
<td>Al</td>
<td>Al. 99.5%</td>
<td>2.71</td>
<td>14,200</td>
<td>5,000</td>
<td>12</td>
<td>72</td>
<td>BHN 120</td>
</tr>
<tr>
<td>Aluminum Alloy (Type 24 7T)</td>
<td>Al.A.</td>
<td>Cu. 1.5% Mn. 0.6%</td>
<td>2.77</td>
<td>68,000</td>
<td>40,000</td>
<td>13</td>
<td>22</td>
<td>RB 89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mg. 1.8% Remainder Al.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Titanium (Commercially Pure)</td>
<td>Ti</td>
<td>98.77% Ti. .12% Fe. .7% C*</td>
<td>1.54</td>
<td>95,113*</td>
<td>49,113*</td>
<td>21*</td>
<td>37</td>
<td>BHN 35*</td>
</tr>
<tr>
<td>Zine (Commercially Pure)</td>
<td>Zn</td>
<td>Pb. 0.08% Remainder Zn.*</td>
<td>7.13</td>
<td>19,500*</td>
<td></td>
<td>65*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grey Cast Iron</td>
<td>G.C.S.</td>
<td>C. 3.21%</td>
<td>7.15</td>
<td>25,000</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>RB 114</td>
</tr>
<tr>
<td>Cast Steel</td>
<td>G.S.</td>
<td>C. 0.35% Mn. 0.85%</td>
<td>7.35</td>
<td>70,000</td>
<td>37,200</td>
<td>10</td>
<td>16</td>
<td>RB 30</td>
</tr>
<tr>
<td>Hadfield Manganese Steel</td>
<td>H.Mn.S.</td>
<td>C. 1.2%* Mn. 13.0%</td>
<td>7.90</td>
<td>140,000*</td>
<td>52,000*</td>
<td>40*</td>
<td>35*</td>
<td>BHN 200</td>
</tr>
<tr>
<td>Stainless Steel</td>
<td>S.S.</td>
<td>C. 18.0% Ni. 3.0%</td>
<td>7.93</td>
<td>85,000</td>
<td>40,000</td>
<td>60</td>
<td>60</td>
<td>BHN 150</td>
</tr>
<tr>
<td>Beryllium Copper</td>
<td>Be.Cu.</td>
<td>Cu. 97.65% Be. 2.0%</td>
<td>3.26</td>
<td>70,000*</td>
<td>73,800*</td>
<td>40*</td>
<td>57</td>
<td>RB 70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. 0.35%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yellow Brass</td>
<td>Y.B.</td>
<td>Cu. 61.3% Zn. 23.1% Pb. 3.15% Sn. 2.56%</td>
<td>3.50</td>
<td>49,000*</td>
<td>18,000*</td>
<td>53*</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>Monel</td>
<td>ML</td>
<td>Ni. 67.5%</td>
<td>3.84</td>
<td>88,000</td>
<td>40,000</td>
<td>41</td>
<td>50</td>
<td>BHN 62</td>
</tr>
<tr>
<td>Aluminum Bronze</td>
<td>Al.B.</td>
<td>Cu. 92.5% Al. 6.5%</td>
<td>3.86</td>
<td>78,000*</td>
<td>25,000*</td>
<td>25*</td>
<td>30*</td>
<td>BHN 160</td>
</tr>
<tr>
<td>Nickel (Commercially Pure)</td>
<td>Ni</td>
<td>Ni. 99.9%</td>
<td>8.90</td>
<td>67,000*</td>
<td>30,000*</td>
<td>40*</td>
<td>67*</td>
<td>RB 50*</td>
</tr>
<tr>
<td>Copper (Commercially Pure)</td>
<td>Cu</td>
<td>Cu. 96.1%</td>
<td>8.96</td>
<td>34,000</td>
<td>13,000</td>
<td>50</td>
<td>60</td>
<td>BHN 120</td>
</tr>
<tr>
<td>Lead (Commercially Pure)</td>
<td>Pb</td>
<td>Pb. 99.9%</td>
<td>11.34</td>
<td>1,700*</td>
<td></td>
<td>35*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Denotes data taken from handbooks or reliable sources.

1 This table was prepared by Mr. Fred A. Weymouth.
Table II

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>NO.</th>
<th>1-2</th>
<th>3-4</th>
<th>5-7</th>
<th>8-10</th>
<th>11-15</th>
<th>16-20</th>
<th>21-35</th>
<th>36-55</th>
<th>56-75</th>
<th>76-100</th>
<th>101-130</th>
<th>131-175</th>
<th>176-220</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg.</td>
<td>2</td>
<td>353</td>
<td>339</td>
<td>201</td>
<td>59</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>370</td>
<td>315</td>
<td>197</td>
<td>58</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg.A.</td>
<td>2</td>
<td>931</td>
<td>231</td>
<td>74</td>
<td>9</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>802</td>
<td>262</td>
<td>68</td>
<td>9</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al.</td>
<td>2</td>
<td>35</td>
<td>37</td>
<td>52</td>
<td>96</td>
<td>169</td>
<td>89</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>30</td>
<td>28</td>
<td>37</td>
<td>86</td>
<td>170</td>
<td>96</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al.A.</td>
<td>2</td>
<td>150</td>
<td>137</td>
<td>112</td>
<td>100</td>
<td>161</td>
<td>76</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>132</td>
<td>151</td>
<td>110</td>
<td>106</td>
<td>130</td>
<td>64</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti.</td>
<td>1</td>
<td>238</td>
<td>189</td>
<td>157</td>
<td>102</td>
<td>118</td>
<td>90</td>
<td>211</td>
<td>69</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn.</td>
<td>2</td>
<td>48</td>
<td>28</td>
<td>26</td>
<td>23</td>
<td>37</td>
<td>26</td>
<td>118</td>
<td>127</td>
<td>52</td>
<td>9</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>25</td>
<td>29</td>
<td>26</td>
<td>19</td>
<td>27</td>
<td>39</td>
<td>89</td>
<td>103</td>
<td>37</td>
<td>15</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

G.C.S.

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>NO.</th>
<th>1-2</th>
<th>3-4</th>
<th>5-7</th>
<th>8-10</th>
<th>11-15</th>
<th>16-20</th>
<th>21-35</th>
<th>36-55</th>
<th>56-75</th>
<th>76-100</th>
<th>101-130</th>
<th>131-175</th>
<th>176-220</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.S.</td>
<td>2</td>
<td>25</td>
<td>11</td>
<td>31</td>
<td>27</td>
<td>15</td>
<td>21</td>
<td>66</td>
<td>93</td>
<td>64</td>
<td>51</td>
<td>7</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>16</td>
<td>11</td>
<td>21</td>
<td>10</td>
<td>20</td>
<td>26</td>
<td>53</td>
<td>82</td>
<td>78</td>
<td>41</td>
<td>13</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>H.Mn.S.</td>
<td>2</td>
<td>30</td>
<td>32</td>
<td>54</td>
<td>27</td>
<td>15</td>
<td>36</td>
<td>84</td>
<td>78</td>
<td>15</td>
<td>35</td>
<td>15</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>43</td>
<td>34</td>
<td>12</td>
<td>10</td>
<td>28</td>
<td>34</td>
<td>79</td>
<td>83</td>
<td>50</td>
<td>23</td>
<td>11</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>S.S.</td>
<td>2</td>
<td>13</td>
<td>15</td>
<td>12</td>
<td>13</td>
<td>19</td>
<td>22</td>
<td>55</td>
<td>94</td>
<td>72</td>
<td>49</td>
<td>13</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>13</td>
<td>13</td>
<td>11</td>
<td>12</td>
<td>17</td>
<td>19</td>
<td>36</td>
<td>70</td>
<td>52</td>
<td>55</td>
<td>21</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Be.Cu.</td>
<td>2</td>
<td>20</td>
<td>25</td>
<td>16</td>
<td>18</td>
<td>25</td>
<td>28</td>
<td>56</td>
<td>94</td>
<td>87</td>
<td>36</td>
<td>20</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>25</td>
<td>29</td>
<td>6</td>
<td>11</td>
<td>9</td>
<td>16</td>
<td>45</td>
<td>79</td>
<td>73</td>
<td>48</td>
<td>18</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Y.B.</td>
<td>2</td>
<td>111</td>
<td>78</td>
<td>77</td>
<td>53</td>
<td>91</td>
<td>90</td>
<td>164</td>
<td>95</td>
<td>10</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>162</td>
<td>86</td>
<td>88</td>
<td>59</td>
<td>121</td>
<td>99</td>
<td>179</td>
<td>95</td>
<td>29</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn.</td>
<td>2</td>
<td>11</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>19</td>
<td>10</td>
<td>38</td>
<td>59</td>
<td>43</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>19</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>4</td>
<td>31</td>
<td>53</td>
<td>65</td>
<td>55</td>
<td>30</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Al.B.</td>
<td>2</td>
<td>39</td>
<td>40</td>
<td>27</td>
<td>24</td>
<td>45</td>
<td>15</td>
<td>113</td>
<td>56</td>
<td>10</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>51</td>
<td>38</td>
<td>34</td>
<td>39</td>
<td>58</td>
<td>19</td>
<td>126</td>
<td>129</td>
<td>45</td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K.</td>
<td>2</td>
<td>9</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>15</td>
<td>25</td>
<td>32</td>
<td>11</td>
<td>43</td>
<td>29</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>16</td>
<td>32</td>
<td>36</td>
<td>10</td>
<td>33</td>
<td>32</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Cu.</td>
<td>2</td>
<td>13</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>27</td>
<td>26</td>
<td>106</td>
<td>129</td>
<td>81</td>
<td>21</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>9</td>
<td>7</td>
<td>21</td>
<td>12</td>
<td>22</td>
<td>27</td>
<td>122</td>
<td>159</td>
<td>80</td>
<td>21</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Pb.</td>
<td>1</td>
<td>Very fine powder - no recovery</td>
<td></td>
</tr>
</tbody>
</table>

Note: Fragment Distribution Doubtful Due to Brittle Nature of Grey Cast Iron
<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>RD NO.</th>
<th>DATE</th>
<th>FRAG. NO.</th>
<th>RECOVERY BOXES FT.</th>
<th>DIST. TO PHOT. VEL. BOX FT</th>
<th>VINITIAL FT/SEC</th>
<th>AREDUCT. %</th>
<th>ND MEAN FT/SEC</th>
<th>AV MEAN FT/SEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg.</td>
<td>2</td>
<td>6-10-49</td>
<td>12</td>
<td>20</td>
<td>20.00</td>
<td>1693</td>
<td>5644</td>
<td>43.9</td>
<td>5.1</td>
</tr>
<tr>
<td>Mg.A.</td>
<td>2</td>
<td>6-30-49</td>
<td>12</td>
<td>20</td>
<td>19.83</td>
<td>4816</td>
<td>5731</td>
<td>45.9</td>
<td>3.4</td>
</tr>
<tr>
<td>Al.</td>
<td>1</td>
<td>6-20-49</td>
<td>12</td>
<td>20</td>
<td>17.96</td>
<td>5483</td>
<td>6031</td>
<td>76.2</td>
<td>15.0</td>
</tr>
<tr>
<td>Al.A.</td>
<td>2</td>
<td>4-26-49</td>
<td>12</td>
<td>20</td>
<td>17.96</td>
<td>5356</td>
<td>5945</td>
<td>28.7</td>
<td>11.8</td>
</tr>
<tr>
<td>Ti.</td>
<td>1</td>
<td>11-8-49</td>
<td>15</td>
<td>10</td>
<td>10.33</td>
<td>4102</td>
<td>4362</td>
<td>17.94</td>
<td>26.0</td>
</tr>
<tr>
<td>Zn.</td>
<td>1</td>
<td>8-21-49</td>
<td>12</td>
<td>20</td>
<td>20.00</td>
<td>3792</td>
<td>4057</td>
<td>50.7</td>
<td>46.1</td>
</tr>
<tr>
<td>G.C.S.</td>
<td>1</td>
<td>3-10-49</td>
<td>6</td>
<td>10</td>
<td>17.87</td>
<td>3735</td>
<td>Not Frag</td>
<td>Not Det</td>
<td>Small Det</td>
</tr>
<tr>
<td>C.S.</td>
<td>2</td>
<td>1-25-50</td>
<td>12</td>
<td>20</td>
<td>20.00</td>
<td>3417</td>
<td>3656</td>
<td>29.4</td>
<td>63.0</td>
</tr>
<tr>
<td>H.Mn.S.</td>
<td>2</td>
<td>6-19-50</td>
<td>12</td>
<td>20</td>
<td>19.92</td>
<td>3526</td>
<td>3773</td>
<td>19.0</td>
<td>60.9</td>
</tr>
<tr>
<td>S.S.</td>
<td>2</td>
<td>3-15-50</td>
<td>12</td>
<td>20</td>
<td>20.08</td>
<td>3100</td>
<td>3286</td>
<td>43.1</td>
<td>72.2</td>
</tr>
<tr>
<td>Be.Cu.</td>
<td>1</td>
<td>10-25-50</td>
<td>12</td>
<td>20</td>
<td>19.88</td>
<td>3249</td>
<td>3444</td>
<td>51.5</td>
<td>68.9</td>
</tr>
<tr>
<td>Y.B.</td>
<td>1</td>
<td>2-17-49</td>
<td>6</td>
<td>10</td>
<td>17.92</td>
<td>3634</td>
<td>3888</td>
<td>42.5</td>
<td>35.4</td>
</tr>
<tr>
<td>Mo.</td>
<td>2</td>
<td>11-17-49</td>
<td>12</td>
<td>20</td>
<td>19.92</td>
<td>3233</td>
<td>3272</td>
<td>50.1</td>
<td>90.2</td>
</tr>
<tr>
<td>Al.B.</td>
<td>2</td>
<td>6-12-49</td>
<td>6</td>
<td>10</td>
<td>17.96</td>
<td>3500</td>
<td>3715</td>
<td>36.1</td>
<td>44.5</td>
</tr>
<tr>
<td>Ni.</td>
<td>2</td>
<td>12-12-50</td>
<td>12</td>
<td>20</td>
<td>19.78</td>
<td>3229</td>
<td>3390</td>
<td>48.6</td>
<td>110.6</td>
</tr>
<tr>
<td>Cu.</td>
<td>2</td>
<td>9-26-49</td>
<td>12</td>
<td>20</td>
<td>20.00</td>
<td>3401</td>
<td>3639</td>
<td>67.8</td>
<td>52.6</td>
</tr>
<tr>
<td>Pb.</td>
<td>1</td>
<td>7-25-49</td>
<td>12</td>
<td>20</td>
<td>3393</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
FIGURE 1
SHELL ASSEMBLY

300 GR. BOOSTER
TOP FILLER

TUBE, PLASTIC
RING
RING
RING
RING
BOTTOM FILLER

TITANIUM 14 RINGS
ALL OTHERS 20 RINGS

TOTAL EXPLOS.
WT. 2.55 LB.
FIGURE 2

FRAGMENTATION FACILITY FOR RING TYPE SHELL

PLAN VIEW

SECTION A-A

GROUND LEVEL

R₁ - R₆: CANE FIBER BOARD FILLED FRAGMENT RECOVERY BOXES 4'X6'X3'.

V: PHOTO VELOCITY RECOVERY BOX.
\[C_{\alpha} = \frac{1}{2} \left(\frac{V_0}{\sqrt{2E}} \right)^{1/4} \]

\[C_{\alpha} = \frac{1}{2} \left[\frac{1}{200(1.05 A_n - 1.08)} \right] \times 10^5 \]

- \(A_n \) is the limiting amount of internal reaction energy, per unit area, that the material has converted into plastic and elastic strain energy without rupture.
- \(a_0 \) is the initial fragment velocity
- \(b \) is the axial displacement of a ring
- \(c \) is the thickness of a ring
- \(d \) is the initial stress of a ring
- \(e \) is the strain strength of the casing
- \(f \) is the density of the casing
- \(g \) is the static reduction of area

\[C' = \frac{3}{5} \left[10^5 \left(\frac{1.05 A_n - 1.08}{100 - (0.05 A_n - 1.08)} \right) \right] \times 10^3 \]
Aberdeen Proving Ground, Ballistic Research Labs., Md. (Memo Report No. 597)

FRAGMENTATION OF RING TYPE CYLINDRICAL SHELL MADE OF VARIOUS METALS - PROJECT NO. TB3-0112A, by Michael Famiglietti. March '52, 19 pp. incl. tables, diagrs, graphs. RESTRICTED

To study fragmentation characteristics, a series of ring-type cylindrical shell, made of various metals, having widely different densities and physical properties, were statistically fragmented. Resulting data were analyzed in conjunction with a theory governing the sizes of fragments. Conclusions were

DIVISION: Ordnance and Armament (22)
SECTION: Ballistics (12)
DISTRIBUTION: Copies obtainable from ASTIA-DSC.
THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.