e e e ———e e e e At e S STPRIATEN,

ANNUAL

PROGRESS REPORT

RESEARCH

ON

AUTOMATIC CLASSIFICATION, INDEXING

| AND EXTRACTING

F. T. Baker M. Jones

G. L. Johnson J. H., Williams

CONTRACT NONR 4456(0C)

Submitted to

Infermation Systems Branch ;
Office of Naval Research {
Department of the Navy :

Washington, D. C., 20360

Prepared by

Federal Systems Division
International Business Machines Corporation
Gaithersburg, Maryland 20760

UNCLASSIFIED
* Security Classificeiion

DOCUMENT CONTROL DATA - R&D

(Bocarity claseifloation of title, body of absteact and indexing annotetion must be entered when the oversl! report (o clmaailieq)

1. ORIGINATIN G ACTIVITY (Conwrate author) s REPORT SECURITY CLASSIFICATION

Federal Systems Division UNCLASSIFIED

International Business Machines Corp. 20 aRous
Gaithersburg, Marylaad 20760

3. REPORT TITLE
RESEARCH ON AUTOMATIC CLASSIFICATION, INDEXING AND
EXTRACTING

4. DESCRIATIVE NOYES (Type of report and Inclus!ve dates)
Annual Progress Report

8. AUTHORYCS) (Last name. Hire? name, initisl)

Baker, ¥. T., Johnson, G. L., Jones, M,, Williams, J. H.

6. REPORT DATE 76 FOTAL NO. OF PAGES 78. NC. OF RETS
April 1966 42
Se. CONTRACT OR GRANT NO. Sa CUIGINATOR'S REPORT NUMBERSS)

NONR 4456(00)

b PROJECT NO.

€. .
| 1) g‘?.nln ”PDRT NO(S) (Any other numbere iat mey be sssigned

d.

10. AVA IL ABILITY/LINITATION NOTICES T
Qualified requesters may obtain copies of this report from DDC. .
Other qualified users shall request copies of this report from the
originator.

11. SUPPL EMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Information Systems Branch

Of fice of Naval Research

Dept. of the Navy, Washington, D.C.

13. amsTracy In order to contribute to the success of several studies for automatic
classification, indexing and extracting currently in progress, as well as to furthe

our theoretical and practical understanding of textual item distributions, this yeal
funds under Contract No, NONR 4456(00) have been applied to the development of
frequency program capable of supplying these types of information. The progra

planned for the System/360, will provide numerous user options covering the forrpat
of the input text, the definition of a countable item (e.g., a "word' may be specifiled

as any string of characters between delimiters such as comma, space, period, o

any combination thereof), the definition of a textual unit over which frequencies age

to be subtotaled (e.g., sentence, paragraph, or document), the types of datato b
output, and the machine configuration to be used. Also, facility will be provided
for the incorporation of user-supplied routines to perform special functions such
as word pair generation, suffix normalization, etc,

In addition to the determination of program requirements and overall program
design, progress has been made on the design of the Dictionary Build module & th
frequency program. The main purpose of the program is the provision of an out
containing an ordered list of the items, their frequencies, and any special tags
desired by the user. For the processing of large input texts, eificient utilization
of storage devices by rapid dictionary search and storage techniques were consid
egsential to the complete program. The Dictionary Build module is therefore a
critical one and has received special attention.

Contained in this report are descriptions of the requirements generated for thg

ut

red

ion

Sze{em/360 Frequency Program, status report on program design and documentaf

DD %% 1473

Security Classification

UNCLASSIFIED
Security Classification

REY WOROS

LINK A LINK B LINK C

td

no.e T faoLe wr R"OLE T

Frequency Program
Textual Item Counting
Program Design
Dictionary Processing

1. ORIGINATING ACTIVITY: Enter the nume and address
of the coutractor, subcontractor, grantes, Departmant of De-

the report,

all security classification of the report. Indicats whether
“Restricted Date’ ls included Marking is to ba In accord
ance with appropriste security regulstions.

rective S200. 10 and Armed Forces Industrisl Manual. Enter
the group number. Also, whn spplicable, show that optional
markings have been used for Qroup 3 and Group 4 ‘as authors

3. REPORT TITLE: Eater the complete report title in all

capital lettare. Titles in all cases shonld be wnclassified.

If s meaningful title cannot be selected without classifice-

tion, show title clasaificstion in aj] cepitals in parenthesis
immediately following the title.

4 DESCR'PTIVE NOTEE If appropriate, enter the type of
report, &g, interim, progress, summery, annual, or final.
Give :: inclusive dates when & specific reporting period is
cover

S, AUTHOR(8) Enter the name(s) of author(s) as shown on
or in the report. Enter last name, first name, middle initisl
If military, show renk and brench of service. The name of
the principal suthor is an absolute minimum requirement.

6 REPORT DATL: Enter the date of the report as day,
month, yeer; or month, yean 1If more than ond date appears
on the report, use date of publication,

7a. TOTAL NUMBER OF PAGES: 7The total page count
should follow normal p on procedures, Lo, enter the
mmber of pages conts information,

70. NUMBER OF RENERENCES Eater the totel sumber of
references cited ia the veport.

the spplicable number of ihe contract or grant under which
the report was written

8, &c, & 8d. PROJECT NUMBER: Eater the appropriste
allitary departmest identificetion, such s» project pumber,
sabproject nugber, system nuabers, task number, etc.
h. ORIGINATOR'’S REPORT NUMBER(S): Entes the offA-
clal report sumber by which the document will be identified
and controlled by the originatiag activity. This number must
be uaique to this repert.

9. OTHRR REPORT NUMBER(®): If the zeport has been
aseigned any other report trembers (elther by the originator
Lor 2y the sponsor), aleo enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES Enter any lim-

ftatlons on further dissemination of the report, other then

fense activity or other organization (corporate suthor) insuing

2. REPORT SECURTY CLASSIFICATION: Entsr the over

6. GROUP: ’utomatic downgreding s qncuhd in DoD Di-

S8a CONTRACT OR GRANT RUMBER: If appropriate, enter

INSTRUCTIONS

imposed by security classificaiion, using standard statements
such as:

(1) *‘Qualified requasts:a may obtain copies of this
report from DDC.'’

(D “Foreign ent and di i
repert by DDC is not suthorized **

(3) ‘U. 8 Government agencies msy obtein copies of
this report directly from DDC. Other qualified DDC
users shal) request through

tion of this

g
.

(4) "'U. S military agencies may obtain copiss of this
repert directly from DDC. Other qualified usars
* shall request through

[
.

(5) ‘' All distribution of this report i3 controlled Qual-
ified DDC users shall request through

[
B

If the roport has been furnished to the Office of Techaical
Services, Department of Commerce, for sale to the public, indi-
cste this fact and enter the price, if known.

1. SUPPLEMENTARY NOTES: Use for additional explene-
tory notes.

12, SPONBORING MILITARY ACTIVITY: Enter the rems of
tha departmental project office or laboratory sponsoring (pay-
ing for) the reseerch end development. Include sddrese.

13. ABSTRACT: Enter an abstract giving s brief sad factual
summary of the document indicative of the report, evea though
it may also ag0eer elsewhers in the body of the techaical r¢-
port. If additicnsl spece is required, a continuation sheet shall’
be attached.

It is highly desirasble that the abstract of claseified reports
be unclassified. Each paragraph of the abstract shall end with
sn indication of the milltary security claseification of the la-
formation ln the parsgraph, represented as (T8). (8). (C), er (V).

‘There is no Limitation on the length of the abetract. How-
ever, the suggested length ia from 150 to 22§ words.

14. KEY WORDS: Key words are technicslly meaningfu! terms
or short phreses thet charscterize s report end may be used as
index antries for cataloging the report. Key words muet be

selected so thet no security classification is required. ldenti-

flers, such as equipment model designation, trade name, military

project codp name, ﬂomphlc location, may be used ss key
words but will be followed by an Iindication of technical con-
text. The assignment of liaks, rules, and weights is optional.

Secusity Classification

Section

TABLE OF CONTENTS

INTRODUCTION

PRCGRAM REQUIREMENTS

2,0 Introduction

2,1 Machine Configuration

2.2 Input Specifications

2.3 It:m Definition

2.4 Interval Specification

2.5 Special Tagging

2.6 Output Requirements
2.6.1 Concordance
2.6.2 Summary Frequency Data
2.6.3 Detailed Frequency Data
2.6, 4 Growth Rate Data

2.7 Programming

2.8 Operation

PROGRAM DESIGN

3,0 Introduction

3.1 Modular Approach

3.2 Control Program

3.3 Basic Modules
3.3.1 Input Module
3.3.2 Itern Identification Module

o e B . e el e e AT ® A . T - WY S N

10
11
11
11

Section

CONTENTS (cont'd.)

3.3.3 Dictionary Build Module
3.3,4 Merge Module
3.3.5 Detailed QOutput Module

3.4 Program - Provided Option Modules
3.4.1 Concordance Module
3.4.2 Special Item Check Module
3.4.3 Growth Rate Module
3.4.4 Summary Output Module

3.5 User - Provided Optional Modules

3.6 Examples
3.6.1 Article Separation & Analysis
3.6.2 Multi-Level Classification
3.6.3 Trigram & Tetragram Analysis

DICTIONARY PROCESSING

4.0 Introduction
4.1 Overall Data Flow
4.1.1 Overall Sort/Merge
4,1.2 Input Iteration
4.1.3 Partial Dictionary Generation

4.1. 4 Analysis

4,2 Dictionary Construction Techniques
4.,2,1 Straight Chain Method
4,2.2 Binary Search Method
4.2.3 Directory-Chain Method
GLOSSARY 41

et SR CEJ e NG L

4
!
{
[
§
i

LIST OF ILLUSTRATIONS

Article Separation and Analysis

Multi-Level Classification

Trigram and Tetragram Analysis

Modules by Type

Chaining Tables

Binary Search

20

21

22

30

32

.

A

L ¥

Section 1

INTRODUCTION

Language analysis studies are necessary prerequisites to
successful establishment and operation of language data processing
systems, For example, it is usually necessary to determine the
characteristics of input text and queries prior to the development
of techniques for document processing. Language analysis studies
can provide information on syntax, semantics, word counts, patterns,
associations, etc,, which is valuable in the development of techniques
for translation, classification, indexing, abstracting, correction,
structuring, prediction, etc,

In support of these language analysis studies, particularly
in the areas of automatic classification, indexing and extracting, IBM
has been engaged in research on the statistical and morphological
behavior of character strings or items in narrative text. The pre-
sent IBM technique for automatic document classification requires word
counts by individual document and by document category, Work on
word morphology currently being performed uses counts of syllables,
n-grams (items n characters in length) and positional distribution of
individual characters. Morphological analysis of words provides
statistics necessary for automatic methods of hyphenation-justification,
index term selection, and textual error correction. Automatic extracting
methods are partially based upon information from word counts by sen-
tence, paragraph, and document. Finally, the statistics generated by
processing samples of input text and queries can yield the values of

several document system design parameters; a fcw of these are:

:
'
t
i

prRE—— TR

E
;
%
|

expected dictionary size and growth rate, magnitude of the input
error problem, expected document length and frequency of special
types of words such as proper nouns,

In order to contribute to the success of these several studies
currently in progress, as well as to further our theoretical and
practical understanding of textual item distributions, this year's
funds under Contract No, NONR 4456{00) have been applied to the
development of a frequency program capable of supplying these types
of information. The program planned for the System/360, will provide
numerous user options covering the format of the input text, the defini-
tion of a countable item (e. g., a "word'" may be specified as any string
of characters between delimiters such as comma, space, period, or
any combination thereof), the definition of a textual unit over which
frequencies are to be subtotaled (e.g., sentence, paragraph, or document),
the types of data to be output, and the machine configuration to be used,
Also, facility will be provided for the incorporation of user-supplied
routines to perform special functions such as word pair generation,
suffix normalization, etc,

In addition to the determination of program requirements and
overall program design, progress has been made on the design of the
Dictionary Build module of the frequency program. The main purpose
of the program is the provision of an output containing an ordered list of
the items, their frequencies, and any special tags desired by the user.
For the processing of large input texts, efficient utilization of storage
devices by rapid dictionary search and storage techniques were considered
essential to the complete program, The Dictionary Build module is there-
fore a critical one and has received special attention,

Contained in this report are descriptions of the requirements
generated for the System/360 Frequency Program, status report on
program design and documentation of the dictionary construction methods
which have been studied for possible use, Evaluation of the dictionary con-

struction methods is continuing, and efficiency comparisons in this area

T Ny

will be ubtained through experimental calculations or actual programmed

testing, Design of other program modules will continue, and program-

ming will begin upon completion of the design work,

0 I ML I W01 V0 L

e tent

Section 2

PROGRAM REQUIREMENTS

2.0 INTRODUCTION

Before commencing the design of a general frequency pro-
gram, a study of the capabilities required and options desired was
made, A general frequency program for the IBM 7090 has been in
use for four years. Owver this period it has been rewritten once and
modified several times to adapt it to an ever-increasing number of
applications, In addition, other programs in use which perform
similar functions were studied. The capabilities and desirable

features described below were selected as a vesult of this study.

2.1 MACHINE CONFIGURATION

The program should be planned for the IBM System/360, which
comprises a compatible set of central processors and auxiliary units,
The program should be written to be operable on one of the smaller
models of System/360 and should take advantage of extra facilities
when run on larger models,

The general organization of a frequency program requires the
repetitive building of lists of itemns and frequency data followed by merg-
ing groups of these lists, A reasonable amount of core storage must be
available for list generation and merging purposes, Also, for list
storage and merging purposes, direct access auxiliary storage is highly

desirable, Hence, the minimum configuration for the program will be a

i
i
i
g
=
3

e iz LY

System/ 360 with sufficient core storage, direct access storage units

such as the IBM 2311, IBM 2314 or IBM 2302 disk storages or the IBM
2321 data cell drive for list storage and merging, Direct access or

serial access storage devices such as the IBM 2400 series tape drives will
be used to handle input and output requirements, The exact amounts of
storage and type and number of devices required will be determined in

the detailed program design process,

2,2 INPUT SPECIFICATIONS

Inputs to the program can consist of narrative text or a variety
of types of fcrmatted records. The program should be capable of read-
ing input in serial fashion from either serial access or direct access
devices, It sho.ld allow for variable as well as fixed length records up
to a reasonable maximum length. Tne standard character code should
be EBCDIC, However, the program should allow the user to convert

to or from non-standard character codes,

2.3 ITEM DEFINITION

The program should be capable of providing data on the frequency
of a number of types of items, Once the items have been identified in
the input, this process is relatively straightforward an common to all
types. However, the item identification process can vary widely accord-
ing to the form of the input and the outputs desired. The most frequent
usc of the program is expected to be on textual data with word frequencies
desired, Hence the program should provide a word identification routine
to operate on narrative text, The specification of "words' should be
determined by the user at the time he sets up a run and should allow for

a variety of word delimiting characters (e, g., blank, comma, period,

1yphen, single quote) and rules for applying them. The program should

also allow for provision by the user of other types of item identification

routines to be incorporated in place of the standard routine. Such
routines could perform word pair definition, individual character
breakup, word encoding, matching of syllables against a dictionary

or other desired item definition functions,

2.4 INTERVAL SPECIFICATION

It should be possible to specify several textual intervals at
which frequencies should be tallied. For example, onc may desire
word frequencies by sentence, paragraph and document from the same
set. of input text, The variety of possible input formats makes it imprac-
tical to provide standard modules to accomplish interval determination,
The standard program should therefore provide for multiple intervals of
tally, and the user should provide a routine for interval determination if
he desires this function. If no such routine is provided, the program

should tally frequencies over the entire input,

2.5 SPECIAL TAGIING

It is desirable in some cases to allow tagging of various types of
items, One may wish to separate numeric items from alphanumeric or
alphabetic ones, identify special items in some way, or tag the samc item
in different ways according to its context, The program should provide
for a user-inserted special routine to perform any tagging desired and
should take such tags into account in building and merging lists of items

and their frequencies,

2,6 OUTPUT REQUIREMENTS

Many types of outputs have been found desirable from frequency
programs, These generally fall into four categories, each of which is

discussed separately below,

———

el

2,6.1 Concordance

For some purposes it is necessary to retain position infor -
mation about items., This can then be sorted or processed in a variety
of ways to get data on the way these items are used in context, The
program should provide an optional concordance output containing, for
each identified item, or for a pre-specified list of items:

a, Item

b, User-supplied tags

¢. Interval identification

d. Sequential position within interval

2,6.,2 Summary Frequency Data

A number of summary outputs are useful in giving an overall
view of the cdata. The program should provide, at each interval specified:
a. Item type-token distribution and total number of types
and tokens
b. Distribution of item types by initial character
c. Distribution of item tokens by initial character
d, Distribution of item types by string length

e, Distribution of item tokens by string length

2,6, 3 Detailed Frequency Data

The desired basic output of the program is detailed information
on individual items and their frequencies, This output might be sorted in
a variety of ways by standard sort programs to group items by length,
frequency, tags, etc, The standard program output should be:

a, Item

b, Tags

c, Frequency

d., Interval and sequence number of first occurrence

B0 BB i1 o+ O ¢ B e

e g = A

e a me

The standard output sort should be alphabetic by item within tags.

2.6,4 Growth Rate Data

In addition to the detailed data, information on the growth rate of
the number of items in a vocabulary is frequently useful, This may be
desired either at fixed intervals, such as every 5000 items, or at the
user-specified textual intervals, The program should therefore provide
an optional output of the number of itesns encountered either in the pre-

specified textual intervals or at fixed intervals,

2.7 PROGRAMMING

In order to simplify modification and allow easy incorporation of
user-provided routines, the basic program should be modular and should
be programmed in a higher-level language, The use of PL/I should be
considered, since it is an advanced language and appears to provide the

necessary features,
2.8 OPERATION

The program should operate under Operating System/ 360, All
input and output should be performed by standard OS/360 routines. Since
the program may run for long periods when large amounts of input are
provided, an option to stop the program, save necessary parameters and

restart at a later time zhould be incorporated.

e AT T

Ly er———

ST

Section 3

PROGRAM DESIGN

3.0 INTRODUCTION

This frequency program is required to provide frequency
data on a variety of types of items for many different purposes,
Since it is impractical to try to anticipate all the uses, data formats,
output requirements, etc.,, the design philosophy has been to pro-
vide a set of general-purpose program modules to perform a group
of basic functions associated with building a list of items and their
frequencies, The user can then supply any additional modules required for
special-purpose operations and unusual input-output formats, A control
program to select appropriate modules, assemble them into a working
package and initiate and monitor the run will alsc be provided, Sel-
ection of a variety of summary outputs formatted for printing will be
possible, Item frequency and concordance outputs will be provided
in a format suitable for sorting or processing either by standard
System/360 packages such as the Sort or Report Program Generator or

by special-purpose programs provided by the user,

3.1 MODULAR APPROACH

Since the requirements for a given run may vary widely, the
program hae been broken into modules performing specific functions,
Each module will have an initialization phase which sets up the module
prior to processing. Thus, once the user specifies his options the
module will adjust itself to operate efficiently in satisfying his require-

ments, The modules perform two types of functions, basic and optionai.

Ip——_

functions,

A basic module is one which performs a function that is nec-
essary to the building of a list of items and their frequencies from the
textual input. They include input, item identification, dictionary build-
ing, merging and output modules,

The optional modules are of two types, the first provided by the
frequency program, and the second provided by the user,

Program-provided optional modules are those which pei-form
functions that are independent of the particular data being processed,
The bulk of these consist of summarizing functions which can be sel-
ected to provide specific types of outputs,

The user must provide modules to perform functions which
depend on variations in the format of the input data or present special
processing or output requirements, An example of this type of function
is encoding of the words, Instead of programming one encoding algorithm
or even several algorithms which may not be applicable to this user's
problem, the user can insert his own algorithm with only a minimum
amount of knowledge about the entire frequency program. Provision
has been made to permit the user to program modules of this type and
insert them at the appropriate time.

A list of the modules of each type is given in Figure 3-4, and

descriptions of them are contained in Sections 3,3, 3.4, and 3.5,

3.2 CONTROL PROGRAM

The modules are tied together through the control program, which
consists of two phases, Phase One is devoted to the processing of the
input parameters and the initialization of the modules to be used in the
operational phase, Phase Two checks the options and assembles the
operational program in the desired sequence; following the assembly, con-

trol is transferred to the operational program and the data processing
begun,

10

)

3.3 BASIC MODULES

This section describes the modules which will be provided to per-
form the five required basic functions, These are input, item identifi-

cation, dictionary building, merging and output of the detailed frequency
data,

3.3.1 Input Module

The function of the Input module is to read the data to be frequency
counted from the input medium, This data will be read - 5ing the standard
System/360 data access methods, which will permit the module to remain
device - independent. The initialization phase of this module will accept
parameters describing the particular format of the data and will set up

buffers to hold the data, Output of this module will be one logical record.

3.3, 2 Item ldentification Module

The function of the Item Identification module is the analysis of
the input in order to identify the items to be counted, Every run of the
frequency program must have such a module; however the particular
module used will depend on the type of item the user wants counted,

A rery frequent use of the frequency program will be to provide
information on words occurring in narrative text, For this reason, a
standard Item Identification module is provided, Modules for other
types of item identification may be written either to operate on the out-
put of the standard Itermn Identification module {e.g., for word pairs or
syllable identification) or to replace it completely (e. g,, for individual
character identification),

The purpose of the standard Itermn Identfication module is to identify
individual words in the input stream. The module accepts a set of char-
acters which are legal characters for the word definition; that is, a word

must consist of letters, digits or certain special characters from the

11

P—— TR Ll

legal set, It also accepts a list of characters which serve as delimiters;
together with a set of rules, these charact=.'s indicate the end of a word,
The user may also define a list of characters which will cause the end

of a word if not followed by a numeric character,

As an example, consider the use of the comma (,) in text, If the
number 1, 071 appears, a user would wish it to be stored in the dictionary
as 1,071, On the other hand, if the phrase ''cats, dogs, and mice' appears,
the user would like the words '""cats' and '"dogs'' to be e¢ntered into the
dictionary without the comma, This can be accomplished by specifying

the comma (,) as a character to be ignored and the blank or space as
a delimiter character,

3.3, 3 Dictionary Build Module

The Dictionary Build Module is the most critical module in
the system since it has the greatest effect on efficiency, Consequently,
methods of building dictionaries are being studied in greater detail,
and Section 4 of this report discusses some of these methods.

The Dictionary Build module will accept an item as defined by
Item Identification and/or user-supplied modules and search the diction-
ary for this item. Each item not found in the dictionary is inserted with
a {requency count of cne, and each item already in the dictionary has its
frequency count augmented by one, When the interval over which the dic-
tionary is being built changes, or when new items can no longer be added
to the dictionary, the dictionary is placed on a disk in sorted order for
later use in the Merge module, Provision is made in the dictionary for-

mat for multiple intervals and for any user-supplied tags.

3.3.4 Merge Module

The output of sorted partial dictionaries make the function of the
Merge module quitc simple, Merge will add the frequencies of duplicated

items and output the composite dictionary back onto the disk, Since the

12

e e 2

frequency program will allow the user to obtain outputs at any of the

intervals desired, this Merge module will be required to combine

s e 4 OO PO

dictionaries at the desired intervals for each of these outputs, For
example, suppose there are three text intervals, A, B and C (e, g.,

' data base, category, document) where A is the highest interval with
' units as 2y eeeay and intervals B and C consist of units bl' bz. ceey bn
and S CZ' coes cm respectively, The Merge module would first
combine all partial dictionaries for alblcl’ albICZ’ o vy alblcm'
albzcl. se 03 albzcm. sv e albncm, azblcl. ss e ahbncm. Informa-
tion would then be output for each aibjck’ where i =1,2,..., h;

J=L2, e, n;k=1,2, ..., m, The next Merge pass would merge
all the dictionaries for each aibj prior to their output, In the final
Merge pass all dictionaries would be merged for the composite dic-

tionary at interval A,

3, 3.5 Detailed Output Module

The Detailed Output module reads the appropriate dictionary
from disk and formats the items, their frequencies and any desired tags
for printing. This is the module which provides the basic output in
alphabetic order and will be used at each of the intervals specified. The
method of output will be one of the standard System/360 methods which will

permit the module to be device-independent,

3.4 PROGRAM-PROVIDED OPTIONAL MODULES

This section describes those program-provided optional modules
which may be included in an operational program to perform special

i functions or provide additional outputs,

3.4,1 Concordance Module

e

The Concordance module provides a detailed record of the position

of every item identified by the program, It allows users to analyze the

13

|

R ——
&
A»zﬁ:uL e o e e s = - e oo e R S,

context of specified items, to note the location of certain items or to

o provide the data required for a full-text index. This module will output the
: itern, any user-provided tags, the interval tag and the position of the item :
within the interval, This output will be performed using one of the stand- !
ard System/360 access methods so that it will be device-independent,

The user can then sort or otherwise process this data using other System/

360 programs such as the Sort or Report Prograra Generator.

3.4.2 Special Item Check Module

The Special Item Check module permits the user to check an
{ itemn defined by an itern identification module against a list of items
; predetermined by the user, When an item on the list is found control
will be given to a module provided by the user. This facility is provided
for use in special tagging or interval analysis routines, For example,
the beginning or end of a document may be i ntified by a special item,
When an item of this type is encountered, tue user can have control trans-
ferred to a module which changes an interval indicator so that succeeding
items passed along to the Dictionary Build module will be tagged as belong-

ing to a new interval,

3.4.3 Growth Rate Module

The Growth Rate module will keep a record of the unique items
added to the dictionary over intervals specified by the user. After all 1
input has been processed the growth information will be written onto an
output device using one of the standard access methods, Output of this
: module can be used to determine the expected rate of additions to the
vocabulary of a document collection, to provide clues to the location of
error bursts in input data or to indicate when changes of subject have

occurred,

14

P YA

oy

3.4.4 Summary Output Module

T ot AT
ook
|
r

The Summary Output module will consist of the following
sub-modules: Token-Type, Frequency Distribution, Initial Char-
acter Distribution, Word Length Distribution, These sub-modules
will be used as requested to form the summary output desired at each
interval, The Token-Type sub-module lists the total number of tokens
and types encountered, The Frequency Distribution sub-module gives
the number of types which occurred with a frequency of one, the number
of types which occurred with a frequency of two, etc, Initial Character
Distribution gives the frequencies by initial character of both types and
tokens. Finally, the Length Distribution sub-module gives the frequencies
by item length for both types and tokens, The output is formatted for

printing and processed by one of the standard access methods of System/
360,

3.5 USER-PROVIDED OPTIONAL MODULES

User-provided modules will perform such functions as defining
input intervals, tagging items, and encoding which are specially depen-
dent on text content or format. For interval definition the user can
examine the items defined by an Item Identification module, The user
can then check this itemn to determine if it represents an interval identi-
fier instead of an item. If more information is needed he can call the
Input module which accesses the input data, The user can also tag items
as numeric, alphabetic, alphanumeric, or whatever he wants identified
in a particular manner, This tag can be placed either preceding or follow-
ing an item depending on how the user desires his output to be sorted, En-
coding can also be performed after an item has been defined. Since ouput
is in sorted order a user might want to encode for the concordance only,

In this case he could call the Concordance module from his encoding module

and let the Dictionary module store items without encoding,

15

PR DR POT R R E POUIP R T RTRE

!

3.6 EXAMPLES

This section will present three examples drawn from actual
experience for which several existing IBM 7090 frequency programs
and some special-purpose programs were required, It will show how
the System/360 program will be assembled and used to provide the data
required by each of these problems,

3.6.1 Article Separation and Analysis

This problem was presented in the course of studying a large
body of text from magazine articles for purposes >f thesaurus develop-
ment and query analysis. Requirements were for word freguency data
both for total text and by indisidual articles, growth rate data keyed to
individual articles so that major vocabulary changes and error burs'’s
could easily be located, and summary information required to assist
in determining the best organization for the thesaurus,

The articles were contained on paper tape, one article per strip,
and were too numerous to be strip-fed into a reader, The strips were
therefore spliced into reels and converted to magnetic tape. However,
this destroyed the separation between articles, and a special program
had to be written to analyze the text, search for article breakpoints and
insert article marker strings. Two frequency programs were then run,
one to get data for the total text, and a second to get data for individual
articles,

The System/ 360 program could have handled this job with the
addition of a single user-supplied module. This module would be called
whenever a carriage return symbol was encountered by the Special String
Check module and would determine whether this was a normal single
carriage return or t' e beginning of a string of carriage returns which
signified the end of an article. In the latter case an interval indicator
would be changed so that the succceding words would be identified as

part of a new article, The user would supply this module and by control

16

-

bl SV N St e

e . e ol J e e J—

’ : cards request the control program to set up and execute the program

B shown ir Figure 3-1,

3. 6.2 Multi-Level Classification

This problem aroce during the development of a technique for
subject classification of documents into a hierarchic structure with several
levels., The technique requires data on word frequencies at each level
of the structure in order to generate classification parameters from a
document sample. Sample documeuwts are on cards with their identification
and classification punched in columns 73-80. The present solution is to
sort them by document within level and input them into a frequency pro-

! -gram which produces word frequency data for each document, A special
merge program is then used to provide information on the combined
word frequencies within categories at each level of the structure.

The System/360 program provides all the routines necessary to
perform this analysis with the exception of a module to check the
identification and classification and provide interval tags for each hier-
archic level, The user would supply this moduie and a set of control cards

to establish the program shown in Figure 3-2,

3.6.3 Trigram and Tetragram Analysis

In the course of some word morphology work oriented toward
automatic identification of proper nouns in teletype material without
type~-case symbols, a set of trigram and tetragram frequencies from a
sample of proper nouns was desired. The solution was to run an existing
7099 word frequency program once to get word frequency data and then to
input this data to a modified version of the same program which performed
the gram identification function,

The System/360 program could perform the entire job in one pass
withtwo user-supplied modules. The first module would be an Item Identi-

17

A e o iy Jh Sz

Sl e, mag

fication moduie which would extract only capitalized items, excluding

§ words which begin a sentence, These items would be processed by
’ the second user-supplied mcdule which would repetitively form all its
. constituent trigrams and tetragrams, These would be tagged as one
F or the other and passed on to the Dictiorary Build module, which in

this case would be set up to return to the user-supplied module until

thc last gram had been added. The setup for this run is shown in
Figure 3-3,

[

TR > M 1

18

SR S e

aNd

sisfreuy pue uoljeredag 21PUIY

[-¢ 2andig

iearxajuy
3ser]

Junon
nding ey ” pue g
uﬁﬁwuﬂo %H.NEE,—JW 5\50&0 EQHH 919N
, pImg e
Axeuonyotg
294D AIIYD
) | uIn3ay woly
, uinyay aferiaen rewads |
a3etaaen

uotv
~-®OYIILo 7]

Y |

sttt 7

ndug

19

UL A AU £ i 020

UOTIBDTJISSR[D [2A-TINIW

2-¢ °2andiy
aNd
A
JunoD
[eAIa3U] 1l mdimgo < pue e—— 2819 T||||@
jse] wialy
uon 5
< pImd T|| -BOYRUIP] Q
@ Lxeuo1301(] wair
X
uony
=eoynuap] d
10893 pue 1I|||| mduj g -
jusumooq e 19vais

- - - S———

i

I

,é,v w

| |
|

sisA(euy weideajds] pue weiliay

g-¢ 2an31y

j

w 4 unon

: SxoW ,

i & ndang ndno & pue &e—" 2

ﬂ. anNd nding Arewumg wern

w

uony uoft} o

M n -edy1uLp] ~-eaynuapl N

g wely

” L1euo130YJ urexn pezireilde)

|

| N

|

!

A.EQEM uﬁ—&CH

4 A Ia3ym N

|

k”

!

|

i

1

4 M

| W

| DA Al e B 9 . e - N T TR,

o

e == =

Basic Modules

Input

Item Identification
Dictionary Build

{ Merge

' Detailed Output

Program-Provided Optional Modules

Concordance

Special Itern Check

Growth Rate

Summary Output
Token-Type

Frequency Distribution

Initial Character Distribution
Word Length Distribution

Possible User-Provided Optional Modules

Pre-processing of the Data
Interval Definition
Encoding

Word Tagging

Special Action on Special Words

Figure 3-4

Modules by Tyge

22

—
|
!
i
l
t

Section 4

DICTIONARY PROCESSING

4,0 INTRODUCTION

Some of the most important decisions which must be made
in the course of the development of the frequency program are con-
cerned with the manner in which partial dictionaries are generated and
merged. In general, the number of item types in the input will be
larger than can be held at once in core storage., Counts must therefore
be made for separate segments of the input, and these paratial diction-
aries later must be merged to provide final counts for each of the de-
sired intervals. There are several basic approaches to organizing this
overall data flow, and the efficiency of the method chosen is critical
to overall program efficiency., Also, in the generation of the partial
dictionaries, there is a variety of ways to organize and use core storage.

The amount of time spent by the program on this task will be quite sub-

stantial, and here again a wise choice of method can pay dividends in
operating efficiency,

In these two areas, then, special study of the possible approaches
and their advantages and disadvantages is being made, The study of
dictionary generation methods is not yet complete, and the decision on
which of the several approaches to use will, as in the study of data flow
methods, be based on quantitative estimates of time derived from experi-
ence with large text samples and previous programs, as well as on the
simplicity of design and programming expected to be associated with each,

The remainder of this section describes the various approaches which are

23

S vt enn R M e

et P

X -~ = -

being evaluated, both for the overall data flow and for the construction
of the individual partial dictionaries, It also outlines the evaluation per-
formed on data flow techniques to select the method to be used in the

program,

4.1 OVERALL DATA FLOW

The three different approaches to overall data flow which were
considered for this program are Overall Sort/Merge, Input Iteration
and Partial Dictionary Generation, These three methods and their variations

are described below,

4.1.1 Overall Sort/Merge

This is perhaps the simplest conceptual method to the organization
of the overall data flow. There are two variations, one of which is
slightly more sophisticated,

The first and most straightforward way is to output each item and
its sequence immediately after its identification in the input. When the
entire input has been processed, a standard sort/merge can be performed
on this data with a major sort on the item and a minor sort on sequence,
At the completion of the merge, the items will be ordered alphabctically,
and duplicates will be ordered in the sequence of their occurrence in text.
This list can be processed as many times as required io get frequency data
for each interval, Duplicates can be eliminated within each interval at
each stage, reducing the amount of input to the succeeding stage.

A more sophisticated version of this process is to eliminate dupli-
cate items during the merge process itself, Because of the fact that
about 200 common words account for about half the words appearing in
narrative English text, this process can reduce the merge time signifi-
cantly. At the completion of the merge, the counting can proceed as in

the first variation,

24

b

B

4,1, 2 Input Iteration

This organization of overall data flow accepts input generated by

an Item Identification module and creates a dictionary of unique items

' with their position values and frequencies, until the working storage
area is filled, Any succeeding items appearing in the input but not
appearing in the dictionary are saved on an intermediate storage unit,
The positional values for the "overflow' input items are part of the data
included on the temporary storage device. As many intermediate storage
units are used as necessary to contain those input items not contained in
the initial dictionary, At the end of processing the input items, the
initial dictionary is saved on intermediate storage, and the overflow
input items are reprocessed to form one or more additional dictionaries,
At the completion of dictionary generation, these partial dictionaries are
merged to form the final output dictionary cf unique itemns with their
frequency and position values,

In this iterative input processing method of dictionary construction,
one of the problems to be considered is the limitation of storage capacity.
It is possible to overcome some of the storage capacity limitations by
allocating the storage area into various blocked sizes. The size of the
blocks is predetermined based or the probabilistic occurrence of items
by initial charactex For example, in narrative text the words beginning
with S are more frequent than words heginning with X and the dictionary

block sizes would reflect this probability.

In this method of dictionary construction, as ir: others to be de-
scribed, the type-token distribution of the input text is the principle con-
trolling factor for causing multiple intermediate dictionaries to be created,
The greater the redundancy of types in the input text, the less time,

intermediate storage devices, and sort/merge operations will be required
to process the tokens,

- ~~—

25

- aam —————

’ B e
i £ 4

it s aaree ey 2 e

P e G

DA O A M W O 11 AT

T = o = I Ce T e

. [
T

Partial Dictionary Generation

TN
N
.
—
°
[¥%

- There are several alternative techniques available for organi-
zation of overall data flow by partial dictionary generation, The
variations attempt to improve operational efficiency, by utilizing know-
ledge of certain characteristics of the input text. Three variations of
this technique are briefly described.

The basic version of this technique accepts as input the items
generated by an Item ldentification module and the positional sequence
values which have been assigned to each item. A dictionary of these
unique items and their frequencies is generated until the working
storage area is filled, This dictionary is saved on an intermediate stor-
age unit, and the generation ofanew dictionary of input items is begun,

This partial dictionary build and save cycle is repeated until all the

input text items have been processed. The partial dictionaries are
I merged, eliminating the duplicates, and the final dictionary contains
\ the unique text items with frequency counts and positional sequence

values,

This second variation also accepts text items with sequence

values which have been provided by an Item Identification module,

A dictionary of these unique items is generated until the working

' storage area is filled, At this time, those items in the storage area

with the lowest frequencies are saved on an intermediate storage unit.

| e

Those items with the highest frequencies are retained in the working
storage area, and additional input items arc processecd against these
y unique items to augment the dictionary., This cycle is repeated until
: all the input items have been processed, The resulting partial diction-
4 arics are merged, eliminating duplicates and retaining the proper fre-

quency counts and sequence values,

This third variation requires analysis of the type of input to be
processed in order tc construct an efficient pre-stored dictionary.
The items with positional sequence values from an Item Identification

module are compared against the pre-stored dictionary, and the dictionary

26

is augmented with any new input items until the working storage area

is exhausted, Any of the pre-stored items which have not been found

as an input item are eliminated at this time, and dictionary augmenta-
tion continues. When the working storage area is again filled, a partial f
dictionary of those items not occurring in the pre-stored dictionary is
saved on an intermediate storage device. The cycle is repeated until

all the input has been processed, The intermediate dictionaries are
merged, eliminating duplicates and retaining the proper frequency counts

and position values.
4,1.4 Analysis

Once the above approaches had been identified and described,
an analysis was made to determine their relative effectiveness, The
approach used was to estimate the amount of computer time used by

each of the methods in acquiring an alphabetic list of the words and

! their frequencies encountered in a textuzl sample on which extensive

data was available. : I
Preliminary analysis showed the Overall Sort/Merge methods

to be non-competitive, so estimates were not obtained for this method,

Based on estimates of machine cycles for compare/input/output units,

the Partial Dictionary Generation methods are slightly superior to the

i Input Iteration method, However, the variation in performance between

} them is relatively insignificant, and it was decided that the specific

, variation chosen should depend on estimates of design and programming

simplicity, The basic data flow will therefore fsllow the Partial Diction-

ary Generation organization, with the final specification awaiting the

b completion of the study of dictionary cons.ruction techniques,

A LR

;. 4,2 DICTIONARY CONSTRUCTION TECHNIQUES
!

Fundamental to the efficiency of any of the overall data flow

methods described are the techniques for dictionary construction,

27

A NATINES IO AU sl

7
i]
|
|

Three basic techniques for dictionary construction are being investi-

gated for this study: Straight Chain Method, Binary Search Method,

- omeanemm sy g1 SOVIENFR TN "
.

and Directory-Chain Mcthod, Placing a new item in the dictionary
: and searching for an item already in the dictionary require the same
b initial process, since before an item can be stored in the dictionary
it is first necessary to determine whether or not it is already picsent,
Therefore, these techniques can be described for either search or

store operations with the functions being implicit,

4.2.1 Straight Chain Method

A chain can be used s 2 means of connecting non-contiguous
items of arbitrary sizc; The primary advantages of the chaining tech-
nique in dictionary searching are: efficient utilization of available
storage, rapid internal processing rate, and ease with which chains
may be altered to revise inter-item relationships without item move-
ment in storage,

The chain method requires a technique for converting the input

item to a storage address, This address begins a chain of table entries,
each containing the address of a dictionary entry, The chain is necessary
gsince more than cne entry may be converted to the same address,
“while there may ¢.xist addresses to which no entry converts. The method
for generating an address for the input item may be algorithmic, may
r make use of an index or may be some combination of the two,
The following example shows how the chain can be generated,
how the final dictionary would look, and how an item would be located.
In this simple example an index is used to convert the first character
‘ of an item to table addresses such that:
A convertsto 1
C converts to 3
. D converts to 5
E

converts to 7

.

FadN b G

— e s srmmamF A

Prior to beginning operation, all the other table entries are chained
as available storage., An asterisk (¥) is used to indicate the end
of each chain in the table, Assume that sixteen words are to be stored,
and that the range of addresses available is 1 through 16. The first
word encountered beginning with the letter "A'" is stored in the next
available space in the dictionary, and that dictionary address is stored
in table location 1, The table entries for succeeding words beginning
with "A'" are selected from the lict of available storage and chained to
the preceding entry.
An input item (say, EAT) is converted b, use of the index to an
initial table entry (in this case, 7), The table is entered (see Figure 4-1)
and the Dictionary Address (477) used to perform a comparison (here,
E..T with E), If the entries do not compaie, the Next Table Address (14)
i3 used to select the next table entry to be used, and the process is re-
peated. (In this case, EAl would be comnpared to EACH before being
located on the third comparison,) If the input item is not found (i.e., the
chain ends without 2 match), the end-of-chain code (%) is removed from
that location, the address of an empty location is inserted to add another
link to the chain, and the item is stored at the new location which is then
marked as the end of the chain,
The 2verage number of passes through the compare loop nceded
to locate a dictionary entry is:
-k’
2

where: C is the number of compares

1

CL is the average chain length

The time required by the compare loop is determined by the number of
machine words in the entries being compared and by the amount of time
needed to locate the next entry if there was a no-match condition, The
dictionary can be partially pre-established (e, g., most frequent items

1t start of chains), to reduce the number of passes through the com-

pavasson loops and yield a more cffident mecthod,

29

e mwmeceved SpStipelc &

4 — 7 o S 1

TABLE DICTIONARY
TABLE NEXT TABLE | DICTIONARY
ADDRESS ADDRESS ADDRESS ADDRESS TERM

1 2 480 475 CAT

2 4 485 476 DOG

3 8 483 477 E

4 6 487 478 EVEN
5 11 479 479 D

6 * 490 480 A

7 14 477 481 Ccow
8 9 475 482 DOT

o 10 481 483 C
10 * 486 484 EAT
11 12 489 485 ALL
12 13 476 486 CUR
13 * 482 487 ANY
14 15 488 483 EACH
15 16 484 439 DATE
16 * 478 490 AT

Fignre 4-1, Chaining Tables

30

e b B R T BT

4.,2,2 Binary Search Method

A second approach to dictionary processing is exemplified by
scanning techniques, in particular the binary search, Scanning tech-
niques compare an input item with each dictionary itern one after an-
other until matched, With N records in random order, an average
of (N + 1)/2 items will have to be scanned, If an input item is not in
the dictionary it requires N passes through the compare loop to deter-
mine that it is not there, so that e xcept in trivial cases, sequential
scanning of a dictionary to find a single item takes much tco long.

However, the process time for the scanning technique can be
reduced by maintaining the dictionary in sequence, and employing ¢
binary search, If a dictionary of N items is stored in a random -
rmemory with the items arranged so that their keys are in ascena_ . ¢
(or descending) order, this technique may be used to locate an item in
a time approximately proportional to logzN.. The binary search method
locates an item by isolating the area in which the itern should be found
based on the sequence of the item keys, If the location of any one
item is known, the direction of the search is determined by whether
the desired key is higher or lower in sequence, The binary search
technique begins by testing first the key of the item which is at the
midpoint of the current secarch area, A comparison determines whether it
is the desired item and, if it is not, the comparison specifies whether the
next search for the desired item should be in the upper or lower half of
the search area, This half is then bisected, and if necessary, “be quarter
of the area containing the sought item is determined. The ».s. * on pro-
cess continues until the item is located. (Figure 4-2 shows an [~ “tance
of three such comparisons,) 1f the item is not in the dictionary, movement
of dictionary items becomes necessary to insert the new item, and this is
a timec consuming opcration, However, the binary search technique is
efficient because at each comparison either the desired item is found or

half of the remaining candidate items are e¢liminatedfrom further consider-

ation.

31

NP e
i M LR PRI LA s

j— -n-mmmm "
¢
:
t
|
i
|
t
1
|
i
|

S I EN

Figure 4-2. Binary Search

i
The binary search requires that the itemns be arranged in in- :

creasing (or decreasing) order in consecutive locations of a random :

access memory, Although the expected search time for this arrange-

|
ment is relatively small, the time to alter the dictionary by adding or :

deleting items is proportional to N, because many items must be

moved to make space for the new item, The maximum number of :

compares necded to locate an item or to determine that the entry is
not in the dictionary block is:

s ¢ = [is 1 .
! where: [indicates the nearest integer

8 reate r than logZN

32

%

i

l

2

} i
‘-...._-. - 4

S sy gt
-

g TSN A T AR PP

The average number of passes through the compare loop

needed to locate any item is not much smaller than the maximum

Eogzbﬂ-l
1+
J

and can be expressed as:

C= 1/N

2.

20

21 (5 +2)

which is approximately equal te C = Eog2 bi' .

4,2.3 Directory-Chain Method

The directory-chain dictionary search method combines features
of the preceding techniques, There is a cignificant variation in the
method of selecting the proper table location and chain, and this pro-
cedure reduces the search and compare time considerably, In the

following description of this method, chaining will be pictured as

below:

N I R B B[] ©

Item A Item C Item B 11
|

In this example, Item B occupies a chain positiocn preceded by
Item A and followed by Item C, which terminates this particular chain,
In order to trace through the chain to extract its components in the
proper order, a sequence of instructions is written which may proceed
as follows: Obtain the address of Item A and extract that itern. Examinc
the chaining position in A; this points to B and extract Item B, at the

same tirne examining the chaining pointer This indicates that C is the

33

A s b

st

) WM PRSI

C - = am emAGLIAR

NI 23S NTS Bt e s —— e -

. *

next address, After the extraction of Item C, it is observed that the
chain pointer is zero; there are therefore no more items in this particular

chain.

For the directory-chain method, the complete table of addresses
used in the straight chain method is replaced by an ordered directory
of chain entry addresses, A binary search is used in the directory
to reach the proper table location, where a pointer to the initial entry
in each chain is maintained. A program parameter, Q, is specified
as the maximum chain length, When the value Q is attained for any
chain, e, g., chaini, an appropriate subroutine bisects this chain into
subchains of length Q/2 and places the proper pointers and count of
entries in locations i and § + 1 of the directory. Other directory entries
may be pushed down to allow for this expansion if necessary, Thus,
as the number of items in memory increases, the number of entry
points to the chains also increases, and the number of searches within
a chain never exceeds Q - 1, The speed of processing is therefore
relatively independent of the input item distribution, (The "primed"
modification to this method, which will be discussed latcr, would make
efficient use of the input distribution,)

The following example should serve to clarify the general techni-
que, The problem is to construct a dictionary of N> Q entries, the
first three input items being AFTER, AARDVARK, and ABACUS, The
initial input item is AFTER, and at the end of its processing, the state

of memory and of the directory is:

Directory
(X=1,n=0) Dictionary
A P=1 Al Y Y/
-

AFTER

34

e e+ i

e 2 = Ty

where: X

is the number of chains currently in use in the

directory. Here X =1,

is the power of two used in the binary search,

where 2" " 1 < x < 2", 1t is initially set to zero,

is the directory chain pointer, Here it points to

the first (and at this point, only} chain of entries,

beginning at location A,
is the number of entries in this chain,

P <Q.

At all times,

is a free field and might be used to indicate the length

of the entry,

is either the address of the next entry in the chain

or end-of-chain indicator.

Let us suppose that AARDVARK is the second item in the input

to be processed,

A binary search is conducted using the directory

and it is determined that the proper chain begins at location A, An

inspection of the relative values of the two items esiablishes the fact
that AARDVARK precedes AFTER, The former is therefore inserted in

the chain prior to AFTER, and in this case, its location, B, is placed

in the directory table to indicate the first item in the chain.

Directory

(X=1, n=0)

Dictionary

B

-

P=2 A)

B A

AFTER

AARDVARK

If ABACUS is the third input item, it must be inserted in the chain

between AARDVARK and AFTER.

The proper chain is found by a bin-

ary search using the directory, and the word inserted as shown below.

35

= === e LTS

T T

e e Ay ma e e et e T

RS IRTAL 1 30 W AT M1 L I 7m0 s WIS ARl b

AR

Directory
(X =1, n=0) Dictionary
B P=3 A [B c|cC A
AFTER AARDVARK ' ABACUS

Eventually a point will be reached where P = Q.

In the following diagram,

I indicates the chain linkage to additional entries prior to ANTENNA in

the first chain, and R indicates the chain linkage to additional entries

following ARBITRARY.

Directory
(X=1, n=0) Dictionary
B P=Q A 1 | B clc A |
AFTER AARDVAEK (ABACUS '
T
L M M| | R
ANTENNA i ARBITRARY

It is now advisable that the chain be split.

the 1/2 Qth position in the chain,
following fashion:

Suppose that entry L is in

The directory is expanded in the

Directory
(X=2, n=1) Dictionary
[B 1/2Q | A 1 B C C A
1/2Q AFTER | AARDVARK ABACUS | '
L l) M R
ANTENNA ARBITRARY o
36

Lpeate e

|
!
3
{
|

An end-of-chain indicator has been inserted in the chaining porticn of
entry L, and the entry M has been indicated as the starting point of a
new chain, X is increased by one (X=2) since there is an additional
entry in the directory, and since X)Zo =1, nis increased by one

{n = 1) for an enlarged binary search,

Let us assume that 1/2 Q additional entries have now been pro-
cessed which fall in the range of values between AARDVARK and
ANTENNA, Suppose furthermore that AMATEUR and AMNESIA are
now the medial entries in the chain headed by AARDVARK, and that

Jl’ Kl' and I_.l exist in the chain somewhere between B and L,

Directory
(X=2, n=1) Dictiorary
B Q A 1 |B C |g A @
M 1/2Q AFTER AARDVAR? ABAC'S ANTENNA
i
!
M R J K K [L |
| 1] i i 5
ARBITRARY AMATEUR AMNESIA i
= i
f
!
The B chain must again be split since the entry count has :
reached Q, Chain and directory adjustments are made: :
'
Directory
(X =3, n=2) Dictionary
! B 1/2Q A I B C Cl AL 9 |
. | S—
K, 1/2Q AFTER WARDVARK LABACUS ANTENNA|
M 1/2Q
¢ 0 —
M R I,) Kl Ll
ARBITRARY AMATEUR AMNESIA
37

PR LS AR A ey

e -
.

F

Again X \'Zn, and n is incremented by 1 (n = 2) so that 2" - 4 {for the

binary search, Since the entry count for chain M has not rcached Q, the

table entry is merely pushed down to make room for the expansion above,

This process is continued until all available memory is in use, If n

expands beyond the boundaries of storage allocated for the directory, the
parameter Q may be increased or an entrance to thegutput section

may bc effected.

e rmaenmarns S e

There are two types of modifications to the directory-chain
dictionary search technique which could improve the overall dictivnary
i construction operation, The first modification consists of "priming"
the heads of initial chains with those words whose distribution in the input
is frequent in occurrcnce. For example, it has been observed in several large
samples of narrative English text that approximately 35% of the tokens
(total words) are accounted for by 40 types (unique words). Also, for
the same text samples, it has been noted that 200 types account for 45%
of the tokens. Thus, if the directory-chain technique was primed with thesc
200 words at the heads of the chains for each pass, the processing time
: could be reduced significantly, Elimination or replacement of these chain
heads could be easily accomplished either at the start of the processing or
at the end of each pass of the input,

The other modification which could be made is to employ bi-
directional chaining using a floating pointer, As in the other chain techni-
ques, all available memory is utilized to provide the opportunity to process
the greatest number of items at one time, and the first N bits of an item
! arc again used to iderntify the table location pertaining to the proper sub-

group of items,

In bi-directional chaining the following convention will be used:

»
A3
W
O
o2
S
w
>
'

Item A Item C Item B]

s b

38

. IO AR B T LRI D e

§ Ay PRI]

I

Here, the chain may be traced in either of two directions, and Item B
cccupies an intermediate position relative to Items A and C as terminal
entries on their respective ends of the chain,

To assist the bi-directi. nal chaining a floating pointer is used,
The purpose of this pointer is to decrease the number of inspections
in each chain by pointing to a second location in the chain which is used
ior searching as well as to the beginning of the chain which is used for
reading. On the basis of the relationship between the new entry and the
entry indicated by the floating point, the examination of other items in the
chain may proceed on either of the paths provided by the bi-directional
chaining.

To illustrate bi-directional chaining, suppose a new entry [tem
I is obtained such that Item A <Item 1 <Item B, the following would

be the structure before the processing of Item I

Directory Dictionary
Floating Initial i
Pointer Pointer A 4 B c B ¢ Bl A ! c
B A ltem A Item C | Item B
and after the processing of Item 1:
Directory Dictionary
FP 1P| Al |1 |c|B e Bl |cC A B
| J
1 | A Item A Item C Item B —l Itern 1

It is evident that the pointer in A has been altered to include Item 1, as

has the pointer in B, Similarly, 1 now contains pointers to both A and

B.

39

|
i

e ot oot oyt

MR S 15044 4. i 0 S i T

e

s AT P

m—— s

If the floating pointer is treated as a mid-point position, the

sub-group chain is effectively cut in half, For a random distribution,

this method eliminates the need for approximately 50% of the inspections
required in the straight chain method, and for an updating operation a ;
time-saving of approximately 50% is also realized. However, for a file j
or group inversion operation there is a disadvantage to the techanique

as compared to the straight chain method. A possible solution to this
would be the utilization of the initial pointer to ascertain the more favor-
able inspection point., This would increase slightly the operational ;
time for other types of distribution where the floating pointcr is the
more favorable entrance point to the chaip, but a general time-saving

is realized in the former case.

For actual word distributions in text, a better use of the floating
pointer can be made, This better usage is achieved when the pointer
is not restricted to the median position but is allowed to float in the
direction of chain additions. For a random distribution of items, this
technique is essentially similar to the above floating pointer method;
however, for either a file inversion or an up-dating operation, a saving
in operational time is achieved since the floating pointer will tend to
anticipate the direction of the chain motion. This method represents the
best version of the chaining technique studied so far.

A further potential improvement consists of breaking chains at
the mid-points of the distributions of items in the chains rather than at
the mid-points of the chains themselves, This should tend to concen-
trate the frequent words in short chains while infrequent words remain
in longer chains. It, of course, requires more bookkeeping and may
not prove to be advantageous,

Further work will be done on these methods prior to a selection
being made for purposes of program design work. The final choice will
depend not only on the theoretical efficiency of the method but also on the
actual machine cylces used in the inner loop and the ease of coding and

maintaining it.

40

Section 5 .

GLOSSARY i

This Glossary is intended to serve as an aid to understanding

some of the spt 'alized terminology used in this report,

character a decimal digit zero tc nine, or a letter A to Z, a
either capital or lower case, a punctuation symbol, -
2 blank or any other symbol, which a machine may |
read, store, or write.

delimiters a specified set of characters, a member or members
of which determine the boundaries of an item,

item a continuous sequence of one or more characters; :
for example, in Jefining a word an item is bounded .
by delimiters; for a n-gram an item is determined by : ~
length,

itern token the occurrence(s) of a unique item (type) in the input

data; the type '"for' had a token occurrence of six times,

item type a unique itermn which could occur in the input data; types

could be '"for', "Tom", "with", ectc.

key the primary identifier of an item such as initial character
or character group, by which that item can be identified
or gsearchnd,

module the set of instructions necessary to direct the computer : |

to execute a well defined mathematical or logical opera-

tion; a subunit of the basic program,
tag a unit of infor.nation, whose composition or Jncation

differc from that of oth r membcrs of the data set so

that it can be used as a marker or label, i

4]

S oo
word pair two sequential words (items) separated by one or more
delimiters; in the three word phrase '"'solid logic
' technology', word pairs are '"solid logid'and "logic
technolagy''.
i
i
|
t
|
3
i
- 42
‘ : L - B
— A y

SUPPLEMENTARY

INFORMATION

_‘4 ‘_v"

NOTICE OF CHANGES IN CLASSIFICATION,
DISTRIBUTION AND AVAILABLITY

69-18

AD-L85 188

IBM Federal Systens
piv., Gajthersturg,
d.

Annual progress repl.
Apr 66

Contract Nonr-hLls6(00)

15 SEPTEMBER 1969

No Foreign without
apyroval of office
of Naval Research,
Attn: Inforiation
gystems Branch,
Washington, 1. C.

No limitaticn OiR, D/H ltr,
18 Jun 69

Best Available Copy

