<table>
<thead>
<tr>
<th>UNCLASSIFIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD NUMBER</td>
</tr>
<tr>
<td>AD482394</td>
</tr>
<tr>
<td>NEW LIMITATION CHANGE</td>
</tr>
<tr>
<td>TO</td>
</tr>
<tr>
<td>Approved for public release, distribution unlimited</td>
</tr>
<tr>
<td>FROM</td>
</tr>
<tr>
<td>Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; Apr 1966. Other requests shall be referred to U.S. Army Biological Center, Ft Detrick, Frederick, MD 21701.</td>
</tr>
<tr>
<td>AUTHORITY</td>
</tr>
<tr>
<td>BDRL, D/A ltr, 28 Sep 1971</td>
</tr>
</tbody>
</table>

THIS PAGE IS UNCLASSIFIED
TECHNICAL MANUSCRIPT 288

THE REACTION OF DIMETHYLSULFOXIDE
AND 5-DIMETHYLAMINONAPHTHALENE-I-
SULFONYL CHLORIDE

Robert E. Boyle

APRIL 1966

UNITED STATES ARMY
BIOLOGICAL CENTER
FORT DETRICK
Reproduction of this publication in whole or part is prohibited except with permission of Commanding Officer, U.S. Army Biological Center, ATTN: Technical Leases Section, Technical Information Department, Fort Detrick, Frederick, Maryland, 21701. However, DDC is authorized to reproduce the publication for United States Government purposes.

DDC AVAILABILITY NOTICES

Qualified requestors may obtain copies of this publication from DDC.

Foreign announcement and dissemination of this publication by DDC is not authorized.

Release or announcement to the public is not authorized.

DISPOSITION INSTRUCTIONS

Destroy this publication when it is no longer needed. Do not return it to the originator.

The findings in this publication are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.
PAGES ________
ARE MISSING IN ORIGINAL DOCUMENT
THEREACTIONOFDIMETHYLSULFOXIDE
AND5-DIMETHYLAMNONAPHTHALEN-1-SULFONYLCHLORIDE

RobertE.Boyle

PhysicalDefenseDivision
COMMODITYDEVELOPMENTANDENGINEERINGLABORATORY

ProjectlC622401A071

April1988

1
ACKNOWLEDGMENT

The author wishes to acknowledge the assistance of Mr. Robert A. Saperstein and to thank Mr. Phillip Albro and Dr. Charles K. Huston for the gas chromatography analyses.

ABSTRACT

The reaction of dimethylsulfoxide and 5-dimethylaminonaphthalene-1-sulfonyl chloride was studied under the conditions of a pseudo-unimolecular reaction with the dimethylsulfoxide in excess. The reaction produced 5-dimethylaminonaphthalene-1-sulfonic acid and chlorodimethyl sulfide. The mean rate of disappearance of the sulfonyl chloride was measured as $1.123 \pm 0.232 \times 10^{-3}$ sec$^{-1}$ and the appearance of the sulfonic acid as $1.404 \pm 0.229 \times 10^{-3}$ sec$^{-1}$ based upon the initial concentration of the sulfonyl chloride. Chlorodimethyl sulfide was identified by gas chromatography and the sulfonic acid by its absorption properties and decomposition point. A reaction mechanism is proposed based on a sulfoxonium intermediate.
I. INTRODUCTION

Dimethylsulfoxide (DMSO) has been used extensively in recent years because of its unique solvent and reaction characteristics. In the course of testing DMSO as a solvent and stabilizer for 5-dimethylaminonaphthalene-1-sulfonyl chloride (DANS(C)) in protein staining, we have observed a rapid reaction at room temperature that resulted in a change in the absorption characteristics and produced a fluorescence emission. This paper presents a simple kinetic analysis of the reaction and a proposed mechanism for the formation of 5-dimethylaminonaphthalene-1-sulfonic acid (DANSA) and chlorodimethyl sulfide (CDMS) via a sulfoxonium salt intermediate that can be formulated empirically as:

\[
\begin{align*}
\text{DANS(C)} + \text{DMSO} & \rightarrow \text{DANSA} + \text{CDMS} \\
\end{align*}
\]

II. EXPERIMENTAL

A. MATERIALS

DANS(C), DANSA, and CDMS were obtained from the K and K Labs, Inc., New York, and the DMSO and ether were reagent grade from Fisher Scientific Co., Silver Spring, Maryland. The materials were used without further purification. The molar absorptivities were determined as follows:

DANS(C) in ether, \(\epsilon_{360\mu m} = 3.62 \times 10^3 \), DANSA in DMSO, \(\epsilon_{322\mu m} = 4.77 \times 10^3 \)

In a mixture of DMSO and ether the wavelength of maximum absorbance for DANSA shifted to 316 \(\mu m \) but \(\epsilon \) remained the same.
B. KINETICS

The decrease in absorbance at 360 m\textmu for DANSC and increase at 316 m\textmu for DANSA were followed simultaneously on a Beckman DK-2 spectrophotometer equipped with an automatic repetitive scanning attachment using 1.0-cm quartz cuvettes. The spectrum was scanned from 165 m\textmu to 265 m\textmu with a scanning time of approximately 90 seconds. The reaction was followed for approximately 20 minutes; the exact times were recorded for each experiment. The order of addition of reagents was always the same. Starting with a given volume and concentration of DANSC in ether, ether and DMSO were added in the proportions required to give the final desired concentrations. All reaction times were measured from the time of addition of the DMSO. The DANSC concentration ranged from 0.61 \times 10^{-4} to 1.85 \times 10^{-4} M. The DMSO concentration was 6.15 M to give a large excess consistent with a pseudounimolecular reaction. All of the kinetic studies were made at room temperature. Ether was chosen as a reaction solvent to prevent complicated side reactions.3

C. IDENTIFICATION OF REACTION PRODUCTS

The increase in the absorbance at 316 m\textmu served to identify the DANSA formed in the reaction. It was further identified in a preparative experiment described later. The CDMS was identified by gas chromatography using a 4 ft x 6 mm column of Carbowax-20 M (5%), Haloport F (30/60 mesh) with programming at 11 C per min from 60 to 170 C on an F and M model 500 gas chromatograph. The CDMS identification was confirmed by comparison of the peak and retention time with an authentic sample.

In a preparative experiment, the reaction mixture was allowed to stand for 24 hours at room temperature. A sample was removed and gas-chromatographed as before. Only two peaks were observed and these were confirmed to be DMSO and CDMS with authentic samples treated the same way. The ether was removed from the remaining reaction mixture by gentle heating on a water bath and 1.0 ml of the residual solution was removed, diluted to 100 ml with DMSO, and examined spectrophotometrically. A single peak was observed at 322 m\textmu as evidence of the presence of DANSA. The remaining solution was treated according to the procedure of Laurence.4 A solid material was obtained which when recrystallized from 0.1 HCl had a decomposition point of 292 C (uncorrected) compared with 294 C (uncorrected) for an authentic sample. Quantitative recovery of the DANSA was not made because of its extreme solubility in DMSO. The isolated material redissolved in DMSO showed only one absorbance peak at 322 m\textmu, substantiating the presence of DANSA.
III. RESULTS

Figure 1 is a reproduction of a repetitive scan spectrum for a single kinetic experiment. From this set of curves and others the absorbance at 360 m\(\lambda\) and 316 m\(\lambda\) was determined and plotted as a function of time and the slopes were determined. The logarithms of these slopes were plotted against the logarithms of the concentration of DANS to establish the order of the reaction as a function of the concentration of DANS. Figure 2 shows the results for the appearance of DANS and the disappearance of DANS. Both slopes are approximately one, indicating first-order dependence. Further first-order dependence was confirmed using the integrated rate equations, half-life dependence, and by the differential method. The first-order rate constant for the disappearance of DANS was \(1.123 \pm 0.232 \times 10^{-3} \text{ sec}^{-1}\) and for the appearance of DANS was \(1.404 \pm 0.229 \times 10^{-3} \text{ sec}^{-1}\) as a function of the initial concentration of the DANS.

When the concentration of DMSO was varied over approximately a three-fold range at constant concentration of DANS, a linear dependence on DMSO concentration was observed. According to Taylor, under the conditions of a pseudo-unimolecular reaction these rates are only apparent. Dividing each of these rates by the corresponding concentration of the DMSO initially present gives the true rate as \(1.55 \pm 0.270 \times 10^{-4} \text{ sec}^{-1}\).

IV. DISCUSSION

The adherence of the results of the reaction to the pseudo-unimolecular kinetics as a function of the concentration of DANS and the constancy of the rate as a function of the DMSO are indicative of a bimolecular reaction. The presence of a isosbestic point in Figure 1 at 340 m\(\lambda\), although not absolute proof, indicates only two reactants; the identification of only two products of the reaction is additional evidence for the formulation of the reaction as shown in the equation on page 5. Further, Bordwell and Pitt have shown CDMS and benzoic acid and CDMS and HCl to be products of the reaction of DMSO with benzoyl and thionyl chloride respectively. With silicon tetrachloride, Lappert has shown the products to be CDMS and HCl. DMSO has also been shown to react with a variety of materials such as aromatic sulfonyl acid esters, sulfonamides, alcohols, and phenols.
Figure 1: Repetitive Scan Spectra. Concentration of DANS = 0.92 x 10^{-4} M, DMSO = 0.15 M. Solvent, ethyl ether.
Figure 2. Reaction Rates. (A) Logarithm of the rate of disappearance of DANS C as a function of the logarithm of the initial concentration of DANS C. (B) Logarithm of the rate of appearance of DANS A as a function of the logarithm of the initial concentration of DANS C.
A suggested mechanism for the reaction is given in the following scheme, beginning with a nucleophilic attack by the DMSO (II) on the sulfur containing the chloride in DANS C (I) with the formation of a sulfoxonium intermediate (III). The chloride ion then displaces the oxygen-containing group in (III) by attack at the sulfur ion to give the sulfonium compound (IV), which rearranges to give CDMS (V) and DANS A (VI).

This proposed mechanism is consistent with that proposed for the reaction of the with organic and inorganic acyl halides, anhydrides, and alkylides.
Although the reaction in ether at room temperature proceeded moderately, gas chromatographic and spectrophotometric analyses of the reaction mixture gave no indication of other products. It was noted that when the DANSF was added directly to DMSO the solution became warm and passed through several color changes from red to yellow to colorless. This change in color was not investigated but it might possibly be related to the intermediates formed.
LITERATURE CITED

The reaction of dimethylsulfoxide and 5-dimethylaminonaphthalene-1-sulfonyl chloride was studied under the conditions of a pseudo-unimolecular reaction with the dimethylsulfoxide in excess. The reaction produced 5-dimethylamino-naphthalene-1-sulfonic acid and chlorodimethyl sulfide. The mean rate of disappearance of the sulfonyl chloride was measured as $1.123 \pm 0.232 \times 10^{-3} \text{ sec}^{-1}$ and the appearance of the sulfonic acid as $1.404 \pm 0.229 \times 10^{-3} \text{ sec}^{-1}$ based upon the initial concentration of the sulfonyl chloride. Chlorodimethyl sulfide was identified by gas chromatography and the sulfonic acid by its absorption properties and decomposition point. A reaction mechanism is proposed based on a sulfonylum intermediate.