AD NUMBER

AD482330

NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution authorized to U.S. Gov’t. agencies and their contractors; Administrative/Operational Use; Feb 1966. Other requests shall be referred to Army Electronics Command, Atmospheric Sciences Lab, White Sands Missile Range, NM 88002-5501.

AUTHORITY
US Army Electronics Command ltr dtd 15 Sep 1971
GUN-LAUNCHED VERTICAL PROBES AT WHITE SANDS MISSILE RANGE

By

L. EDWIN WILLIAMSON

ATMOSPHERIC SCIENCES LABORATORY
WHITE SANDS MISSILE RANGE, NEW MEXICO

Best Available Copy

ECOM
UNITED STATES ARMY ELECTRONICS COMMAND
DDC AVAILABILITY

Qualified requesters may obtain copies of this report from DDC.

DISPOSITION INSTRUCTIONS

Destroy this report when it is no longer needed. Do not return it to the originator.

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.
GUN-LAUCHED VERTICAL PROBES AT WHITE SANDS MISSILE RANGE.
ABSTRACT

The status of the gun-launched projectile system as a stratospheric sensor vehicle is discussed. The report is based on data obtained at White Sands Missile Range, and at Wallops Island, Virginia, where tests of recently developed hardware show an altitude-obtaining success of nearly 100 per cent.

The report reviews the fundamentals of the system, including launcher and propulsion techniques, the flight vehicle, and the payload and expulsion system. It is pointed out that the dispersion characteristics of this vehicle offer new potential for high altitude soundings at sites having limited real estate.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>BACKGROUND</td>
<td>1</td>
</tr>
<tr>
<td>THE WHITE SANDS GUN SYSTEM</td>
<td>1</td>
</tr>
<tr>
<td>PAYLOADS</td>
<td>3</td>
</tr>
<tr>
<td>LAUNCHER AND PROPULSION</td>
<td>7</td>
</tr>
<tr>
<td>FLIGHT VEHICLE</td>
<td>7</td>
</tr>
<tr>
<td>DISPERSION AND NOMINAL TRAJECTORIES</td>
<td>13</td>
</tr>
<tr>
<td>APPLICATIONS</td>
<td>13</td>
</tr>
<tr>
<td>CONCLUSION</td>
<td>13</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>14</td>
</tr>
</tbody>
</table>
BACKGROUND

Research into the application of gun-launched vertical probes as atmospheric sounding device vehicles has been conducted during recent years, and the status of such systems has progressed to an encouraging level. The gun probe high-altitude sounding system appears suitable as a routinely operational meteorological device.

Wind sensing payloads, i.e., chaff, parachutes and spheres, have been successfully utilized in the smaller gun-launched systems and chemical payloads as high-altitude wind sensors have been flown in larger systems. Telemetry units have been developed and successfully flown. Environmental temperature measurements with gun-launched sensors are forthcoming.

The types and sizes of guns used in this development vary from the relatively small 5-inch system, which can project a 20 lb. missile to altitudes of 225,000 ft., to the 16-inch system, which is expected to boost staged rockets to extreme altitudes, and possibly into orbital trajectories. The 5-inch and 7-inch systems are the instruments most applicable to current stratospheric-mesospheric sounding. The U. S. Army Electronics Command, Atmospheric Sciences Laboratory (ECOM-ASL), White Sands Missile Range (WSMR), New Mexico, therefore, has obtained from Ballistic Research Laboratories (BRL), Aberdeen, Maryland, a 5-inch gun system and guidance to establish an operational capability of gun probe applications.

THE WHITE SANDS GUN SYSTEM

This system was installed at WSMR during January 1965. The launch site was selected for proximity to the meteorological rocket launch facilities and shop area. Minimum additional facilities were required to incorporate the gun probe project into the development testing routine. These consisted essentially of a mounting platform, assembly facilities, and a storage magazine for the propellant.

After an initial series of six firings between 2-9 February 1965, succeeding tests were spaced at one to two week intervals to allow time to conduct trajectory and performance studies between firings. Because of the high velocities of the probe, the newly assembled (initially unfired) gun system, and the location of the launch site with respect to the radars, acquisition and tracking were expected to be difficult until some experience was acquired.

Tabular results of the firings to date are presented in Table I. These data show the results of 34 firings conducted at WSMR up to 11 November 1965. While seven of the 34 launchings were not tracked by radar, it will be noticed that all but one of those occurred during the first 13 rounds. It is also evident that of the first 22 flights, altitudes over 200,000 ft. were obtained on only six. Aerodynamic instability in the system was evident, and modifications were undertaken beginning with the firings on 14 September 1965. The next two firings, using models with heavier nose cones, flew successfully. It appeared then that the instability evidenced earlier may have been caused by the center of gravity being too far rearward, and that moving it forward approximately one inch offered promising results. The next model having the new forward c. g. was flown on 4 October 1965, but its performance was not as expected. Coincident with the tests at WSMR, additional tests by BRL were also being conducted.
<table>
<thead>
<tr>
<th>DATE</th>
<th>ROUND</th>
<th>MUZZLE TYPE</th>
<th>VELOCITY</th>
<th>PREDICTED ALTITUDE</th>
<th>RADAR APOGEE</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/2/65</td>
<td>chaff</td>
<td>5100 fps.</td>
<td>250 kft.</td>
<td>no</td>
<td>2288 K ft.</td>
<td>Lost fins in tube</td>
</tr>
<tr>
<td>2/9/65</td>
<td>chaff</td>
<td>-</td>
<td>-</td>
<td>yes</td>
<td>75</td>
<td>No AGC record</td>
</tr>
<tr>
<td>2/17/65</td>
<td>chaff</td>
<td>-</td>
<td>-</td>
<td>yes</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>2/5/65</td>
<td>chute</td>
<td>-</td>
<td>-</td>
<td>no</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>2/16/65</td>
<td>chaff</td>
<td>-</td>
<td>-</td>
<td>no</td>
<td>2235</td>
<td></td>
</tr>
<tr>
<td>2/23/65</td>
<td>chaff</td>
<td>5280</td>
<td>260</td>
<td>no</td>
<td>4200</td>
<td></td>
</tr>
<tr>
<td>3/5/65</td>
<td>chaff</td>
<td>5600</td>
<td>235</td>
<td>yes</td>
<td>227</td>
<td></td>
</tr>
<tr>
<td>3/14/65</td>
<td>chute</td>
<td>-</td>
<td>-</td>
<td>yes</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>3/20/65</td>
<td>chute</td>
<td>-</td>
<td>-</td>
<td>yes</td>
<td>145</td>
<td>Recovered nose cone w/parachute</td>
</tr>
<tr>
<td>3/28/65</td>
<td>chute</td>
<td>-</td>
<td>-</td>
<td>no</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>6/23/65</td>
<td>chute</td>
<td>-</td>
<td>-</td>
<td>yes</td>
<td>219</td>
<td></td>
</tr>
<tr>
<td>9/12/65</td>
<td>chute</td>
<td>4300</td>
<td>175</td>
<td>yes</td>
<td>221</td>
<td>Missile recovered intact from impact crater: 14 ft. below surface.</td>
</tr>
<tr>
<td>6/16/65</td>
<td>chute</td>
<td>5280</td>
<td>260</td>
<td>yes</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>9/23/65</td>
<td>chute</td>
<td>5100</td>
<td>265</td>
<td>yes</td>
<td>227</td>
<td></td>
</tr>
<tr>
<td>9/9/65</td>
<td>chute</td>
<td>-</td>
<td>-</td>
<td>yes</td>
<td>162</td>
<td>Nose ejected on launch</td>
</tr>
<tr>
<td>9/9/65</td>
<td>acoustic source</td>
<td>4900</td>
<td>125</td>
<td>yes</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>9/6/65</td>
<td>ballistic</td>
<td>5000</td>
<td>225</td>
<td>yes</td>
<td>223</td>
<td>No AGC record</td>
</tr>
<tr>
<td>9/11/65</td>
<td>acoustic source</td>
<td>-</td>
<td>-</td>
<td>yes</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>9/14/65</td>
<td>ballistic</td>
<td>4600</td>
<td>230</td>
<td>yes</td>
<td>223</td>
<td></td>
</tr>
<tr>
<td>9/16/65</td>
<td>ballistic</td>
<td>-</td>
<td>-</td>
<td>yes</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>9/28/65</td>
<td>chute</td>
<td>4800</td>
<td>220</td>
<td>yes</td>
<td>227</td>
<td>Nose ejected at launch</td>
</tr>
<tr>
<td>10/3/65</td>
<td>ballistic</td>
<td>4700</td>
<td>200</td>
<td>yes</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>10/5/65</td>
<td>chute</td>
<td>-</td>
<td>-</td>
<td>yes</td>
<td>30</td>
<td>Nose ejected on launch</td>
</tr>
<tr>
<td>10/11/65</td>
<td>ballistic</td>
<td>4740</td>
<td>200</td>
<td>no</td>
<td>-</td>
<td>No flight data available</td>
</tr>
<tr>
<td>10/17/65</td>
<td>ballistic</td>
<td>-</td>
<td>-</td>
<td>yes</td>
<td>217</td>
<td></td>
</tr>
<tr>
<td>10/28/65</td>
<td>acoustic source</td>
<td>-</td>
<td>-</td>
<td>yes</td>
<td>2235</td>
<td></td>
</tr>
<tr>
<td>10/26/65</td>
<td>acoustic source</td>
<td>5170</td>
<td>142</td>
<td>yes</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>10/27/65</td>
<td>acoustic source</td>
<td>4300</td>
<td>125</td>
<td>yes</td>
<td>132</td>
<td>Event at 80 K ft.</td>
</tr>
<tr>
<td>11/28/65</td>
<td>acoustic source</td>
<td>5000</td>
<td>235</td>
<td>yes</td>
<td>189</td>
<td>Event at 50 K.</td>
</tr>
<tr>
<td>11/10/65</td>
<td>chaff</td>
<td>4900</td>
<td>265</td>
<td>no</td>
<td>2234</td>
<td>Chaff payload located at 223 K ft. 3 min. after scheduled ejection.</td>
</tr>
</tbody>
</table>

1--- Acoustic source rounds were scheduled for a 40 seconds event, thus affecting the trajectory.
2--- Indicated apogee was computed from acoustic impact data.
3--- Partial skin track. Missile still ascending when lost. Chaff payload detected after 7 minutes.
4--- Indicates AGC record showed missile unstable on launch.

Table I Tabular results of developmental firings of the 5-inch gun-probe system at WSMR. Only the last firing on the table (10 November 65) was of the latest fin design that has demonstrated over 93 per cent altitude-success.

2
to solve the instability problem. To obtain maximum altitude, all earlier models were constructed so as to fly fin-stabilized, with no rotational motion. It was suggested that a certain amount of roll was developing on launch, and was evidently coupling with the pitch frequency of the model, resulting in an unstable flight. The work at BRL led to the design of a fin that would spin the vehicle at approximately 12 revolutions per second and overcome the likelihood of the pitch-roll couple. Fourteen of these fins were constructed and 13 were fired at the National Aeronautics and Space Administration (NASA) test facility, Wallops Island, Virginia, by BRL. Of these 13 rounds, 12 attained altitudes in excess of 200,000 ft from a sea level launch site when fired at an 80° quadrant elevation (QE). The model that did not attain this altitude contained an experimental nose cone which failed and caused a low flight. It was evident, however, that the new type fin provided the desired stability. The remaining spin-type fin was used at White Sands on 10 November 1965, and, while the actual altitude obtained is not known precisely (computed to be approximately 250,000 ft from acoustic impact data), the chaff package was detected at 223,000 ft two minutes after planned ejection, and it is apparent that the missile flew as planned. Thus it appears that acceptable performance of the gun system for placing a payload at altitude has been obtained.

The flights at White Sands utilizing the earlier model vehicle with non-spin fins, and excluding the acoustic source rounds, were 50 per cent successful regarding maximum altitude as the criterion.

The characteristics of the gun system, and the nature of the problems encountered to date can be categorized in three groups: the launcher and propulsion system, the flight vehicle system, and the payload.

PAYLOADS

While payload deployment has been restricted, this function has not been emphasized, pending correction of the aerodynamic parameters and obtaining satisfactory trajectories. To date, most effort has gone into flight performance of the basic gun probe vehicle and launcher performance. Acceptable payloads are operational, but refinements are desired from the meteorological standpoint. Chaff payloads are of such nature that it is difficult to damage them on ejection and, thus, an acceptable wind measuring system exists. However, the inherent disadvantages of chaff are present, and it is desirable to perfect the parachute system for reliable performance. Many parachutes have been ejected and tracked for wind data at Wallops Island, and the fundamentals of chute ejection and deployment from the gun probe system have been established. Refinements to prevent the tearing or burning of the parachute (evidence of this is present on most recovered parachutes) are being made, and the parachute will soon be an acceptable payload for the gun probe system. Payload packaging and deployment will comprise the next major phase of development at WSMR, with emphasis on telemetry payloads to follow.

The acoustic source payload consists of a 180 gm charge of photoflash material which yields a 1×10^8 cp intensity light source and sufficient acoustic energy to be detected at several ground receiving stations on the range. It is designed to fit in the payload cavity, and can be ejected and ignited with the conventional expulsion charge. The light source serves to accurately identify the point in space of the source with ballistic cameras. Approximate event time is predetermined and the flash is initiated with a pyrotechnic time delay fuse carried in the projectile.
The 5-inch gun-probe system at WSMR. The gun is mounted on a 30° inclined platform to allow near-vertical firing angles for stratospheric sampling.
Figure 2 A standard 120 mm cartridge case loaded with a triple-web mixture of M-17 gunpowder and a sheet additive coolant constitute the propellant for the gun-probe vehicle. Powder temperature is monitored with a probe thermometer which is removed immediately prior to loading.
Figure 3 Drawing of the 5-inch gun-probe vehicle. The sabot pieces carry the missile through the barrel, and are drag separated on leaving the muzzle.
The launcher system consists of a 120 mm T123 gun (Fig. 1) with the tube smooth-bored. The total length of the tube with a 10 ft extension is approximately 33 ft. The purpose of the tube extension is to allow acceleration over the greatest distance possible. Desired muzzle velocities, on the order of 5000 ft/sec, are unattainable for the missile in a shorter tube, and even with the tube extension maximum g-loading on the missile may approach 60,000 g's. The gun is mounted on a 155 mm carriage and recoil system to accommodate the additional weight and recoil loading. This assembly of the gun and carriage will permit elevations of approximately 65 degrees. Since near-vertical soundings are desirable, the entire gun system is mounted on a support platform with a 30 degree table (also Fig. 1). This is a somewhat bulky arrangement, and future models will probably be assembled on girder type mounts that will permit 0° to 90° elevation and eliminate much of the bulk of the system.

Propulsion is obtained through a nonconventional, but uncomplicated, type charge. A triple-web mixture of M-17 gunpowder is blended for proper burn rate and loaded into a standard 120 mm cartridge case. This cartridge is a separate-loading type charge (Fig. 2). Breech pressures generated in the firing are on the order of 55,000 psi. While this pressure is higher than the usual recommended pressure for field operations, it is well below the 90,000 psi tested pressure for the breech.

The principal problem introduced by excess pressure is that of barrel erosion. This problem has been largely overcome by the development of an additive that keeps the chamber temperature down. This addition consists of a titanium dioxide chalk in sheet form that is rolled and inserted into the cartridge case and extends into the barrel approximately six inches beyond the forward end of the case.

The flight vehicle (Fig. 3) is a subcaliber fin-stabilized projectile that is approximately 45 inches long and weighs about 20 lbs. The maximum body diameter is 2.6 inches, and the fins are slightly smaller than the gun-barrel diameter.

The payload cavity is located in the forward body of the vehicle. The cavity is approximately 1.8 inches in diameter and 7 inches deep. The passive payloads have been entirely packaged in this cavity, while some telemetry payloads have utilized the cavity for power and component storage and the nose cone as an antenna housing. Payload separation is achieved by a gravity-activated pyrotechnic fuse, mounted in the midsection of the missile, that ignites a powder charge and ejects the payload housing through the forward section.

The vehicle is held in the barrel by a sabot cluster that serves both as stabilizer and as a pressure seal. The sabot rings are made up of quarter and half sections, and are quickly drag separated on leaving the muzzle (Fig. 4).

The loading of the vehicle into the gun is performed with a hydraulic jack and loading fixture (Fig. 5) which enables the vehicle to be positioned in the barrel with hydraulic pressure of approximately 1500 psi. After the missile is loaded into the barrel, the hydraulic system is rotated out of the way, the propellant charge is loaded, and the breech closed. The firing pin is then attached using n.mal procedures. Firing can be performed either electrically or by lanyard, if field conditions should so dictate.
Figure 4 The 5-inch gun-probe vehicle in flight. The vehicle, moving at a velocity in excess of 50000 ft/sec and photographed with an image motion compensation camera, is 80 feet from the gun muzzle. Note the sabot pieces have separated and fallen behind the missile.
The hydraulic jack used for placing the vehicle into position in the barrel. The fins of the missile slide into the slots in the jacking fixture, the front base of which rests against the sabot cluster and seats the projectile.
Figure 6 Nominal trajectories for the 5-inch gun-probe vehicle for selected QF's from a sea level elevation of 4000 feet msl (after McCluney).
Figure 7 Nominal trajectory for the 5-inch gun-probe vehicle at WSMR. Note that the high QE (88.5°) limits the range requirements to 24,000 ft.
Figure 8 Impact and dispersion data for several gun-probe rounds fired at White Sands. Note that all rounds that impacted outside the nominal impact zone were not successfully launched.
DISPERSION AND NOMINAL TRAJECTORIES

Fig. 6 shows nominal trajectories of the 5-inch gun-probe vehicle launched from 4000 feet above sea level for several QE's. Fig. 7 is a trajectory of the 5-inch gun-probe vehicle for an 88.50° QE. It is noted that the impact range is only 4.5 mi. Combined with the 2° dispersion data of 2.36 miles, this defines a nominal impact and dispersion area of conical shape less than 2.36 miles wide at its maximum width and approximately 5 miles in length. A QE of 88.50° has been used at WSMR for 14 flights, and each stable flight has impacted within this zone (Fig. 8). Structural failure and flight instability have required a larger experimental safety range.

APPLICATIONS

While the major application of the 5-inch gun system is anticipated to be in stratospheric and mesospheric sounding, other significant uses are planned. The application of the gun system for placement of specific nonmeteorological payloads at desired points in space has also been investigated. As mentioned earlier, an acoustic source payload has been packaged and successfully flown to acquire acoustic-atmospheric data. This payload also serves as an optical point source for other studies. There is also a desire to refine the system for low altitude soundings at great horizontal distances for application in remote or inaccessible areas, i.e., coasts, geographically restricted or forbidden territory.

CONCLUSION

It is evident that the perfection of the gun-launched atmospheric sounding system will provide a new, versatile mechanism for obtaining remote atmospheric data. This system can be used at existing sounding sites, and will open potential opportunities for new sounding sites heretofore prohibited by extensive and expensive range requirements.
REFERENCES

ATMOSPHERIC SCIENCES RESEARCH PAPERS

The status of the gun-launched projectile system as a stratospheric sensor vehicle is discussed. The report is based on data obtained at White Sands Missile Range, and at Wallops Island, Virginia, where tests of recently developed hardware show an altitude-obtaining success of nearly 100%. The report reviews the fundamentals of the system, including launcher and propulsion techniques, the flight vehicle, and the payload and expulsion system. It is pointed out that the dispersion characteristics of this vehicle offer new potential for high altitude soundings at sites having limited real estate.
UNCLASSIFIED

Security Classification

<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Atmospheric Sounding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Meteorology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Gun-Probe System</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INSTRUCTIONS

1. **ORIGINATING ACTIVITY**: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. **REPORT SECURITY CLASSIFICATION**: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. **GROUP**: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. **REPORT TITLE**: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parentheses immediately following the title.

4. **DESCRIPTIVE NOTES**: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. **AUTHORS(S)**: Enter the name(s) of author(s) as shown on the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. **REPORT DATE**: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

7a. **TOTAL NUMBER OF PAGES**: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. **NUMBER OF REFERENCES**: Enter the total number of references cited in the report.

8a. **CONTRACT OR GRANT NUMBER**: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b. **& 8d. PROJECT NUMBER**: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task numbers, etc.

9a. **ORIGINATOR(S) REPORT NUMBER(S)**: Enter the official report number by which the document will be identified and controlled by the originator activity. This number must be unique for this report.

9b. **OTHER REPORT NUMBERS**: If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. **AVAILABILITY/LIMITATION NOTICES**: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 (1) "Qualified requesters may obtain copies of this report from DDC."

 (2) "Foreign announcement and dissemination of this report by DDC is not authorized."

 (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through.

 (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through.

 (5) "All distribution of this report is controlled. Qualified DDC users shall request through.

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. **SUPPLEMENTARY NOTES**: Use for additional explanatory notes.

12. **SPONSORING MILITARY ACTIVITY**: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. **ABSTRACT**: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

 It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

 There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. **KEY WORDS**: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical contract. The assignment of links, rules, and weights is optional.

UNCLASSIFIED

Security Classification

Page 24