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ABSTRACT

The equilibrium conditions for two-phase and three-phase equilibria
in ternary systems are derived from the minimum conditions for the free
energy, and special solutions are discussed on model examples. The pre-
dictive capabilities of the thermodynamic approach are demonstrated or a
number of refractory carbide systems, and methods for the determination of
phage stabilities from experimental phase equilibrium data are outlined. The
thermodynamic discussions are supplemented by a general review of recent
phase diagram work on refractory transition metal-B-element systems.
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I. INTRODUC TION

At the present time, strong efforts are being made to utilize the
refractory properties of the semimetal compounds of the high melting transi-
tion metale in parts for service at extremely high temperatures; similarly,
special techniques, such as dispersion and precipitation strengthening, are
being extensively used to improve the high temperature mechanical properties
of refractory alloys, and a considerable amount of research work is being
devoted to the development of oxidation resistant coatings for refractory

metal alloys.

Knowledge of the phase-~equilibria existing in the corresponding alloy
systems ls, therefore, of utmost importance for advanced alloy development
work. This is especially true in those instances where the intended opera-
tion temperatures are so high that non-equilibrium states cannot be main-
tained over significant lengths of time; coasequently, the intrinsic stability

of the system itself becomes one of the controlling factors.

A simple, and most direct route, to solve a specific problem would
be the consultation of the equilibrium diagram for the particular alloy system;
this way, however, can be followed only in exceptional cases, for extensive
phase diagram data are available for only binary systems, whereas data on

higher -order alloys are scarce and usually incomplete.

In view of the large number of possible combinations, which makes
a timely experimental solution of the problem nearly illusoric, the question
arises of how thermodyna.)mic principles may b2 applied to relate the th;r'mo-
chemical properties of binary alloys to their phase behavior in higher order

systems.




If we consider, for example, a simple ternary system of the type {
shown in Figure 1 where the solubilities in the boundary phases are quite !

restricted, a simple consideration tells us, that in order to make the com-

bination A + BC stable with regard to AC-B, the free energy change of the

reaction

A +BC —» AC +B,

+ F -FA-F

B AC BC

must be greater than zero. Knowing, therefore, the free energies of the {

individual compounds, one could write down the free energy changes of all

Figure 1. Possible Phase Relationships in a Simplified
Ternary System

---- Metastable Equilibrium
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possible combinations, and select as the stable equilibria those, for which

the above condition holds. Of courss, this would only hold true if no ternary
compounds occur in the system, and if the range of homogeneity of the phases

is so small that the corresponding free energy variations within the homo-
geneity fields can be neglected. Most probably,the temperature section of the sys-
tem when correctly drawn, would appear as shown in Figure 2, The dark
areas represent the homogeneous (single-phase) ranges of the phases, and

the ternary phase fleld is subdivided into a number of areas where either two-

or three-phases are in equilibrium.

- .
/ AC-BC-C AN
rd \.‘
.AC-BC .

scflf = ‘g 8¢

—

- -
P .
~ - \ =~

Figure 2. F.ealistic Appearance of the Diagram Type
Presented in Figure i.

Although this approach looks — at least on the surface — quite tempting,
its predictive value is nil. First of all, we have to assume,a priori,that the

homogeneity ranges of the phases will be small, and consequently accept the




risk that we might be wrong; the other possibility, of course, to establish

the basic assumptions by experiment, would defeat the original purpose of the
calculations., Furthermore, and this is especially true for those cases, where
those ternary systems are being considered, wherein ths compounds of the
binary systems A-C and B-C have similar structural properties, we will

have to expect extended solid solution formation between the alloy phases, which
ultirnately yield the conditions shown in Figure 3. Here, the elements A

and B, as well as the intermediate phases AC and BC, form a complete series
of solid solutions. An infinite number of composition pairs (A,B)-{A, B)C exist,
which are in equilibrium with each other, and the tie lines, which connect co-
existing compositions, give us tae relative amount as well as the compositions

of the equilibriurn phases for any alloy in the two-phase field. Considering

C
A

A\
¢ i \\

Figure 3. Principal Appearance of the Equilibria Upon Solid
Solution Formation Between Two Components and
the Intermediate Compounds.
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this type of equilibrium from a more practical point of view, we see that the tie
lines would,for example, give us the compositions of the reaction products, if
alloys, from the edge system A-B, would be allowed to react with the com-

ponent C.

From these considerations it becomes quite obvious, that in order to
reach more definitive conclusions regarding the possible phase distribution
in a given system, any reasonable thermodynamic approach would have to
include the capability of quantitatively taking into account the changes intro-
duced by extended solid solution formation, and also would have to provide us
with relationships, which would principally enable us to determine the ternary

homogeneity range of binary phases.

In the following sections, we shall stress briefly the basic thermo-
dynamic approaches. After demonstrating the applicability of the equations
on a few maodel examples, we will concentrate on the thermodynamic evalua-
tion and interpretation of a number of recently investigated refractory alloy
systems and finally discuss the capabilities and limitations of thermodynamic

approaches in solving practical application protlems.

II. THERMOCHEMISTRY OF PHASE REACTIONS IN TERNARY
SYSTEMS

D T b ——

According to the phase rule, the maximum number of phases which
can coexist in a three component system is five, or, with temperature and
pressure fixed, three, Therefore, a temperature section of a ternary system
will ordinarily be built-up by an arrangement pf one-, two-, and three-phase
equilibria. Four-phase reactions (four-phase temperature planes),proceeding

at constant temperature, are important in the melting ranges, but seldomly




occur in the solidus regions of systems involving condensed phases. Never-
theless, the existence of four-phase temperature planes can be derived by
aa analysis of a series of temperature sections in the particular system(l).
The mathematical approach, therefore, concentrates on the establishment

of the conditions for the two- and three-phase equilibria at constant tempera-

ture and pressure.
A, TWO-PHASE EQUILIBRIA

In considering a two-phase field (Figure 4)in a ternary system,
the total free energy of a mixture is expressible in terms of the free energies
and the mole masses of the individual phases. Let G be the iotal free energy,
and F| an Fz the free energies of the coexisting phases. Jf phase 1 is present

in a quantity v, moles, and phase 2 in a quantity of v, moles, then

F, = v F +v,F, (1)

The equilibrium state is characterized by a minimuin in the value of F. Assum-
ing constant temperature and pressure, we see that the free energies of the

individual phases are concentration-dependent,

Fl =f (x', y', z')

Fz f (xll’ y||, zll)

With x', y', 2', and x", y", z' denoting the compositions of phase 1 and 2,

F becomes then

-

F=f (Vl s Vo xloY'» z', x'", Y"a ")

p—
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Figure 4. Two-Phase Equilibrium in a Ternary System,
The Tie Line Through the Gross GComposition (xyz)
Shows the Coexisting Compositions.
The relations existing between the concentration terms together with the require-
ment for the conservation of the atomic masses, result in the following six

boundary conditions:

v, t v, = 1

x'+ y'+ 2! = 1

x'" 4yt 4 g" = 1
1 T —_

VX + v,X = X
1 tt —_

vy vy = XY

v.z! 4 sz” = Z

1




where X, Y, and Z stands for the gross composition of the alloy. The location {
of the minima is best evaluated by Lagrange's method:
aF _\ N o !
3, TN, %k l
Proceeding in this way, we obtain eight determining eqaations for the six

undetermined multipliers Gy s @8 well as v, and Vz"'

Fi-o -o;x' -ay' -az =0 (a) ‘ ‘
F, -a, -a,;x"~-ay"-azz" = 0 {b) |
oF,
Vi 55‘—1—"0.2-%V! =0 (C) l
oF, |
"1'57'"“2"“5"1 =0 {d) / |
i
8F,
V) gET T 9, "%V T 0 (e)
8F,
vy gt = Gy- 8y, =0 (f)
9F, )
Y2 3y T % T %2 T 0 (e)
OF ,
Vi 5z "% gy -0 (h) |

From the last six equations, we obtain the important partial solution

oF,  OF ran oF ,
W O T.p 0 [FTT T ®HT T.p (2a) (
5F BF [(oF aF
15T T BzT| T,p | Bx™ 5z"7| T,p S
oF 6F | [&F BF '
1 1 . 2 _ 2 (2¢)
By" ~ Bz'| T,p | By" T 5z T,p
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which, together with the boundary conditions and the remaining equations (a)
and (b), can now be used to evaluate the undetermined multipliers; this ultimately
yields the equilibrium conditions for the general case of the two-phase equi-

librium.

Geometrically, the solution represents the manifold of all
double tangent planes to the free energy surfaces of both phases, and implicitly
contains the well-known thermochemical relation, that.in the equilibrium state
the partial free energies of the components are the same in all coexisting

phases.

We shall, however, not perform the evaluation of the general
condition equationsf since the arithmetic is quite involved and the applications
of the resulting equations to actual ternary systems is too laborious and time-
consuming in order to be of any practical help. They retain a certain use-
fulness in pseudo-systems of elements or compounds of equal stolchiometry
and structure since for these cases the free energies of the boundary phases
cancel, and the course of the tie lines in the two-phase fields becomes a func-

tion of only the solution terms(z).

In many instances, and this applies especially to systems involv-
ing semi- or non-metals, the intermetallic compounds formed ave either
nearly perfect line compounds (true for most silicides and borides), or form
defect solid solutions, which are characterized by a similar variation of the
free energics across the homogeneous fields (carbides and nitrides), This
affects the appearance of the ternary equilibria such that the boundaries of
the one-phase regions are nearly straight lines; running parallel to the

metal - metal -bases. The conditional equations can then be substantially

*A treatment of the general case for interstitial-type compounds is given in
E.Rudy:Ta-W-C Systern (AFML-TR~65-2, Part Il, Volume VIII, March 1966),
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simplified since we may take the concentration term of one of the com-
ponents, say z, as independent of x and y, i.e.,we permit the free energy to
be varied only by the relative exchange of A and B. Proceeding in this way,

we have :

x'+y' = const = a (8x' = -ay')
z' = comst' = li-a (8; = 0)

x'l + y" = COnSt" = b (8x“= -ay")
z"" = comnst' = l-b (9z"= 0)

Substituting into the partial solution from Lagrange's equation, we obtain the

two equivalent conditions(3a) and (3b).

[ oF, ] K

—_— = -2 (3a)
| ox' | T,p | ax" | T,p

[ aF,] "aFj

— = = 3b
ay' | T,p 8" | T,p (3b)

We note the formal analogy of these equations to the conditional equation for
binary alloys in both cases, A tie line connects two points of equal free energy
gradients; however, due to the additional degree of freedom, the single tie

line in the binary system splits up into a o multiplicity (ao1 tangent planes with T=
const) in the ternary case, Taking the example shown in Figure 3, it is seen that
a change of the significant parameters, in our example the exchange of atoms

A and B between the two solid 3olutions, alters the concentration and hence

the free energy of both phases in the direction A=B, and the gradient, therefore,

has to be taken along the same path.
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A few simple considerations will show us the usefulness of
these equations. Assume, for the sake of simplicity, ideal mixing between
both solid sclutions {A,B) and (A,B)C. Since we consider only changes in

the partial lattice (A, B) to be significant, we base the calculations on one

‘gram=-atom of A+B in both solutions. In this way, we obtain as the free energy

for the solid solution A-B,
F(A,B) = xA'FA+xB' FB +RT (xAln xA+xBln xB)

and in a similar fashion for tho free energy of the crystal solution (A,B)C

F, .+x «F +RT(x'A1nx' +x'1n x')

F = x!
{(A,B)C A TAC B "BC A B B

X, X

A .es.e Atomic fraction of A and B in (A, B)

B

x'A,x'B .+«+.+. Relative mole fraction of A and B in the

solution (A, B)C. (x‘A+ x'B = 1)

Differentiation and rearrangement yields the equation

A _
RT In X, "E = Fgo~ Fp- (Fug- Fy)

Substituting the more easily obtainable free energies of formation AFf, for the

free energies,

AF, = F,.~F_ =T

fBC sc” T8 ¥¢
AFpc T Fpac - FaA-T¢

we obtain the final relationship for the tie lines of this partition equilibrium:
RTInK = AFfBC -AFfAC (4)

11




The constant K abbreviates the expression

1
K= B . _A
A *B
and we may interpret it as the equilibrium constan! of a reaction

<A > .+ <B >

= >
(A, B) <A

+ <B >

(A,B)C (A,B)C (A.B)

AF{AC and AFfBC are the free energies of formation of the binary alloy phases

AC and BC at the temperature T(p = 1 atm).

From equatior (4) we derive readily, that the relative distribu-
tion of A and B in the solution (A,B) and (A,B)C is a function of the stabilities
of the boundary phases; for equal stabilities, i.e, AFfBC = AF{AC’ the
relative concentrations of A and B in both solutions are equal. With
AFch < AF{AC (BC more stable than AC), the concentration of B in the
solid solution (A,B)C appears higher than in (A,B). The reverse is true for

> .
the case AFfBC AFfAC (AC more stable than B3C).

The free energy of mixing increases with increasing tempera-~
ture and hence tends to equalize a given free energy difference AFfBC- AFfAC'
For the (hypothetical) limiting case T—p 0 we obtain independent of the free

energy differences, equidistribution, X, = x'A and Xp = x‘B.

To illustrate the method and to demonstrate the graphical
solution method, we may treat the foregoing example numerically. Let, for
example, the free energy of formation of the binary compound AC be
-4.574 cal /mole and AGp . = -2287 cal/mole, We want to know the equi-

librium constant K as well as the tie line distribution for 500°K and 2000°K.

12




{ According to equation (4)

RTInK = AFgp. - AF, . = 2287 cal/mole,
K =K (500°K) = 10
K = K (2C00°K) = 1.779

The knowledge of the equilibrium constanta K defines for any alloy (A,B)

the compositions of the products, which will be formed upon exposure to the
component C. From the decreasing slope of the tie lines with increasing tem-
peratures (Figure 5), we derive, that the reactions tend to be less selective

£ at high temperatures, i.e, jthe relative distribution of the components A and

B bzcomes less preferential.

! K=10 K= {78
AC 8C AC 8cC
o : d
§. ' |
i
) ! |
i A , =g A I B
: | : |
: 6000 i : i : gy
i _ ( ! i |
: | I/ ] ! v I
4000 H— - A - :
1 \‘
) ° : \P\e H (] : Q\Q '
] g " ' \VQ' (]
£ 2000 — = 3
{ 8 - > VL
r -] D /' ] /
> | s yad
i 3 - A
: ® -2000 ; 0
r / T=500°K ' J T=2000°K
. -4
000 Y] 05 10 0 0.5 1.0
f CONCENTRATION
% Figure 5. Graphical Construction of the Tie Lines from the
AF -x Curves and Effect of Temperature on the
{ Partition Equilibrium.
L]
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For direct comparison purposes, but especlally in those
instances, where the solutions cannot be treated as ideal, it is preferable to
perform the evaluation graphically. For this purpose (equations 3a or 3b) we
plot the gradients of the free energies as a function of composition; the hori-

zontal intercepts between the curves at the chosen values X, OF X, fmme-

A
diately then yieks the equilibrium compositions {Figure 5).

B. THREE-PHASE EQUILIBRIA IN TERNARY SYSTEMS (Figure 6)

The derivation of the conditional equations for the three-phase
equilibrium is performed analogously to that for the two-phase aquilibrium,
However, in view of the bulkiness and complexity of the resulting equations,
which make them of only limited use, we shall not stress the general cace but
rather concentrate on the simplified treatment which we will need for our
subsequent discussions of actual systems. A brief review of computer ap-
proaches for the solution of the unrestricted problem will be given in a later

section, We have to consider an equilibrium Ax,By,C - A BY"C

2t x" zn"

A,.B ,,C ,. where z', z", z"' have individually different, but otherwise
X' Ty gt

constant values.

Since thrée phases are involved now, the total free energy of

the phase mixture becomes

F

VlFl + VZFZ +V3F3,
ith
W 'Flz ¢’1 (xn’ Yl’ zl)
F2:¢2 (xn’ yll, zH)

F3=¢3 (xln, ylll, z"')

14
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Phase 2

Homogeneous Phase 1 7
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Three-Phase Equilibrium in a Ternary System
{(General Case).

Figure 6.

Together with the boundary conditions, which results from the relations existing
between the concentration terms as well as from the conservation of the atomic
masses ,we obtain, in the well-known manner after Lagrange to obtain the mini-

mum ,the equations:

Fl-nlx'-qz(a-x')-as(l-a)-a‘z 0 (a)

F,-ax"-a, (b ~x") ~a,(1-Db) - e, = 0 (b)

F, - ax'"=a, (c=-x"") -a, (1 -c)- a, = 0 (c)
F,

Vi Bt 4t ey T 0 (d)

15




8F

Vz g-F - lez + QZVZ = 0 (e)
BF’
1.'3 -5‘x°i—"- C).l\l3 + Q2V3 =0 (f)

1

with v+, + vy
x'+y!' = const' = a
x"" +y'"=const''= b

x4 ynv: const'"=c¢

From equations (d), (e), and (f} we obtain the important partial solution:

[: ]T,p [Bx" T,p [ ';l T,p %t~ % =)

With this equation alone, however, the three-phase equilibrium
is not yet uniquely defined. An infinite number of solutions would satisfy
relation (5), and we need an additional condition in order to reduce the possible
solutions to only one. For this purpose, we turn to the remaining equations

and eliminate the undetermined multipliers a, through a,.

Rearrangement of equations (a), (b}, and (c) ylelds

F, -x! (ol-uz)-o.zoa-o.3+n3-a-u‘ = 0
H - . - . - -

Fz-x (°'1"qz) o.zb a3+a3b a, 0

F, -x"'(csl—az)-a.z-c—u3+cu3-c-<14 = 0

Substituting relation (5) for a, =a,, and recalling the relation for calculating

partial (F') from the integral quantities,

16




IR 1 Ty 9O IS 1

FA = F+ xB ng

: we obtain

-I_‘IB- —I"ZB +b (qz-u3) -a (o.z-o.:) = 0

|
F!B- FZB +b (o.z-a.a) -c (o.z-a’) = Q
Elimination of 3, and a, finally yields

, Fp-FEs . Fp-Fs _ Ep T 6)
a->b b-c¢ a-c
.. and, due to the symmetry of the relation, the equivalent equation
-~ 1A” T2A Fa~Fia Fa-Fa 1)
a-b b-c a~-c

i The partial quantities in equation {6) and (7) are on a gram-atom basis. In

practical calculations it is inconvenient to first determine the differences of ’
; the partial quantities, and then to divide by the composition factors a, L, and
.. ¢ in order to satisfy the conditional equations. Instea:d. if we base our calcu-

lations on a gram-atom of the components A + B, i.e.,if we express the com-

il pound solutions in the form (A,B)Ci, we have for

Solution 1 = (A,B)Cu

e
. l

Solution 2

(A,B)C

oy

Solution 3

(A,B)C

-




e e

[ &>

d

= “1A l-a

FA(u) Y i v= 2

-F—. _ 'FZA . v = l-b

Alv) T B 5
and

F _ ?;A ] w = l-c

Alw) " "¢ ° S

Substituting in equation (7) and rearranging the terms, we obtain the condi-

tional equation in the form:

{v-w) Alu) +

{w-u) FA(V)+ {u-v) FA(w) = 0 {8a)

Performing the saime operation for the commponent B,we receive the equivalent

relation

(v-w) B (w-u) ?B(V)+(u-v) FB(W) = 0 (8b)

... Partial free energy of A in the solutions

Fo, uF, F
Au)’ TA(v) TA(W) (A,B)C_, (A,B)C_, and (A,B)C_.

Partial free energy of A in the solutions
(A, B)C . (A,B)Cv, and (A,B)C_

8w FB () FB (W) ¢
Equations (5) and (8) together now completely define the three-phase equilibrium:
From all coexisting composition triples admitted by equation (5), the correct
triples, i.e.,the cornpositioﬁs of the three phases, which have the lowest free
energy, are sorted out with the aid of equation (8). Equation (8) corresponds
to the law of the mass action in the form of the well-known thermodynamic-

relationship for the equilibtrium state:

18




2"1“1 = 0

where the vy denote the mole masses of the reacting species and the u, are
their thermodyunamic potentials. The fact, that two equilibrium conditions
are required reveals that the law of mass action is not sufficlent to locate

i the three-phase equilibrium in terms of the irndividual equilibrium concentra-

tion of the pbases,

Equation (5) and (8), will be extensively used for calculations
in actual systems. For the sake of convenience, we shall refer to equation (5)

N as the ''gradient-condition', and to equation (8) for reasons to be explained

bl

later, as the ''stability-concition',

.

wrhabie
T

II1. DISCUSSION OF THE EQUILIBRIUM CONDITIONS ON MODEL

LEXAMPLES
§

A, THREE-PHASE EQUILIBRIA RESULTING FROM MISCIBILITY
i GAPS IN BINARY OR PSEUDO-BINARY SOLUTIONS
i This case is very frequently found in actual systems. Misci~

bility gaps in solid solutions may arise from large differences in the atomic

- -t

sizes of the constituents, where the resulting straln energies result in posi-

tive mixing terms, and ultimately may cause the solution to separate into

i two distinct phases., As a first approximation, we may take account of the
nonideal behavior by adding a.positive enthalpy term to the ordinary mixing
quantities, the later being entirely due to the entropy of mixing. The most
common approach,using a parabolic form, is that originally proposed by
Van Laar, and the solutions which obey this beraviur are usually referred

to as ''regular solutions'., The free energy of mixing for the regular solution

i is given by
d 19




mix - .
FA,B = Xy e Xg+ Rf(xAlnxA+xBl.an)

where ¢« is the so-called interaction parameter. The critical solution tem-
perature for the regular solution is derived from the condition, that the

first and second derivative must vanish at the critical point, and is given by

Due to the symmetry of the terms, the critical point is located at x = é- and i
the miscibllity gap by the regular solution model is symmetrical with regard
= 1 ‘
to x = z- . )
A typical case for a three-phase equilibrium resulting from t
the formation of a miscibility gic 1 one of the compound solutions is show .
in Figure 7. For simplicity, the same basic system layout as in the example {

shown in Figure 3 has been chosen.

ey

The pseudo-binaxry miscibility gap is sufficiently defined by

] [E, e

«++++ Being the composition of the terminal solid i
2 solution. l

Sy

the relation

*c,’ *c

The vertex of the three-phase equilibrium at the solution (A, B) is located,

according to equation (5}, at that point, where the free energy gradient of

the (A,B) solid solution coincides with the gradients of the solid solution z
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(A,B)C at the concentration points X and xg The evaluation can be done
1 2

either by calculation or graphically as shown in Figure 8. To deplct more

AC 8C

Figure 7. Three-Phase Eqiilibrium Resulting from a Miscibility
Gap in a Pseudo-binary solid solution,

clearly the existing relations, the equilibria were drawn on a rectangular basis
instead of the usual triangular one , The following data were assumed for

the calculations:

AF;, = 4574 cal/ mole AC
AFgp. = 2287 cal/mole BC
A’rc1 = 1000°C (e, = 3960 cal/mole)
AT = 1200°K (e,= 4750 cal/mole)

2]




The free energles of both compounds are further assumed to have the same

temperature dependence so that the difference may be taken as being independent !

{
of temperature. Choosing the pure components A and B as the reference
|
T = 1300°K T = 110°K T = 800°K ¢
AQ BC AC C AC BC
\\ ' |
A B A B A B

é
— 6000 3000 /] 3000 _ Ly ¢ 3
‘s Lo (A, B) s ] @mee } 3

i_’ 000 (A, B)CZ, 2000 7,__.. == 00 £ < \-/111: "

£ 200 ] 1000 / / 1000 -

) [L__ LR | AC) ¢
] 0 0 0 Lo T T ey e ;
! ety i
5 = = K
0 -2000 -1000 -1000 :
L= i [ [ i
P ~4000 -2000 I -2000
0.5 1.0 G 0.3 .0 5 .0
Xp(Xgc) Xg(Xpc) XgXpo
--- Metastable
Figure 8. Appearance of the Equilibria for the Case of Nonideal
Solutions, and Graphical Determination of the Tie Lines.

state, we obtain for the solid solution (A, B) ; i
— ¢ o %! o« xt [ 1 ' '
AF(A,B) ¢ x'y - xy +RT (x',In x!, + x5 In x}p) )

and for the solution (A, B)C:
AF(A,B)C = X"'\ AFfAC + x"B AFfAC +eq %" «x'" + RT(x", Inx" +x" ln x'.)

2 "A 7B A A 7B B }

The free energy-~concentration gradients become then:

22




BAFA B x'B
——s——').' z ¢, (1-2x)+RTln ——
bx'g T,p @ B =y

xH

9AF,
—__(,B)C = AFgpo- AF, o+ ¢, (1-2x5) + RTIn —2
ax"B T'P l-x B

These gradients are plotted in the lower portions of Figure 8 as a function of

the concentration x', and x'.. , respectively.
B B 4

At 1320°K, both solutions are above the critical temperature,
and the only heterogeneous equilibrium in existence is the two-phase equi-
librium between (A, B) and (A, B)Cl =" At 1100°K we notice the formation of
a miscibility gap in the solution (A,B)C, with the consequent formation of a

three-phase equilibrium

(A.B)I- 58 + (A,B)n- g8 + (A,B)-s8s

Finally, at 900°K both solutions exhibit miscibility gaps, and
consequently, two three-phase equilibria, each of which is surrounded by
three two-phase equilibria, appear. The construction of the tie lines within
the two-phase fields from the gradient curves follows the same route as

previously described.

Re-examining the equations, we arrive at the conclusion that
for the evaluation of such three-phase equilibria, which result from the forma-
tion of miscibility g2ps in binary or pseudo-binary solutions, the gradient con-

ditior is sufficient for the evaluation of the base vertex of the three-phase field.

23
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B. THREE-PHASE EQUILIBRIA RESULTING FROM THE
ABSENCE OF ISOMORPHOUS COUNTER-PHASES (Figure 9).

P

This is the most common type of three-phase equilibrium i
occurring in ternary systems. In view of its importance and of its interest

from the theoretical side, it will be considered in somewhat greater detail. !

u u

Figure 9, Formation of a Three-Phase Field Due to the
Absence of an Isomorphous Counter-Phase
BCv in the Binary System B-C, j

Suppose, as shown in Figure 9, we have a system where the {

phases ACu and BCu, as well as the pair ACw and BCW, are isomorphous and

————

form a coatinuous series of solid solutione , In one system, say A-C, we

24
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further have an intermetallic phase ACV which does not occur in the edge-
system B-C. Due to the fact that the corresponding phase in the B-C »
system is missing, the solid solution (A, B)Cv is ultimately terminated by

a three-phase equilibrium
(A,B)C at (A, B)CV + (A, B)Cw

Intuitively, we are inclined to assume that the range (A,B)v
will increase with increasing stability of the hypothetical phase BCV, for we
know that the soluiion should extend over the whole concentration range if
such a compound would become stable in the binary B-C system. We therefore
expect that the relative stability of the hypothetical phase BCv’ (l.e. its free
energy of disproportionation into BCu and BCW) will be the main controlling
factor for the size of the ternary range of the (A, B)Cv solid solution. The
general situation, shown for a binary system A-C with two phases ACu and
AC ., and a further compound ACV of varying stability, is depictt;.d in Figure 10

(Case I, read BCV instead of ACV) .

To discuss the problem mathematically, we best start out

from the stability condition (8):

(v-w) f‘A(u) + (w-u) F 0

av)* (v-w) 'fA

(w)
Basing the calculations on the components as the reference state, we may

replace the free enthalpy- values by the respective free enthalpies of forma-
tion, i.e. we may write A'f‘ACu in place of -fACu without changing the form

of the equation. Separation of the partial free energies into base- and con-

centration dependent terms yields

25




. =mix =mix =mix _
(v=W)AF ( HW-RAFL ) (V-WIAF L (vl ST won) AT v -w)AF ) = 0

\ AC,
v ACy :
NG 1 : |
\\\ i
R\
N
[
AN b
Y AF. <0
N zac,
AN {1 Unstable) . ;
\ i '
b , !
2 :
5 .
AFZACv.O

S, <0: Eutectoid Point \\

AS, >C: Peritectoid Point Y|

Homogeneous Range h
of Phose I

Figure 10. Stability Relations in a Binary System A-C.

I: AC,, Unstable with Regard to a Mechanical Mixture ,
ol AC, and AC,.

II: Boundary Case, Designating the High (Peritectoid) or [
Low (Eutectoid) Temperature Stability Limit of the !
Phase AC,,.

Il: AG, Stable. !

AFZAC is the Free Enthalpy Change Involved in the Disproportionation |

Reaction:

(w-u)AC_ —+(w-v) AC_ + (v-u) AC_, ‘
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Where the AF " terms refer to the partial quantities of mixing,and the

first three terms correspond to the free enthalpy change of the reaction

{(w-u) ACV —»(w=v) ACu + {v-u) AC . "AFZACV

The quantity AFZ AC ™Ay be regarded as the free enthalpy of disproportiona-
v

s i
‘

tion (AFZACV) of the phase ACV into the nelghboring phases A and ACW.

iy

Analogously, the last three terms, containing the partial mixing quantities

for the phases (A,B(C , (A,B)Cv, and (A, B)Cw. may be interpreted as the

LS

corresponding free energy changes which result from the formation of the
S solid solutions. The above equation may then be rewritten to
3
—rmix
- AF,,~ +AF;,~ = 0 (9)
i v v
= Due to the reciprocity of the relations, the analogous expression for the
& component B is cbtained.
i —=mix
. AFZBC + AFZBC = 0 (10)
v v

¥
§
&

The three~phase equilibrium is therefore characterized by

8

the condition that the free enthalpy of disproportionation for each of the binary

‘m.

!

compounds ACv and BCV are brought to balance by the corresponding partial

- i solution terms. Knowing the solution behavior, relations (9) and (10) give us
o a means, to separately determine the free enthalpies of disproportionation of
§= the phases AC, and BC, from experimental phase~diagram data; this
?’ allows us to assign free energy values to the hypothetical phase BCV.

e
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To determine the equilibrium concentrations from given
thermodynamic data, we first employ the gradient condition, which yields
the vertices of all possible three-phase equilibria existing across the entire
concentration field. Mathematically, this procedure is equivalent to reduc-
ing the w’ initially possible solutions (manifold of combinations between
three concentration variables, x, x', and x") to a2 manifold of only o' [ sets
of interrelated triples (x,x',x'')]. These "compatible" triples of concentra-
tion terms are then inserted into equation (9) or (10); the correct composition

triple is that one for which these conditions are satisfied.

In view of the transcendency of the resulting equations, which
makes the arithmetic quite involved, the evaluation again is best done graphi-
cally. We will, however, not treat a model example, since the calculation
techniques will be demonstrated extensively in the application section, but

rather discuss a few important relations.

Relations (8) and (11) are valid for the equilibrium state; any
deviation from it will result in the appearance of a finite quantity, ¢, on the
right hand side; which essentially is a measure of the relative imbalance
between the disproportionation terms for the binary compounds and the mix-

ing quantities. We may therefore generalize condition (8) aund write,

~—=— mix

bp = AFZAC +AFZAC (11)
v v
_ ~—=mix
¢B = AFZBCV+ AFZBCV {12)
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and note, that at equilibrium
$(x) = 0
When ¢ (x) assumes positive values, i.e.,
¢ (x) > 0

the solution (A,B)C«V is stable in respect to mechanical mixtures of (A,B)Cu
and (A,B)Cw. For the case that

$ {x) < 0,
the solution (A,B)Cv is unstable and disproportionates into mixtures of the

solutions (A,B)Cu and (A, B)Cw.

We further note, that

oy [xaq =11 = AFZACV
op [xppy =01 = “Fzrscv
o gy =1 = AF2130V

% [xp(v) = 01 = AFzpc
i.e. a perfect symmetry of the relations,

So far, our relations have dealt only with partial quantities,
and we naturally expect the excess functions ¢A and ¢B to describe only the
partial disproportionation quantities only. Consider now, for example, that
one would be interested in knowing how much a given crystal solution, in our case

the series (A,B)Cv stable in respect to the neighboring phases,i.e,, we would
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like to know the integral free enthalpy of disproportionation of any given com-
position (.‘*.,B)CV into corresponding (quasi-equilibrium) mixtures of (A, B)
and (A,B)C.

With both functions N and ¢B known, the integral free enthalpy

of disproportionation ¢1(x) of the crystal solution (A,B)CV would be given by:

Sint. (%) = Xa(y) eAKa) T ¥B(y)?B%1B)
or, since

XBv) = 1"*A(v)

Sine %) T Xppg)t Palxi) H[1x, ) 0 (xyp)

The concentration variables X and xi.B abbreviate the sets of terms xA(u)'

XAlv) and *A(w)’ and xB(u)’ KB(V), xB(w), respectively; they are used to
help to indicate the components to which the concentration variables refer.

Thus, by agreement

Xip = l-xiB'

In order to obtain the integral function ¢(x), we have to deter-
mine the interrelation between the partial functions ¢A(XLA) and ¢B(xiB)' It

can be shown (Appendix 1) that both functions are identical, i.e.,

¢A(XLA = ¢B(xiB)
Substitution of this result into the equation for ¢i.nt (xi), ylelds
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{ We obtain, therefore, the important result, that the integral free enexrgy of

disproportionation of a crystal solution is equivalent to the sum of three free

P

enthalpy of disproportionation and the partial free energy of mixing for either

; one of the phasecs participating in the equilibrium,

- With these findings, we are now able to schematically list the pos~-

Ay

sible reaction types (Figures lla and 1llb), Each case is found in actual systems.

The case shown in Figure 11(b) is of special interest since it indicates the

pur ey

possibility for a ternary disproportionation of a solid solution formed between

two stable, isomorphous binary phases.

el - q

As described previously, the graphical method offers the most

gy,
. "

convenient route to eva'uate the equation. A closed solution for ¢int (xi),

‘.,»mu- ‘!1

which often {8 useful for initial estimates of the gross behavior of the phase-

relationships in a system, can be given for the case where the golutions behave

i"
& idealiy. For this purpose, we have to combine equations (5) with equation (8)
i or (11).
4
¢ Expanding relation (5), we obtain (T,p = const)
i
3 " iac, = AF - AF. FRTIn AW §
~ . RZNE (o £(aC, ) £(BC ) 15, (o) H
T
i .
) i aAFf.ACv . AF A VBT In Xp v)
g 5xA(v) f(ACv) f{BCv) “XA(v)
"
H 9AF,
. £ fAC x
o w “ A(w)
N - AF, +RT In —{W)
- ExA(w) f{AC ) f(BCw) 1 XA (w)

31

AT e
" .

'




A
N .
> : Y i
Q0 \_ v v
Q= - ' ] ; ' \—‘T ‘
H [}
4 i ' | {
0 ' ' ! 1
! ' .
) ! Ll f
N : g BC,, l
= N
1 ) ' T
AC BC, | |
\/ ‘
A 1 0 P '
—Xgp— — xp— 1 0 —xg — 1 .
: ;
Fig. lla T
T< T T=Te T>T, j !
: t
i
+ ] |
S / \ N S~
>0 ' H
3 . ! : .
P ! ! ] !
N ! ! \ )
w 1 | i , T
E. ] ] ’ 1 B H
] L] 1 ! :
' ! :
AC " : e !
w : : : BCW 1 ;
! ! -
1 0, :
AC, | / BC,
AC, / BC,
0 —_—X, - —X, -
e PO XB bl T 1 Fi 11b
g.

Figure ll(a) and 11(b)

Integral Free Energy of Disproportionation,AFz\eC ,0f a Phase Solution
(A,B}Cy,and Corresponding Appearance of the E se’ Equilibria(Diagmmmatic).

Properties of the Function AFZMer= {
AFzMeC, [Xg(y) = 0] = AFzac, ‘
AFzMec [ xp(y) = 1} = aFzgc,

0: Solution (A, B)Cv Stable

v

MZMOCV

0: Solution (A,B)Cv Unstable with regard to X
mechanic mixtures of (A, B)Cu and (A.B)CW

WA

AFzMeC,,
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Equation (11) yields

ix

A [xm] = +EZX§.C
v-u wey
w-u w=u
*Alw) * *A(u)

¢,[x,,] = AF, +RT In
AL TiA ZAC, XA (v)
with
AFZACV z (v-u) AFf(ACw) + (w=v) AF, fAC - (w-u) AF, £(AG )

Substitution and rearrangement of the terms yields

v=u W-V

wW-u weu
RCNE ¢A[xA(v)]= AFA_BCV- RT In| l+xA(v)(Kz-1)] (14, () (K - -1)]

or, seeking ¢ as a function xB(v)'

u-v W=V

w-=-u wW=u

tp(%ip) = 4pl7p(y)) = AFzpc ~RT In[dxg (K -1)] [ lesg,(K;-D)]

The coustants K|, Kz’ K;. and K; are defined by:

RT 1nK! = AF{ACV-AF}:BC -AFf.AC_+ AFfBC
v u u
RTInK, = AR, -8Fpo -AF, o 1 AF g
v A2 w w
' 1
Kl = -R—l-
L 1
Kz T K
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and u, v, w have the ‘meaning previously~ allocated. We further recall that

the integral function bint (x) represented by either ba [xA(v) Jor ép [xB(v)] .

Instead of choosing the composition of the solution (A,B)Cv
as the independent variable, ¢(x) may also be represented as a function of the
concentration of the solid s?lutlons (A.B)Cu, or (A,B)CW. Obviously, however,
the concentration points determined by ¢(x) = 0 then refer to the vertex of

the three-phase equilibrium at that particular solution.

A further relation, which is often useful in obtaining a coarse
estimate for the solubilities to be expected at high temperatures, can be
obtained by seeking the limiting value of ¢(x) for T —» . Evaluation of the limit

in the well-known manner after L'Hospital, yields the relations

AFzAC

v
AX. . -AF
ZAC ZpC
v u

XB (u) [T «]

AF,
ZBGC,,

x V[T ] -
A(u) &FZBC AFZAC

1

The solutions are only meaningful, when AF and AFZBC

ZAC
v v
ent sign, i.e. one of the phases has to be unstable in the binary.

are of a differ-

C. BINARY AND PSEUDO-BINARY SYSTEMS OF NON-
ISOMORPHOUS COMPONENTS

Up to this point, we were interested only in systems where
the solid solutions were formed between isostructural phases. Somewhat differ-

ent conditions exist, however, if we continue with two components which differ
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{n their crystallographic framework. In general, temperature dependent

mutual solubilities will be observed, but the two solutions will always be
separated by a two-phase field of finite width, The question arises now, con-
cerning the relations between the magnitude of the atom exchanges in the two
structurally non-equivalent lattices and the energetical quantities. Furthermore,
as a follow-on consideration, we will be interested in how deviations from the

ideal solution will affect the overall appearance of the equilibria.

Let A and B be the constituents of the binary or pseudo-binary
system. The crystal structure of A is designated with a, and that of B with f.
(A, B)a is then the solid solution having the a~structure, and (A, IB)‘3 the solu-
tion exhibiting the structural characteristics of f. We further assume that no
ternary compound is formed across the concentration field, i.e., the free
energies of all other phases conceivable to be formed, shall be more positive

than those of (A,B)(1 ’ (A,B)ﬁ, or mechanical mixtures of both,

We expect that apart from the temperature, the adaptability

of the individual components to the lattice of the partner will influence the

widths of the homogeneous ranges; i.e., we expect the relative atom excMnées

in both lattice types to be a _function of the transformation energies AFB (B — a)

and AFA(a — B) for the cump;onent B and A. The free energy-concentration
relationships prevailing in such a system are shown in Figure 12. In order !
to obtain a mathematical relation between the concentration and the free energy
quantities, we start out from the well-known thermodynamic relationship that

in the equilibrium state the thermodynamic potentials (partial free enthalpies)

of A and B, must be the same in both solid solutions. Hence

Fata) = FA(p)

35




B = BE)

Denoting the integral free enthalpy of mixing of the a-solid solution with

Fumb‘, and that of P with Fl‘;nbc, and using the stable structure as the i

AFA(O-OB)

AFa(ﬁ-oa) [

AF
o

—

‘2
I3
— ——————————

—_— Xy —

Figure 12, Relation Between the Integral Free Energies and .
the Relative Atom Exchanges in Systems of Non-
isomorphous Components.

xXg .- Solubility Limit of the ¢~Solid Solution

Xy ..Solubility Limit of the p~Solid Solution =
AF
A(a>PB) .. Free Energy Change Involved in Converting the

Lattice Type of A (a) into that of B {B). (Free
Energy of Transformation of A).

AFB(ﬁa a)..Free Energy of Transformation § » a for the '

Component B.
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reference state, we obtain

= _ =mix
Bata) © Faqe)

= _ = mix
By T AFeep T Tap)

or
= mix mix
- = AF 12
Fata) " Fa() © AFa(a ) (12}
and in an analogous manuer for the component B
=mix =mix
- = . 13
*B(B) “Bla) - “FB(B+a) (23

If both solutions bebhave ideally, these expressions become, applying the

well-known thermodynamic relationship for calculating partial from integral

quantities,
oF
Fa © F % 3,
We obtain then
=mix _ 3
FA(a) = RT ln xA(u)
wmix
FA(ﬁ) RTin xA(p)
RT 1n AL . 4 (14)
xA(ﬁ) - A(a » B)
and for the component B
*B(B) _
MR | VBl (15)
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With the following relations existing between the concentrations terms:

*g(p) = 1*a(p)

XBla) = F*Ala)

For the case of non-ideal solutions, the partial quantities either can be derived
from known experimental data, the nonideality can be approximated by suitable
mathematical expressions. Thus, for example, using the regular solution

approach, we obtain the following equations:

F:&’; - ‘u[l”‘A(a)]z+ RT Inx, o
Fam © pll=apl + RTInx,
‘q[l"‘A(n)]z ~es [1-xA(B)]2+ RT In :i:‘;- = AF (4 3 ) (16)
or, since for the majority of iustances ¢ | ~ ¢, = «
¢ age) “*a@! [*aq@ **a@ "2 FRT I :;:(;) " AFAfap)

Analogous expressions can be obtained for the component B,

From the foregoing equations, we derive,that the relative atom
exchange in systems between non-isostructural components is principally
determined by the free energy differences between the lattice types of the two
partners. Since the transformation energies are positive quantities, we

derive,for example from equation (16) that with increasing AFA(CL + ) the
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*A(a)
ratio ;—L increases, i.6, the width of ths homogeneous range of the a-phase
increases, while that of § narrows down. If we consider, for example the

special case, that AF >> AF , the komogeneity range of the
Ala +B) g g

B(B » a)
8 -solution will be negligibly small.

Under these circumstances

_ mix
F = 0
B(p)
and we obtain from equation (15)
= mix
‘FB(u) AFB(l3 »a)

For ideal solutions, this results in the simple relation:

RT 1n xB(a) = "AFB(ﬁ-»a) (17)
or, since
9AF
B{f #»a)
—5—— 1 Q?8Hp g
—_——— = -

in the familiar Clausius-Clapeyron-type of equation,

3lnx _ AH

9T RT?

This relation, in the integrated form

1nx=A-é%{- ,




is commonly used to evaluate the enthalpy change AH from experimental

solubility curves ("'heats of solution').

For practical purposes, it is often convenient to have a rapid
means by which the relative magnitude of both solutions can be estimated,
or, for the case of narrow two-phase ranges (small free enthalpies of trans-
formation of A and B, high temperatures), to obtain the concentration range
where the two-phase equilibrium is to be expected. For this purpose, we
seek the limiting expression in equation (16) and (17) for T-» o, and obtain

after L'Hospital:

[ _"3} . 2PAap)
X AF
A crit.conc. B(p +9)

i.e. the limiting concentrations of A and B are inversely proportional to their

free enthalpies of transformation.

As an example, let Al"A(‘1 be 100 cal/gr.-At., and

+p)
AFB(ﬁ »a) 200 cal/gr.-At. With these values the approximate mid-point

composition of the two-phase range a + § will be at

X l-x
—§-= AL -l-. or x, = 0.55,
X, X, 2 A

i.e.,the f-range extends further than the homogeneous field of a.

In order to demonstrate the applicability of the equations dis-
cussed in this chapter and to show the possible variations in the appearance of
the equilibria due to nonideal solution behavior, we shall consider one example

in somewhat greater detalil.
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We assume two structurally different components A and B,
with B transforming at T into a lattice type squivalent to that of A. Without
seriously curtailing the generality of the results, we shall use the regular
solution approach to describe the deviation from nonideal behavior, and we shall

>
also assume that AGA(Q > AGB(B -a)’ so that we may neglect any atom

~B)
exchange in the component B. This helps us to simplify the arithmetic.

Including in equation (17) the nonideality terms, we obtain

2
' [l-xB(a)] + RT ln *Bla)” -AFB(B-o a)
2500 Y T 3000
= ¢ = 0 (ideal) ,l \
— — ¢ =5940 cal/Mole | \
- ~—y 4
2000 Y 2500 _" A\ 44 Tu
/ y / —\\
e /
,/’ / \‘
1500 —= DS Y P 2000 ,/ \:/
\ B
- A N
P
1000 1500 |£ i ;
j / / — ¢ = 7920 cal/Mole
/ - == ¢ = 10300 czl/Mole
500 & B 1000 0.5 B

CONCENTRATION, X

a. . b,

Figure 13a and 13b.
Effect of Non-ideal Solution Behavior on the Phase-Equilibria

in Binary or Pseudo-Binary Systems of Non-Isomorphous
Components {Regular Solutions).

41

e e e




Assuming, for example, AJ--IB(‘3 +a) = 1500 =:a1/gr.-At., Tu
2500°K, and a linear temperature dependence of the free enthalpy of trans-
formation, we obtain,for various interaction parameters ¢, the phase relation-
ships.' shown in Figure 13a and 13b. The solubility curve for ¢ = 0 (ideal
solution) is shown by the solid curve in Figure 13a. For the case that

A

1:‘B(B —+a) at the critical dissolution temperature, Tc —E—F, is slightly more
positive than the integral free enthalpy of mixing at x = % » we observe a
strongly anomalous course of the solidus line, i.e,,a strong increase of the

solubility within a narrow temperature interval in the vicinity of Tc. If

1

Fox at T=T_, andx= >

> AF]
(T)

B(B » q

within a certain concentration range,the solution splits up into two isostructural
pPhases, and a monotectoid reaction isotherm is introduced into the system
(Figure 13b). Phenomenologically, the appearance of the monotectoid can be
thought of as arising from the interaction of the miscibility gap in the a-

solid solution (controlled by the nonideal solution behavior), with the solvus

line of a (controlled by the free energy of transformation of FB(ﬁ +a)

Finally, we shall briefly mention an equilibrium case which
is of importance in the thermodynamic evaluation of certain binary or pseudo-
binary systems, and which also serves well as an introduction to a more
generalized view of free energy-concentration diagrams and the energetic
relationships of intermediate phases to their constituent elements. The outline
shown in Figure 14 shows the principal relationships for the appearance of a
foreign lattice type,f,in a system of two components A and B whose lattice

types are designated with a and vy, respectively. The conditions are analogous
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to those for the appearance of eutectic molt(z) if we replace L (liquid) for
B. The conditions for the non-variant (p = const) equilibrium, designating

the stability limit of B, can easily be dex ived from the condition that the

4 FA(I"’)

OFg(y—va)

BFp(a—sy)
. 4Fg(y—a)

" H 2l !
¥ | AT
' l Pt | | {
L -7 ' | |
| | | |
' +
a i i B | Y ‘
i | I 1
[}
= | | |
| l | |
A Xy Xy xIH xIVB
Xg —

Figure 14, Principal Relationships for the Stabilization of a
Foreign Lattice Type 8 in a Binary or Pseudo-Binary
System.

Solidus Lines: Free Energy Variations Within the Homogeneous
Ranges.

‘X1, XII and XIII,XIV: Phase Boundaries of the Solutions a, 8, and ¥.
chemical potentials of the components A and B must be equal in all three

phases, i.e.,
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Fia = Fa@)™ Fag

Fa) = Fe(e) * Fa(m

Th. -~ " _g tour equations are of the type

by (xu, Xgs X0 T) (1=1...4)

containing as constants the free enthalpies of transformation AFA(u -p)’

A'FA(Q.— ' AFB('Y —-a)’ and AFB(-y - 8)" From these equations To’ the temperature

of the reaction isotherm, as well as the equilibrium concentrations of the three
coecxisting phases, can be evaluated. At temperatures above or below the reac-
tion isotherm, the two-phase equilibria a + £, § +7, and a + v, are evaluated

separately in the previously described manner.

Reviewing our findings and discussions in the previous sections,
we note that in a number of instances hypothetical, that is, to say, in the
boundary systems unstable phases enter the calculations as quantities neces-
sary for the interpretation of the phase relationships in the combined systems.
A somewhat closer examination of the conditions reveals that as a minimum

requirement for the calculations, the stabilities of all binary lattice types com-

bined have to be known.

Thus, if for example the stable lattice types of the combined
binary system A-GC and B-C are differentiated bya,f,v,6, and ¢, of which,
say,a,y, and ¢ occur in A-C, and ¢,$, and § in B-C, it is required that for
the system A-C the theimodynamic stability of the hypothetical phases f§ and

§ be known. Similarly, the stability of the phases v and ¢ in the edge system
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B-C have to be defined in order to be able to carry out principal predictions
regarding the phase relationships likely to be found in ternary svstem A-B-C,

‘These calculations, however, would still involve certain limitations, for they

interpret the ternary phase~-relationships only in terms of the five pregiven
lattice types a, P, v:5, and ¢. For greater assurance of the calculated
data, the (concentration-dependent) stmbl..ty of all lattice types, which coa-
celvably may become stabilized and hence may play a role in the higher order
systems, must be computed and compared with the stability of the other phase
solutions, This requirement ultimately leads tc the necessity of establish-
ing more generalized, but especially more complete, free energy concentra-
tion diigrams (Figure 15), which, upon extending the relationships to include
the component phases, would allow us to separate base- and concentration-

dependent terms for each lattice type considered.

It is obvious, that it is principally impossible to determine
thermodynamic quantities for hypothetical phases by calorimetric means;
from the conventional AF -x diagram, therefore, only lower limits for the
stability of hypothetical phases can be derived. On the other hand, by revers-
ing the procedure, i.e., by evaluating experimentally established phase relation-
ships (which are not necessarily restricted to solid-solid equilibria, but also
may include solid-gas or solid-liquid phase equilibrium studies) with regard
to the stabilities of the phases participating at the equilibria, we are able to
extract stability data for hypothetical phases(l). Thus, by investigating a
sufficiently large number of suitable sets of component combinations, we have,
at least in principle, the means availableto ultimately provide a reasonably
complete mapping of the thermodynamic characteristics of all crystal types

which are oi reievance for the particular group of systems.
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Figu-e 15. Generalized Free Energy of Formation - Composition .
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a, B, ....Stable Phases !
6,6, d,k,w....Unstable Phases
AFA(a +j)....Free Energy of Transformaticn of the Stable {
Lattice (a) of A into a lattice type j.
j= s o e = o "
(i= asByvy w) [AFA(Q-. a) ] {

AFB( - i) Free Energy of Transfor.nation of the Stable
a®d) -esr1attice (y) of B into a Lattice Type j. :

(j=al )'Y-oow) [AFB(ﬁ-Dﬁ) =0]
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D. COMPUTER APPROACHES

In the foregoing thermodynamic approaches for the calculation
of phase equilibria, we had to preassume certain properties in order to
sufficiently simplify the arithmetic tu allow the equations to be solved manually.
We had further restricted our discussion to cases, where two related elements

A and B show a similar behavior towards the third component C.

A relative disadvantage of the simplified method lies in the
fact that it does not allow. a predidim of the course of the boundaries of the
one-phase ranges. While this shortcoming may be negligible for systems
involving quasi~line compounds, in combinations involving phase¢s with wide,
but especially markedly different homogeneous ranges in the binaries, the free
energy variations due to changes in the overall stoichiometry of the phases
(contents in C dependent on the A-B exchange) have to be taken into considera-

tion in order to obtain results which more closely describe the actual behavior.

Geometrically, the general solution of the conditional equa-
tions for a two-phase equilibrium in a ternary system represents the manifold
of the tangent points of all double tangent planes to the free energy surfaces in
the concentration-temperature space. The solutions are, therefore, of the

form

¢y (x', y'y 2', T) =0

|
o

¢z (xn. Y"’ 2", T)

The boundaries of the one-phase regions at a given temperature (p = const)

ara the i_v_\_tergecﬂ_ng curves hetween tha surface given by the solutions
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4 (xi' Yy z To,)» and the planes resulting from the concentration relation-

ship Xty tes= 1,

For a three~phase equilibrium, the general solutions repre-
sent the tangent points of all triple tangent planes to the free energy surfaces
of the three phases, The multiplicity of solutions is ', Hence, the solu-

tions for the equilibrium concentrations of each individual phase is of the

form (p = const)

¢1 (xi) yi: zi’ T) =0

1}
o
Is

¢2 (xil Yio zit T) =
(xi typta F 1)

With T = const (temperature section), the concentrations are fixed and

correspond to definite triples (xi, Yy zi).

For the numerical evaluation of the unrestricted problem, the
general conditional equations derived from the minimum conditions and the
existing constraints after the method by Lagrauge are only of limited use;
the arithmetic in obtaining the equations in a form suitable for programming
is quite involved and circuitous, and convergence problems are difficult to elimi-
nate. Similar difficulties are encountered when making use of the well-knawn

_ thermodynamic relationship that for the equilibrium state, the thermodynamic
potentials of each component must be the same in all coexisting phases. The
most direct approach for a numerical evaluation of the unrestricted problem
with the aid of 3 computer, consists in using the original minimum requirement

for the free energy, together with the existing boundary conditions.

48




: ; : The mathematical problem can be stated as follows: Given

: in a function, ¢, which is composed of a linear combination of a series of

j functions ¢
i 6= Zw.o (lsis4)
' 110 -
'\ The &y themselves,are functions of concentration variables Xi» Yo 038 well as
; p and T; the following additional constraints exist:

: Zvy = 1
% zvixi. = X
: Eviyi Y
;,“ Evizi = Z

] We easily identify ¢ as the total free energy of the heterogeneous mixture of

2 the i phases, ¢, as the integral free energy of the phases i, vy as the mass
Ead fractions, Xis Yp» Zg a8 the mole fractions of the components in the phases i,
‘- p and T as pressure and temperature, and X, Y, Z as the gross composition
: of the phase mixture.
f We are interested in cases where p = const, (1 atm) and T
) assumes a series of discrete, but otherwise constant,values for a particular
% set of computations (temperature sections). According to the phase rule, and
. disregarding the occurrence of four-phase reaction isotherms at specific tem-
3
i peratures, the values of i are restrictedto 1 =i = 3, i.e, the number of co-
;{ existing phases are restricted to a maximum number of three, Thus, the
= problem reduces to a determination of the of the coordinates x;, yi, m‘i for
.
v
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for the maximum of ¢ for a series of prechosen values X, Y, Z; 4 and 4,

being pregiven functions,

Actual calculations are performed in a manner that the approxi~
mate phase relationships in the system are first computed using the simplified
technique previously described. This helps to limit the pregiven scanning
Tange, X,y zi,for a given set of gross-compositions (XYZ) in the calculations.
After choosing a series of gross-concentrati‘on points (XY Z) from a \wo-phase
range, the total free¢ energy is computed for a series of combinations Xpp Yo Zps

and XYy 2y with the density of the concentration points within the pre-
determined concentration area selected to be ix; accord with the
desired accuracy (grit spacing usually .5 atomic percent). The stable com-

binations (x*y’z") and x3y3253) are those for which ¢ assumes the lowest value.

After the tie line distribution in all possible two -phase ranges
has been computed, the three~-phase equilibria are considered as the next step.
This calculation is simplified by the fact that the compositions of two vertices
from the ' manifold of "compatible'" three-phase combinations are already
known from the calculations of the corresponding two-phase equilibria, i.e.,
the cornputer scan is limited to obtain the "compatible" composition of the
third vertex. The final step in the evaluation, which sorts out the correct set
of composition triple from the o' manifold of solutions, consists of comparing
the free energies of a series of three-phase mixtures with corresponding one -
or two-phase mixtures, the stable combination being that one having the lower
value. This calculation is simplified by the fact that the composition of two
verticesare already known from the corresponding two-phase equilibrium,
L.z, ,the computer scan is limited only to one phase, from which the composi-
tion of the third vertex is then obtained.
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A few more words have to be said about the nature of the

i functions ¢i’ the integral free energies of the homogeneous ranges in the

!
RN
oo i il s ot ARG

ternary ranges.

The nature and type of function to be chosen will depend on
the type of solid solution formed in the system, and hence are structure-

- dependent.

_ The free energy of mixing of substitutional types of solid solu-

tions, where all three elements have to be regarded as equivalent can, for E

most purposes, be adequately approximated by the vanLaar expression,

i = mix
F = X, X, + RT 5 x, Inx
~ 35 57 o T S
[
t where the Gij are the corresponding interaction parameters of the pairs i - j 1
{

and the Xy denote the concentrations of the components i.

H
A For the thermodynamic description of the phases, vacancies
i are counted —- depending on the type of iattice site involved — as equivalent
H
-
to either substitutional or interstitial elements.

’ Ternary interstitial types of solid solutions generally can be
? classified into two groups. These, with 2 common interstitial element C,
=
= !
i 51
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which typlcally would involve systems of two metals with an interstitial
element, and, on the other hand, solutions, where the two interstitial ele-
ments are distributed within the host lattice of a carrier element A, Typical
cases would be systems consisting of one refractory transition metal with

two Interstitial elements suchas Ti-C-N, Zr-C-N, Zr-0O-N, etc.

A characteristic of all latter types of compounds is the fact
that practically no atom exchanges between carrier and interstitia’ sublattice
have to be taken into consideration. Thus, for example, a solution of two
metal monocarbides (A,B)Cv at a certain carbon defect (v < 1) can adequately

be defined as a binary solution of (A_ , B _ ), having free energies of F
EIN xp ACV

and FBC at the corresponding boundary compositions. Thus
A4

_ mix
%7 ¥ Fac **B FBc *C (xps%g)

(xA +xB = 1)
To obtain the values per gram atom, the above expression

would have to be divided by 1 + v. The functions F and F, describe the

AC, BC,

free energy variation of the phases ACv and BC‘} across their homogeneous
fields in the respective binaries and are structure-ciependent relations. These
functions can be obtalned either from experimental data, or by fitting certain
pieces of experimental information such as phase boundaries, known free
energy at a given composition, heat capacity data for the calculation of the
temperature dependence, etc. to establisked thermodynamic models. Using
the Schottky-Wagner theory of non-stoichiometric alloy phases(4),relatcd cal-

culations on refractory interstitial types of compounds have especiaily been
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performed In recent yea»= by L., Kaufmann and co-workers(s), achieving

remarkable agreement between calculated and observed properties. For phases

sy

where the disordering parameters are beyond the permissible range of the
simplified Schottky-Wagner theory, the thermodynamic behavior of specific

(6~
crystal phases can be approximated by other suitable appx:'oaches‘6 9).

< In conclusion to this section, it may only be mentioned, that computer
calculations, using the methods described above, have been performed with
- - congiderable success on model systems and are presently being applied to
the thermodynamic description of the high temperature phase relationships in
ternary metal-carbon syctems. A detailed review of the results, however,
is beyond the scope of this repart and reference may be made to the series of

related reports, issued under a current Air Force program(lo).

- Iv. APPLICATION TO TERNARY METAL CARBON SYSTEMS

We shall demonstrate the thermodynamic approaches exclusively on
ternary metal-carbon systems since the extensive experimental material

available for this system class allows a close comparison between theory and 1

experiment, We shall treat in fairly great detail the phase diagram tantalum-
_‘ tungsten-carbon. The phase relationships in this system are fairly compli-

cated, and therefore this ternary well serves to demonstrate the applicability

g

of the thermodynamic approach.

P—

In the sections following the discussion of the Ta-W-C system, we shall

suimmarize the thermodynamic findings in other selected metal-carbon systems

e 4

and also demonstrate the back-calculation of thermodynamic qiantities from

| experimental phase equilibrium data, A short review of the general features
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of the phase-relationships of transition metal-silicon-boron-carbon systems

.
H

will conclude our excursion into the field of ternary alloys. H | :

|

In the final chapter then, we shall try to relate phase diagram E_ P

"

3 and thermodynamic information to practical application problems, and

especially stress alloy compatibility considerations, and the significance of

-

partition equilibria for diffusion phenomena in multi-component alloys.

A. THE TANTALUM-TUNGSTEN-CARBON sysTEM(11-12)

ey

| In the blnary system tantalum-carbon (Figure 16),two inter-

mediate phaces, a subcarbide Ta,C with hexagonal close-packed arrangement

— T T T T - T al i
3983 + 15 I
47 +0.5
40001 4 N 4
\_ 3800 + 50° ‘
/
l/ E
aso0l- /3445 + 5¢ l

C
w
(=4
1=
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-t
>
o
=
-t
1+
o
o
i
- aaveny

TEMPERATURE, °
]
Q
<
T

20005 .
1500r e-Ta,C — .
L D 1 s 1 4 o
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Ta ——— ATOMIC % CARBON —s ,
Figure 16. Tantalum-Carbon Phase Diagram. z

(Shaded Area: Prefereatial Precipitation of Metastable L)
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of metal atoms, and a face-centered cubic monocarbide with an exteaded

range of carbon defect solid-solutions, are formed. Like the other subcarbides
of the refra..ory transition metals, the carbon sublattice in Ta,C undergoes

an order=c¢’'sorder type of transformation at elevated temperature., The nmetal

host lattice is not affected by this transition.

In the tungsten-carbon system (Figure 17),the arrangement of
the metal atoms in the subcarbide is the same as for Ta,C, although the higher
disordering temperature suggests differences in the degree of order in which

the N carbon atoms are distributed among the 2N lattice sites available in the

structure.
T 1 1 T R 1
3600} .
34231 10°
3400 N\ -
ool \ .
AN 2747
39
3000 \ L -
\\ 2735%6°
o wab 27764 5° {
e \ ~3 "..365
<2800 [ -
s 2710% 50
H r\
& 2600f- <03 .
E 25302 20°
2450220°
2400l —
| - WC
2200} ~
1 ! | I =1 L
10 20 30 40 50 60

-— Atomic % Carbon —

Figure 17, Tungsten-Carbon Phase Diagram.
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A cubic phase,analogous to TaC,occurs as a high temperature

[ R J

dhe W

phase at considerable substoichiometric compositions. In addition to WZC

and WC, x(B 1), a monocarbide with a simple hexagonal structure and ordered

amsinumey

distribution of carbon atoms is formed in the equiatomic concentration region.

-y

The body-centered cubic metals form a continuous series of

solid solutions(n' 14, 15).

PR W

The phase relationships in the ternary alloys system are shown

P,

in consolidated form in the ternary constitution diagram shown in Figure 18,
while the intcrrelation of binary and ternary isothermal reactions are presented i
in the familiar Scheil-Schultz reaction diagram (Figure 19), For our purposes,

however, it is much easier to work with the temperature sections (Figure 20a {

through 20a}.

In examining the phase relationships, we note that the tungsten- -
exchange in the cubic monacarbide gradually increases with increasing tem-
peratures, until at 2530°C, the temperature at which the cubic tungsten carbide [

becomes stable in the binary, a complete solid solution is formed(Figure 20h).

N ——

An interesting behavior is exhibited in the metal-rich region. At lower tem-

peratures (<2450°C), the expected solid solution between TazC and WZC is

= or—

interrupted by a two-phase equilibrium Bl+metal, i.e., the solid solutions of
Ta,C and WZC are both terminated by a three-phase equilibrium in the ternary !
phase field. Towards higher temperatures, the ternary homogeneous ranges

of the subcarbides increase and the two-phase range monocarbide+ metal \ 7
solution,gradually becomes narrower, Finally, at 2450°C, both three-phase
equilibria merge into a single (critical) tie line. Above this temperature, the
concentration space is divided into two regions where either metal + subcarbide, {

or subcarbide + monocarbide are in coexistence. The latter equilibria persist

up to the liquidus range. \




|
|
|
‘
I

[Iwas—

Coee

b s 4

.

-———t - - =
’,
-~
-
-

R
\

[ Yp—

3000

i migd

2500

Ou' JUNLVYYIINIL

. .
ee—

2000}

ion Diagram Tantalum-Tungsten-Carbon.

Constitut

Figure 18,

Do

57




eyy yyid aeyed !
«
|

.
o8 oy a.k.c -2 7]

Y
- W= T
Ta~C A Tog=-W=C ! W-C ITo-VI
LeC -3 [§
N Led IXCR i RN e oe i
L—8sC ! ] T i
M i EXE = : !
]
3448° Lodery H
I . b
[ L - 1 218,
I .1 : -‘? : s: FYYiY
i L0+ 2860° HERAEN
| (33 : L C—bpln Il 2730 L‘: ,,;‘ ] 3014
4| . : l B
—_ 27480 —lj [ i l
| 27¢0* ' =
H 2843 r | BBag Lebs : {Lr e ']' : '
I Tew Lev
I : Leyeeed]uo; 1 |
\ H resd el ) zns-l : '
1 t | — = = j‘ \
[ | ’ H ) ';° 27, Q'I i
| = ]
l : l _r"-l‘,.,'bql '
" | ! o U —ep 1270 8+58 I | I
l : | =3 !
2480° I H '
1 | 2480+ ' / —d 3= 128 I } |
| N ye—vasd I cedamy f| T [
22'0.! Naynnl 1 r. Yool 28%° 4 i I
' Nrwad | |1
| T 728 aser || l
l 0!
] ' C l
| | |1
1} ] l
[ I i
|
: .
L]
1

1300 *=
1500
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Legend of Symbols:
Body-Centered Cubic Metal Phase

B ... Hexagonal WC Phase
Y ees a-TazC
v'Y... B-Ta,C and a-W.,C Solid Solutions
(ys=s7v for T >2450°C)

5 ... Face-Centered Cubic (Bl) Monocarbide Phase
€ ... p-WC Phase
C ... Graphite
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Figures 20a through 20n.
Experimental Temperature Section for the Ta-W-~C System.
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For the thermodynamic evaluation of the phase equilibria,

the following assumptions and compromises are made:

pr -

1, The ternary homogeneity ranges originate at the

v ot

binary phases and are drawn as straight lines

across the ternary field.

2. Since no calorimetric data are available, the
solution of the subcarbides is considered asa i

ideal in the calculations.

3. The metal solution behaves ideally. i

4, The carbon-rich boundary of the Bl-phase can
be described as a regular solution, having an
interaction parameter of ¢ = + 6500 cal/gr. -At. ;
metal. The metal-rich boundary is described as
ideal solution. These data were derived from
the temperature dependence of the Bl-ranges in i
partial systermns MeC -WC(“).

The following thermodynamic data, which are based on values

oy

compiled from the literature as well as on available phase diagram informa-

tion(u' 1316, 17’18), will be used in the calculations (Table 1). We further

-y

write down the free enthalpy differences, which will be useful for the calcula-

tions (Table 2 and Table 3).

———

The fres ensrgy gradient — concentration curves for the solid {
solutions formed between the varlous phases are

a. Metal solution }

JAF, x
H;ra——] =RTIn ¥
w T.p w

 —
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Table 1. Thermodynamic Data Used in the Calculation of the
Phase Equilibria in the Ta-W-C System (Values in
cal/gr.At., Metal)

Reaction Free Enthalpy Change
W + C -+ WC (hex.) AFg - = -8905 + 0.47-T
W+1/2C +WC 1/2 AFfwcy= -3,150 - 0.62*T
2
W+ C > WC (Bl) AFpywe, = -3745 - 0,95+ T
1.0
W+ 0.71:CaWCamB) AFy oy S -730 - 1,88.T
2]
W+ 0.61.CoWCgy41(B) AFfWCo.sl = +340 - 2,08'T
Ta + C +TaC AFpr. = -35,300-1.80T log T+
e 6.48°T
Ta+ 0.71C +TaCq.{Bl) AFfTaCo . -26,200 -~ 1,20-T
. N
Ta + 0.50C+TaC,/, AFfTaC/ = -19,680 - 1,19.T
1/2

Table 2. Differences in the Free Enthalpies of Formatioa of
Tantalum and Tungsten Carbides.

(Values in cal/gr.-At. Metal)

AF - AF h = -11,080
£TaCgaz fWCo.sv( ex) ! } = const.
AF;1aCos ™ AFEWC, o (BEX)= =14, 100

AFfTa.Cmg v - AFfW

AFtweon ~ AFrTacq,

AFfW c

AFewe

- AF,

{fTaC (B1)

c. . (hex)= -16,530-0,57.T
Q.50
(B1) = 25,500-0.68T

= 30,700-0,95-T

- AF,. (WC-type) = -14, 000 + 0.47- T
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Table 3. Disproportionation and Transformation Energies
for Tantalum and Tungsten Carbides.

(Values in cal/gr. -At.Metal)

Reaction Free Enthalpy Change

{hex)

wC LWC, _(Bl) +xC (x=~0) | aF = 5160 -1.42T

ZWG
(cub) = -4790+1.71.T

WG, _ (B1) +(1-2x) WG (hex)+2xWC, /, | AF
" {0.08< x = 0.35)

ZWC,

WG, /, #0.70 WG (B1) + 0.30 W AFZWC]/Z =2635-0,71+T
TaCl/z—OOJO TaCon =t 0.30 Ta AFZTaCl/z = 1420 + 0,40-T
TaC (Bl) — TaC (WC -type) AFR= > 12,000 cal.

b. Subcarbide Solid Solution {calculated for y = 0.37,

0.43, and 0.50),

[BAF £(Ta, W)C Xty
—_———Bx' = AFfWC - AFfTaC +RTIn =
w T,p y Y w
c. Monocarbide (Bl) Solld Solution {Calculated for
(1-9= 0,71)
[BAFf(Ta,W)Cl {, X'ty
= = AF, - AF, +RTln ——
ax“w T, p fWC!_x fTaCl_x 1..x"w

These gradients are plotted as a function of the tungsten-exchange in Figures

Z2la through 21d,
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Figure 21a.
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Gradlents for Tantalum-Tungsten Carbide Solutions.

Lower Single Curves: Gradients for (Ta, W).

72

-

O

o




bt . ik

r
!
f 3
. 1. Equilibria in the Metal-Rich Portion of the System ;
i 3
. In view of the anomalous behavior of the subcarbide solid
2 solution, our initial interest concentrates on the evaluation of the stability of
- the (Ta, W)ZC solid solution and mechanical mixtures of metal plus monocarbide
i
! solid solution. Stability conditions (8a), rewritten for the disproportionation
H of the subcarbide (Mer) into monocarbide (MeCw_) and metal (MeCu) solid
solution according to

{w=-u) Mer +(w-v) MeC_+ (v=u) MeCw.
(u~0)
H becomes € = 6500)
L MeCW v W=V

w W
- x'! « X
_ v _ 2 Ta Ta
: -AF,p.c = & (1-x' )" +RTIn -
A Ta
;‘ and v W=V
o w w _
xH . X 1

¥ - = Y (1-x V2 w L
i AFZWC - (1 xw) RT 1In -
% v w

x,x',x"......Mole fraction exchange of A or B in the
metal, subcarbide, and monocarbide solid
solution,
Although, A and B, strictly speaking, are not constants, their variation is
not critical, and we assume for the average stoichlometries of the subcarbide
and the monocarbide solid solution

v=0,43  (~30 At.% C)

and
w=0.71 (~41.5 At.% C)
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With these values, we obtain for the stability condition

\ xnﬂ.606 . XMM
~AF (= 0+8087¢ (1X )" + RT In Tax'T Ta . R(x' .
a
and
'|°.606 ] AQ39¢
“AFy e " 0696 ¢ (LX) 4 RT 1n . x,wx“’ = R(x'y,)

Compatible triples of x 5 0and x"Ta. are obtained from the free energy

Ta' *'T
gradient curves in Figures 21b and 21d and are used to calculate the function

R (x'Ta) (Figure 22). Composition x'&,a is determined by the condition that

t 3 -
at equilibrium, R (x Ta) Bas to assume the value AFZTaCo,43

x',’ra as the intersection points between the function R(x',ra) and the lines

' - -
Rl (x Ta.) = AFZ TaCqgus’

obtain two intersection points for all temperatures below 2700°K ; these indicate,

, i.e,, we obtain
Performing this graphical evaluation (Figure 22), we

that at these temperatures medium compositions of the (Ta, W)ZC solid solution

are unstable in respect to metal + monocarbide mixtures.

In view of the reciprocity of the relations (equation 11),
it is obvious that the same result could have been achieved by plotting R'(x'w)
as a function of x'w_ and intersecting these curves with the lines given in

! = -
R(x W) AFZ WCous *

We have previously found (equations 10, 11, and 12),

that the functions ¢A(xA) and ¢B(xB),
_ mix
dplxy) = AF zac * AFz.A_cv

_ mix
¢plxg) = AF zBC, * *FzBC

74

p—

g

JArS—

———

i




-t o ey

[ —

wrm--m\" LR 21

Py

L et Vi - -y vty o sding, Iy mn.‘q

vy

are identical, and are a measure of the integral free enthalpy of dispropor-

tionation of the solution (A.B)Cv into mixtures of (A, B)Cu and (A.B)Cw.

4000 ™ T - r

3000

I~ — o — ——

[
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[
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|
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WC1/2 — TANTALUM EXCHANGE, AT% —» TaC,y/2

Figure 22. Ta-W-C: Graphical Determination of the Solubility
Ranges of the Ta,C and W.C Solid Solutions.

mix
FZACV Ta)’
of disproportionation, ¢Z(x), of the subcarbide phase into mixtures of metal

we obtain as the free enthalpy

Since A = R (x'

and monocarbide solid solutions according to:
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MQCO.‘s —-’ 0.606 MeCo.n + 0- 394 Me se e ¢Z(x)i ) :

Me

(Ta'l w) }

_ | §
$A'rd * AFzTac, e ! R (xy) ‘_.

oplxy) = AFz e, o TRIUEY

oz 2o, lxt) = g (xly)

The resulting plot of ¢(x) as a function of X'Ta is shown in Figure 23.

pr—

For the sake of clarity, we note that

o= =
¢Z(x Ta_O) AFZWCMS
' - - }
¢z(x'pa= 1) = A 1aG, 0 {
As long as 4(x) is positive, the subcarbide solid solution is stable. ¢'(x) = 0 }

yields the maximum solid solutility limits at the given temperature; for
¢{x) < 0, the alloys are either two- or three-phases, i.e.,single phased sub- {

carbide alloys are unstable. i

For all temperatures below 2700°K, ¢(x) passes the zero
line twice, and is negative between the intersection points; as a consequence, (1
subcarbide alloys lying within this concentration range are unstable and dis- i
proportionate, Above 2700°K, ¢Z(x) remains positive over the entire range
of metal-exchange, i.e.,solid solution formatioa between W,C and Ta,C above

2700°K is complete.

With x'Ta at q>z(x) = 0 known, the eqaiilibrium compo-

] sitiona of the phases coexisting with the terminal MezC composlitions
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at the respective temperatures

ing free energy gradient-concentration curves.

can simply be read off from the correspond-
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Figure 23, Integral Free Enthalpy of Disproportionation of the
(Ta, W)C_ | » Phase into Mixtures of Metal and Monocarbide
Solid SoTut/ion.
¢Z(x) > 0: Subcarbide Solution Stable.
¢Z(x) < 0; Subcarblde Solution Unstable in Respect
to Mixtures of Metal and Monocarbide
Solutions,
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We find (Table 4):

Table 4. Equilibrium Compositions of the Phases for the Three-
Phase Equilibria:Monocarbide + Metal + Subcarbide

(Temperature,| Ta-Rich Threz-Phase | W-Rich Three-DPhase

‘K Equilibrium Equilibzium

Xw X;N x"'” Xy x'.w X'
1750 0.815| 0.07 | 0.005 0.995 0.79 0.165
20r 0.825| 0.12 | 0.010 0.992 0.75 0.195
22, 0.83 0.17 | 0,025 0,985 0.68 0.19
2500 0.85 0.25 | 0,045 0.97 0.58 0.17
2700 0.91 0.38 | 0.10 0.91 0.38 0.10

The compositions of the two three-~phase equilibria coincide at 2700°K and

represent the critical tie line for the quasibinary eutectoid reaction
1 1"
MeZC(xc) —» Me(x c) + MeC(x C)

In contrast to the true binary reaction, the ternary reaction is of the second
order, and the composition xc, x'c, and x':_: in terms of the above equation

of reaction are defined only for the critical temperature; for T < Tc' two
three-phase equilibria, which are separated by a two-phase field, are formed,

and the equilibrium concentrations are tcmperature-dependent (Figure 24),

With the turée-~phase equilibrium in the metal-
rich region of the Ta-W-C system fixed, the basic phase distribution in this

concentration area of the system is defined. The end-points of the tle lines
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for any given gross=composition within the ﬁvéﬁwo-phaae fields can be

N

read off directly from the gradient concentration curves (Figures 21la through

21d).
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3‘ Figure 24. Calculated Vertical Section (Isopleth) Across
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2, The Three-Phase Equilibrium MeC(B1l) + MeC(hex)
+ Me C (hex)

The next three-phase equilibrium to be considered
concerns the disproportionation of the cubic monocarbid: phase into subcarbide
and tungsten monocarbide solutions, The solution will give us the homogeneity
range of the carbide solid solution as a function of temperature, and define
the terminal compositions of the restraining three-phase field at the sub-

ca;rbide and the tungsten monocarbide solid solution.
The overall reaction can be written as

MeC (Bl) — a-MeC (hex) + b MeC 1/2 00" AFZMeC(Bl)

Since the stoichiometry of the cubic monocarbide, and hence a and b varies with
the metal exchange, we first have to determine by an iteration process the
tungsten exchange in the monocarbide solution, in order to pick the right param-
eters a and b, and then determine from the (concentration-dependent) binary
free enthalpies of disproportionation of the cubic monocarbidz an average
expression, which accounts for this concentration variation. Performing
thls calculation, we obtain as the average free enthalpy of disproportionation
for the cubic tungsten carbide

AFZWCI__xz -4790 + 1,71+ T cal/gr.-At. Tungsten
it is noted, that the value must be in accordance with the binary stability limit of
this phase at 2530°C. The temperature,('l‘c). at which the cubic tungsten

carblde becomes stable in the binary system is characterized by
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Hence, from the above equation,

_ 4790 _ o _ .
Tc— T ° 2800°K = 2530°C

The stoichiometry factors a and b, obtained from the

iteration approach,are listed below:

T(°K) a b

1750 0.15 0,85
2000 0.26 0.74
2250 0.45 0,55
2500 0.61 0.39
2750 0.70 0,30

3300 0.71 0.29

The overall expression describing the ternary disproportionation of the cubic

tungsten monocarbide is given by [‘(B1)= 6500 cal/gr.-At. Metal]:

a b
x - x“
- = -x! z v E_

X ,x'w,x'{N: Tungsten exchanges in the subcarbide, cubic
monocarbide and hexagonal monocarbide solid

solution.

w

The relatively high transformation energy of the Bl~tantalum monocarbide
into a WC -type of lattice causes the terminal tie line of the two-phase field,

Bl + WC-ss,to terminate close to the binary WC; hence, since x'%” = 1, we
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neglect the corresponding solution term, obtaining the simplified equation

]

a
- et y2 W _oi
..AFZWC!-X— “(B1) (1 xw) + RT In  —p—=R"(»)

®

From the jradient curves (Figures 21c and 25), we obtain the following com=

patible concentrations x, for 4 series of chosen values for x%N (Table 5).

Table 5. Partition Equilibrium Subcarbide + Monocarbide {(Bl):

Compatible Combinations of x;” and Xy

x'w Xy
1750°K 2000°K 2250°K 2500°K 2750°K

0.05 | 0,84 0.73 0.635 0.535 0.475
0.10 | 0.91 0.84 0.76 0.695 0.625
0.20 | 0.93 0.895 0.84 0.80 0.745
0.30 | 0.945 0.91 0.88 0.84 0.80
0.40 | 0.95 0.925 0.895 0.87 0.835
0.50 | 0.955 0.93 0.905 0.895 0.85
0.60 | 0.955 0.935 0.915 0.90 0.865
0.70 | 0.96 | 0.94 0.925 0.915 0.890
0.80 | 0,965 0.95 0.94 0.93 0.915
0.90 | 0.98 0.97 0.965 0.96 0.95

The function R'(x},computed with the values of x'w

are illustrated in Figure 26. The equilibrium concentration x'w for the

various temperatures Ti are the abscissa corresponding to the functional

and Xy listed in Table 5,

values R'(x) = -AFZWC1_x (T;).
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for the Cubic Monocarbide Solution (Ta, W)C x &t
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Lower Single Curve: Gradient Curve for (Ta, W).
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More illustrative for the physical problem than ths

function R'(x) are the expressions describing the integral free energies of

disproportionation, which, for the present case, are a measure of the

stability of the cubic solution against decomposition into the hexagonal

50001 :
123 45¢ s
{
4000} _
=t i
£ 3000} 1 |
< ]
g
]
b
= 2000t 1
o .
® E
& H (
1000t ! -
| {
|
|
' ]
E — (
0 20 40 60 80 100
(TaC) —— TUNGSTEN EXCHANGE IN Bl, AT% —  (WC j ¢) l
Figure 26. Graphical Determination of the Base Point of the ;
Three-Phase Equilibrium WC + (Ta, W) C, _x(Bl) +WC

at the Cubic Monocarbide Solution,

Note: The concentrations correspond to the maximum |
tungsten exchange in the cubic phase at the
corresponding temperature.

tungsten monocarbide and tungsten-rich subcarbide solid solution. As out=-

linzd in preceding sections, this function is given by
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dlx'y) = AFZWC‘ + R'(x)
-X

and is plotted, with x',, as independent variable, in Figure 27.

w

4000 | ]

3000 |
[}
3 2000 |
=
-

R )
N
= 1000 |
S
= 2700°K
-
0
-1000 |
0 20 40 80 80 100

—— TUNGSTEN EXCHANGE IN Bl, AT% —»

Figure 27. Integral Free Enthalpy of Disproportionation of the
Cubic Monocarbide Solid Solution [(Ta, W)C, ] into
Subcarbide [(Ta, W)Cx/z] and Tungsten MoncZarbide.

For
¢(x'w) >0

the monocarbide solid solution is stable, whereas for
q')(x'w) >0
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it becomes unstable in respect to phase mixtures consisting either of
Me,C + WC, or MeCl_x + MezC + WC. The maximum tungsten exchange in

the monocarbide solid solutions is given by ¢ (x' = 0, and hence is obtained

w)
from the intersection of ¢(x'w) with the abscissa ¢(x') = 0.
We further note that the intersection point of ¢(x'w)

with the ordinate, i.e. the value of the function ¢(x'w) at x! = 0, corresponds

w
to the free enthalpy of transformation of the cubic tantalum monocarbide into
a phase exhibiting the structural characteristics of WC; according to the data

presented in Table (1), this intersection point would occur at ¢'(x' 12,000 cal.

w) =
A simple hexagonal tantalum monocarbide is therefore of corﬁparatively low

stability.

S .
T

The functional value of ¢(x'w) at x',. =1 represents

w
the free enthalpy of disproportionation of the binary cubic tungsten carbide into
hexagonal WC and W.,C, and is negative (WCl_x unstable) at temperatures
below 2800°K. Above this temperature, the function ¢(x'w) does not cross

the abscissa at any composition i.e., the cubic solid solution includes the

tungsten-carbon binary.

The theoretical findings, as shown for the maximum
tungsten exchange in the cubic solid solution, are in excellent agreement

with the experimental findings (Figure 28),
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Figure 28, Temperature Dependence of the Maximum Tungsten
Exchange in Tantalum Monccarbide.

3. The Three-Phase Equilibrium WC+MeC1_x(BI) +C

The last equilibrium to be considered concerns the
equilibrium existing between tungsten monocarbide, cubic monocarbide solid

solution, and graphite; the overall reaction can be represented by

WC (hex) — WCl_y(cub) +yC ..... AFZWC
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Since this equilibrium involves the carbon-richest compositions of the cubic
monocarbide phase, the value of y will be small. Furthermore, the metal
solubilities in graphite are negiigible, so that we may consider it as pure

graphite in our calculations.

Stability condition (8), rewritten for the present case
becomes (W = o):

X

xw) + RTIn A

W

2
-AF7 we= ¢ By P *w! €wcl

Xy, -+ tungsten exchange in the cubic solution

w

x'\y+ .« tungsten exchange in the hexagoral WC

Since y in WCl_x is amall, A corresponds, in a close approximation,

Fzwc
to the free enthalpy of transformation ~f the hexagcnal (stable modification l

of WC) into a face-centered cubic (Bl) modification of WC, for whose stability

we have found (Table 2) |

AF, gy = 5160 - 1.42-T cal/gr.-At. Tungsten. |

t
W and W

from the gradient-concentration curves for the cubic and the hexagonal solid

Compatible couples of x could be obtained [
solution; however, since we know {Equation 12 and 14) that the tantalum

exchange in the hexagonal WC will be governed mainiy by the transformation
energy of TaG (cub —p hex.); the latter is a fairly large positive quantity

(~ +12,000 cal/gr.~-At. Ta) as compared to ‘AFZWC' we expect the relative
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exchange of Ta in WC to be very small. The calculation yields the follow-
ing solubilities as a function of temperature {Table 6), We, therefore, dis-

regard the solution term for the tungsten monocarblde phase, and obtain

= - z L1
-AFZWC = ‘(Bl) (1 xw) + T in Xy RY (x)

' Table 6. Maximum Tantalumr Exchange in WC (Calculated)

Temperature [ Tantalum Exchange in WC,
*K Atomic Percent
- 1750 3.5
3 2000 4.6
‘ 2250 5.9
; 2500 6.6
: 2750 | 6.2
! 3000 5,0

‘The resulting plot of R"(x) versus the tungsten exchange is shown in Figure2$.
The vertex of the three-phase equilibrium MeC‘_x(Bl) + MeC(hex) + C at the
cubic solid sclution for various temperatures ,.Ti,is determined, as described
before, by seeking the intersection points with the lines R'(x} = -AFZWC(Ti)'

The integral function

dlxy) = AF, o +R" (x),

which compares the thermodynamic stability of cubic mcnocarbide solid solu-
tions with that of mechanical mixtures consist ag of WC and graphite,is pre-

sented in Figure 30,
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In analogy to the considerations for the previously

treated equilibria, the cubic solution is stable as long as

alx) >0, g

A e o,

and disproportionates into tungsten monocarbide and graphite for .he case

that ¢(x) < 0. The vertex of the three-phase equilibrium is determined by

¢(x)=0. . v
T =T T T —T T T T Y ;
\ i
5T -
4.-. = }
| x
i
3 | | l

B e -

’
/

-R""(x) [10‘.3 cal/g. -At Metal]

ot
'z

| | | { | | S
1700°K 2000°K 22500145 2500°K 2750°K 3000°K l
i 1 | ] _l [ I |
0 20 40 80 80 100

— TUNGSTEN EXCHANGE, AT —»

—————

Figure 29. Graphical Determination of the Base Point of the
Three-Phase Equilibrium WC-—(Ta,,W)C1 (B1)-C at
the B1-Solid Solution. x
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Comparing the base points of the three-phase equilibria
MeC, __ (cub) + MeC (hex) + C (wa) and Me,C (hex) + MeC (hex) + MeC, __ (cub)

(an) at ths cublc solid solution, we find — as it should be —

*wn ~ *w(y

175¢°K 2000°K  2250°K 2500°K 2'{50°x 3900“1(
! |
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=1 + i : !
g ! ] 1
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Figure 30, Integral Free Enthalpy of Disproportionation of
Tungsten Monocarbide into the Cubic (Ta, W)C1 %
Carbide Solutions and Graghite. -
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These results take account of the previously reported discrepancies of the

(19)

tungsten carbide solubility in tantalum monocarbide » showing it, within

certain limits, to be dependent upon the carbon concentration of the alloys. 4

Hence, one would suspect thatin view of the existing carbon defect in the

cubic monocarbide solution, solubility data collected on alloys along the

stoichiometric line TaC-WC actually refer to the concentrations of the ternary

(
equilibrium involving graphite. This is evidenced by a comparison of previous l
literature data(lg) with the present findings and calculations (Figure 31). ‘
AN T T | I =T ) T d ;
|
3000 [ A o . ‘
A {
{
L4
o ~
m 2500 ]
:
Q3]
g 2000 | i \
E — A, E. Kovalskii, et. al., 1946 ’ :
A Observed :
O Calculated
1500 | - ]
L | -1 ] 1 1 I ] 1 |
0 20 40 60 80 100 i

TaC —— TUNGSTEN EXCHANGE, AT% —»

Figure 31, Three-Phase Equilibrium (Ta, W)C, _ (Bl) + WC+C:
Temperature Dependence of the Coniposition of the
Base Point at the Cubic Solid Solution.




The phase diagram data calculated in the previous

sections can now be used to assemble sections of the phase diagram for the
chosen temperatures. First, the ternary phase field at a given temperature;
is subdivided by the known compositions of the vertices for the three-phase

equilibria. The copcentrations of the (arbitrarily chousen number) of tie lines

in the resulting two-phase fields are then determined from the free energy-

gradient curves and incorporated into the diagrams (Figures 32a through 32f.

Tz —ATOMIC § TUNGSTEN —» —w

Figure 32a. 1750°C

Although the approximation of the boundaries of the
one -phase ranges by straight lines is admittedly crude, the calculation was

able to reproduce the actual conditions remarkably well, and also yielded

93




the correct temperawure dspendence of the equilibria. In fact, the calculated
tie line distributions in the various two-phase ranges probably supersede the

experimental data in accuracy . The reason for this has to be sought in the

SRR SR s s e

Ta —— ATOMIC % TUNCSTEN —» w

Figure 32b. 2000°K

fact that while the entire set of tie line compositions,calculated for a given
temperature,are functionally interrelated, each individual experimental tie
line independently carries the average experimental error. The scatter of
the individual experimental equilibrium compositions is therefore expected to

be more pronounced.
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Due to the lack of thermochemical data, the phase
equilibrium changes introduced by the a-p-Me.C order ~disorder reactions
were not specifically regarded in the calculations. However, since their
overall effect upon the phase behavior is only secondary, this neglection does

not affect the general validity of the thermodynamic treatment.

Ta —— ATOMIC 4 TUNGSTEN —=* w

Figure 32c. 2250°K.

“The results of the preceding phase equilibrium
calculations would be capable of further improvement using the present
solution as the zero approximation in an iterative approach, or by refining

the compositions — as indicated in a previous section — by computational
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Ta —— ATOMIC & TUNGSTEN —+ w

Figure 32e, 2700°K.
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Figure 32f. ~3000°K

Figures 32a through 32f.

Calculated Temperature Sections for the Ta-W-C System.

methods. Due to the lack of high precision thermodynamic data, however,

the latter approaches would essentially become reduced to a data fit tc the
experiment, With present experimental means, the certainty to which high
temperature phase-equilibrium data is rarely better than +2 atomic percent, hence
the net gain in accuracy and reliability may appear as negligible. The value of
an exact numerical solution of the unrestricted problem has to be, therefore,—at

least for the time being—— considered more as principal rather than factual.
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B, BACK-CALCULATIONS OF THERMODYNAMIC QUANTITIES %
FROM EXPERIMENTAL PHASE DIAGRAM DATA, '

Following our coasiderations on the tantalum-tungsten-carbon \
systern where we were concerned mainly with the computation of the phase {
relationships from available thermochemical data, we shall now try the 1

, .-
opposite way, namely to demonstrate the applicability of the thermodynamic I
method to extract thermochemical information from available phase diagram ¢ §
data. Apart from the fact that phase diagrams providz us with a convenient z :
source to derive thermodynamic quantities for hypothetical phases, which /. ﬂ
are not accessible by calorimetric means, the need for such calculations often ‘
may arise if pertinent data for the calculation of a specific system are not :\ o
available. { .

We choose the recently established phase diagrams Mo-Cr-C '
and W-Cr~C(16) as examples for the calculations. Temperature sections for :
both ternary systems are shown in Figures 33 and 34. We consider the : '
W-Cr-C system first. ( i

Tungsten and chromium form a nearly symmetrical miscibility

gap at temperatures below 1500°C . Cr, C, exchanges at the equilibrium :

ik

temperature approximately 23 atomic percent tungsten, and the hexagonal

-

(W,Cr)ZC phase extends to a chromium exchange of 87 atomic percent. The
equilibrium WC ~Cr,C, is stable only below approximately 1500°C and is
replaced by an equilibrium (W.Cr)ZC -C at higher temperatures. As an approxi- L

mation to the actual behavior, the vanLaar expression for regular solutions

——

will be used throughout the calculations. The interaction parameter for the

———
e, A
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Figure 33. Section of the Phase Diagram Tungsten-Chromium-
Carbon at 1300°C,

Figure 34, Sec"ion of the System Molybdenum-Chromium-Carbon
at 1300°C.
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system W-Cr is derived from the critical point with the aid of the relation

|
Tc T 2R
Wwith the experimental value of Tc = 1770°K, ¢ becomes 7010 cal/gr. -At.
metal. The corresponding interaction parameters for the carbide solid solu-
tions were derived from considerations regarding the relative atomic sizes,
the melting points of the phases, as well as the tie line distributions in the

two-phase fields.

1, The Two=-Phase Equilibrium (W,Cr)-(W,Cr)ZC.

Conditional equation (3) applied to both solutions yields

AFf(Cr, w)© 7010 xcr(l-xcr) +RT [xcrlnxcr+ (l—xcr)ln(l-xcr)]

and

= 5! 1 !
. x +4000 Xy (1 xCr) +

!
SFicr,wic, , ¥erFrere, e g,

1 1 -x! !
+ RT[xCrlnx crt (1 xcr)ln(l xCr)]

]

AF X
fCr, W) W’]- 7010 (1-2x.. ) +R Cr
> - - Tln (21
1__5;‘-61- T,p Cr l_;xCr

[:BAFf(cr,W)C,/Z Xer

— - - - - 1

L = AF; o -AFpe. +4000(1-2x); )+RTInp3-
)P !/2 CI'

*Cr T 1/2

*Cr l-xbr

- AF - - - ] .
AFic:c fwe, - 1010 (1-2x. )-4000(1 2xc) ¥ RTIn = =
/2 Y Cr Cr

2
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Free enthalpy of formation of CrCl/z with a structure

AF,
fCrC, analogous to that of W.C.

[T
-

AFf wWC,,, = Free enthalpy of formation of WCI/Z.
/

G

x Mole fraction chromium exchange in W and WCl/z, respectively.

1]
cr! *cr

o
o

oy
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This difference in the free enthalpies of formation for the subcarbides can

e

now be evaluated from the end points o and X.Cr of the experimental tlie

e

lines at the two solutions (Figure 33).

e Performing the calculation, we obtain as the mean value and

o

standard deviation:

r-‘.hn."u ﬁ

AT, - = -1500+ 500 cal/gr.-At. Metal (T = 1575°K).

AF
CrC, ,, TIWC, /,

2, Three ~Phase Equilibrium (W, Cr)23C6-(W, Cr) C-{W, Cr).

— ——— ——

Stability condition (8), rewritten for this equilibrium

(u=0, v=0.266, w= 0,436) becomes:

— 2 2 \ .
-Acmrc 0.266~ 0.39¢ (l_xcr) +0.61e 3 (l-x”Cr) e Z(l xCr) +RTin T

€p €, €, .. Interaction parameters for the solutions (W,Cr), (W,Cr)Cl,/23

; ' and (W,CriC_; /,.(70.0, 4000, and 4000 cal/gr. -At Metal)

. Mole fraction chromium exchange in tungsten and the solu-
tions (Cr, W), (Cr,\)\l)uC6 and {Cr, W)Cl/z

1 [X]
i Xcr,*crCr

' Insertiny the experimental points from the punase diagram, i.e, Xcp = 0.13,

x'(Jr = 0,77, and x"c__ = 0,65, we obtain the free enthalpy of disproportionation of

. 101
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CrC into a hypothetical CrCl/zand chromium:

6/23

= 970 cal/gr.~At Cr (T = 1575°K).

AF,
2C rC(,/23

Substituting tungsten for chromium in the above equation, and inserting the

equivalent concentration xlw =1- ér' we obtain for the free enthalpy of dis-

proportionation of a hypothetical WCG/23 into tungsten and WCl /2 :

AF

ch‘)/“: -1790 cal/gr.~-At. W, (T = 1575°K)

i.e. a phase WHC6 1s unstable with regard to a mechanical mixture of w.C

and W,

Analogous expressions are now written down for all other three-
phase equilibria in the system, and the free enthalpies of disproportionation

for the corresponding phases evaluated.

3, Three-Phase Equilibrium (W,Cr), C + (W,Cr)ZSC6 +(W,Cr)1C3

(T = 1575°K).

The corresponding reaction is (u = 0,266, v = 0,43,

w = 0,436).
MeCo4s —»0.964 MeCpq . 0.036 MeGCy sol.
58 sol
AcmrCO.“ (Cr;Cs -type) = + 370 cal/gr.-At.Cr.
AFZWCW (Cr,C 3 -type) = - 2620cal/gr.-At. W,

2
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. 4. Three -Phase Equilibrium {Cr, W),C3-(Cr, W),C-(Cr, W)5C,
1 (T = 1575°'K :
{u-= 3/ v=1/2, w=2/3

er/z"7/lo CrCsf +3/10 CrCz/3 AR =-320 cal/gr. -At.Cr.

i ZCxC 7/3

. 5. Three-Phase Equilibrium (Cr,W)zC-(Cr, W)SCZ-C
(T = 1863°K)

(w=1/2, v=2/3, w= o)

CI‘CZ/3 —0C1‘C1/2 +1/6 C Fz =800 cal/gr. ~At.Cr.

CrC

1 2/3
e ~ / = - [gr, -
g WCZ/3 (Cr:‘(.',2 type) —» WCl/z +1/6 C AFZWCZ//a 4100 cal/gr.-At. W
‘{‘
i 6. Three-Phase Equilibrium (W,Cr)C-(W, Cr)ZC -C(T =1863°K)
g / =1960 cal/
wC -—»WCl/z +1/2C AFZWC =1960 cal/gr. ~At, W

CrC (WC-i,pe) »CrC ., (W.C -type) + 1/2 C AF,, = -5170 cal/gr.-At.Cr.

CrC

In this system we have the interesting case that
none of tne lattice types observed in the one systemrn, occur in the other. In

order to enable a phase diagram calculation, the stability of all tungsten-phases

with the structural characteristics of the chromium-carbon phases,and similarly,
the structure of chromium-carbides with structures analogous to W.C and WC
have to be known. The calculation of each equilibrium in this system involves

data for at least one hypothetical phase. Hence, based only on calorimetric

data, not one equilibrium in the whole system could be predicted, or even estimated.
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Except for the monocarbide, which is missing at the

chosen equilibrium temperature, the phase relationships in the Mo-Cr-C

system (Figure 34) are very similar to the system just treated with tungsten; g
the thermochemical evaluation is analogous and the data obtained (‘MoCi ;
4000 cal/gr.-At. Metal) are summarized in Table 7. For comparison pur- E
poses, the data obtained from the W-Cr-C are included in the compilation. g

The various structure designations {a,P ...¢) refer to the following types

ey

Desiﬁgnation Lattice Type Ig
* ¢

A eesssocs L&.Ozc,wzc .
Beecowsoae WC é

Yeoeseons Crz3c;6

Devesenne Cr7C3

€ voecosne CrSC2

froameen  guwrey

Py

A comparison of the data shows excellent agreement between the free energy

changes obtained from the phase relationships in the two (independent) systems.

- oin

The free energies of formation of the stable chromium

——

carbides are available from the literature, and representative values, tal.en

(16,17)

from a recent compilation » are given in Table (8).

*
Mo C and W_C differ at low temperatures in their sublattice order, however,
since the exéhange of chromium tends to outweigh the differences, a special
distinction is immaterial for our present purposes.

o ——
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Table 7: Summary of Thermochemical Results on Chromium~Carbides
Derlved from Phase Diagram Data in the W-Cr-~C and Mo-Cr-C
System. (Values in cal/gr.~At.Metal, T = 1575°K)

Free Enthalpy of Reaction
R ¢i From From

eaction w_cr-c Mo-Cr-C

b
CrC‘\/23 (y) » 0.42Cr+0.58CrCpys(a) + 970 + 860
CrC, /,(6) —0.88CrCo4s(a)}+0.12C1Coz44() + 370 + 330
CrCyé (a) -00.7CrC3/7(6) + 0.3CrC2/3(¢) - 320 - 220
CrC,/, ) #CxC,, (a) +1/6C + 800" + 945
CzC (B) »CzCy/, (o) + 1/2¢C -5170 --
*T = 1873°K

Table 8: Free Enthalpies of Formation of Chromium
Carbides (Compiled from the Literature)

AF. = A -B-T (cal/gr. -At.Chromium)

f

Carbide

A B

Temperature Range, °K

CrZSCb

Cr_,C3

Cr3C2

-4270+800 0,40+0.1

-5710+4800 0.8140.1

-6170+800 0.86+0,1

298° - 1673°
298° -~ 1673°
298 ~ 1673°

These data can now be

used to assign free energy data to the hypothetical

chromijum carbides derived from the phase-diagram information {Table 9).
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Table 9: Free Enthalpies of Formation of Unstable Chromium
Carbide Lattice Types (Absolute Values are Based
Upon the Data for the Stable Chromium Carbides)

AF; = A -B-T (cal/gr.-At. Chromium)

Carbide A B

CrZC (WZC-type) -5500 0.81+1.5
CrC (WC ~type) - 650 0.90+0.5

Crszs(Bl—type)* 2100 1,86+0.5

*From Mo-Cr -C

For phase diagram calculations, however, it is usually preferable to use

the differences directly as derived from the experimental sections, in order

to avoid an unnecessary accumulation of errors. In either instance, however,r
it is advisable to countercheck the consistency of the values by back-calculating
the phase relationships using the data derived from the experimental sections

(Figures 35 and 36),

Compilations similar to those for the chromium carbides can
now be made for the chromium carbide~type lattice structures in the molybdenum-
carbon and tungsten-carbon system, providing us with base data for calculations
in systems involving these lattice types. We shall not go into any further detail,

(16)

since the relevant information has been collected elsewhere ; however, we
will briefly discuss one aspect in the tungsten-chromium-carbon system, for
certain discrepancies between observed and calculated thermodynamic values
fof the MeZC phases initiated the search for, and finally resulted in the dis-

covery of the sublattice transformations, which were observed to occur in

nearly all subcarbide pha.ses(g) in the meantime,
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In the evaluation of the three-phase equilibrium
(W,Cr)C-(W,Cr),C-C on one of the preceding pages, a value of AFZWC =
1960 cal/gr.-At. tungsten was obtained for the free enthalpy change of the

reaction

WC—-}WNCl/z +1/2C

CerCs

>

Figure 35. System Section W-Cr-C at 1600°K, Back-Calculated
with the Thermodynamic Data derived from the
Experimental Section in Figure 33.
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In contrast to this, from the known, and apparently well established literature i
data for WC and WZC (Table 1), the corresponding value should be 3700 cal/gr. -

At. W. at a temperature of 1870°K. However, the calculated vertex of the E
three-phase equilibrium at the solid solution (W,Cr)zC would be chl/z= 0.08,; {
this would extend the three-phase equilibrium far above the observed homo- {

geneity range of the (W,Cr) C solid solution, and therefore presents a dis- E

crepancy with the experimental findings.

— Rttt

o —

ST

.o,

ey

—

Figure 36, System Section Mo-Cr-C at 1500°K, Back-Calculated
with the Thermodynamic Data Derived from the
Experimental Section in Figure 34,

ey
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(20) that the

Since it was known from the literature
binary W.C phase had an ordered distribution of carbon atoms, the only pos-
sibility in overcoming the observed discrepancy of approximately 1700 cal/gr. -
At. tungsten, was to assume an essential disordered sublattice in the Me C
phase at higher chromium c«xchanges. Thus, for the case of a narrow energy
gap between ordered and disordered phase (low transformation temperature),
the configurational entropy due to a statistical distribution of the N carbon
atoms among the 2N lattice sites available in the hexagonal close-packed Me G
structure (L'3-type) results in a free energy contribution of 1/2RT In 2 =
1300 cal per formula weight MeG, /2 and thus eliminates the discrepancy. A subse-
quent intensive search to see, whether ar nd, tle dlsorderipg extended to the binary
phases, finally resulted in the establishment of order-di;sorder reactions for
Nb,C, Ta,C, Mo C, aund w.C. (The question, whether V.G undergoes a related

transformation at low temperatures (<800*C), is not yet completely resolved).

C. DISCUSSION OF THE CARBON-RICH EQUILIBRIA IN
URANIUM-TRANSITION METAL-CARBON SYSTEMS

An interesting problem was present in connection with
the development of the fuel material for the European High Temperature Gas-
Cooled Reactor (Dragon). It consisted of the question, whether it would be
possible to stabilize the face-centered cubic monocarbide towards graphite
by alloying it with other suitable refractory carbides. We recall that in the

uranium-carbon sy stem(?‘ 1)

, besides the monocarbide, two-carbon richer
phases U.C, and UC, exist, of which the latter undergoes a crystallographic
transformation at approximately 1800°C, The resulting Ca.Fz-type high tem-

perature modification of UC, ultimately forms a complete solid solution with
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the monocarbide., The problem was attacked in order to circumvent diffi-

ety

culties which might arise from the volume changes of the dicarbide phase in

ey

the transformation process, affecting the stability of the tight pyrolytic

graphite shell into which the particles were embedded. Apart from these,

.-~y

as well as other factors, it was hoped that the increased melting tempera-

tures of the alloyed material could improve the high temperature stability of

g
. h

the fuel materials. It was known from previous work, that uranium carbide

. ; . . (022. 23,24)
forms complete solid solutions with a number of isostructural monocarbides »

o e

the problem reduced to the questionof, at what cancentration of the alloyirg material
would the three-phase equilibrium(U, Me)Cz—(U, Me)C-C be replaced by

a two-phase range monocarbide-graphite. The general phase-situation observed

fOry ey

in thegse systems is shown in Figure 37.

e
e
Ay ™ fome——y | et ]

- -y

UG, +C~+
+{U,Me)C

o —— oy

u.C {U,Me) C~C

- ——

ucC MeC

Figure 37. Basic Phase Distribution in the Carbon-Rich Portion
of Uranium~Refractory Transition Metal-Carbon Systems.
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Since the thermodynamic stability of a dicarbide in
the refractory transition metal-carbon systems is considered low, the
metal-exchange in UC, can, in a first approximation, be neglected. Thermo-
dynamically, the point in Figure 37 is related to the thermodynamical prop-

erties of the phases by stability condition (8).

(v-w) ?A(u)+ (w-u) i‘AM + (u-v) ?A(w) =0

Applied to this case(zs)

u = 1 solid solution (U, Me)C
v = 1,85 UCZ

w o= C
we let w approach infinity, and the stability condition becomes

F o O-F = o
FA(V) FA(u)

i.e. the stoichiometry of the dicarbide does not enterinto the result. Separating
the partial terms in base and concentration-dependent functions, neglecting
eventual metal exchanges in UC,, and replacing the free enthalpies by the

respective free enthalpies of formation, we obtain

—mix _
AFyc * AFyc - AFye, T 0
M X _ R
AFye = AFgye - AFge = AFy

2

The right hand side of the last equation represents the free enthalpy change

of the reaction

ucC + 0,.85C —»UC2
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The exact concentration-dependence of the partial molar free energy of UC
in carbide solutions is unknown; however, the following interaction param-
eter in the vanLaar expression for the regular solution, which were derived
from the tie line distributions within the miscibility gaps of pseudo-ternary
systems U-Me-C(Zé) may serve as useful approximations to describe the

average solution behavior:

= 6,000, ¢ = 9,600, ¢ = 6,800 and ¢ =8,000 cal/mole.

‘uc-zrC UC -HiC UC -NbGC ~ UC-TaC

Approximating the solutions as being regular, we obtain

U)2+RT1nx = AF

¢ Mec-UG (I u~ AFR

Xy .Uranium exchange in the monocarbide solutions
MeC-UC.

The equilibrium composition %, in effect therefore becomes a function of the
free energy change AFR. From the available thermodynamic data, AFR should
have been in the order of -20, 000 cal per formula change, corresponding to

Xy < 2 atomic percent. From thesc data, an effective stabilization should
therefore, not have been expected, However, a closer examination of the values

reveals thatthey are incompatible with the observed,low-temperature decom-

position of UCZ,Whidl rather irdicatedonly a small value for AF,_ . This was

R
confirmed by experimental investigations of the phase-~relationships in these
6
syst;ems(2 ), and showed the restraining three phase equilibria for the

dicarbide to be located in the middie portions of the systems, The vertices of
the three-phase equilibrium (U, Me)C -(U,Me)ZC-C at the monocarbide solid
solution for the various carbide solutions and a number of different tempera-

tures are presented in Figure 38,

llz
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Back calculation of AFR from these phase data, and T
{ " “taking into account the transformatioa of UG, at 1820°, yields after lineari- = = ...
{ zation,
!
; AFg = -10,350 - 5.57T cal/formula change, {T =2100-2300°K)
] ;
é
and
) AFL = =7710 - 4.31T cal/formula change (T = 1900-2100°K)
UC-TaC
{ : UCHIC 7 uc-Nbe
2200
{
: 2100
{
o 2000
: °
; -
& |
: S 1900
3 _— TRANS: ORMATION
- w 1800 ucC, (tetr.}=uUC_(cub.)
a 2 2
' : §\
j ¥ 1700
: 1600 (—DECOMPOSITION UC2 |——— "1 —
( I
( MeC 20 40 60 80 uc
l ——— Mole % UC—m—»
® Experimental Datao
{l ~ Calculated with Meon Value of AFg
E Figure 38. Temperature Dependence of the Graphite-Stable j
Ranges in Uranium-Containing Monncarbide ;
Solutions, ‘




Figure 39.

AFR(col per formula chonge)

The calculated data for AF_ are illustrated in

R

-3000 j
-2000
9 A

- 1000 4,#5

UCp tetr{ 1 UC, cub.

o V
| —l 1 i
1600 1800 2000 2200

TEMPERATURE ,°C

O Meon Values
I Mean Error
B Calculated from the System U-N-C

Figure 39. Free Enthalpy Changes for the Reaction

into the cubic modification of UC, is given by the difference of AF

UC + 0.86 C — Ucml,as (UCz)

(Data Calculated from Phase Diagrams U-Me=C)

The free enthalpy of transformation of the tetragonal

1
R and

AFR; we obtain, as a first approximation, from the data given above:

AF,, = 2640 - 1,26 T cal/mole ucC,




The phase diagram data, calculated with the mean values of AFR and AFI'!
" -_aro in excellent agreement with the experiment (Figure 38). The binary

temperature stability limit Tc for the tetragonal UCz—phase is given by

-y

AF'R=0

——

i T = 1550°C
(™

5
TR ’ and agree well with the experiment(Z ). Also, more recent thermochermical

(27, 28)

Ty

values for the free enthalpies of formation of the uranium carbides

closely confirm the data derived from the phase diagrams,

oy

. V. GENERAL DISCUSSION OF THE PHASE RELATIONSHIPS IN
TERNARY SYSTEMS OF REFRACTORY TRANSITION METALS
) WITH B-ELEMENTS

oy

- A, METAL-CARBON SYSTEMS

, During the past few years, tempervrature sections for a large
q)_ number of ternary transition metal-carbon alloys have been investigated or
J calculated. Their detailed evaluation, however, would exceed the framework
' of the present discussion, and, therefore, reference is made to the literature

(39)

compilation at the end of the text . In general, the previous investigations

pr—

cover only one temperature section of the system, and the investigation of
i complete systems has been initiated only recently under the sponsorship of

f the Wright~Patterson Air Force Materials Laboratory.

As a rule, no ternary phases are formed in the ternary carbide

{ systems,i.e. the ternary phase relationships are governed by the binary




compounds, Where the radius=-ratio rule is fulfillcd, the isostructural mono-
carbides of the group IV and group V transition metals form complete series
of solid solutions. In the systems involving the group VI metals, the cubic
(Bl) phases are stable at high temperatures only, and, therefore, the homo-
geneity ranges of the cubic solution are temperature-dependent; above the
eutectoid temperatures, however, which are 1960°C for a-MoCl_x (B1),
2530°C for a-WC‘_x(Bl). solid solution formation with the other cubic mono-

carbides is complete.

As for the subcarbides, complete solid solutions at higher tem-
peratures are formed between the MezC -phases of the group V metals as well
as between VZC and MozC, and VzC and W?C. respectively. In the carbon
systems of niobium and tantalum with the heavier group VI metals, the sub-
carbide solid solutions are unstable in respect to mechanical mixtures of
monocarbide and metal solution, but Me C single phase fields tend tc increase
with temperature, or even show a continuous transition, as found for the

Ta-W-C system( 12) .

In the group IV metal-carbon systems, the MezC -phases
are unstable in respect to mixtures of metal + monozarbide; the ternary

homogerneity ranges of the Me C phases in systems Mg (V, VI)-Me,(IV)-C

are therefore restricted.

In the ternary systems Me, (group V or VI) -MezC(group IV)-C,dwe to
the instability of the Me . C~phase in the binery carbon systems of Ti, Zr, and

Hf, the ternary homogeneity ranges of the Mezc-phases are very restricted.

In their basic layout, the ternary systems involving chromium

are simijlar to the molybdenume=containing systems; although the phase

s o=y
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distribution near the Cr-C edge systems are somewhat modifiec as a result %

{
i of the different structural characteristics of the chromium carbides.
. i The high temperature phase relationships in all ternary metal- ]

¢irbon systems are complicated by the fact that in many of them even the
solid-state equilibria change rapidly with temperature, and the order-~disorder-
transformations in the MezC ~-phases proce ed as concentration-temperature

= dependent reactions in the ternary phase fields. A few phase diagrams,

together with their reaction diagrams and liquidus projections, which were taken

(O REROPTV FEV RN

from the work referenced in (10), may serve to illustrate the general appearance

i of the complete constitution diagrams (Figures 40 through 48).

- 3 In neither of the previously indicated systems(3o) do melting
o

point maxima of the monocarbide solid solutions occur, and earlier findings i

A———

are related to the fact that maximum melting of the interstitial monocarbides

' does not occur at stoichiometry, i.e.,melting of the ternary alloys is a func-

tion of the metal as well as the carbon concentration (Figure 49),

ProE

B. METAL-BORON SYSTEM

-,

Many of the structural characteristics of the intermediate phases,

e

are repeaicu throughout the systems of the group IV to the group V. ..etals;
‘ hence, where these conditions prevail, and the radius ratios are within the
-( tolerable limits, complete solid solutions usually are formed. The stability of
‘ the borides decreases with increasing group number; consequently, the
] selectivity of the metal-exchange increases upon combining group IV with

group V or group VI metal borides.
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Figure 42, Liquidus Projections in the Ti-Ta-C System.
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Scheil=Schultz Reaction Diagram for the Zr-Ta-C System.
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Constitution Diagram Hafnjum-Tantalum-Carbon
(E. Rudy, 1965) 10}

Figure 46,
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Apart from the technically most interesting group IV metal-
boron systems which resently are being investigated under Air Force sponsor-
ship( 0). very little experimental work has been performed in this system
class. The phase relationships in the Zr-Hf-B system, which are representa-
tive of the phase behavior of all ternary group IV metal borides, are shown

in Figures 50, 51, and 52.
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C. REFRACTORY TERNARY SYSTEMS INVOLVING A
TRANSITION METAL AND TWO B-ELEMENTS.

ot

i

The group of systems considered are Me-x!-xz. where Me
stands for a refractory transition metal, and Xl and Xz are either N,C,Si,

T orB.

Interstitials, such as oxygen and hydrogen, as well as other
elements, which to a certain degree might be equivalent to one of the elements
listed above and hence would fall into the same category, have been omitted
L. since they form either comparatuvely low-melting phaises, or gaseous

reaction products with the other B -elements at high temperatures (0-Si,N,C).

Nitrogen in the refractory transition metals behaves similarly

toc carbon, a2nd a large number of interstitial compounds formed by this

element are isostructural with the carbides. Hence, extended or complete
d(lg).

{ intersolubility between nitrides and carbide phases is observe

i Nitrides and carbides on the one hand, and borides as well as

silicides on the other, are quite different in their structural characteristics.

- —

Solid solution formation between these compounds usually is very restricted,

indicating high mutual transformation or disproportionation energies of the
[ lattice structures, The silicon-containing systems are further characterized

by the appearance of carbon (nitrogen, oxygen, boron)-stabilized ternary

(19)

———

phases

———

Although for the majority of the systems isothermal sections
{ are available from previous work(lg), the high temperature portions of the
majority of the ternary alloy systems are still unknown, and even a number

( of binary systems would require extensive revision, High temperature portions
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of selected ternaries of these system classes are presently being investigated

(32)

under current Air Force programs + From these systems, {n particular the
borocarbides of the group IV metals have recently become of interest in the {

development of oxidation-resistant graphites. Important equilibrium

characteristics of these systems are the formation of pseudo-binary systems g
of the diborides with graphite and B,C. Examples of the latter system group
are given in Figures 53 through 61. E

et

———
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VI. NOTES ON THE RELATION OF PHASE DIAGRAM DATA TO
APPLICATION PROBLEMS

The purpose of a constitution or phase diagram of a system is to depict
in condensed form the zquilibria existing between the phases in the given
alloy system. Consultation of the phase diagram will tell us, whether nr not,
or to what extent, given alloy mixtures will undergo reactione when heated to
temperatures and for times which are sufficient to allow equilibration to
take place. The information is quantitative with respect to the nature and compo-
sition of the phases.A phase diagram, combined with kinetic data, provides us
with a whole spectrum of means to modify the properties of allc ‘s, of which
extensive use has been made in the past. However, the increasing demand
for materials capable of operating for prolonged lengths of time at extremely
high temperatures has introduced additional variables which have to be taken
into consideration. In reviewing problem areas in the field of high-~-tempera-
ture materials, oxidation-resistant coatings, etc., it is seen that
the main problem is not so much found in not having materials with any
of the desired properties, but rather in the lack of a single-phased material,
which combines all of the necessary properties. The conception of a com-
posite, or heterogeneous system, therefore, involves the task of combining,
the beneficlal properties of a number of constituents within a quasi-homogensous

structure without degradation.

Consideration of a composite system always implies a certain degree
of prefixation,since we normally have a certain base material already in mind.
The main problem to be solved concerns the modification of certain undesirable

properties, so that the system will be capable of performing under the prescribed
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condition. Typical cases may involve the protection of exposed surfaces q
from corrosive gas attack, reinforcement of ceramic or plastic structures, and %
transpiration systems, etc. Each case may have its specific extra require-~ ji
ments, thus placing further restraints upon the usability of particular mate- |

rial systems; however, chemical compatibility between the alloy phases will

be an eliminative prerequisite if the conditions are such, that non-equilibrium b

[

: states cannot be maintained over significant lengths of time. The recognition

'
[
§

of such prerequisites, their experimental and/or theoretical rationalization,

and, as a result, the estalblishment of an effective elimination and selection

,A.._‘\
dl,

system, constitutes an important first step in an intelligently conducted attack

on the problem. The largest part of the information required for the initial

[——

screening can be obtained from phase diagrams, and the only possible, or the

optimmum, compositions determined from the existing phase relationships.
Detailed phase diagram informationis also necessary io order to predict the .

i reaction paths in a system of reacting species. While phase compatibility can

prevail between onaly two phases in binary systems, the additional degree of 5 1

freedom in ternary alloys allows much wider variations in the equilibria formed. 1
{ Obviously, the multiplicity of combinations becomes still greater in higher i
order alloys. Without going into too great detail, we shall try qualitatively to |

demonstrate on a simple example the variety of reactions, which may occur

{ in two-phased ternary alloys having the same overall composition.

‘ For this purpose, let us arbitrarily assume a diffusion couple made
up of interstitial phase solutions (A,JB)C‘_1 and (A,B)Cv. We shall choose the start-
{ ing compositions {dashed line in Figure 61} so that a conjugate system is i

formed with respect to the equilibrium compositions Xe and g -
[ I I
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To make the example more concrete and easier to follow, we may,
for example, think, that u = 0 (metal solution), and v = %- {thus making it,

if C stands for carbon, a MeZC solld solution), Equilibrium in the couple

— Pd
AC,

Figure 62. Conjugate Diffusion Couple, Consisting of Two
Ternary Solutions (A, B)Cu and (A, B)Cv'

{(Equilibrium by Interstitial Atom Diffusion)

will be attained, if the composition of the solution (A,B)CV reaches xe , and
I
that of (A, B)Cu assumes the equilibrium composition, denoted by XeI.

We first consider the following extreme cases:

a. The interstitial atom C is the only diffusing species
in the system.

b. The diffusion current is carried only by metal atoms
(A, B)

In process (a), equilibration can only be achieved by migration of carbon atoms
across the metal-carbide interface (Figure 62); thus, the subcarbide solution,

having the non-equilibrium starting composition XII' gradually gets converted
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into a metal golution with the equilibrium concentration X, . Simultaneously,
the transfer of carbon atoms results in a carburization of the metal solution
] (starting composition XI) into a subcarbide solution of the equilibrium composi-

tion X . The ultimate result is a complete phase interchange (Figure 63).

I 11
|
flnterface
[ V77777777777
(A, B)C (A, B)C_ 4
u v 4
7
' L liiiliiied
i
}‘ e
% ,
:’;-:;: / Intermediate Stage
'\ o |
% ;
( ,
'- \Y\‘\\\\\\\\Q
N
N (A, B)C Y (A, B
i N (A, B) VE( Cy After Complete
{ N Xe],_.l N XeI Equilibration
\\\L\\\\\\§

{ Figure 63, Phase Interchange in a Conjugate Ternary Diffusion
( Couple, for the Case that the Interstitial Atom C is
the Only Diffusing Species,

Considering the second case, we see that the canpositians o the individual

' phases gradually change along the lines indicated by the arrows in Figure 64, until

the equilibrium concentrations Xe and Xe are finally reached. We aote,
I 11
that for host atom diffusion both phases Jdo not physically interchange,

—

{ —

In practice. we never will hawe to deal with either extreme, but

{‘ generally will be confronted with a superposition of both types, However,

. 13
I 9
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assume now, that, without changing the overall composition of the couple

as well as the position of the equilibrium tie line, we had chosen the initial
compositions of the couple such that XI = XII' i.e.,equal exchanges of A and
B in both solutions. Exchange of the interstitial atom would not produce any
decrease in the total free energy of the diffusion system; hence, no net trans-
fer of interstitial atoms would occur, and equilibration would take place via

diffusion of atoms A and B only.

Xe X
AC, 11 I BC

AC

Figure 64. Equilibration by Host (A, B) Atom Diffusion in a
Ternary Diffusion Couple (A,B)Cl1 + (A,B)Cv.

A closer analysis of the assumed example will reveal, that for all
compositions lying between the line XI = XII and the equilibrium composi-
tions er and Xeu, and regardless of the magnitude of the diffusion coefficient
for the interstitial phase, the diffusion current would be carried only by the
host atoms (Figure 65), For concentrations on the opposite s_. of the divid-
ing line XI = XII’ equilibration will take place by a combination ur host and

interstitial atom diffusion resulting in at least a partial phase interchange.

Thus, in spte of the fact, that no structural changes, or additional phases are

140

i

P

—

o,

- -_-]

PRGN

p————




e e en e

W

o

o ————rr

o

PN i, p——— —

gy e,

involved, the physical appearance and phase distribution of the ultimately
equilibrated alloy will vary significantly with the initially chosen starting

compositions.

ACy | Xe %L BCv

\
v

v | \1 BCu

— A e B >

Figure 65, Effect of Composition Upon the Equilibration

Rearctions in a Ternary Diffusion Couple
(A,B)Cu + (A,B)Cv {c = Interstitial Element)

O ... Overall Composition of the Couple

X, X .+. Equilibrium Tie Line
€
I 71
CICII ... Conjugate Compositions

Vertical Shading ... Host Atom Diffusion Only

Horizontal Shading... Host + Interstitial Atom Diffusion (Partial Phase Interchange)
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Since the type of diffusion proceeding at the couple interface is —
apart from the variation of the composition — dependent on the course of the
tie lines, the diffusion process is c¢)osely linked to the equilibrium conditions
prevailing in the system. We will, however, not pursue these questions any
further at this time, but emphasize the principal recognition of these factors
for the solution of practical diffusion problems. The possibility, to derive
free energy gradients for the interpretation and quantitative evaluation of
diffusion data, by combining the thermodynamic approaches described in the

previous chapters with pertinent phase informatioa, shall oaly be mentioned

V. CONCLUDING REMARKS

Although the presently available experimental and theoretical material
is still insufficient to allow a fairly complete correlation of phase diagram
with thermodynamic data, it has been shown. that with relatively simple
thermodynamic approaches, useful information regarding phase stability can
be derived, and in turn applied, to evaluate the phase relationships in still
unknown systems. The examples given also show some of the difficulties
encountered in applying mathzmatical models to actual systems; they reveal
the need for more complete and accurate data to enable more refined calcula-
tions. In many instances this will require an extension of the measuring
techniques to higher temperatures in order to account for thermal effects

due to excitation of other internal degrees of freedom.
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APPENDIX I

Proof of the Identity of the Functions ¢A(xi.A) and ¢B(xiB)

— mix

AF ac YAFgac T ealxg ) (1)
v v A
—= mix _
AFypc tAkpc = ¢plx ) (2)
v v B
with
AFZAC = (w=v) AF{AC + (v-u) AFfAC ~ {w=u) AFfAC (3)
v u w v
AFZBC = (w=-v) AFfBC + {v-u) AFfBC - (w=u) AFfBC (4)
v u w v

Mixing Terms:

mix _ _
AKa,B)IC, T %m (x4) Xp txg =1
mix _ -
AEZA.B)CV T b (x') Xptxp =1
mix = @it ol "o
AI'IA,B)(:W ¢m KA S

The partial quantities AF """ are related to the integral terms by:

8¢
—mix _ Im
AFACV  ®m**p ExA- '

9¢
.mix _ ' 2m
A—FHCV =%,m t*p -5 »

3¢3m

mix _ "
S_F-ACW_ *ymt*B Ex'A‘ '




—mix — mix —mix — -mix
AFZACV= (v-u) AFACW + (w-v) AFACu- (w-u) AF, " i

8¢
= (w-u) ¢, Hwav) o, - (w-u)o, +(w-u)x'y .5;,%:_ +

3¢ 5
+{w-v) xg E%“ - (w-u) x Ffif (5)

The analogous calculation performed for the component B ylelds:

—mix - : , " am
AFZACV = (w=u) Pam +(w=-v) by " (w-u)dpzm +{w=u) x'y W'l; +

1mn

]
- 2 o (w-u) x* zm
+ (w V)XA 5 (w u)xAW (6)
B B
From the gradient condition we derive:

[aAFf(A, B)C] PAFf(A, B)C:' l:aAFf(A, B)C:‘
ox L ax! ax"

T,p T,p T,p

AFf(A,B)cu = xA“‘FfAcu t Xy AFchu t b

- [] ]
AFf(A,B)CV = xAAFfAcV" Xp AFpc

A4

¢m
— 1t 1
AFua,B)C. T *adFiac tXBAFgme o4
w W W

Differentiation and rearrangement of the terms yields:

3¢ 9¢
. m am
A¥iac “AFpc Y mx - T AFac " AFpe towmr- ("
u u A v v A
A-2

—ty

.




el B

8, 8¢

- un
AFjpc - AFpe + gz~ = AFpug - AFpe t T (8)
v v A w w A

Combining equations (1) and (2), with (5) and (6), and rearranging the terms,

we obtain

¢

5¢ 8¢,
talxia) ~dplxip) = AFpuc ~AF pe HY=u) gitt(wev) g - (weu) gop”
v v A A A

% m a¢sm
Substituting for p—y— and 3xT~ from equations (7) and (8) yields:
A A

fBC fAC Bc -

bplxip) - dgl¥ig) = AF,, o ~AF, o +(v-u) (AF, . - AF, . -AF, +AF,
v v u u w w

- (w=u) (A - AT,

fBC - AF,
u

+ AF,
fACV

Fiac BC )
u v

From relations (3) and (4) follows imamediately, that the last two terms in the

equation above are equivalent to AFZBCV- AFZACV; hence,

¢A(XLA.) = ‘pB(xlB) =0

[¥) o

¢A(xiA) = ¢B(x'lB)




APPENDIX II

Collection of the Most Recent Phase Diagrams for Binary Transition Metal-

Carbon, and Transition Metal-Boron Systems,
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Figure 66. Constitution Diagram Ti¢ nium-Carbon.

(E.Rudy, D.P. Harmon, and G.E. Brukl, 1965){31)
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Figure 67. Constitution Diagram Zirconilum-Carbon.

(R.V.Sara, C.E. Lowell, and R.T. Doloff, 1963 and 1965)
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Figure 68. Constitution Diagram Hafnium=-Carbon,

(E. Rudy, 1965)(3%
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Figure 70. Constitution Diagram Niobium-Carbon
(H. Kimura and Y. Sasaki, 1961){39
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der reaction of the Nb,C -phase
is not recorded in the diagram.
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Figure 5. Constitution Diagram Tjitanium - Boron.
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Figure 76. Constitution Diagram Zirconium-Boron,
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