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ABSTRACT 

A method of designing airfoils in cascade by means of 

conformal transformations is discussed. Design of these air- 

foils is regulated by five independent input parameters, with 

solutions obtained by digital computer. A large number of 

cascades generated by this method are compared. To evaluate 

the limits of performance, a parameter to indicate the ten- 

dency toward flow separation is introduced, with a limiting 

value established and verified. Proper solidity is shown to 

be of great importance in achieving low values of this separ- 

ation parameter. The value of proper solidity for a given 

blade thickness is shown to be relatively independent of 

fairing shape. To increase performance, reducing blade thick- 

ness with a corresponding increase in solidity is shown to 

yield much greater improvement than changes in fairing shape. 
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1.0 Introduction 

This study is an extension of a line of investigation 

originally conducted by Professor Theodore H. Gawain of the 

U. S. Naval Postgraduate School.  The original investigation, 

sponsored by the Aerojet General Corporation, was specifically 

aimed at increasing the pressure rise per stage of axial flow 

pumps. The intended application was to reduce the size of 

propellant pumps for large liquid fuel rockets.  The require- 

ments were for maximum pressure rise per stage, regardless 

of efficiency. This, in turn, demanded positive and accurate 

control of the pressure distribution around each blade, with 

particular emphasis on the adverse pressure gradient experi- 

enced by the boundary layer. 

Flow of a real fluid through an axial flow compressor or 

pump involves some formidable problems. Besides the effects 

of viscosity and turbulence; tip losses, centrifugal force 

fields, and other effects complicate the problem considerably. 

As is usually the case in engineering however, a simplifica- 

tion of the problem may yield useful results.  If the stream 

surfaces of the flow are assumed to be concentric cylinders, 

then a cylindrical cross section of the flow may be repre- 

sented by an infinite linear cascade with two-dimensional flow. 

If all velocities are considered relative to the blade row, 

then the solution for the rotor and the stator have identical 

mathematical form.  Following the usual aerodynamic practice, 

viscosity may be neglected outside the boundary layer. This 



leaves only turbulence as a factor preventing the use of poten- 

tial flow considerations.  In order to use the powerful analy- 

tic methods of potential flow, turbulence has been neglected. 

This does not mean however, that the data presented is invalid, 

Actually, the potential flow assumption is used to obtain the 

pressure distribution only. The relation between pressure 

distribution and separation was obtained from experimental 

data from actual turbomachines, and must therefore include the 

effects of turbulence. 

From the foregoing considerations, it may be seen that 

the study of cascade design has application to the whole field 

of axial flow turbomachinery. The problem of cascade design 

is much more difficult than the problem of isolated airfoil 

design. In the early days of airfoil design, much experimen- 

tal data was obtained on a bewildering variety of shapes. 

However, there was no reliable method of predicting the per- 

formance of an airfoil before it was tested. It was only 

after the NACA (now NASA) discovered how airfoil performance 

depended on shape, specifically on thickness, camber and fair- 

ing distribution, that any real progress was made in the field 

of airfoil design. 

The present state of the field of cascade design is that 

there is a large volume of experimental data available on a 

bewildering variety of cascades. Many efforts have been made 

to extrapolate the theory of isolated airfoils so that it will 

apply to cascades. However, at present there is no reliable 



theory which covers the field of cascade performance in the 

way that NASA's theory covers the field of airfoil performance. 

The parameters of thickness, camber, and fairing distribution 

are still involved, plus a few more. The relations and in- 

teractions between these parameters are so complex, that it 

is very difficult to consider any aspect of cascade design 

separately. 

When considering cascades as complete entities, the inter 

action effects are all present, and need not be corrected for. 

However, experimental efforts in this direction have been nec- 

essarily limited in scope, due to the effort and expense in- 

volved in constructing and testing large numbers of cascades. 

Theoretical methods, such as the one outlined in this investi- 

gation, provide the means of considering complete cascades 

over a wide range of design parameters. This study was under- 

taken from the standpoint of discovering areas of possible 

improvement in compressor performance. 

Most of the efforts of the NASA in the field of compre- 

sor design have been for maximum efficiency with moderate 

output. In some cases, it may be required to attain maximum 

output, with perhaps moderate efficiency. The gains to be 

expected from these considerations are not of large order how- 

ever, as a cascade develops its best efficiency not far from 

the point of stalling the blades. 

The basic problem, then, is composed of two parts.  First 

it is necessary to devise a method for generating blade shapes 



with the corresponding pressure distributions. For this pur- 

pose, the powerful methods of complex variables and conformal 

transformations are utilized. The method developed by Pro- 

fessor Gawain generates infinite cascades of airfoil shapes, 

based on five arbitrary parameters. Generally, the transfor- 

mations are similar to the Joukowski transformations with 

additional requirements. 

The second part of the problem is to establish a correla- 

tion between the pressure distribution around each blade and 

the occurence of separation. This problem must, of course, 

depend heavily on experimental data. Fortunately, work has 

been done in this area and some practical working limits have 

been established. See Reference 1. Based on this data, the 

simple parameter ( Vmax/V2)^ has been chosen as an indication 

of the tendency toward separation. 

The author wishes to express his sincere appreciation to 

Professor Theodore H. Gawain of the U. S. Naval Postgraduate 

School for his assistance, guidance, and encouragement during 

the course of this investigation. 



2.0 The Method of Cascade Design 

2,1 Introduction 

Methods of designing airfoils by purely mathematical means 

have been known since the early days of aviation« Joukowski 

was the most notable pioneer in this field. He, and others, 

noted the possibility of designing cascades of airfoils by 

similar methods. Since the early applications of cascade de- 

sign were to multi-winged airplanes, not much work was done in 

this field. As pointed out earlier, the application to turbo- 

machinery makes this field of considerable interest today. 

In considering the flow through cascades, the shape and 

position of any individual blade will affect the flow around 

that blade* In addition, the shape and position of all the 

other blades will also affect the flow around that same blade 

at the same time. Therefore, more parameters must be used in 

cascade design than are used in isolated airfoil design. In 

addition to blade shape, the relation of the blades to each 

other, and their relation to the flow must all be described. 

The method developed by Professor Gawain uses five independent 

parameters to describe an individual cascade. 

The solution for blade shape and velocity distribution 

corresponding to chosen values of the five parameters is found 

by using relations of potential flow and conforraal mapping in 

three separate planes. These have been termed the near circle 

plane, the circle plane, and the cascade plane respectively. 



In reading through the following sections, which describe 

the general method of generating cascades, reference may be 

made to Figure 5» which illustrates a typical contour in each 

of the planes referred to above. A summary of the mathematical 

development of the method is given in Appendix A. A more de- 

tailed analysis may be found in Reference 2. 

The solution of these equations, many of which are trans- 

cendental, is an impossible task by hand calculation. The 

entire problem has been arranged in FORTRAN language for solu- 

tion by a digital computer. The CDC 1604 computer at the U. S. 

Naval Postgraduate School was used for this investigation. 

The basic computer program, along with later modifications is 

included in Appendix B. 

The following sections describe the general method of 

generating cascades from five input parameters. Each parameter 

is described in detail as it enters into the calculations. 

The parameters are: 

ß    = Mean flow direction 

d0   " Turning parameter 

<7" = Equivalent flat plate solidity 

& •« Thickness parameter 

/< = Shape or symmetry parameter 

2.2 The Flow Parameters 

Flow through a cascade is usually described in terms of 

two velocities. The first velocity is that far enough up- 



stream of the cascade so that local effects due to the cascade 

are not evident. This is called the inlet velocity, and the 

angle it makes with the reference axis is called ßi»    Similarly, 

the velocity far enough downstream so that local effects have 

damped out is called the outlet velocity, and its angle with 

the reference axis is called ß%,    Tne magnitudes of these two 

velocities are not independent, since the laws of continuity 

require that the component perpendicular to the cascade axis 

be equal for the two cases. This concept allows velocities to 

be conveniently nondimensionalized, so that only angles are 

important. 

Figure 1 is an illustration of two typical cascades. An 

appropriate velocity vector diagram is shown for each. Note 

that only two parameters are necessary to describe the complete 

diagram. Instead of the angles (3i  and ßz  it was more conven- 

ient to use two different parameters*    Consider the following 

expressions: 

Tan ß   - i(Tan ß1  + Tan/92) 

B0 = (Tan px  -Tan ßz) 

The first expression defines the angle ß,  or mean flow direc- 

tion, which is the first input parameter. The second expres- 

sion defines the turning parameter B0, which is the second 

input parameter. The relationship between all these quantities 

is shown in the diagram on Figure 1. 

The starting point of the calculations is the near circle 



plane. In this plane, the complex potential for a series of 

doublets spaced at intervals of 2 Tf along the y axis is com- 

bined with the potential for uniform flow at the angle ß with 

the x axis. The velocity of this flow is set at unity, which 

then becomes the reference for all the nondimensional veloci- 

ties derived later. If only one doublet were used, the resul- 

ting potential would describe the flow without circulation 

around a single circular cylinder. In this case, with an in- 

finite series of doublets along the y axis, the resulting 

potential describes the flow without circulation around an 

infinite series of nearly circular bodies spaced along the y 

axis. These bodies are not actually circles because the pre- 

sence of the infinite stack of doublets distorts the flow 

around any individual doublet, such that the flow contour is 

a slightly flattened circle. The amount of distortion is re- 

lated to the strength of the doublets and the spacing between 

them. In this case, the spacing between doublets is fixed at 

2 Tf t  so doublet strength is what determines the relation 

between spacing and size of the bodies in the near circle plane. 

2.3 The Solidity Parameter 

The strength of the doublets is fixed by the input para- 

meter o~~ , or the equivalent flat plate solidity. This para- 

meter is closely related to, but not identical with,the ordinary 

solidity c/S, or the chord-pitch ratio of the blade row. The 

distinction can best be illustrated by an example. Generally, 

Ö 



any row of arbitrary blades of solidity c/S may be transformed 

conformally into a related row of flat plate vanes. The chord- 

pitch ratio of the latter is then denoted by G* . It follows 

that if two arbitrary cascades have the same value of O"- , 

then either may be conformally transformed into the other. But 

if the value of G~  is different for each, then no such trans- 

formation is possible.  ö~" then, may be regarded as a kind 

of generalized solidity, of perhaps deeper aerodynamic signi- 

ficance than simple geometric solidity. 

The relation between values of <7"and geometric solidity 

is directly influenced by blade thickness. Very thin blades 

have geometric solidities almost exactly equal to CF". With 

thicker blades, the geometric solidity is always less. The 

reason for this may be illustrated by examples of two extremes. 

If a contour in the near circle plane is transformed confor- 

mally into a flat plate, the chord length of the flat plate 

will be nearly twice the diameter of the original contour. 

However, if no transformation is made at all, an "airfoil" of 

100$ thickness results, whose chord length is equal to the 

diameter. Both cascades would have the same value of (T*, but 

the geometric solidity of the latter case would be half that 

of the former. Between these two extremes, finite thickness 

airfoils in cascade have solidities less than C~* . 

2.4 The Turning Parameter 

The turning parameter, B0, is a measure of the change in 



direction of the flow passing through the blade row. It is 

actually a nondimensional form of the downwash velocity induced 

by the blades. There is a very simple relation between B0 and 

the circulation around each blade. In fact, for a constant 

mean flow angle, this relation is a simple direct proportion. 

This convenient state of affairs is the reason why the two 

flow parameters were expressed in their present form. 

In isolated airfoil theory, the method of introducing lift 

or circulation on an airfoil, is to add to the complex poten- 

tial, a term representing a vortex of suitable strength. How- 

ever, mere addition of a vortex will produce a distortion in 

the contours in the near circle plane, since these contours 

are not exactly circles. In addition, an infinite stack of 

vortices is necessary to produce circulation around each of the 

blades in the cascade. To avoid these resulting undesirable 

perturbations in what will ultimately become the airfoil shape, 

and indirect method of adding circulation is used. 

In this method, a transformation is made from the near 

circle plane to the circle plane. An equation is developed 

which transforms the flow in the near circle plane into the 

flow around a perfect circle, centered on the origin. The cir- 

culation term may then be introduced without fear of distor- 

tion. The transformation is then made back to the near circle 

plane. Since the same equation is used to transform both ways, 

the original flow contour remains unchanged; however, the 

velocities at each point are now different, due to the circu- 

10 



lation. 

2.5 The Blade Shape Parameters 

The final transformation is from the near circle plane 

to the cascade plane. This is done by the Joukowski method 

of shifting the axes slightly in such a way that the flow con- 

tour transforms into an airfoil shape. Two arbitrary para- 

meters were chosen to control the blade shape. One of these 

is called the thickness parameter, and is given the symbol £ . 

This quantity is generally related to the thickness, and also 

to nose curvature, but not in any fixed relationship. Large 

values of £.   produce thick airfoils, and small values produce 

thin airfoils. Figure 2 is an illustration of several airfoils, 

showing the effect of C*  . The limiting value of 0 for £ does 

not however produce an airfoil of zero thickness. Due to the 

slight distortion of the contours in the near circle plane, 

<£» = 0 may produce the mathematically significant, but physi- 

cally useless case where the "lower" surface of the airfoil 

crosses through the "upper" surface. £ then, can be small but 

not zero, and the airfoils produced can be thin but not of zero 

thickness. 

The other parameter is the shape or symmetry parameter K. 

The effect of variations in K may be seen in Figure 3» Gener- 

ally, K=0 produces a blunt leading edge, and cusped trailing 

edge similar to a Joukowski airfoil« K=l will produce a sym- 

metrical shape which is generally a cambered ellipse. As K 

11 



Increases from zero to one, the point of maximum thickness 

moves from the quarter chord to the half chord point, and the 

trailing edge rounds off« Values of K larger than one will 

produce airfoils facing the wrong way (Trailing edge into the 

flow) and hence must not be used» 

2.6 Stagnation Points 

During the transformations made in this analysis, the 

stagnation points serve as reference points to locate the re- 

lation of the contours in the various planes« For this reason 

there is always a stagnation point at the leading and the 

trailing edge. Having a stagnation point at the leading edge 

is sometimes called the Theodorsen condition« This means that 

in all the cascades developed by this method, the airfoils are 

operating at the ideal angle of attack« Variations in lift 

then, are achieved by variations in the camber of the blades. 

Figure 1 graphically illustrates this fact. Two typical 

cascades are drawn, with the principal variation being in turn- 

ing parameter, B0« The values of £ were adjusted to give 

the same blade thickness. The difference in camber may be 

clearly seen« 

The condition of a stagnation point at the trailing edge 

is called the Kutta condition. This fact has particular sig- 

nificance when considering the blade shapes where K=l. As 

pointed out previously, these shapes are generally cambered 

ellipses. It is a well known fact that flow around an ellipse 

12 



of a given thickness ratio produces a lower velocity peak than 

the flow around any other shape of the same thickness ratio. 

This class of blades then should exhibit the lowest loading 

attainable for any possible fairing shape. Of course, any 

attempt to duplicate this fairing shape in an actual cascade 

is doomed to failure because of the rounded trailing edge. 

However, this case still has significance in two respects. 

First, the performance of a cambered ellipse, with the Kutta 

condition mathematically imposed, represents a useful limiting 

case of performance due to fairing shape. Secondly, a blade 

similar to this, with modifications to produce a sharp trail- 

ing edge, would have very nearly the same performance. The 

critical area of flow near the leading edge would not be af- 

fected much by modifications at the rear of the airfoil. 

Figure 4 is a plot of the pressure distribution around 

the airfoils of Figure 3« The above premise is verified, as 

the negative pressure peak can be seen to decrease as the 

value of K is increased. Note that the pressure distribution 

aft of the peak is essentially linear to the trailing edge. 

Reference 3, p* 354 states that this type of pressure distri- 

bution is typical of decelerating cascades. Note also that 

the slope of this line becomes less as K is increased, indi- 

cating a less adverse pressure gradient in the boundary layer. 

13 



3.0 Prediction of Separation 

3.1 Pressure Gradient 

The phenomenon which ultimately limits the attainable 

pressure rise of a cascade is separation. Flow separation 

occurs when flow in a boundary layer experiences an adverse 

(positive) pressure gradient. This adverse gradient tends to 

decrease the velocities in the boundary layer. Ultimately, 

the point is reached where the velocities close to the surface 

have been reduced to zero. At this point, flow separation 

occurs. Beyond this point, some velocities become negative, 

and a region of reverse flow exists. The resultant effects 

cause high drag and loss of circulation around each blade 

element. Many experiments have verified that any adverse 

pressure gradient, however small, will cause separation if it 

acts long enough. The concept of a gradient and the distance 

over which it acts, leads one naturally to suspect pressure 

difference as a significant parameter in predicting separation. 

The gradient, integrated over the distance is mathematically 

equal to the difference in pressure. It was previously shown, 

furthermore, that the pressure distribution over typical air- 

foils in this system is approximately linear aft of the nega- 

tive pressure peak« 

3.2 Velocity Considerations 

From another point of view, one might examine the velo- 

cities of flow through a cascade»  From the inlet velocity 
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described previously, velocity is brought to zero at the 

front stagnation point, accelerated to a local maximum some- 

where on the surface of the blades, reduced toward zero at 

the trailing edge, and finally settles down to the outlet 

velocity far behind the cascade. Besides the inlet and outlet 

velocities, only one other velocity is really significant, and 

that is the local maximum, Vmax . From these three quantities, 

only two independent dimensionless parameters may be construc- 

ted. If the inlet velocity and Vmax were used, this parameter 

would be related to the flow around the forward part of the 

airfoil. Since this flow involves a negative pressure grad- 

ient, it is probably not very significant with respect to 

separation. Similarly, the quantities V   and the outlet 

velocity, called V2> are related to the flow around the rear 

part of the airfoil, which involves a positive pressure grad- 

ient. These two parameters then, combined in some dimension- 

less manner, should act as an indicator for the tendency 

toward separation. 

3.3 Diffusion Factors 

From its many experimental studies of flow through cas- 

cades, the NASA has arrived at essentially the same conclusion. 

They have used several dimensionless combinations of Vmax and 

V2 to define blade loading limits. One of these is the 

"Local Diffusion Factor" which is: 
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{ V   - V ) 

V max 

This factor is described in Reference 1 and supporting data 

indicates that separation is likely to occur for values of D-^ 

greater than 0.5. 

Since the velocity distribution around the blades must 

be known to find values of D-^ , it is necessary to use experi- 

mental data, or an analytical treatment such as the one des- 

cribed in this investigation. To get around this difficulty, 

the NASA also defines an approximation, D, which may be ob- 

tained from more easily determined quantities. D, is called 

the "Diffusion Factor" and is given by: 

D -    1- 5°JLÜL  +    CoS £k  (Tan/51 - Tan/32) 
Cos fa 2 ys 

It is seen that this quantity can be determined from the inlet 

and outlet velocities, and the solidity of the blade row. The 

supporting data indicates that separation is likely to occur 

for values of D greater than 0,6. 

Since the methods used in this investigation furnish all 

of the flow quantities described above, as well as the com- 

plete velocity distribution around each blade, the opportunity 

to compare the two NASA parameters is presented. As will be 

described later, the correlation between these two parameters 

is not too good for the solidities considered here. 
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3«4 The Boundary Layer Loading Parameter 

From the above development, it may be seen that the para- 

meter to indicate separation should involve the pressure ratio 

across the rear part of the airfoil, and be some dimensionless 

combination of the quantities V2 and Vmax» The NASA has in- 

dicated that most compressors operate in the range where 

Reynolds number effects are insignificant. Therefore, it is 

felt that no particular inaccuracies result from omitting 

consideration of Reynolds number» 

In order to avoid using one parameter for pressure dis- 

tribution, and another for the tendency toward separation, 

the quantity S was selected where; 

s - < W v2)
2 

This quantity is referred to as the boundary layer loading 

parameter, and is quite versatile in application» It is 

directly related to the pressure coefficient, and in fact only 

differs from that quantity by unity» S also has a constant 

functional relationship with the NASA parameter D^» The value 

S ■ 4.25 corresponds to the value of D1 of 0»5, and has been 

selected as the limit loading in the boundary layer for blades 

in this investigation. 
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4.0 Results and Discussion 

Theory and experiment both point toward increasing 

solidity as the method of obtaining increased pressure rise 

per stage. As solidity is increased, the lift coefficient on 

each blade is decreased, and hence the loading on the boundary 

layer is decreased also« However, as the solidity is increased, 

there is an adverse effect due to the blockage caused by the 

finite thickness of the blades plus the boundary layer« 

Finally, the point is reached where the beneficial effects of 

decreased blade loading are just counterbalanced by the ad- 

verse effects of blockage. The quantitive determination of 

this point was one of the major objectives of this investiga- 

tion» 

4.1 Organization and Scope 

Since actual cascades are designed on the basis of blade 

thickness and geometric solidity, it was felt that the results 

of this investigation ought to be organized on this basis, 

rather than on the basis of the mathematical parameters <£• and 

<y  . The value of blade thickness is not directly predictable 

from the input parameter £ .  Therefore, the basic computer 

program was modified to use an iterative scheme to achieve the 

desired values of blade thickness« Details are given in 

Appendix B, which describes the basic computer program and the 

modifications» Seven blade thicknesses were selected to cover 

the field of possible blades»  These ranged from the limiting 
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case of extremely thin blades to 24% thickness blades in four 

percent increments» 

It was decided to conduct this investigation using only 

one value of average flow angle /Sa This value was chosen to 

be 45°, which was a somewhat arbitrary decision, but not with- 

out some sound theoretical basis» It is stated in Reference 

4 that maximum efficiency may be obtained when the average 

flow angle is near 45°, and many compressors are built accord- 

ingly. 

In spite of reducing the parameters to four by the above 

decision, over 1470 separate cascades were generated and ana- 

lyzed for this investigation« Additional parameters could 

have been introduced to give more control over the blade shape, 

but they would have greatly magnified the problem. As the 

data will show, additional blade shape parameters would not 

have affected the significance of the results very much« 

4.2 Series 1 Plots 

The first plots of data from the computer run were made 

of boundary layer loading vs0 solidity, for airfoils of con- 

stant blade thickness» Five values of the shape parameter K 

were used, and data was obtained at six values of turning 

parameter, B0o This meant that there were 30 graphs in series 

one. Figures 6 through 9 are representative graphs from this 

series. 

It was noted with satisfaction that the curves showed a 
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pronounced minimum loading as solidity was increased. The one 

exception was the case of the extremely thin airfoils, for 

which the curve appeared to be asymptotic to some low value of 

loading. This is not unreasonable, since the blockage effect 

would be very small for this case. The case of thin airfoils 

then, represent?a sort of limiting value for cascades. The 

point at which minimum loading occuired for a given thickness 

airfoil was called the optimum solidity» 

It may be noted that while the value for loading at an 

optimum point could be determined with accuracy, the corres- 

ponding solidity for that point was subject to some uncertainty, 

Therefore, another point was introduced where the solidity 

could be determined with greater certainty. This was called 

the design point, and is defined as the point toward lower 

solidity where the loading equals 1.10 times the minimum value. 

There is further justification in this step from the fact that 

the basic analysis neglects boundary layer- The blockage 

effect of a blade plus boundary layer must be greater than the 

effect due to the blade alone. Therefore, the true optimum 

solidity must be somewhat less than the apparent optimum based 

on non-viscous flow. The exact relation cannot be found with- 

out a detailed analysis of the boundary layer. This simple 

method sidesteps this formidable problem, and is at least 

qualitatively in the right direction. 

For the case of higher values of turning parameter and 

thick blades, there was some scatter in the data. Since the 
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data is all analytical, and should therefore be reasonably 

regular, some effort was made to find the source of the scat- 

ter. The relationship between the parameters C  and c/5 was 

suspected first. Comparative plots of these two parameters 

however, showed that they varied in a regular fashion with 

blade thickness. It was then decided that the scatter was due 

to the fact that velocities were measured only at 40 points 

along the airfoil. If the true maximum velocity occurred be- 

tween these finite points, then the value for boundary layer 

loading parameter would be in error. Remembering the fact 

that this error could be only on the low side was an aid in 

fairing the curves through the scattered points. 

It was noted that the data became more regular as the 

value of K approached one. For these airfoils, either the 

flow was more regular about the nose, with no sharp peaks in 

velocity, or the point of maximum velocity happened to coin- 

cide more often with one of the finite points. Examination 

of the pressure plots of Figure 4 points toward the former 

as the cause. With high values of K, the pressure changes are 

seen to be more gradual, and of lower magnitude. Because of 

this, the actual maximum velocity was always close to the 

velocity recorded at one of the 40 points. 

Figure 10 is an illustration of the effect of K in reduc- 

ing the boundary layer loading for a given value of turning 

parameter. With all other factors equal, the loading steadily 

decreased as the value of K increased toward unity. Note that 
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the effect of K was much greater xor the thick blades. For 

the case of extremely thin blades, K had no effect at all, 

which was not an unexpected result« 

4.3 Series 2 Plots 

Since the original series involved 30 graphs, some effort 

was made to summarize this data. The result of this effort 

was Figures 11 through 15, which collect all the data for a 

particular value of K on a single page. Boundary layer load- 

ing parameter and solidity are plotted along the coordinates 

as before, but now the solidity is design solidity. In effect, 

all the design points for a particular value of K have been 

plotted. Points of constant values of turning parameter have 

been connected, as have points of constant airfoil thickness. 

The result is that four interdependent parameters are shown 

for each point on the chart.  Any chosen point then, repre- 

sents a particular value of blade thickness and turning para- 

meter, with the corresponding boundary layer loading and 

design solidity for the cascade. 

Figures 16 through 20 are plots made in exactly the same 

manner, except that optimum points were used instead of design 

points. It was necessary to change the scale for solidity 

along the horizontal axis, since optimum points represent 

higher values of solidity in every case. In addition some 

difficulty was experienced with irregularity in the data. 

This was due at least in part to the uncertainty in determin- 
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ing the value of solidity at the optimum point» This optimum 

point data was included as a limiting case, to illustrate the 

maximum solidities to be used when the boundary layer is neg- 

ligibly thin. 

The choice of solidity as a coordinate is slightly mis- 

leading. It might be inferred from this choice that solidity 

should be used as a design input» However, solidity was 

plotted in this manner purely as a convenience in transferring 

data from the series one graphs» In design work, the two 

"inputs" could be boundary layer loading, and turning para- 

meter. The "output" information would then be blade thickness 

and solidity. An attempt was made to plot boundary layer 

loading parameter vs. turning parameter, but the resulting 

blade thickness and solidity lines were so nearly parallel 

that the information was difficult to read. 

4.4 Comparison of NASA Separation Parameters 

The data on the series 2 plots contains all of the infor- 

mation necessary to compute both NASA separation parameters. 

This affords an opportunity to compare these two parameters 

directly. The boundary layer loading parameter S, and the 

NASA parameter D^ have a constant relationship such that: 

Dn - 1 - 
X 

1     75— 
Thus a D^ equal to 0.5 corresponds to a value of S of 4»25» 

This value is entered as a heavy line on all series 2 plots. 
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The approximation D, is relacea to the parameters B, B0, 

and c/S by the following relationship: 

Thus, since ß  has been fixed at one value, each value of B0 

and c/S will result in a particular value for Do This expres- 

sion for D shows that it cannot be a good approximation over 

a wide range of solidities, since it indicates that loading 

will always decrease whenever solidity is increased» It has 

already been demonstrated that as solidity increases beyond 

the optimum point, loading increases also due to the blockage 

effect. 

Lines corresponding to a value of D=»5 and I>=«6 have been 

plotted on Figures 11 through 20 as dashed lines. A note of 

caution is necessary in using the data on these figures» It 

must be remembered that there is really only one solidity 

shown on each chart, and that is the design (or optimum) soli- 

dity» The fact that solidity is shown as a variable is due 

solely to the fact that each combination of blade thickness 

and turning parameter demands a particular value of solidity 

at the design (or optimum) point» 

If the parameter D is a true approximation for D^» then 

the lines corresponding to D^.5 and D^.5 should be nearly 

the same» Examination of the figures shows that there is a 
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fair match for the case of optimum solidity,, Generally, D 

gives a value of loading which is iiigher than D^, but the 

error is only around 10$, which is not unreasonable. For the 

case of design solidity, there is a greater discrepancy. For 

very thick blades, D still indicates a value of loading higher 

than D^, but this relation reverses so that for thin blades 

Dn indicates the higher loading» 

The data in Reference 1 states that separation is likely 

to occur for values of Dn greater than .5 or for values of D 

greater than .6. This in it3elf is an indication of a mis- 

match between D and D^. If the occurrence of separation is 

taken as the matching criterion, then the line corresponding 

to D=».6 should match the Dy=»5  line. For the case of optimum 

solidity it may be seen that the matching is very poor, where 

D indicates a much higher loading than D^. At design solidity 

the matching is better, but D still indicates values of load- 

ing which are around 10$ higher than D^. Extrapolating this 

trend leads one to suspect that, for some value of solidity 

less than design solidity, the two parameters D=.6 and Di=.5 

would probably match quite closely« From this, it is not un- 

reasonable to expect that the NASA obtained its experimental 

data from cascades whose solidity was less than the design or 

optimum as defined in this report. A few checks of source 

data for Reference 1 have verified this premise. Solidities 

were generally 1.0 for cascades with blade thicknesses of 

eight and ten percent. A check of the series 2 plots will 
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reveal that this is less than the aesign or optimum point for 

any fairing shape. 

4*5 Comparison of Blade Thickness and Fairing Shape Effects 

Figures 11 through 20 clearly show the gains that can be 

made in turning parameter, at no increase in loading, by 

using thinner blades at the corresponding higher solidities. 

However, it was desired to compare the effects of changes in 

fairing shape and blade thickness on the same chart. Figure 

21 was made using the design point data, and Figure 22 was 

made with data from the optimum points. The value of S = 4*25 

was selected as the best estimate of maximum permissible blade 

loading.  The values plotted were turning parameter vs. solid- 

ity at this constant value of blade loading. This resulted in 

lines which represented varying blade thickness at a constant 

value of K. Lines of constant blade thickness were then drawn 

in. It is interesting to note that these lines are nearly 

vertical. This means that the value of design or optimum 

solidity for a particular blade thickness is relatively inde- 

pendent of blade shape. This result was not directly predic- 

table from theory, and may prove useful in planning experi- 

mental investigations. 

As blade thickness is decreased, it is clearly seen that 

the importance of fairing shape decreases correspondingly. 

When blade thickness reaches about four percent, there is 

almost no discernible difference due to fairing shape. To 
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compare the relative effects of lairing shape and thickness 

changes, consider the following example» Select a blade thick- 

ness of 12$ with K = .010, which is a relatively poor fairing 

shape with a blunt nose. For this shape at the proper solid- 

ity, a turning parameter of .74 is possible without separation, 

If K - .990 the shape is nearly the best possible. 

Making this change increases the permissible turning 

parameter to «03, or a 12$ improvement» This same improvement 

could be obtained with the original shape by decreasing the 

thickness to a little less than &%  and increasing the solidity 

slightly. If the blades could be decreased to 4$, with the 

corresponding increase in solidity, the turning parameter 

could be increased to .92 without changing the loading. This 

is a 21$  improvement, or double the best improvement that 

could be obtained by fairing shape changes alone. As a limit- 

ing value, if the blades could be made infinitesraally thin, 

the increase in turning parameter could be as high as 50$. 

It must be remembered that these performance figures are 

for cascades operating only at the ideal angle of attack. It 

may well be that these increases in peak performance are at- 

tained with some sacrifices in flexibility» This would be of 

no consequence in a constant output device, but for general 

application, the problem of operating off»design must be con- 

sidered. The analytical method described in this study can 

be modified to consider the case of operating at angles of at- 

tack other than the ideal» This matter is discussed more 

fully in the section on suggestions for further work. 
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5.0 Conclusions 

It is concluded that the method of generating cascades 

as described in this report is a workable one, and provides 

useful results. Cascades are generated as complete entities, 

which eliminates the need for separating the effects of the 

various design parameters. Use of a high speed digital com- 

puter means that large numbers of cascades can be generated 

and analyzed quickly. This allows exploration over a wide 

range of design parameters. 

Solidity in experimental cascades has often been arbi- 

trary. This investigation has revealed that the matter of 

solidity is of paramount importance <> For any combination of 

fairing shape, thickness and camber, there is a particular 

value of solidity which will result in the lowest loading of 

the boundary layer. This loading can increase quite rapidly 

as the solidity is varied from the proper value. 

Data obtained in this investigation has yielded the un- 

expected result that the optimum value of solidity referred 

to above is relatively independent of the fairing shape of the 

blades. An important application of this result will be in 

planning experimental investigations of cascade performance. 

The actual values of solidity given in this report may be used, 

with the probability that they will be close to the optimum 

values for any sort of physical blade shape. 

Three parameters intended as indicators of the tendency 

toward flow separation were compared in this report. As a 
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result of this comparison, it is concluded that the parameter 

S, as defined in this report, is a useful indicator in this 

respect. It is further concluded that the value S « 4.25 is 

an acceptable design limit, which is as consistent with NASA 

data as this data is consistent with itself. 

With respect to the problem of increasing the performance 

of airfoils in cascades, it is concluded that the matter of 

blade thickness is of much greater importance than the fairing 

shape. The example was given of a cascade with blades of 12% 

thickness. Possible increases in turning parameter for this 

cascade due to improvements in fairing shape were shown to be 

on the order of 12%. Increases in turning parameter produced 

by decreasing the blade thickness to 4% with a corresponding 

increase in solidity, were shown to be 24%, or twice the pre- 

vious amount. The absolute limit of performance increase by 

this method would be given by the case of negligibly thin 

blades. For this case, the total increase in turning parameter 

would be 50%. 

It was pointed out in this study that increasing the 

performance of cascades by using thinner blades and higher 

solidities would probably reduce the flexibility of performance« 

The effects of operating off-de sign were not a part of this 

study since the method of generating the cascades produced 

airfoils operating only at the ideal angle of attack. It was 

stated that modifications could be made in the method to con- 

sider the off-design case, but this was not done due to time 

limitations. 
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6.0 Suggestions for Future Work 

This investigation represents only a beginning in the 

field of theoretical design. With the basic method and com- 

puter programs available, it should be a simple matter to ex- 

tend the scope of investigations similar to this one. Inves- 

tigations ought to be conducted for a number of average flow 

angles, so as to cover the whole range of possibilities in 

cascade design. Reference 2 for example, has some work on an 

average flow angle of zero, which represents the special case 

of an impulse turbine. There is no reason to prevent con- 

sidering negative average flow angles either. This would be 

the case of turbines rather than compressors, but the same 

method and computer program would apply. 

One might suppose that since the flow is accelerated 

through a turbine, the boundary layer experiences a negative 

pressure gradient and separation is not a problem. This is 

not exactly true, however. There are actually two pressure 

differences to consider in flow through a cascade. One is the 

effect perpendicular to the stream, which is a result of the 

lift being developed by each blade. The other is the longi- 

tudinal effect parallel to the stream which is the result of 

differences in pressure from the front to the rear of the 

blade row. Flow separation depends on the combination of these 

two effects. Thus, in decelerating cascades, the longitudinal 

effect reduces the allowable lift from each blade. In tur- 

bines, the longitudinal effect increases the allowable lift. 
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If the lift is increased enough to overcome the aid of the 

longitudinal effect, flow separation will still occur. A 

series of studies of this matter could establish the exact 

relation between these two gradients and the occurrence of 

separation. 

The analytical methods of this report would be a help in 

studying the occurrence of separation through solution of the 

boundary layer equations. The detailed pressure distributions 

provided by the computer at least open an avenue toward solu- 

tion of the boundary layer equations by direct integration. 

In any future work, it would be convenient to consider 

the velocity at more points near the leading edge of the blades. 

This would allow more accurate determination of the actual 

maximum velocity, and should eliminate some of the scatter 

found in the data for this investigation. The necessary modi- 

fications to the computer program are not difficult, and only 

lack of time prevented their incorporation in this investiga- 

tion. 

Another area of investigation would be a change in the 

basic transformation which would allow a finite angle at the 

trailing edge of the blades. This would make the transforma- 

tions similar to the Karmann-Trefftz transformations then, 

rather than the Joukowski. Eliminating the cusp or radius at 

the trailing edge then, would perhaps yield blade shapes which 

would be more physically useful. As pointed out earlier, some 

of the blade shapes developed in this investigation, while 
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mathematically useful, were physically poor because of the 

rounded trailing edge. These improved transformations would 

be particularly useful in the case of symmetrical impulse 

blading, where a finite angle is desired at both the leading 

and the trailing edge. 

As mentioned previously, it would be interesting and per- 

haps useful to consider the off-design case, where the blades 

are operating at some angle of attack other than the ideal. 

In principle, the method would be to generate the airfoils, 

then go back to the original complex potential and change the 

average flow angle. Keeping the same transformations would 

preserve the blade shape, but the circulation would have to 

be adjusted to keep the Kutta condition. The idea seems simple 

enough, but no doubt there will be many difficulties with the 

details. 

Still further work could be done in investigating other 

shapes for the camber line of the blades» Generally, the 

camber line for the blades developed in this investigation was 

the slightly flattened arc of a circle» The generation of 

other camber lines involves the expression for the flow poten- 

tial in the near circle plane.  In this plane, a single doub- 

let generates the flow contour which transforms into one of 

the blades of the cascade. If instead, a series of doublets 

were used; by varying the strength and distribution of these 

doublets, great control could be exercised over the camber 

line and blade shape of the airfoils. The ultimate in this 
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direction would be where the input is a desired pressure 

distribution, with the proper camber and blade shape being 

automatically produced. The resultant family of cascades 

would be as important a milestone to cascade design as the 

NASA 6-series airfoils were to isolated airfoil design. 
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Figure 10. 
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APPÜNiJDC A 

MATHEMATICAL ANALYSIS UJ?1 Tiui MäTuul) u*1 DESIGN 

This appendix describes the general mathematical 

development of the method of designing airfoils in cascale. 

Some of the fine details, particularly on iterative proceed- 

ures, have been omitted,  however, the entire calculation 

proceedure is given in the .FoiviTuil« program in the next appen- 

dix.  This, along with the explanations given in the table 

of symbols, should allow analysis of the method to whatever 

extent äs necessary. 

Basic relations in the ßear Circle rlane 

The complex potential for the flow around the infinite 

row of closed bodies in the near circle plane may be written 

in the form; 

w = f + if = e~z + (A + iB) l\{z) Ala 

with the corresponding complex velocity; 

dw = v - iv = e_l|i + (A + iB) SAz) Alb 
dz   X    y 

where 

1\ (z) = H,(x,y) + iJ,(x,y) = i  coth z A2a 

F2{z)  = R2(x,y) + iJ2(x,y) = |^ J^U) 

= fe[-cothf ]    =-^sch2| A2b 

By expanding these functions and separating tnem into 

their real and imaginary parts, it is found that: 
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^(x, y) = i ( sinh X 

y 
■) 

cosh X - cos 

sin y 

A3a 

A3b 

(cosh x - cos y) 

*H Isinh x sin y ) 
d2U,y; ~ + T (cosh x - cos y)Z A3d 

ihe expressions for velocity potential, stream function, 

and velocity components now reduce to: 

$ = x cos/5 + y sin/3 + M1(x,y) - BJ1(x,y) A4a 

y = - x sinß + y cos(3 + AJ,(x,y) + BR,(x,y) A4b 

vx = cosß + Ah2(x,y) - BJ2(x,y) A4c 

v = sin<0 - AJ?(x,y) - Bft?(x,y) A4d 

These relations represent the flow without circulation 

about an infinite series of nearly circular bodies spaced 

at equal intervals S = 2/T along the y axis,  ihe contour of 

a typical body is shown in i'igure 5- 

Location of Stagnation Points 

Uue to the interference caused by thu presence of the 

infinite stack of bodies, the stagnation points on any body 

are displaced slightly from the position they would have 

occupied if the body were isolated in the flow,  .e'or this 

reason, some computation is necessary to locate these points. 
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designating llu. front ana rear sta0nution points by the 

subscripts A and r>  respectively, anu noting the type of polar 

symmetry involved, the following fucts are observed.  At the 

two stagnation points, both velocity components vanish by 

definition.  AISO, by reason of the odd symmetry involved, 

X
A = " 

XB '  yA = ~ yB '  and ^A =~^B  *  However» since 

the points A and B lie on the same streamline, ^   = + f    . 

i-he only way in which these two conditions on f  can be satis- 

fied is if ^ = - V-Q= 0  .  since the stream function vanish- A      ü~ 

es at the stagnation points, it also vanishes at all other 

points on the body, i ince they are on the Soiae streamline. 

The velocity potential<ß  on the other hand varies from 

a maximum negative value at A to a maxjmum positive value at 

B.  The value <PB then defines the amplitude of the tf func- 

tion on the contour of the body.  This amplitude may be 

arbitrarily prescribed, and will then fix the size of the 

near circle contour in relation to the fixed spacing o = 217". 

Let ie(x0,yc) = A, D and so forth.  Then, at the point 
1      ho -LxJ 

B from tne  foregoing discussion: 

^B = XB  C0S^ + yB sinP   + ^1B " i3JlB = arbi'trary value 

4'   = -xB sinf> + yB cos/3   + AJ1B + Bh1B    = 0 

A5a 

A5b 

v    = cos/3   + Ak2B - BJ2B    = 0 A5c 

sin/2 - AcJ2B - BK2B    = 0 A5d 
y 
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i'he last two of the above equations may be solved simul- 

taneously for the unknown constants A and B with the results: 

' R2i3 C0S/g + J2B Sin I3 

A =  2 —2  
A6a 

*2B      +    J2B 

+ H2B sinß  + J2j3 cos/S 

B =     2 2  A6b 

R2B +    J2B 

substituting these results into the expressions for 4L and V 

yields two equations in wnich the two unknowns are the 

coordinates j-g ana y of tue aft stagnation point.  The 

equations are trancendental, however, so that an iteration 

technique is necessary for solution.  Care was necessary in 

this area as all the functions are multi-valued in y, and the 

result could converge to a point differing by some integral 

multiple of 2V in the y dimension from the intended point. 

The general method involves starting with low values of 

in effect close to the isolated case where the location of 

the stagnation points :s known, taiu working up to the desired 

value by modest increments. 

■Location of Points on the Contour 

^nce the location of tue uft stagnation point has been 

found, the constants A ana r>  can be evaluated from equations 

A6a and A6b .  ihe other points on the contour can then be 

located from equations A5a and A5b by setting y = 0 and 

assigning a suitable value to cp .  Tais computer program 
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divides the interval from -& to -r p' into 20 equal parts. 

This yields 20 points along each surface of the airfoil, or 

40 points in all.  As pointed out in the text, it would be 

helpful to subdivide some of these intervals near the leading 

edge to get a better check on the maximum velocity in this 

critical region. 

xhe equations for the location of these contour points 

are again trancendental, and a similar iterative technique 

is necessary for solution,  once the coordinates of a point 

are known, the velocity components are found from equations 

A5c and ü.5d.  i'he final velocity v and the slope c< of the 

contour at that point are found from the relations: 

-r 2    2 v  + v A8a 
x    y 

v 

V 
oC = arc tan ^ A8b 

x 

At the stagnation points, this relation becomes indeterminate 

and L'Hopital's rule is used for a solution. 

Basic relations in the Circle rlane 

It is well known that the flow around an infinite row 

of arbitrary but identical contours can in principle be 

mapped into a corresponding flow about a single unit circle. 

if the flow is of zero circulation, and the direction of flow 

far fron the contours is ß   then the corresponding flow in 

the circle plane is expressed b;y the following complex po- 

tential and velocity: 
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..   f+if - .-1" mff^) + .
+i" *ß^£) A9a 

§ = K- V »-^ - ^"(yi^) * e+i%-^) ™ 

Splitting these into real and imaginary parts, and placing r 

=a = 1 leads to the result that along the unit circle, 

V = 0 AlOa 
it 

AlOb 
Y  = constant 

'ihis verifies that the circle is in fact a streamline, 

further, along this circle: 

f/j i   / cosh(^+  cos & \ ■    ß'n *.      /   sin & \ = cos/3 In/ r^z 3T~/  + sinP   2 arc tan/     .   ,   ^ ) 1        {   cosh^ - coS(^   / ^ sinh^/ Alia 

Vf    /" cos/^cosh^1 sin<^ + sin ß  sinh ff co& & 
9 ~  4 L cofh 2^ - cos 2 & Ä11D 

Singularities and stagnation points in the Circle Plane 

io find the stagnation point ß,   set V^ = 0  .  1'hen 

equation Allb gives: 

tan S>B  = tan /^ tanh )f Al2 

substituting this into equation AIIA produces a result which 

can be reduced to the form: 
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<?B - O"' 1" (T ! Tolfi )   *  -W^ arcta„(f^; A13a 

wnere 

2 = y £( cosh 2^ + cos 2/3) A12b 

1'hese equations then must be solved for T then <J* for 

assigned values of fi   and 4g which must be the same as the 

values for ß  and <^L previously employed in the near circle 

plane.  Since the functions are trancendental, an iterative 

technique is again required. Newton's inetnod is employed, 

J<fe which involves calculation of the derivative y ■ ■   . De- 

noting this by the symbol Q^ then: 

<£>■ = , zs£ .  
B [ 2I2 -ooa 2fi)2 - 

A14 

Applying the equations in this form however, requires an 

excessive number of significant figures in the evaluation of 

T .  i'o circumvent this problem, the following subltitution 

was used to eliminate T. 

2 = cos ß  +£l A15 

The previous equation then become 

<£>    = cos J9   ,    r2  cos /^     +M1       •   /? o +    /sinjl      "1 
^ ^t £T IT sinr'2 arctan[c^T+4 TJ 

Al6a 
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<p' _  /2 Sfoosß +tä     \     ( cos r  +£'!:)_           Al6b 
fB " ~(A'£t(2  cos/3 +^T/ £TTT 2 COBf* + &'£)&'£] 

The problem of finding T for assigned values of /^ and<£ 

by ivewton's method has no difficulty with regard to signifi- 

cant figures,  'xhe parameter #* and its hyperbolic functions 

may now be found from: 

sinh^ = Yl' ( 2 cos/3 +^i) = y^ ( Cosh 2/-1) 

A17 

The initial estimate for Newton's method is obtained by 

neglecting T in the last term of equation Al6a . 'xhe 

resulting equation may be solved explicitly for ^ T . 

A T =    2°°°^ A18a 

where 

- 2 ft sin/3 
T       f ft- 2/gsln/g    ) 1  = ( COB/3 J A18b 

These expressions provide an excellent first estimate for 

T, and in fact for the special case olß-  0 , they are 

exact. 

with /3 and )f known, the location of any point &. 

having an assigned value of <f.  is defined implicitly by 

equation «11a.  To establish the location of points corres- 

ponding to those in the near circle plane, all that is neces- 

sary is to have the respective values of <f.   bo the same in 
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the two planes.  As before, an iterative solution is re- 

quired . 

Circulation 

The complex potential ana velocity for a purely cir- 

culatory flow of unit circulation in the circle plane are 

as follows: 

sf3  ,« /52 -e+2^ 

( 

Aw = - x ^°'  m r • 2 - «_2^ j        Aiga 

d_^w)   - 2i cos ß  sinh fr $ 
di   = 54-2 cosh/*.J2+l 

A19b 

J = r eiä? A19c 

Separating these into real and imaginary parts, it is again 

found that the unit circle r = 1 is a streamline, along 

whiph the velocity distribution is given by 

A v     - sinh 2^ A20 
AV£- cosh 2j*  -  cos 2<£ 

This circulatory component must be evaluated at the same 

points «?. previously established^iround the periphery of the 

circle.  By superposition, the total velocity at these points 

is then given by; 
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Stagnation Joints with circulation in Circle xlane 

Just as the stagnation points ^  anü B are defined by 

the condition V = 0 , so are the stagnation points 1 and $ 

defined bj the corresponding condition 7/= 0 .  introducing 

this condition into the foregoing equations yields the 

essential result 

@    , a   = 6\ - &.  = r = arcsinf^ . sinh 2/cosg 
B   T    L   A 4    TT7Z 7T i—    cosh,^ cos fi 

A22 

unce the points L and T have been located in the circle 

plane, the corresponding values of H[    and Y,   may be found 

from equation Alia, introducing these \alues into the near 

circle plane leads to the location of the points L and i' in 

that plane b,y solving equations A4a and A4b. 

Kayoinp .oetveen Circle and Hear Circle Planes 

Happing between the circle or $  plane and the near 

circle or z plane, as implied in tne preceeding discussion, 

is accomplished despite the fact that no explicit function 

for z  in terms of %  or vice-versa is icnown.  -"-he mapping is 

dene implicitly through the fact that the non-circulatory 

flows in the two planes must correspond.  Or in other words, 

through the condition that 

w( z) = w ( 5) A2pa 
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differentiating this gives 

(dwi 

du/     ,dz 

But 

dw i = v "23c 
dz 

and 

Hence the mapping derivative becomes 

dz I = Jgt A23e 
d^ (   v 

xhe flew with circulation has been completely defined 

in the foregoing development for the circle plane.  In the 

near circle plane, however, only the non-circulatory flow 

has been explicitly defined,  AS explained in the text, add- 

ing circulation terms to the complex potential in the near 

circle plane produces unwanted distortions.  Therefore, the 

method used is to map the known flow with circulation in the 

circle plane back into the near circle plane using the map- 

ping relations previously established.  These mapping rela- 

tions are of course independent of circulation. "J-nus, for 

the final flow with circulation 

wc (z) = Wc W  = w ^ + BoAw (^ A24a 
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Differentiating this gives 

Ü1- IB- Bo ^/ 
I« I 

A24b 
dz I idz 

oubstituting in terms of velocities, and introducing proper 

algebraic signs gives finally for the velocity in the near 

circle plane: 

°)J   =  V* + B AV^ n ,.,, /v \ 
^     V^°       =V + Bo^a(v;/ ^ 

v 

Basic delations in the Cascade Plane 

The basic idea of this entire method is to map the near 
1 

circles into a cascade of airfoils in much the same manner 

that the Joukowski transformation may be used to map a single 

circle into an airfoil. The equations for the transformation 

are identical in form to those already developed for the 

flow in the near circle plane,  however, all coordinates are 

evaluated with respect to axes shifted slightly from the 

original position.  Denoting these shifted coordinates by 

primes, the mapping function employed is specifically: 

§* = f   + in  = e"
1^'  + (A* + iB') F± (z')      A25a 

4K  = u - iu = e"1^' + (A' + iB') F?(z')        A25b dz'   x    y ^ 
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Uhere 
2» 

2 1\U') = i  coth 7T- A26a 

f2(z.)=-icsch
2 f A26b 

Kote that the above functions are exactly of the same form 

as equations Al and A2 . All subsequent results may readily 

be obtained through this analogy. 

Determination of Airfoil ohape 

In order to transform tue near circle into the required 

airfoil shape, it is necessary to locate the singular points 

i" and ^ of the mapping transformation in the proper relation 

to the stagnation points h  and X of the flow, normally, t 

is located a short distance inside the contour, just opposite 

L on the surface.  Similarly, point ^ lies inside the con- 

tour on a line normal to the contour at T.  nefer to i'igure 

5.  xhe significance of these locations may be qualitatively 

understood from the fact that as the relative distance rr~ 

= £ is made small, the radius of curvature at the nose of 

the airfoil decreases rapidly, and in the limit, as £ = 0 

the nose becomes cusped.  Similarly, the relative distance 

^=- = P'L      controls trie tail curvature,  in the limit as 

f i\  = 0  the tail becomes cusped in the manner of a uoukow- 

ski airfoil.  Xhe origin of coordinates for the transforma- 

tion iö shifted from the original location, the midpoint 

69 



between points A and B , to the new location, the midpoint 

between points P and Q. 

Velocity and alope ^long the Airfoil 

The complex potential including circulation ii, the cas- 

cade and near circle planes may be equated 

w  (£*) = w (z) A27a 

differentiating 
dw 

ÜWc =     ~TT A27b 
dS *     /d5 * ) /dz' 1 

Uz' / Idz / 

■L,e^        ( wc \ = Ve_1°     conjugate of velocity 
\d5 */ on airfoil 

| (£a)- E/V1« 
conjugate of velocity 

on near circle 

A27c 

A27d 

A27e 

x.27f 

tfrom which, after separating amplitudes and phase angles: 

V= J/_  =  v^^^Vg^J A28a 

u        u 

<T = C<.(X' A28b 
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APPISMJIA h 

Fortran Program "Cascade" and Operating Instructions 

Jn the following pages is the FuitiitAiM program "Cascade" 

used in deriving the data used in this study,  input data is 

by means of data cards inserted at the end of the program. 

Any number of data cards may be used.  J-he first card indica- 

tes how many additional data cards are to be read. 

.Lach additional card lists the number of values of the 

parameters  ,   , ß     ,   and i£ to be computed, their 

initial values, and the increment by which each value increa- 

ses.  Also listed are the print control quantities l\oiJJti and 

NüAiri, which control the extent of the print out as indica- 

ted in the tablo of symbols.  'J-he compute! then calculates 

results for every possible combination of the five parameters, 

prints the results, and then proceeds to the next card. 

ihe standard print out contains the five inpvt parameters, 

the solidity and stagger angle of the cascade, ähe  airfoil 

thickness, and the coordinates, slope, velocity, and boundary 

layer parameter for each of the 42 points of Lhe airfoil. 

Condensed Print out 

when surveying large numbers of cascades, as was done 

for this study, it is convenient to condense the data to 

reduce the volume of output.  Pago 85 shows the modifications 

made to the basic program to accomplish this.  Briefly, all 
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of the standard print commands wero removed,  xhen commands 

to print the heading only were inserted early in the program 

right after changes in sigma.  The modified print out then 

contains no airfoil data at all except for the maximum value 

of the boundary layer parameter.  Operation of the program 

is identical with the basic program. 

Iterative Scheme for Constant -thickness Airfoils 

Page 84 shows further modifications made to the basic 

program to produce cascades with the desired airfoil thick- 

ness,  in effect this eliminates the parameter <£ since it 

is varied as necessary to produce the required thicknesses. 

The initial value of £ is still read from the dc*ta card, but 

the column which indicates the number of £ to be calculated 

no longer has significance,  The program as written will 

demand thicknesses from 4/^ to 24?° in \°/»  increments,  uther 

values for thickness can be obtained by modifying the appro- 

priate commands. Ho means of doing this by data cards is 

provided.  The print out is of the condensed form described 

previously. 
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JOB   JENISTA 
PROGRAM   CASCAOE 
DIMENSION   XI (U2j,YIU2),RI (U2), VI H2),AL MU2),AHI(U2) ,OELI(U2),TEI 

UV2iÄt,   i.§yI(u?,,J.5J,,U2>»ETnU2j.   EPIIU2),   VVI (U2) , VTIU2)   ,YNI(«4 
ID-0 V2IU2) tODI(12)tITITLE   (10) 

201   READ   204.IB 
20U   FORMAT   (|[2) 
2021AKI°   SoPRNBN^XPR*ISI0Z*NE'* *NAK»BE1 »SG1,BZ1 »EPl .AK1 »BEI« SGI. BZI »EBI , 
205   FORMAT   <sf2,   1CF5.2.212) 

C     PART   IA  CONSTANTS  FOR  NEAR  CIRCLE 
BEJ*BE1 
002 J»1tNBE 
BE»   (3.141593/180.)   •  BEJ 
SNBE-SINF(BE) 
CNBE»COSF(BE) 
SGK«SG1 
003 K*1,NSG 
PHEB«SGK«3.ni5S3 
C22-SN8E 
C23«CNBE 
IF(K-l)   U01,il01,U02 

U01   DRUP»1.5708 
DALP=0. 
SIP»0. 
RUP«0. 
ALP*BE 

U02   IF(SGK-SIP-.S)   «40U,UOU,U03 
U03  SIG=SIP*.5 

RU=RUP«-DRUP».S 
ALU=ALP+DALP».5 
IF(NEXPR)   52C,520,518 

518 WRITE  OUTPUT   TAPE   2,519,DRUP,OALP,SIP,SIG,RUP,RU,ALP.ALU 
519 FORMAT!/      7H   DRUP   «F8.U.      5X   6HDALP   »   F9.U,   /     6H   SIP  «F   9.U,   5X 

1 5HSIG  »F10.4,   5X   5HRUP   «F10.U,   5X   UHRU »F11.U,      5X   5HALP   -F10.U, 
2 5X 5HALU «F10.U/  ) 

520 CALL BAKER (SIG,XU,YU,RU,ALU,AU,BU,R1U,AJ1U,R2U,AJ2U,.000001, 
1   A2U,ITU,C22,C23,NEXPR) 
DRUP»(RU-RUP)/.5 
DALP«(ALU-ALP)/.5 
SIP*SIG 
RUP»RU 
ALP*ALU 
IF(NEXPR) 522,522,521 

521 WRITE OUTPUT TAPE 2,519,ORUP.DALP.SIP,SIG,RUP.RU,ALP,ALU 
522 CONTINUE 

GO TO U02 
UOU RB=RUP*DRUP»(SGK-SIP) 

AL8=ALP4DALP*(SGK-SIP) 
IF(NEXPR) 525,525,523 

523 WRITE OUTPUT TAPE 2,52U,DRUP,DALP,SIP,SGK.RUP,RB,ALP,ALB 
52U FORMAT(/  7H DRUP «F8.U,  5X 6HDALP « F9.U, /  6H SIP *F 9.U, 5X 

1 5HSGK «F10.U, 5X 5HRUP «F10.U, 5X UHRB »Fll.U,  5X 5HALP «F10.U, 
2 5X 5HALB =F10.U/  ) 

525 CALL BAKER (    SGK,XB.YB.RB,ALB,A,B,RIB,AJ1B,R2B,AJ2B,.000001, 
1   A2,IT,C22.C23,NEXPR) 
D RUP«(RB-RUP)/(SGK-SIP) 
DALP»(ALB-ALP)/(SGK-SIP) 
SIP*SGK 
RUP«RB 
ALP'ALB 

526 JlRITpOUTPUT   fAPE,2,52«*,DRUP,DALP,SIP,SGK,RUP,RB,ALP,AL8 
527 CONTINUE 

SNALB«YB/RB 
CNALB*XB/RB         ,. 
ALBO       «M80./3.1U1593)*      ALB 
XA*-XB 
YA—YB 
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ALA=ALB*3.1U1593 
RA=RB 
XI(20)«XA 
XI(UO)*XB 
YH20)»YA 
YI(UO)*YB 
RI(20)»RA 
RI(UO)»RB 
ALI(20)«ALA 
ALICU0)=ALB-»6.283186 
VH20)«0. 
VIIUOJ-C. 
R3B*-2.*(RlB«R2e-AJlB«AJ2B) 
AJ3B—2.»(AJlB«R2B*RlB«AJ2B) 
DVXB*A»R3B-B«AJ3B 
OVYB=B»R3B+A«AJ3B 
0V2B=SQRTF(0VXB«0VXB4-0VYB«0VYB) 
AHI<UO)»ASINF(DVYB/DVZB)-1.5707965 
AHI(20)*AHI(U0>*3.1U1593 
A22=A«A*B»B 
A23»R1»RWAJ1«AJ1 
A2U*R2«R2+AJ2«AJ2 
W2ZB=2.«SQRTF (A22*A23«A2U) 
IF (N0PR)120,120,121 

120 WRITE OUTPUT TAPE 2, 122t BEJ.SNBE.CNBE.SGK»PHEB«A,B,XB,VB.Re,AL6C 
It A2t IT 

1220F0RMAT ( 1H1/// U6X 28HRESULTS IN NEAR CIRCLE PLANE // 
1 10X 6HBETA »F6.2, 5H OEG. 8X 10HSIN BETA * F7.U, 8X 
2 10HCOS BETA * F7.U, 8X 7HSIGMA » F7.3, / 
3 10X 8HPHKB) = F6.it, 9X 3HA * F1U.U, 8X 3HB « FlU.ll, // 
U  12X 1HI 9X 1HX 1IX 1HY 11X IHR 5X 12HLAHB0A, OEG.  6X 1HV 
5 6X 11HALPHA. OEG. 3X5HERR0R 5X 10HITS  SHIFT // 
6 12X 1H0 3F12.U, F12.2, 6X 6H0.C000 8XUH*    E12.2, 16, 
7 6H     •) 

121 CONTINUE 
PART IB POINTS ON NEAR CIRCLE 

DO 12 I»1,19 
IFU-1) 13.13.1U 

13 PHN=.9«PHEB 
AL=ALB+.U5 
R»RB 
GO TO 15 

1U AI=I 
PHN=PHEBM1.-AI/10.) 
AL»AL+(3.1U1593 + ALB-AL)/(21 .-AI ) 

15 X=R»COSFtAL) 

.CÄLLSSSR(xiY,VX,VYfV,C22,C23,AtB,PHN,PHEB,ITS.SNALB,CNALB,1., 
1 ITSIDE.ERS.NEXPR) 
XKI )=X 
YI ( I } =Y 
R=SQRTF(X«X«-Y«YJ 
RI(I)=R 
VIU)=V 
AHI(I)»ATANF(VY/VX) 
IF(VX)U9,50,50 

U9 AHK I)»AHI(I)+3.1U1593 
50 CONTINUE 

AHO    »(180./3.1U1593)»   AHI{I) 
AL=ATANF(Y/X) 
IF(X>36,37.37 

36 AL«AL*3.1U1593 
37 CONTINUE , ,. 

ALO    «(180./3.1U1593)«    AL 
ALK I)=AL 
xiu*20)»-(ximi 
YI(I+20J«-(YI(I) ) 
VIU*20)»-(VHI)>  ., ,.Ä. ALI(I*20)«ALI(I)+3.1U1593 
AHK 1*20) » AHK I) 
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IF   (NOPR)    12l4,12»4,12 

FORMAT   U13,3F12.4,   F12. 2\ F12.4.H2«2,E12.2, 21 6) 

RI      (1*20)   *   RI(I) 
IF   (NOPR)   121441214,12 

124 
125 

12   CONTINUE 
PART   I IA     CONSTANTS   FCR   CIRCLE 

IF(NEXPR)   530,530,528 
528  WRITE  OUTPUT   TAPE   2,   529 

?, 529   FORMAT   {///) 
530   IT3*0 

POWER « (PHEe-2.»BE*SN8E)/CNBE 
.  DET=(2.«CNBE)/(EXPF(P0WER)-1.) 
16 ARG 1 « 1.*(2.*CNBE)/DET 

ARG2 » SNBE/(CNBE*DET) 
PHE*   CNBE»LOGF(ARGmSNBE«2.»ATANFURG2» 
ER3=PHE-PHEB 
RER3=ABSF(ER3)/PHEB 
IT3»IT3*1 
T=CNBE*OET 
Q1*CNBE+T 
IQ2=1.+01tDET 

PHP*(-2./DET)»(T/Ql)«(T/Q2) 
DETNU  »   DET-ER3   /PHP 
IF(NEXPR)   516,516,505 

I  505   WRITE  OUTPUT   TAPE   2,506,IT3,DET,PHE.RER3,DETNU 
506  F0RMAT(6H   IT3  »I4.5X5H0ET  »E10«U,5X5HPHE  «Fl 0.6.5X6HRER3  «E10.U, 

1      5X7HDETNU  «E1C.4) 
516   IFU000001-RER3)   17,19,19 
17 IF(IT3-25) 18.19.19 
18 IF(DETNU) 60,61,61 
60 DET=DET/2. 

GO TO 16 
61 DET=OETNU 

GO TO 16 
19 CH2G=1.+2.«01»0ET 

SH2G=SQRTF   (CH2G*CH2G-1 .) 
SHG   *   SQRTF   UCH2G-1. )/2. ) 
CHG   =   SQRTF   {(CH2G+1.)/2.) 
C2=CH2G 
C3=SH2G 
CU»SHG 
C5=CHG 
TEB = ATANFC(Ci4/C5)»(C22/:23)) 
TEBD        M180./3.141593)« TEB 
CNTEB=COSF<TEB) 
TEA=TEB+3.141593 
TEI(20)=TEA 
TEI(40)=TEB*6«283186 
VTB*0. 
VTA=0. 
DVB=-(C3)/(C2-C0SF<2.»TEB)) 
DVA*DVB 
VTI<20)=0. 
VTI<40)=0. 
DVI(20)=DVA 
DVK40)*DVB 
A22=C23*C5*CCSF(TEB) 
A23=C22»C4«SINF(TEB) 
A24»C2-COSF(2.«TEB) 
W2TB=4.»(A22*A23)/A24 
IF   (NOPR)   126,126,128, 

4 5HERROR 
5 E19.2, 113) 

128 CONTINUE ^9tk„t „ PART I IB  POINTS ON CIRCLE 
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DO 20 1=1,19 
AIM 
PHN=PHEB»(1.-AI/10.) 
IF(I-1)21,21,22 

21 TECLD = TEB 
TE = TEB ♦ SCBTF (.2»PHEB/W2TB) 
GO TO 23 

22 TECLD « TE 
TENU   1   =   TE-.UPMEB/VTE 

.      IF   (TEA-TENU   11   53,53,51» 
53   TE   =   (TE+TEAl/2. 

GO  TO  23 
5U   TE   *   TENU   1 
23 ITU-0 
25 C6=SINF(TE) 

C7«C0SF(TE) 
C8«C0SF(2.»TE) 
A2*L0GF((C5+C7)/(C5-C7)) 
A3*2.*ATANF(C6/CU) 
PH=C23»A2+C22»A3 
A2=-(C23*C5»C6)+C22»CU»:7 
VTE=U.*A2/(C2-C8) 
DPH = PH-PHN 
ITUMTU+1 
A2=ABSF(DPH1/PHEB 
IF(NEXPR)   511,511,512 

512 WRITE  OUTPUT   TAPE   2,   513,    I,    ITU,   TE,DPH,VTE,A2 
513 FORMAT    (      6H        I   = IU,   5X5HITU   *IU,   6XUHTE   »ElO.U,   6X5H0PH   «ElO.U, 

1      5X5HVTE   =E10.U.   5XUHA2   «ElO.U) 
511   IFUTU-25)   2U,111.111 

2U   IF   (    .000001   -   A2)   26,   111,   111 
26 TENU   =   TE-DPK/VTE 

IF   (TENU -   TECLD   )   51,51 ,55 
51   TE  »   (TE+TE0L0J/2. 

GO   TO  25 
55 IF   (TEA-TENU)   56,56,57 
56 TE   =   (TE*TEA)/2. 

GO   TO  25 
57 TE   =   TENU 

GO  TO  25 
111   TED =(180./3.1U1593>»     TE 

TEI(I)   =   TE 
VTI(I)=VTE 
DVKI)=-C3/(C2-C8) 
TEI(I+20)«TEI(I)*3.1U159 3 
VTK I*20)*-(VTItIM 
OVK 1+20)   =   DVKI) 
IF   (NOPR)   129,129,20 

129 WRITE  OUTPUT   TAPE   2,   1 30, I,TEO,yTE,Oyi(I).A2.ITU 
130 FORMAT   (116,   F17.2,   F21.U,   F20.U,   E19.2,   113) 
20   CONTINUE 
PARTIIIA     CONSTANTS   FOR   AIRFOIL 

BZL=BZ1 
D029L=1,NBZ 
BAM=ABSF(BZL) 
IFIBAM-.001)65,85,86 

85   TAU=0. 
XT = XB 
YT=YB 
XI(U2)=XT 
YI(U2)=YT 
VT»0. 
AHT=AHI(UO) 
AHL=AHI(20) 
AHI(U1)=AHL 
AHI(U2)=AHT 
TET=TEB+6.282186 
PHT*PHEB 
XL*XA 
YL«YA 
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XI(U1)=XL 
YI(HU«VL 
VL=0. 
TEL=TEA 
PHL=-PHEB 
GO TO 87 

86 CONTINUE 
C2=CH2G 
C3-SH2G 
CU*SHG 
C5*ChG 
C22*SNBE 
C23-CNBE 
TAy=ASINF((B2L/U.)»(SH2G/CHG)«CCNTE8/CNBEI) 
TET=TEB-TAU+6.28 3186 
TEL=TEA*TAU 
A2*SINF(TET) 
A3*COSF(TET) 
Ai4*(C5 + A3)/(C5-A3) 
A5»A2/CU 
PHT=C23»LOGF(AU)+C22«2.»ATANF(A5) 
A2*SINF(TEL) 
A3*COSF(TEL) 
AUa(C5+A3)/(C5-A3) 
A5=A2/CU 
PHL=C23«LOGF(AU)+C22»2.«ATANF(A5) 
ENT=30.+lO.»PHT/PHEB 
1 = 39 

32 AI*I 
IF(ENT-AI)   3C.31,31 

30 1*1-1 
GO   TO  32 

31 A2*(TET-TEI(I))/(TEI It + D-TEUII) 
RT*RI (I)+A2»{RI( I+D-RIIII) 
ALT=Alim + A2»<ALI(I*l)-ALI<I>) 
XT*RT»COSF(ALT> 
YT=RT»SINF(ALT) 
ENL=30.+10.»PHL/PHEB 
1=21 

33 A I« I 
IF(AI-ENL)3U,35,35 

3U   1*1+1 
G0T033 

35   A2-(TEL-TEI( I))/(TEI(1+1J-TEI<I)) 
RL*RI(I ) + A2»(RIU*l)-RI< I)) 
ALL*ALI(I)*A2»(ALI(I+1)-ALI(I)1 
XL=*RL*COSF(ALL) 
YL=RL«SINF(ALL> 
CALL   SSR(XT,YT,VX,VY,VT,C22,C23,A,B,PHT,PHEB,ITS»SNALB,CNALB,-1., 

1      ITSIDE,ERST,NEXPR) 
XI(U2)=XT 
YM        U2)*   YT 
AHT=ATANF(VY/VX) 
IF(VX)63,6U,«U 

63   AHT*AIIT*3.1U1593 
6k   CALLSSR(XLlYL,VX,VYtVL,C22.C23,A,B,PHL,PHEB,ITS.SNALB,CNALB,-l., 

1      ITSIDE,ERSL,NEXPR) 
XI(U1)*XL 
YI(U1)=VL 
AHL=ATANF(VY/VX) 
IF(VX)65,66,66 

65 AHL=AHL+3.1U1593 
66 AHKUD-AHL 
87 CONTINUE 

TNBE=SNBE/CNBE 
TNBE2*TNBE-BZL/2.   ,  .  . 
CV2»{1,+TN8E*TNB|)/(1.*TNBE2»TNBE2) 
CV«SQRTF(CV2) 
EPM'EPl 
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DO 40 M=1,NEP 
AKN=AK1 
DC 41 N=1,NAK 
IF(EPM) 99,96,99 

98 IF(N-l) 99,99,41 
99 CONTINUE 

XP=XL-EPM#RB»SINF(AHL) 
YP*YL*EPM»RB«CCSF(AHL1 
XC»XT-AKN*EPP«RB»SINF(AHT) 
YQ=YT + AKN»EPM«RB»C0SFUHT) 
XZ=(XP+XQ)/2. 
YZ=(YP+YQ)/2. 
XQP=XQ-X2 
YQP*YC-YZ 
X=XQP 
Y=YGP 
C2=SINH(X) 
C3=C0SH(X) 
C6=SINF(Y) 
C7=C0SF(Y) 
Rl=(C2/(C3-C7)>/2. 
AJ1=(C6/(C3-C7))/(-2.) 
PX=C3*C7-1, 
PY=C2*C6 
PZ=PX*PX+PY»PY 
R2=PX/(PZM-2.)) 
AJ2=PY/(PZ»2.) 
QZ=R2*R2+AJ2«AJ2 
PU»Y»QZ-R2«AJ1+AJ2*R1 
PV=X»QZ-AJ2»AJ1-R2»R1 
BEP=ATANF(PU/PV) 
C22=SINF(BEP) 
C23=C0SF(BEP) 
QX=AJ2*C22-R2«C23 
QY=R2*C22+AJ2»C23 
AP=QX/QZ 
BP=QY/QZ 
AP22=AP*AP+BP»BP 
AP23=R1»R1+AJ1#AJ1 
AP24=R2»R2+AJ2*AJ2 
WP2ZB=2.»SQRTF(AP22«AP23«AP24) 

PARTIIIB  POINTS ON AIRFOIL 
1 = 1 

42   X=XI(I)-XZ 
Y=YI(I)-YZ 
C2=SINH(X) 
C3=CCSH(X) 
C6=SINF(Y) 
X7=C0SF(Y) 
R1=C2/(2.»(C3-C7)) 
AJl=C6/(-2.«(C3-C7)) 
PX=C3»C7-1. 
PY=C2»C6 
PZ=PX*PX+PY*PY 
R2=PX/(PZ«(-2.)) 
AJ2=PY/(2.*PZ) .      „ 
XII ( I)=X»C23-»Y»C22 + AP»R1-BP«AJ1 
ETI(I)=-X*C22+Y«C23+AP»AJl*BP«Rl 
A2=C23+AP*R2-BP*AJ2 
A3=C22-AP*AJ2-BP»R2 
A4=SQRTF(A2*A2+A3»A3) 
IF(A4-.0001)    171,171,172 

171   RP3=-2.»(Rl*R2-AJUAJ2) 
AJP3=-2.«(AJ1»R2+R1»AJ2) 
DUXP=AP»RP3-eP*AJP3 
DUYP=BP»RP3+AP*AJP3 
OUP=SQRTF(DUXP»CUXP+DUYP*DUYP) 
EPI(I)=ASINF(DUYP/DUP)-1.5707965 
IF(ALI( D-ALK30) ) 173,173,113 

173 EPI(I)=EPI(I)+3.141593 
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GO   TO   113 
172   EPK I) = ASINF   (A3/AU) 

IFIA2)   600,1 13,113 
600   EPI(I)=3.1U1593-EPI(I) 
113   DELI(I)=(180./3.1U1593)«(AHI(I)-EPI(I)) 

A6=ABSF(VTI(I)) 
IFIA6-.0001)   88,88.89 

88 A5=SQRTF(W2ZE/W2T8) 
GO   TO   38 

89 A5«VI(I l/VTKI) 
38 IF(ABSF(AU)-.0001)   39,39,59 
39 IF(BAM-.OOOl)   U3,U3,UU 
U3   VVI(I)«SQRTF(W2ZB/WP2ZB) 

GO   TO  62 
kk   R3=-2.*(Rl«R2~AJl«AJ2) 

AJ3=-2.*(AJ1 «R2 + RUAJ2) 
WP2Z=SQRTF(AP22»(R3«R3*AJ3«AJ3>) 
SHX=SINH(XI(I)) 
CHX=COSH(XI(I)) 
SNY=SINF(YI(I)» 
CNY=COSF(YI<I)) 
Rl-(SHX/2.)/(CHX-CNY) 
AJl=l-SNY/2.)/(CHX-CNY) 
PX=CHX*CNY-1. 
PY=SHX«SNY 
PZ=PX«PX+PY*PY 
R2=PX/(-2.«PZ) 
AJ2=PY/(2.«PZ) 
R3=-2.*(Rl«R2-AJ 1#AJ2) 
AJ3=-2.*IAJ1»R2+R1«AJ2) 
W2Z=SQRTF((A»A+B«B»«(R3»R3+AJ3«AJ3)) 
SNTE=SINF(TEI(I)) 
CNTE=COSF(TEI(I)1 
SN2TE=SINF(2.«TEI(I)) 
CN2TE=C0SF(2.«TEI(I>) 
B22=CNBE«CHG«CNTE 
B23=SNBE*SHG*SNTE 
B2U=CH2G-CN2TE 
W2T=-U.«(B22+B23)/B2U 
DW2T»(2.«SH2G*SN2TE)/<B2»t«B2»t» 
A25=W2Z-A5*A5*W2T 
A26=(0VUI)*A25)/A6-A5*A5«CW2T 
VVKI)=(W2Z+8ZL«A26)/WP2Z 
GO  TO  62 

59   VVK I ) = (VI ( I )+BZL»DVI(I)«A5)/AU 
62   IFU-U2)   U6,U7,U7 
U6   1=1+1 

G0T042 
U7 CONTINUE ' 

DELX=XII(U2)-XII(Ul) 
DELY=ETI(U2)-ETI(U1) 
CHORD=SQRTF(DELX*OELX+DELY»OELY) 
SOLIO=CHORD/6.283186 
SNA=DELY/CHORD 
CNA=0ELX/CHOPD 
AR0T=(180./3.1U1593)»ASINF (SNA) 
STAG=(180./3.141593)*(BEP+ASINF(SNA)) 
AHTO    =(18C./3.ni593J* AHT 
TETO    =(18C./3.1U1593)« TET 
AHLD    -(18C./3.1U1593)« AHL 
TELD    =(18C./3.141593)«  TEL 
TAUD    =<180./3.141593)»  TAU 
BEPD    = ( 180./3.141593)« BEP 

710 IAA= 20 
00 717 100=1, 1C 
IAA =IAA-1 
TDD=TANF <DELI(IAA)«3.1415?3/180.) 

715 AA« XNIU)-XNI(IAA) - (YNI(IAA)-YNI<I))«TOD 
IF (AA) 714,714,713 
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1713   1 = 1-1 
GO   TC  715 

714   BBE=ATANF   UYNKI + 1)   -YM I ( I ) ) /<XN I( 1 + 1 )-XNI t I) ) » 
DDEL   =   .5*(BeE+0ELI(IAA)«3.141593/180.) 

L,„ ££,7,A,BSF{(X2llIAA,-YNI1 I-»1))/CCSF(OCED) 
717 DOI(IDD) = CC+ (XNIII + 1)- XNI UAA) -(YNKIAA) - VNIU*1))» 

1   TANF(DDEL))»SINF (BBE ) 
WAXIE = DDI(1) 

I  Ä DO 718   IOO = 2,10 
718 WAXIE = MAX1F (WAXIE, DOI(IDO)) 
L«, WglTE OUTPUT TAPE 2,302,^BEJ,SGK,B2L,EPM,AKN,STAG,SOLIO,WAXIE 
302 FORMAT (1 Hi//52X 15HCASCAOE RESULTS// 

1 18H DESIGN PARAMETERS/ 
2 9H  „BETA «F6.2, 5H DEG. 6X7HSIGMA ■ F6.3,1CX6HB ZERO ■ 
3 F6.2, 9X SHEPSILON = F5.3.9X7HKAPPA • F6.3,// 
4 17H OTHER PARAMETERS/ 
5 11H   STAGGER=F6.2,5H OEG. 4X 10HS0LIDITY -F6.3 »7X17HMAX. THI 
6CKNESS = F5.3) 
IF (NOPR) 1UC,1i40,1U1 

140 WRITE OUTPUT TAPE 2,30U,XB.YB.PHEB,XT,YT.AHTO.TETO,PHT,XL,YL,AHLO, 
1  TELO,PHL,XP,YP,XQ,YQ,TAUD,XZ,YZ,AP.BP.BEPD 

3040F0RMAT (3XUHXB = F8 .4, 11X4HYB «F8.4, 11X8HPHKB) »F8.4./3X 
1 ^HXT * F8.4.11X4HYT =F8.U, 11XIOHALPHAfT) « F6.2, 5H DEG. 
2 2X10HTHETAIT) = F6.2, 5H DEG. 2X8HPHKT) « F8.4./3X 
3 4HXL = F8.14. 11X4HYL « F8.4, 1 1X10HALPHAIL) » F6.2, 5H OEG. 
U   2X10HTHETML) = F6.2, 5H DEG. 2X 8HPHKL) « F8.4./3X 
5 UHXP =F8.4.11X4HYP =F 8.4, 11X4HXQ »F8.4, 11X4HYQ »F8.4.11X 
6 5HTAU =Fl3.2. 5H 0EG.,/3X 
7 4HXZ = F8.14, 11XUHYZ = F8.4, 11XUHAP » F8.4, 11X4HBP » F8.U.11X 
8 12HBETA PRIME = F6.2, 5H OEG.) 

141 WRITE OUTPUT TAPE 2,303 
3030FORMAT (//I42X 13HAIRF0IL SHAPE 32X21HVEL0CITY DISTRIBUTION/ 

1 88X 19HAT DESIGN CONDITION/ 
2 10X1HI17X1HX19X1HY14X1 1HSL0PE, DEG.11X6H(V/V2) 12X9HIV/V2)»»2//) 

1 = 1 
DO 90 1=1,42 
PRX=(XII(I)-XII(4l))/CH0RD 
PRY=(ETI( I)-ETI(UI)) /CHORD 
XNI(I)=PRX«CNA+PRY»SNA 
YNII I ) = PRY*CNA-PRX«SNA 
DELI(I)-OELI(I)-AROT 
VVI(I)=CV*VVI(I) 
V2I( I) = VVI(I)*VVI(I) 

90 CONTINUE 
WRITE0UTPUTT«PE2(305,(I,XNI(I),YNI(I),DELI(I)*VVI(I),V2I( I), 
11=1,42) 

305 FORMAT (111, 2F20.4, F20.2, 2F20.4) 
PARTIV  PARAMETER CHANGES 
48 AKN=AKN+AKI 
44 CONTINUE 

EPM=EPM+EBI 
40 CONTINUE 

BZL=BZL+BZI 
29 CONTINUE 

SGK=SGK+SGI 
3 CONTINUE 

BEJ=BEJ+BEI 
2 CONTINUE 

ID=ID+1 
IF(IB-IO) 202,203,202 

PART V  ITERATION SUBROUTINE FOR POINTS ON NEAR CIRCLE 
SUBROUTINE SSR (X,YVVX,VY,V.C22.C23,A,B,PHN,PHE8,ITS,SNALB.CNALB, 
1SI0E,ITSI0E,A2, NEXPR) 
ITS = 0 
ITSIDE=0 
IF(NEXPR) 8,8,517 

510 F0RKAT?//5HT ITS^XJHX 9X1HY 9X2HR1 7X3HAJ1 8X2HR2 7X3HAJ28X1HA 
1  9X1HB 8X2HVX  8X2HVY  8X2HA2  5X4HSIDE/) 
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8 C2=SINH(X) 
C3=C0SH(X) 
C6=SINF(Y) 
C7=C0SF(Y) 
A2=C3-C7 
R1*C2/(A2»2. ) 
AJl=C6/(A2*{-2.)) 
PX=C3*C7-1. 
PY=C2«C6 
PZ=PX»PX+PY*PY 
R2=PX/(-2.«PZ) 
AJ2=PY/(2.«PZ) 
PH=X«C23+Y»C22+A«Rl-B«AJl 
PS»-X*C22+Y»C23 + A»AJ1 + B»R1 
OPH=PH-PHN 
VX=C23+A«R2-E«AJ2 
VY=C22-A«AJ2-B«R2 
V=-SIOE»SQRTF(VX«VX+VY*VY) 
A2=(ABSF(DPH)+ABSF(PS))/PHEB 
ITS=ITS+1 
IF(NEXPR) 507,507,508 

508 WRITE OUTPUT TAPE 2,509,ITS,X,Y,Rl,AJl,R2,AJ2,A,B,VX,VY,A2,ITSIDE 
509 FORMAT (15, 10F10.M, E10.U, IS) 
507 IF(ITS-25> 9,100,100 

9 IF (.000001-A2) 10,100.100 
10 DX={VX«DPH-VY*PS)/(V»V) 

0Y=(VY«OPH+VX»PS)/(V»V) 
X=X-DX 
Y=Y-DY 
GO TO 8 

100 YY=Y»CNALB-X*SNALB 
IF (YY*SIDE) 101,11,11 

101 ITSIDE=ITSI0E+1 
IF(ITSIDE-3) 102,11,11 

102 YY=-YY 
XX=X»CNALB+Y«SNALB 
X=XX*CNALB-YY*SNALB 
Y=YY*CNALB+XX*SNALB 
GO TO 8 

11 RETURN 
END 

PART VI ITERATION SUBROUTINE FOR INITIAL STAGNATION POINTS ON NEAR CIRCLI 
SUBROUTINE BAKER (    SGK ,XB,YB,RB,ALB,A,B,R1,AJ1,R2,AJ2,ERM,A2, 

1   IT,C22,C23,NEXPR) 
IF(NEXPR)515,515,500 

500 WRITE OUTPUT TAPE 2,501 m   , ,   Ä m   , 
501 FORMAT(//5H   IT UX2HXB 8X2HYB 8X2HR1 7X3HAJ1 8X2HR2 7X3HAJ2 8X1HA 

1  9X1HB 9X2HPS 8X2H0P 8X2HA2/1 
515 'CONTINUE v 

IT=0 
PHEB = SGK*3.H1593 
SNALB= SINF(ALB) 
CNALB= COSF(ALB) 
XB=RB*CNALB 
YB=RB«SNALB 

4 C2=SINH(XB) 
C3=C0SH(XB) 
C6=SINF{YB) 
C7=C0SF(YB) 
A2=C3-C7 
R1=C2 /(A2»2.) 
AJl=C6/(A2»(-2.)) 
PX=C3«C7-1. 
PY=C2*C6 
PZ=PX«PX+PY*PY 
R2=PX/(PZ»<-2.>) 
AJ2=PY/(PZ*2.) 
QX=AJ2«C22-R2*C23 
QY=AJ2*C23+R2*C22 
QZ«R2*R2+AJ2»AJ2 

81 



A=QX/QZ 
B=QY/CZ 
PH=XE»C23+YB»C22+A»R1-B«AJ1 
PS=-XB»C22+YB»C23+A«AJl+B«Rl 
DP=PH-PHEB 
A2={ABSF{DP)+ABSF(PS))/PHEB 
ITMT+1 
IF(NEXPR)   514,514,503 

S03   WRITE   OUTPUT   TAPE   2,504,IT,XB,YB.R1,AJ1,R2,AJ2,A,B,PS,DP,A2 
50U   FORMAT   (15,1CF10.4,1E10.4) 
514   CONTINUE 

IFUT-25)   5.7,7 
5 IF(ERM-A2)   6,7,7 
6 A2»C3-C7 

R1X=(1.-C3»C7)/(A2»A2«2. ) 
RlY=(C2*C6)/(A2«A2«(-2.) ) 
AJ1X=-R1Y 
AJ1Y=R1X 
PXX=C2*C7 
PXY=-C3«C6 
PYX=-PXY 
PYY=PXX 
PZX=2.«(PX»PXX+PY»PYX) 
PZY=2.«(PX»PXY+PY«PYY) 
R2X=(PZ«PXX-PX*PZX)/((PZ«PZ)*(-2.)) 
R2Y={PZ*PXY-PX«PZY)/<PZ*PZ«(-2.)) 
AJ2X=-R2Y 
AJ2Y=R2X 
QXX=-R2X»C23+AJ2X»C22 
QXY=-R2Y«C23+AJ2Y«C22 
QYX=QXY 
QYY=-QXX 
0ZX=2.»{R2«R2X+AJ2»AJ2X) 
0ZY=2.*(R2«R2Y+AJ2»AJ2Y) 
AX=(QZ«QXX-QX*QZXl/(QZ*QZ) 
AY=(QZ«QXY-QX*QZY)/(CZ»QZ) 
BX=(QZ*QYX-QV»QZX)/(QZ»QZ) 
BY=(QZ*QYY-QY»CZY)/(QZ*QZ) 
PHX=C23+A«R1X+AX»R1-B»AJ1X-BX«AJ1 
PHY=C22+A»R1Y+AY*R1-B*AJ1Y-BY»AJV 
PSX=-C22+A«AJlX+AX»AJl+B«RlX*BX«Rl 
PSY=C23+A«AJ1Y+AY«AJ1+B»R1Y+BY»R1 
A2=PHX*PSY-PSX»PHY 
DX=(PSY«DP -PHY«PS)/A2 
DY=(PHX»PS-PSX»DP )/A2 
XB=XB-DX 
YB=YB-DY 
.GO TO 4 

7 Rß=SQRTF(XB»XB+YB«YB) 
ALB=ATANF(YB/XB) 
IF(XB)28,45,M5 

28 ALB=ALB+3.141593 
45 CONTINUE 

RETURN 
END 
ENO 

1 5 6 1 5 45. 2.5   .5  .001  .01  0    .4   .15  0   .245  1 0 

..ENO 
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PART IA CONSTANTS p0R NEAR CIRCLE •" 
BEJ*BE1 
D02 J»1.NBE 
BE= (3.1U1593/180,) • BEJ 
SNBE=SINF(BE) 
CNBE»COSFCBE> 
SGK=SG1 
003  K»1,NSG 

7|*0   WRITE   OUTPUT   TAPE   2.   741,   BEJ,   SGK 
71» 1   FORMAT   Cl Hl /26HCASCADE  RESULTS   FOR BETA  »F6.2.5H OEG.UX7HSIGMA - 

2SSBL   PARAMETER/| EPSILON SOLIDITY THICKNE 

DO  718        IDD  =   2,10 
718   WAXIE   =   MAX1F   (WAXIE,   DDKIDDH 
751   PRAM=  V2U1) 

DO  760   1=   1*   19 
760   PRAM   =   MAX1F   (PRAM.   V2IUÜ . „.      _     ... 

WRITE   OUTPUT  TAPE   2,   755,   BZL,   AKN.   EPM,   SOLID,   WAXIE,   PRAM 
755  FORMAT   (3X,F6.2.2F10.3,2F1»».3,F16.U) 

C     PARTIV     PARAMETER  CHANGES .  
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87 CONTINUE 
TNBE=SNBE/CNBE 
TNBE2=TNBE-BZL/2. 
CV2»( 1.+TNBE»TNBE J/Cl.*TNBE2»TNBE2) 
CV*SQRTF(CV2) 

. AKN=AK1 
00 U1 N=1,NAK 
WAXIT = 0 
THIK * .0U 
EPM-EPl 
IF(EPM) 99,98,99 

98 IF(N-l) 99,99,U1 
99 CONTINUE        

1   TANF(DDEt))»SINF (BBE I 
HAXIE = DDK1 ) 

,,w DO 718   IDD = 2, 10 
718 WAXIE = MAX1F (WAXIE, ODI(IDD)) 
756 IF (WAXSG) 757, 757. 751 
757 IF  THIK - WAXIE) 761, 751, 763 
761 IF (WAXIT) 761». 76U, 765 
76U EPM = EPM - .01 

GO TO 99 
765   £?Sc^   EPiir^   -01»( (WAXIE  -   THIK)/(WAXIE   -   WAXIT)) WAXSG = 100*0 

GO TO 99 
763 EPM = EPM + .01 

WAXIT = WAXIE 
GO TO 99 

751 PRAM= V2K1) 
DO 760 1= 1, 19 

760 PRAM = MAX1F (PRAM. V2KI1) 
7** ^RJ2ÜT°VISULTSPietÄ 

7«55^PZt»,.A£Nr.ePM» SOLIO, WAXIE, PRAM 755 FORMAT (3X,F6.2,2F10.3,2F1U.3,F16.U) 
EPM=EPM+EBI 
THIK = THIK ♦ .04 
WAXIT = 0 
WAXSG = 0 
IF (THIK - .25) 99, 99, U8 

PARTIV  PARAMETER CHANGES 
48 AKN=AKN+AKI 
41 CONTINUE 
Ä  BZL-BZL+BZI 
29 CONTINUE 

SGK=SGK*SGI 
3 CONTINUE 

BEJ=BEJ+BEI 
2 CONTINUE 

ID*ID«1 
Ä , IF(IB-ID) 203,203,202 
_203_ END I :,  

Q 4 
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