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ABSTRACT

A partilally observable Markov process 1s a mathematical model
of a dynamic probabilistic system which consists ©f an underlying
Markov process obscured from direct observation by imperfect output
channels. The observed output R(t) is stochastically related tc
the underlying state S(t). This model, like the Markov model, 1is
applicable in the analysis of a wide range of sequential decision
problems.

The primary arsa of investigation in thils repcrt i1s the selec-
tion of a course of action frcm a set of alternatives using only the
information about the system which is available from the observable
outputs. Associated with the model is a cost structure. The decision-
maker may use the observed outputs to make 1inferences about the under-
lying Marko- state and will be assessed rewards or penalties depending
on the true state of naturxe and on the action taken.

The state of knowledge vector s{t) summarizes all that is known
about the vrobability of the system being in each of the underlying
states as a function of the observed outputs. The optimal policy
will specify a course of action to be taken for each possible state
of knowledge s(t) for all possible t. The policy depends on the
cz2cision-maker's knowledge of the underlying Markov state, on the
cost structure associated with the model, and on the criterion of
optimum used.

Dynamic programming techniques are shown to be of use in the
optimization of both transient and steady state policies. The
analysis 1s conducted with the optional availability of a perfect
information channel at added cost. Computer programs were wyritten
for wolicy evaluation and optimization, and specific numerical
results are included in this report,
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CHAPTER 1

INTHCODUCTION

One of the basic problems in sclence and engineering
is thce construction of wmodels whose mathematical behavior
will approxlimate the physical benavior of real world sys-
tems, In the analysis of certain types of nondeterministic
systems, the Markov model has shown 1tself (o be a very

useful f.ool.l

The “"partially observable' Markov model 1isg
an extension which takes into account the effect of irper=
fect ctservations of the state of the dynamic system,

The concept of "state” 1s central to modelling. The
condition or state of a system may bte specified by giving
the values of relevant parameters. For example, the state
of a gas may be specified by giving Lts temperature, pressure,
and the enclosing volume., The state of a highway toll station
may be specifled at any given instant by the number of col=-
lection booths operating and the number of venlcles in each
queue, As time nrogresses, the parameters var, and the
system changes state, therebvy exhiblting dynamic behavior,
The most general probabilistic system would nave the para-
meters taking a continuous allowable range of values, and
would allow the parameters to change at any instant in time,
This would requlire a continuocus state and continuous time
probabilistic model to describe the system. If s{t) 1s the
state of the system at time t, 1in general s(t] will depend

on the entlire history of the system previous to time t,




Thus a statlstical deszription of the future of the system
will in general depend on both the present state at time t

and the complete history of trnc system previous tc time ¢,

1.1 he Markov Process

If only knowledge of the present state, and not the

qw-—mmm

entire history, 1s necessary to allcew statlstical descrip-
tion of the future of th: stochastic system, the process 1s
Markovian. Although thig¢ 18 a severesly restrictlve assump-
tion, in actual fact many real world systexs may be accurately
modelled as Markov processes, A few prominent areas of Mar-
kov process applicatlion are marketing, inventory controel,
traffic, quallty control, equlipment replacement, routing, i

and portfolio investment.

t To illuetrate what the Markovian assumption e .ails

consider the following examples ‘

' A housewife buys grocerles at ithe same store <nce every
week, 1ne store carrles two brands of amilk, A and B. Thne
state of tne systez in a given week would be the brand of
milk she bought that week. The present weex 1s time n,

and the probability she buys brand A at week n+l given her

histcery of purchases \iss

Pls(n+l)=A | s(n)=1, s(n-1)=J§,... s(0)=n]

where 1,J),...8 are elther A or B
depending on which brand she bought
that week,

The Harkovian assumption states that the above probabil-

ity depends only or which brand she purchased this week, J
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P(s(n+l)=A | s{n)=1,...8{(0)=n]

It

P(s(n+l)=A | 8(n)=1)

=p (n)
1A

p (n)
AA

pAB(n)
»/7://——’_\ © Ve (n)
N

————7
p (n)
A

Pigure 1 Markov Marketing Model

The transition probabliity, plj(n); 1s the probabllity
that the state at time n will be J if the state at time rn-~1
was 1. The system is called tlme invariant 1f pij(n>:pij
independent of n, For a descrete state and time invariant
model wlth N states, N2 transition probabllities would we

requiredi, not all of which are independent.

1.2 The Partially QObservable Process

A partially observable Markov proceass 1s one which
must be observed through an imperfect culput channel. Come
examples of imperfect channels are: an imperfect meter; ine
atmosphere carrying in a signal from outer space, and thc

ircomplete i{rspection of a manufactured protuct.




—o—— m-1
e

HOMTDITD e Y X -~
| @l IRl e @]

true statesg of outputs
MarEov process

Figure 2 Model cof a Partially Observable Markov Process

The model corsists of an underlylng Markev nrocess
which, depending on its true state. sipplies values of
parameters to the output channels, The imperfect channels
operate oli ihe input from the Markov process and yleld
outputs which in most cases do not allow the observer to
ascertaln the axact underiylng Markov state, In fact, the
number of output readings, m, may not even eq'al the number
of true states, k.

The imperfec:. channel, like the underlying Markov
process, 18 a stochastic process and can be described by

the probabilities, fij(t)' which are the probabillity of

output J at time t given that the true state was 1,

- 10 -




true Markov states outputs

Figure 3 A Two State HModel Showlng Output Channels

1.3 Reward Structure

Assoclated with the real iife system are decislons and
rewards, For example, a decision could be made as to the

true Markov state at time t. Various rewards caii be defined,

Lll’ reward 1f true state 1s 1 and the observer
estimates that it 1s 1.
Lij‘ reward 1f trve state 1s j and the observer

estimates that it 1s 1.

These rewanis form the basis for evaluating the effect

which /R glven declslon might have.

l.4 Dynamic Inference

The partially observable Markov process is one of a
ratner large class of systems which consist of one stochas-

tlc process monitored through a second stochastic process,

- 11 -
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Stochastlce Stochastic output
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Flgure & More General "Fartlally Cbservacle Stocnastic

Procesd' nodel

In this more gereral zodel the process 1 supplies
statistical parameters to process <, which operates on
them before presentinsg observable parameters. Information
on variations in the parameters of process 1 uust be gleaned
from the pattern of the observable parameters output from
process 2. The information about process 1 ottalned in
this manrier 1s then used in decision-making and to predict
future developments. The general problem assoclated with
ootaining information about the underlyilng process is £nown
as "dynamic 1nference.'5

Applications of partlally observable iarkov processec
may be found in many arcvas. For example, the true value of
common stocks could be the underlying state with current
Wall Street price quctations as the "lmperfect® output
variable, ne might consider the quality of a manufactured
product as being the underlying state with results of
inccmplete inspection supplying the "imperfect” cutput,

Another example, from the marketing area, might consist of

- 12 =
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a customer's brand preference as tne underlying state, ard

his latest purchase as the laoperfect indlcator,

1.5 Frevious Invegtigations

work has recently been done 2n various aspects ul par=
tlally observable Karxov processes by Drake,u i(ra.mer,‘j and
Stoopesll. Drake and Kramer cdiscussed formulation of the
basic model and conslderea formation of the 3 vector, o
statistical state of knowledge vector, which in essernce
sunmarizes all that is known about the probabllitles cf the
underlylng iarkov process being in each state at tice t,
They considered methods of updating the S vector as new
data 1s received., Drake further consldered various decodlng
schemes on the observed outputs and related errors, as well
as information flow and assoclated costs on simple itwc
state symmetrlc mcdels,

Stoopes! maln investigation was in extending a ovctitiing
policy formulated by Kelly7 whilch entaliled bvelling on var-
ious input states a fraction of one's capltal proportional

to the level of confidence about those input states.

1.6 Statepent of Problem

This investigation concerns the optimization of policies
assoclated with physlical systems which can be modelled as
"partially observable Markov proc sses,"™ The underlying
Markov process can only be observed through a stochastic

output channel. Therefcore, the future effect of decision:

I 7

e — ——. .




made utilizing this "mperfect channel” Iinformation cannct

be stated exactly, Since the observer is dealing with imper-
fect data, he can only say with probabllity PA that the
effect of a given decision will e A and with probabllity

PB the effect of tne same decision wlll pe 2, 7Thils compli-
cates the decision process.

Asscclgted with the selectlion of a course of actlon
from a set of alternatives i1s a cost structure., The decision
maxer may use the observed outputs to make inferences about
the underlying Markov state and will be assessed rewards or
penalties depending on the true state of nature and on the
action taken, The ®optimum®™ policy will depend on the deci-
sion-maker's knowledge about the underlylng Markov state,
on the cost structure associated with the model, and on the
criterion of optimum used. There are several possible
criteria of a "good" decision. The decision may sinply
be made so as to maximlze the expected value of the reward,
or the observer may wish to impose a celling on allowed
risk and maximize his expected reward while never risking
a loss of more than that ceilling. Alternately, some utlility
function may be ilmposed upon th: rewards and the policy
chcser, to maximize the expected utility ol rewards. 1In
Drake's werk, a brief introduction co tne abvove problemn
is found for & symmetric two state example. This report
is a continuation and extension of that introduction,

The majocr mathematical techniques used for policy

optimization are those ¢of dynamlc programming which are

- 14 -




coverei extensively in ﬂellmanz. and Ecllman and Dreyfus;.
A dynamic prograaning algorithu for coptimization of regulsar
Margov processes was developed by Howardo and extensive
work was done in the samc area by Schwe1tzerlo. In this
report, application is found for thoae technlques in the
area of partially observable Markov processes,

In many practical situatlons trhere exists a way Lo ot
nearly perfecti information about the underlying Marko -
process=-=i{or a prilce. Therefore the analysis is conducted
with the optional avallablility of a perfect infommationr
chanrel at an additional cost.

A two state Markov process monltored at descrete tiaze
intervals by a binary channel will be used to exemplify the
ideas presented in this report,

One might glve thls a phycsizal interpretation frcxz “he
communicatlions area. Consider that a communications satsle
lite has been placed in orbit and is being used to convey
transcceanic nmessages. Unfortunately because of various
interference sources, the satellite may not recelve and
retransmlt an intelligicle signal. Therefore the designers
built Into the satellite a check, whereby the quallty oi
the received mescsage at the satcllite ls monitored, Then,
binary data is transmitted back to the seader at descrete
time intervals teliling him whether the received message
met or did not mee! preset standards of quality,

Assume Luai it has been determined that the procuss
governing wnether or not the satellite receives an acrenta-

able signal is essentially Markovian wilh time invar'an®

- 15 -




state transition probablilities. The binary signal the con-
itor returns to tne sender 1s eslso affected by the interfer-
ence and 1s therefore not fully reliable, but the conditional
probabllity distribution of outputs ls mmown., The following
partlially observable Markov process model is constructed by

the declsion-maker,

Paal o
Markov Process outputs from
generatirg blpary data imperfect channel

stete 1y acceptable message receilved at satellite
ctate 23 unscceptable message received at satellite

Flgure 5 Communications Example

The declsion-maker can now use this model as an ald
in the evaluation of various policles, or courses of action,
Using the binary output data, inferences can be made about
the signal quality at the satellite. The knowledge about
slanal quality can then be used along with the cost struc-
ture to evaluate the expected consequences of various courses

of action.

- 16 =




Various alternatives zight be avallable to tne dec.cion-
ezaser, He might continue regular transmission, resend a
portion of the message, discontinue transmission for onc or
more time units, conduct additional tests of signal gquality,

or build a new and different communications system,

rarkovian models have shown themselves to be very use-
ful in the past. The techniques develouped in this report
allow the extension of analytical methods for optlmal
decislon making to include the case of the iarkov process

being "obscured" by an iamperfect information channel,

-17 =
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CHAPTEH I1

OPTIMAL TIME-DEPENUENT POLICIES

when asaking a decisisn, an extremely useful quanuvity
to know 1s the total reward or cosi that can be expected
as a consequence of the particular decision zade, Dynaxic
programzing allows the calculation of future exzected utile
ity of rewards as o rurctlion of policy in sequ:intial ZJectsion
problems, and tnerefore allows thne selectlon of a declsion
to maximlze total expected utlility of rewards.

In sequentlial decislicn problems, decislons may ve made
at certain points in time and each decision will, in seneral,
carry with it implications which exterd far irnto the future
and affect declslons as jyel unmade. Llkewlise, what the
pollicy-maker intends to do in the future will affect his

resent declsion,

There are two baslc techniques in cynamic prosramming.
These involve solving a problem in eltner “value sSpace™ cor
"policy space.®™ In this chapter ths "value space” technli=-
que 1is explained and 1s appiied to partlally observable
Markov processes, In Chapter II] the "policy space® ctechni-
que will be employed in the determination of opsizuz rolizles.

Conslder the two state communicatlons example from
Chapter I where the cbserver perlodically receives intor-

nation on the reception quality at the satellite.

- 18 -
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Information
Satelllte Reported to
Reception Ground Observer

Figure & Comumunications Example

Markov state 1y message at satelllite meets preset
standards

Markov state 2: message at satellite falls to meet
preset standards

Qutput 1: Ground Observer recelves signal--
"state 1"

Output 2t Ground Observer recelives signal--
*state 2"

The ground observer now has to make a decision on the
basis of the stochastically inaccurate ocutput signals,
Assume first that he has only two options open:

1) Continue transmitting until next output is received

2) Stop transmitting and check again one time unit
later

This problem wlll be first approached in the tize-

dependent case. That 1s, the cbserver doesn't have




unlimited access to the use of the satellite but must defin-
itely quit at some time n unilts into the future, It will
be convenient to measure one unit of time as the time between
output signals, When dynamic programming techniques are
applied in the analysis of processes which willl terminate
at some specific time in the future, it 1is conventional to
call the termination time zZero and measure tlme in reverse
of normal order. Thus, in thls example, the current time
i1s n, and the process must terminate at time zero which is
n time units into the future. The time independent policy,
where the physical process terminates far into the future or
continues indefinitely, will be considered in Chapter III.
Inherent in the decision problem is a reward structure,
Ly;¢ Utility of reward if he continues transmit-
ting and the underlying Markov state is 1

~s Utllity of reward if he stops transmitting
and the underlying Markov state is 2

les Utility of reward if he continues transmit-
ting and the underlylng Markov cstate is 2

Utility of reward if he stops transmitting
and the underlying Markov state is 1,

The preceding problem uses a two state process with
two options allowed at each decision point, That type

problem will now be solved in general,

2,1 Notation
In computations to come the following shorthand nota-

tion will be useful:




S{n)=x ¢ Underlying Markov state at time n is X

R(n) ¢ Output response at time n

To summarize the decision-makers's knowledge at
time n:

8, (n) = P[S(n)=x | R(n),R(n+l1),R(n+2)...]

= probabllity that the underlying Markov
state 1s x at time n, glven the past
history of observed outputs.

For an N state process, a “state of knowledge®™ vector

is deflned:

w = E’lr(n)’ sz(n)’ coe N(n).

The "state of knowledge®” vector summarizes
all that the observer knows about the process at
time n. For & two state process, s,(n) is suffi-.
cient to determine the s(n) vector %ecause it is
known that the underlying Markov state 1s either 1
or 2 and therefore sz(n) can be found from sl(n).

s,(n) = 1-s,(n)
P [s(n)] = P[R(n-1) = x | 8(n)]

probabllity that the next output is x
glven the current state of knowledge

The state of knowledge vector must be updated as new

information 1ls recelved:

Tx[s ) ) = updated state cf knowledge at time n-1
given that the output at time n-l1 was x.
The new state of knowledge is a func-
tion of the old s and the decision-

maker sees R(n-1) before he must update

s{n).




2.2 Prediction of Outputs

The probability distribution on the next output to be
received will prove useful., The state of knowledge vector
gives a probabllity distribution on the underlying Markov
state, and 1f the underlying Markov state were know to be
i, the probability of output J would be fiJ' For the two
state case, the next output at time n-l 1is predicted to be

1l or 2 with probabilities:

L . .
Py(s(n). = sq(n) {pyT9; + Pyplpy) + sp(m) (Ppofyy + Ppyfyy)

P,[s{n)]

n

sl(n) (pllflz + p12f22) + Sz(n) (P22f22 + p21f12)

The above equations can be written in matrix form for

the two state case and then extended to the N state case,

Two state process:

- Pui P12 - f12 T12
P = F =
P p
21 22 f21 f22
P{s(n)] = row matrix of probabilities of next
St output reading

= m (Pl [F] = Pl[w]e Pz[_s_‘n)l




Iv state process.

1 o
[Py Py - o Py f11 Ty »ee Ty ]
Poy T for
[P?': I . {F}: , . ¢
. -
Pra P | n Trox

Pis{n}] = s(n) {F} (F] = flisgn}]. P.ls(n 3.....PN[sgn21

A7N -
Ir AJ s defined as the 1% column of matrix [A],

the component: of the Pl[3{n]] vector are simply writ:.en,
[P P ee=————

Pi[sgnQJ = s{n) (P] Flj = a scalar
2.7 Undating the State of Knowledge
The sta.c cf knowledge vector changes with time and 1<
will he necessary to update it as new information is recelved.

Recall that time is to be measured in reverse order. The

carrent tlme is n and the process must terminate at tlme

zero which i1s n time units into the future. If the decision-

maker does not have the output readings avaliable, his state

of knowledge vector would change wWith time as [ollows:

n-1) = new state of kKnowiedge vector if the decision-

malier does not have the output readings
avallable,

- 23 -
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For the . state processt

3(n=1) = s(n) [F] = v, (n=1), v,(n-1)

1t

el(n-l) sl(n)p11 + sg(n)pzl

f
0

For the N state process the matrix equaticn is the

saae,

y{n-l) = s(n)(P] = $l(n-1), wz(n-l)....,vN(n-lx

Now consider glving the declsion-maker the advantage
of sedng the output response n(n-1) before he musi update
the state of knowledge vector, Glven that output "i" has
been otserved, the new state of knowledgze vector can oe

ccmputed to bes

Tl[géggj = [8(n=-1) ziven R(n-1)=1] = Einl[sgn}]. Ti‘z[sgni{

Given output "i*", the JEE component of the new state

of knowledge vector 1is:

Ti,J[ﬂ-El] P[S(n-1)=) | R(n-1)=1 and s(n)]

P(3(n-1)=3 and A(n-l)=1 | s(n))
P[R(n-1)=1 ‘ s{n)]
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— T ———

T, ista)) = P[S(n-1)=) and A(n-1)=1 | s(n)]
Py [s(n)]

= P[R(n-1)=t | S(n-1kJ) and s(n); P(3(n-1)=J | s(n)]
P,(s(n))

= £y vyln=1)
Pl[sgn}]

For a two stete process, using the atove relationg

1, lsip)] = (sy(n)pyy + sy(n)pyy] £y
Pl[sgnz]

Tl'zlsﬂnzl l-Tl,I[sin}] = [8;(n)py; + 5,(n)p., 1 5

i
Pl[sgg)]

P,(s(n)]

Pls(n)]

The new state of knowledge vector s(n-1) will then

depend on what output 1s observed at time n-1.

- 25 -
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If the output at time n-1 was 1;

s{n-l) = TLES{nl] = }iilifiﬂl]’ TL,Z[EL—ll

Il the output a% time n-1 was <

s{n-1) = T:[sgnzl = Tzllisgnlj, szzis‘n}l

The observer will receive an output reading "i* and

must update his state of Knowledge s(n=1) = TJ[3§n2]. Even

1f no output reading 1s avallable to the decision-maxer,

hils state of knewledge ztill changes s{n=-1) = ¥(n-1)

2.4 Policy Evaluation

If there are a number of options avallable to the
decision-maker fcr each value of the state of knowledge
vector s(n}, then a policy would specify which option (k)
to take for each possidle g(n) for all n., The cholce c¢f
policles will usually bve affected by the total expected
reward assoclated with each different policy.

The expected reward can be separated into two cate-
goriess lmmediate and future. The reward %o be expected
during the currevnt time unit only is known as iammedlate
reward., Future reward is the expected reward in the agzre-

gate oi all future time,

This grouping of rewards forms the baslis of the dynamic

prograuming equations to be used throughout the remainder
of thls rerort,
- 26 =




Total expected reward Immediate expccted
with n time reward in the

units rezaining current urit of time

Tatal expected future
+ reward with n-1
\ tize rezaining
The expected !'mzedlate rewsrd will be affected by the
optlon (k) which the declsion-maker exercizes at time n and

by his state 7 knowledge,

q, [s{r)] = Immediate expected reward !n the current
unlt of time as a functior of the state
of knowledge 1f option k 1s exercized,

Contlnuins with the two state process, recall that
at present only two optlons are aliowed, In general terms

those two optlons are:

¥=1 ¢ estimate underlying Markov state 1 as the
current iarkov state and act accordingly

k=2 : estimate underlying Markov state 2 as the
current Markov state and act accordingly

For the communications example. these options are:

k=1 ¢ continue transmitting until the next ocutput
is received

=2 ¢ stop transmitting send check again one time
unit later

- 27 -
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The immedlate expected earnings ln the currert unit

of time ares

™~y

q (8(n)) = sy(njLy, = s;(n)L, = 54(n)Ly

=4

where ij = eaIninzs if estimate « and trae
state s

The totgl expecied ecamings are glven by the expres-

sion velow for a fixed policy.

Fn[sgn)] = total expected earnings with n time left as a
functlion of the current state of knowledge,
) Inmedlate Expected earnings
Pn[sgnzj = expected + in time n-1 given -PlLs(n)}
earnings A{n-1) =1

with time n-1 -PZLsgnz]

Expected earnings
+
glven H(n-1)=2

, . -1

Fn[s§n2] - qusgnzl + Pl[sgnfj ok ‘LT](SQQ})]
+ Pz[sfnz] Fn'l[rﬂ(sgnl)}

It 1s possible to solve this functional equation for

the total expected reward and thus estlimate the effect of

a glven policy cholce,

2.5 Policy timization

To optimize the declsion, a2 criterion of *“optizum®




must first be chosen. The revards earned may be in the
forz of money, time, material gzoods, etc, and the reward,
Lij’ s really a utility or index of usefulness to the
decision-rnaker, If ®optlmuz" means wmaximwlzing the total
expected reward, or total eapected utlility, then dynamic

progranning will yleld 2n optimum volicy by solving the

\
IR S———

furictional equation below subject to the initlal conditlions

FO[sgogj specified by the decision-maker,

Flls(n}] = max;mum {: q [s(n)] + Pl[sgnQJFn-l[“l(s§n2)7

+ Pls(n)] Fn'l[T?(sgn)j]j}
vhere k represents the options avallable at time n.
Bellman'sl principle of optimality states that the

computed solution will in fact be the best policy baced

on the criterion of maximizing expected utility,

7 VE—-- S

An optlimal policy has the property that
whatever the initial state and initlal deci-
sion ar:e, the reusmaining decisions must con-
stitute an optimal policy with regard to the
state resulting from the first decision.

In solving the functional equatlons Bellman's princirle
is used in the following manner. Subject to the initial
states and decisions }oLs(O)] is specified., Then Fllsﬁlzl

1s found using the functional equatlion relatior and the
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values FO[SQO)]. F(s{-1] 1c then found from Fl[sgl}J and

so on., EBach tlme tiie d=cision at time n is made czonsistent

with Jdecisions already made,

2,6 Perfect informatlog

In many practical situations, perfect or nearly per-
fect information about the underlyin; Markov state can te
obtalned ati increassed expense, With this pertect inlorma-
tion channel at a net cost of an additional “A" dollars,
there is a thlrd option open,
If the perfect infcrmation channel 1s uscd at tize n

the state of knowledge vector becomest

g(n) =—> 2 3 S with probability Sl(n)
sirnj—p & , 1 «ith probability s,(n)

Usinz opticon 3 at tim. n, the assoclated total exvectied

reward tefore thre channel 1s used 1s given telow.

=A + sy(n)lyy + s (r)L,,

+ spin) B (L0IF7H (T, (1,0))

Stz
Fls(n)] =| + s3(n) Po{LCIF T (1.(1.0)]
s s,(n) PG LI T (1))

+ s,(n) Pz[g&;]F“'l[rj 041) ]

- 30 -
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Trerefore, the equations to be solved Tor thne optimum

policy ares

k=1 s expected reward if optloa 1 is
exercized
Fn[sgngi - nax k=2 ¢ expected reward if optlon & s
< exercized
K=73 ¢ expected reward if perfect infor-

mation channel is used

N
|7

Sl(n)Lll + sz(n)le

+ Pl[sgnQJFn'l[TllsgnQJJ
a,.n-l . 3

+ P,{s(n)]F (T,ig{n)i]

=
[
N

sp(niL ) + sy(n)l,;

+ 2 (s(n) P (8(n)))
+ PQ[sgn)]Fn'HTZ[S§n233

)
.

Fig(n)] = max ¢ %=3 : =A + 8;(n)ly) + s,(n)L

’ + s1(n) P (L0)F" H{T,01,0)]
+ sy(n) P,1,CIF" 1T, (k0]
+ s,(n) PI[QL;]Fn—l{T][Q;l}]
+ 5,(n) PLOLIF M (T,(0,1))

Comparing options 1 and ., the decision-maker will
choose option 1 over option 2, i.e., estimate the underlying

Markov state as 1 instead of 2 and act accordingly 1if:
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opticn 1 expected)
>

(ophion c expected)

reward reward

Sl(n)Lll + sZ(n)L12 > sl(n)L21 4 sz(n)L ;

-
<L

sl(n)LI: + [1-sl(n)]L12 > sl(n)L21 + [l-sl(n)]LEZ

Sl(n) > 22

Therefore if only c¢ptions 1 and © are avallable the
solution i1s trivial and made on the basis of highest imme-
diate expected return, q(s{n)]. Adding opticn 3 has tre
effect of allowing him to "lnvest®™ A dollars now, in hope
cf getting higher overall future returns.

Comparing ouvptions 1 and 3, the decislion-maker will

estimate 1 instead of using the perfect channel (option 3)
ifs

-A + sl(n)Lll + Sz(n)LaL

sy(n)Lyy+s.(n)Ly, \\ + #1(n) Pl[l;Q]anl[Tl[LgQ]}\
o P Laln PPN, Tatm 13 Y 5 | 4 sy (n) PLLLg)ER T (1 00 |
+ P?_[gm.]r"‘erﬂ[m_)_]J/ + 8,(n) Pl[g,;]F“'ltT] [QAJ'J

-1
+ 5,(n) Pz[g‘l]Fn (T [Cal]]

The equality condition above can be interpreted as the

value of s(n) for whlch tne decision-maker 1s indifferent

- Jg -




between options 1 and 3, If si*(n) is defined as the value
cf sl(n) for which the decisior-maker is indifferent between
cption 1 and 3, the preceding equation can be solved for
sf‘(n) and then option 1 will te chosen over coptlon 3 if
s;(n) 2 sf‘(n).

Sim.ilarly, ccaparing options 2 and 3, option 2 willl be
preferred over option 3 if s,(n) S sr*!n}.

Summarizing, using the criterion of maximum expected

utility of rewards, the optimal decisicn wlll be:

a) estimate state 1 and - Lo,=L,.
act eccoxdingly if “l(n) Z 22 12
Lygthpo=lyp-ln
»
and sy(n) 2 s;"(n)
b) estimate state ¢ and L,A-Ll-
act accordingly if s.(n) € £ =
1 T Ly,+L., =L, =i
117~ 7107
. *®
and slhﬂ € sf (n)

¢) reascertaln true state using perfect channel ir s(n}
doesn't egatlisfy elther a) or b).

<.7 Acditional Partigal Information

A further practical genecalization can be made by
assumning that the observer has a cnoice of usirg a second
imperfect channel which 1s better than the first, costs
""" dollars more per usage, but =till isn't perfect, The
declision-maker has alsc to declide now whether the better

channael 18 worth the extra money for any possible sta:te

i
[

e B Bl asanstililil
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of Knowledge and time (n).
To answer trlic guestion, e aada a fourth cption to nilc

functional equaticn. The new (:']J Ta

(54

71X corscesponding to
tre new outpul channel affects the updating of the state ~f
krowledge {7 ‘h~ ncv chrhannel is uced, Therefore, define a
new gquantity Tl'(-) tc represent the new ctate of Kknowleldre
after the cutput readlng "i" (roa the new cranrnel has heen

cornslderec.

Under optliz=i: & at tice nt

ans £, = -B + s.(n) expected carnings in tlzme n if inci-
L2347 1 cation 1 is received from the new
channel

catlon 2 is recelved from the rew

+ s.(n) » expected carnings in time n if lnalj
channel

Fn[sgn}?= -7 s 31(n)x + s/(n)Y

wnere.
] -
mor I3 -, - Gedl=™ ; , -
A S qu[llL (n) i+ 1’1(11' n) it j'IlLll'[S‘an”_I
o e [ —) — e s

ar - . = Tt l-l e ‘ - N
Y= q,iT, ' lsln jl o+ Pl[TZ'[é‘nLj;Fr {11L12'[§;nlw}:

+ Pz[Tz'[é‘“L]]Fn-lileTd'[E‘nlpJJ

[o—
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2, Exampje

The value of thls technique is that a solution may be
found for any length of time, n, regalning. iowever, this
bhecomes ilmpractical as n becomes large, Fortunately the
equations will converge orn an optimal »Holicy which, for
large n, 1s independent of n, Thls "steady state®” policy
may become discernible for very small n in some probleas,
The next chap'er presents a method for obtalning tre *"steady
state” cptimal policy directly.

Consider a numerical example of the two state problem,
A computer program was <ritten to solve the general two
state problem and is included in Appendix I.

The observer has constructed a 2 state model Wwith par-
ameters given and has the option of using a perfect channel
or estimating the underlying larkov state and acting accord-
ingly.

The probablilitles describing the underlying process

and the output channels are:

9 .1 9 W1
L6 S Y

The assoclated rewvards areg

3 -2
L =
-6 &
-35-
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cost of use of perfect information output channel

= 5+ loss of immediate earnings for one time unit

Fols(0)) = 0.C for all s(nj

This could be the previous communications satelllte
example with the "perfect” information belng obtalned by
using one unit of time to send a special test message to
the satellite, The test message would be returned to the
sender and from it he could glean tile "perfect® information.

The computatiocnal results are show in figure 7,

optimal policy is

0% Sl(n) £ L : estimate underlying Markov state 7
and act accordingly

estimate underlying Markov state 1
ana act accordingly

< o
Lg 81(1)_ 1.¢C

The perfect information channel is never used in the
optimal policy. In relation to the other rewards, the cost
of using the perfect information channel was too high., This
problem is then equivalent to having only the ap®ioer. and 2,
There 1s a growth pattern emerging as time (n) l.ucreases,
In figure 7, the curves for F'(s(n)] tend toward a fixed
shape and the separation between F'[g{(n)] and Fn-l[sgnmll}
appears to be approaching 2.29 as n incremses. The optimal
policy is independent of time (n).

In the previous example the cost of perfect information

- 3 -

ISP

o




Flgure 7

Total Expectad Earnings
Using Optimel Policy
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was too high to warrant usage of tne '"nolseless® channel,
More illustrative results are obtained if the cost of

perfect inforwation 1s reduced to vel

A = loss of immediate earnings for one time unit.

The resyulits of the calculations are given in figure b,

The optimal pollicy is:

n=1.
c.0 < sl(n) S 0.4 estimate state 2 and act accor-
dingly
C.k % s,(n) %2 1.0 estimate state 1 and act
- accordingly
n=2%
C.C & sl(n) 5 o4 estimate state 2 and act
accordingly
0.4 £ sl(n)ﬁ 1.¢ estimate state 1 gnd act
accordingly
n=3,4 9,10,
0.0 % sl(n) < .38 estimate state 2 and act
accordingly
.36 < sl(n) < L &2 use perfect information source
A28 sl(n) € 1.0 estimate state 1 and act
accordingly

Here again a growth pattern on expected e¢arnings 1is

becoming discernible as n increases. The separation (gain;

e e Sl e O it
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between the F'[s(n)] and F"'l(sgn-lz] cusrves appears to be
approaching 2,30 as n lncreases, Notlce that when reason=-
ably priced perfect information became avallable the growth
of expected earnings as a function of time apparently

irncreased slightly from 2.29 to 2.30.

2,9 Comments

This partlcular solution technique 1is useful in deter-
mining optimal policles assoclated with partially observable
Ma:kov processes for small time(n). The functional equa-
tlons which must be solved for the optimal policies are of
the general form given below where k(n) is the policy cholice

at time n.

F‘n[sgn}] = m;x {qk(sgnz) + _Plk[sgn)]Fn-i[E‘l[s‘n}]]}

“While 1t is theoretlically possible to obtain a solution
to tne above equation, it may be computaticnaily infeasible,
It is relatively easy and fast toc cbtaln a numerical solu-
tion for the two state partially observable Markov prccess,
but increasing the system to even t'lve states mery be pro-
hibitive, A good deal of the strength of this technique
depends on the analyst's abllity to model the real world
system with a few pertinent states.

This technique also becomes impractical when there ic¢
a iarge time (n) involved. The next chapter deals with the

questlion of the existence of a steady state pollicy for a




) ———— —

partlally observable Markovian system and methods of deter=-
mining it without lteratively solving the functional
equatlons introduced previously for ever increasing values

ot t.me,




CRAPTEa 11l

OPTiy STEADY STATE PCLICY DETEHM.NATICH

In the chapter on optlimsi time dependent policles, as
tize grew larce, the expected earninzs seemed to converze
on a discernitle growtn pattern anc the policy was apparently
beconirg independent of the time {n) fci large n, in many
physical si1tuatlions the time (n) which remains for the real
world system to nperate 1s large and sometimes even unknown,
In those two situations 1t is not feaslble tc use the time
dependent sclutlion technique for cpiimal policy determination,
The question ot the ciistance of a steady state pollicy and
a mecthod of determinlrng it becomes paramount.

The examplies of Chapter 11 appeared to show the expected
earnings, Fn[iLgl], converging on a growth pattern in the

following manner for large time n,

Flis(n)l = 2 { a, (s(m)] + ZFik(_S_m_)]F'n‘l{’f‘l[sfn)]]}

1
Flis(n))==» vis({n}] + nG (large n)
where vis{n)] is interpret;g as setting the
steady state shave of the {g{nll} curves anc

Gy galn, 1s the steady cstate growth per unit
time,

3.1 The State of Knowledge as a Continuous State Markcv

Process

To investigate the growth pattern of expected earnings,

- 4 -
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it will be necessary tc alter the concept of a partially
observable Marxov process model, Formerly it was interpreted
as a descrete N state Markov process with stochastic output
cnannels. naecfocus now on the state of Knowledge vector, s(nj.

It has n components, s,ih), Whlch are constrained by:
FS

< ( £ « _
c £ slkn) | :E:ul(n) =1

The stat> of knowledge vector has n-1 irdependent
components and may thus be represented as a point in an n-1
dimensional space, The state of knowledge vector for a
partially observable Markov process model is in Tact the
state variable for a continuous state Marxov process.

Consider a three state underlylng process with s(n)
= s,(n), sz(n), s.(n{. 3ince sj(n) = 1-sl(n)-sé(n). tren

l._i l
sl(n) and sz(n) describe the observers state of knowledge,

|
T Tyls{n)] |
SRR
Pl[sgn)]

e —,c e —-——— e e e e

52(-)—b

i,

Figure 9 Contlnuous State Space

IV R



With probability P{ [s(n)l, it will be transformetion

Ti [s(n)! which describes thre new state in terms of the pre-

vious state, s{n). Since the transition probability cegends

only on the current state, the Markov assumption is satisfied.
It happens that the state of knowledge is now alsoc the state

variable of a continuous state Markov process.

jJ.- Steady otate uwaln

Let h(g(n)] be the probability density function on
what the observer's state of knowledge will be at time n
far into the future, giver some initial state of knowledge.
A completely esgodic Markov process is one whose liniting
probability density function, hls{n)), for n far into the
future, is independent of the distribution of the starting

state of knowledge.

The continuous state Markov process which has s{n) as
1ts state varlable cannot be considered to be completely
ergodic., Suppose the initial state of knowledge vector for «

a two state partlally observable process were:

where co = a rational numter

Note that the initial state of knowliedge is preclsely speci-
fled such tha. the initilal density conslists solely of an

lmpulse at the poini syin) = C,+ As time progresses and 1

-
il

ne state of Knowledge 18 repeatedly updated, s§n2 will

, {
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always remaln a vector whose components are rational numbers,
by the nature cf the transform arpilled, Therefore, the
llmiting probatlilitiy density function or. tne state of &ncow-
ledee will be nonzerc only a: a set of points selectez {rom
the ratiornal numbers, Alterrnately, suppose that the !nitial
distribution of the state of knowledge 1s describea by a
continuous density function. The limiting density his{n)]
for such arn initial state of knowledge distributior will

be nonzero at points both inside and outside the set of
ratlonal nuaters, Thus, the process is not coupletely
ergodic,

Ka:-*lin12 investigates the l1imiting steady state distrie
bution in similar problems. A limlting density, nis(n)],
may exist for the ciao.s of initial densities which are
contintous over some range of the allowable s(n). Srake;
presents a method of computing the limiting density funciicn
fcr an arblitrary ceontinuous initisl density.

o

The steady state gain, Gk, for a given policy, =z(n},

could be calculated using the fcllowirg relation. Anotner

metnod of determining the gailn, Gk, is presented in the nex:

sectlon,
~K kK
5" = N (s(n)] qk[sgnz] ds{n)

sn)

3.3 QOptimsl Steady State Policy Determinatico

The existence of stcady ctate gain laplles that

n .
expected earnings, F (s(n)], converge on a growtii: pattern




for large n, and that a steady state optimal policy existis.

Tne optimal steady state policy could be found by maxizizing

the galn G.
max 3k==’ Sptimal policy, Kopt ‘
k

A metnod oif pollcey optimlizatior which 1s vased on gair
maximlization was developed by Howard for use on deczcrete state
Markov syst: s. Hls algorithm can be ada ted for use in

optimai policy determination on partially observable Markov

process models.

Beginning with the basic equatiocn for expected earningss

F‘n[sgn)? = max {qk[sgnz] + Z:Pik[sgni)F‘n'l[Ti[sgn‘g]]}
k

—3 v(s(n)l + nG for n large {

where 3 = steady state galn and v(s(n)]
can be interpreted as initializing and
setting the stiape of the steady state
expected earn’ngs curve Fn[glgl]

Substituting the steady state form into the basic

equation for a fixed (not necessarily optimal) policy, x¢

v¥{s(n)] + ncX

qk{S’,n)] . ZPlklsgnzf;vk{l‘llsgn)]] v (n=1)5"°
i

+

]

qkfsgn}] + (n-]);k + jz:Pik[sgnQ]vk[Ti[bgnzjl
i
|
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e K N -~ K V.. ¢ -
“Nis(n), 4+ 50 = Qyisal) s ¢ :E:Il {s(n}lv kT1¥:Lﬂ¢ !
i
Kk K p “ !
| 50 0= q, [siny  -viis(n)] + jE:Fi fs{n).v Lflis r)il
L I 1
l 5% = galn using a fixed policy k )

Jolution of trne above equation would yleld the galn,
5, and the curve v(s(n)} for a fixea policy. To solve the
equation by com,uter, it 1s nececsary to quantize the
vis{n)j curve intz ¥ points, Then these are a set of
simultaneous equations and M+l unknowns. The ¥+1 unimowns
are the If from v(s(n) and 1 from 5., <Conslder =!ding a

quantity, ¢, to each point of the v{g(n)] curve.

(%}
[

= q(s(n))-(vis{n)Jl+c] + EE:Pl[sgnzJ[v[ri[sgnz]]+c]
i

= q(s{n}l-vis(n)l-c + :E:Pi[sgn)]c - Ezlpllsgngjv§f ts{n).;
i

A
i

hut ZPl[sgn)]c = ¢ zl—‘l[sgn)} =G

O
4

Wl
l

. . PR a-
= q(s{n)?! ~visg(n)' + 2:P1[sgn2] \[.lLsfn}J;
i
Notice that this i1s the same equsation (¥ back =zair.
This implies that the absolute level of the v(S{nj; curve
cannot be determined from these equatiors. Therefore te

allow solution, artitrarlly filx one point on tne =zurve.

V{1,000 p04G) = ¢




As will be shown later, only the relative value c¢f the
vis(n)) curve (i.e. the shape) ls necessary. The M equa-
tions and M unknowns may be solved for the gain, 5, and
v(s{n)] subject to the above stipulation.

Howard's algorithm contains a policy lmprovement routine
which rapldly converges on the optimal pclicy andi thus 1t
15 necessary to solve the set of M equations for only a few
pclicles., Later in this chapter, a method for checking the
*cptimal ™ solution is introduced so that errors introduced
in solving the many simultaneous equations can be detected
and corrected. Also, a technique for avciding the need to
solve the M simultaneous equstions was developed by Schweltzer
and will be introduced.
Yor a fixed policy k, the following 1s solved fcr Gx
and vk[§ig;]‘

¥ = q, (s(n)] -vk[sgnll + E Plk[s n‘}v£[Tl{§L113]

1

The next step is to use the GK and vk[sgnzj obtained

to find & better pollcy. gdecall that ‘he optimum policy

maximized:

s \ ) k( l) -1 - ’ ~ -
Flatal] = £}, {qk,n)[mh Z'i " sln) 7" [-,r_m;}
b
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f

in the steady state: ]

5y ' ";- + 13 -
'QpL‘-S—L.L’ ]’Opt

max

\' k r R ’ o~ a
= R {qk[ssn)] + :Z;Pi ls§n2]{vopt[Ti[nglJ,*\n-l)uopt, }
b

s

= max fsin)lein=-1)3 Kisin 3 [T 0s(n)
= Ty {lesgnzj in l)lopt+ j;‘Pl [Sin“vopt“ll“sn I
v —————

1

since Sout nere 1s the galn asseczlated wilib the optilial
policy, it is not a function of X and an equvalent test

quantity to be maximized as a functicn of rolicy {(«} ls

/

TEST [s{n)] = qk[sgnt] + EE:Plk[sgn}]voptLTl[sgnE}]
1

Y. .
Jecause E P1 ls‘n)} = 1, any additive constant in ‘
i

vOpL[Tl[sgn]]] would not affect the test gquantity and there-

PV J—

fore crnly relative values of vopt[ii[sfnZ]] are needed.

Lowerd's algorithm says that maximizing the tect
quar.tity using V!Elﬂl] from some arbitrary policy (not
necessarlly optinal) will always yleld a new policey whnich
1s at least as good as the old (- rbiirary one and tkat an
optimal policy can be found in the manner 1llustrated in

filgure 10,
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(1L

select an

arbitrary policy k

1

use Pik[gipll and q, (3(n)] for the fixed
policy to solve

Gk=qk[sgn)1-ka_i_.s nil + Zpik[—g-is o) v (T Ls(n) )]
1

for the relative values vk[sgn2] and gain Gk

3 1
using vk[sgnzj, find the policy k' which
* maxiwizes TEST [s{n)] for all values of s(n).

TEST Lg(n}l=qds(n)] ’2: P, s(n) WHIT, [5(n)))
: -

(k' s at least as good a policy as k)

[

If k=k*, it 1s the optimal policy

If k¥k', then return to 2 replacing k br k°,

P,¥ls(n)] by »,*"(s(n)], and q, (s(n)) by a,.(s(n})

R

STCP ITEKATICKN

Flgure 10 Cetermination of the Optimal Steady 3State
Policy
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By refocusinz attention from the interpretatlion of a
partially observable Markov process as an underlying descrele
Markov process plug output channels, it is seen tnat tre
state of knowledge vector 1s the state variable of ¢ con-
tinuous state Markov process. The optimal policy can be
found utilizing a digital computer and Howard's alseritha
for descrete Yarkov processes. How close the digital solu-
tion 1s to the continucus state solutlon remalns to be se«n,

Experlence with descrete state problems has shown
doward's algorithm to be computaticnaliy effliclent ana tnat
the seguence of policies generated iteratively will usually
converzge in a small number of cycles. The convergence zay
be hastened by selecting tne arbitrary initlal policy to bte
as close to optimal as possible, The decision-maxer couia
incorporate all of nis prior feelings into the initial

policy although it is not necessary to do so.

3.4 Proof of Policy Convergence and Optimization

A proof, adarpted from Howard's work, 1s now oflerea
showing that the policy which 1s converged upon is in fact
the one with the highest gain of all possible peolicies,

Suppose that an lnitial peclicy A has been operatcd
upon and the policy ilmprovement routine has prcduced «:

policy B which 1is different from A.

Prove GB z GA

since B was chosen over A

TESTB[sfnl] 2 1ESTA{a§n)] for all s{n)
- 51 -
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aplslng] + ZPﬁ{ﬂm) vA[Tl[sgn)]}

e ————————

2 q,ls(n)] 'Z Py sn) WA [s(n) 33

c—

let,

i
Xi[sgnﬂ = TEST®(s(r)] - TESTA(o(r) ]

xi[sgn)] = qB[sgnzj-qA[sgn)] - :z:Fla[sgn2]vA[T1[s§Elj]
i

- }g:PtA(S‘nJ]VA[TL[ELQl}J

8E[S§n‘(] e for all s(n)

B 1
where 8)[s(n; ) ; tn nprev at i :
¢ 3h, {(ry ls tre impreovemen n the
test quantity that the policy improuvement
routine was able to make,

The expressions for GB and GA areg

58 < qS[sgnZI-vE[sgn)] + EE:PlstsgnzlvB[Tl[sgn)}]
1
¢t = qA[sgnz]-vA[sgnz] + :g:P:A[sgnz]vA[Tl[sgngj]

Subtracting GA from GB and rearranging
GBaghy

-VB[§1213~VA[§Lgl] = qgls{n)y - a,lsinj?

+ ;E:PiB[sfn}]vB[Tl(s‘nzj]

1
- Zpi'ﬁ[s(n)]v“[l‘l{sgn[]}
1




introducing !E(n):

GB-GA4v9[s(nJ]-vA[S(QlJ = sé[éiﬁl]

? - I o1
« Poois(n)v [T1[S§n)]]

ﬁ"l

iin[sgn!}vA[fl[sgn)]}

Yy
4

B B, |
G“-GA+V‘Ls(n‘]-vA[sin); =

Blsini) Y by el )ivBin (sin))3-v40T, Ls(n) 1)
i

Define:

avlis(n)l = v?[sgnZI-vA[sgn)]

v -

Substituting the definitions 1ntc the previous equaticrn’

AG+avising] = U:[s(nll . Z}’ls[sgn‘g hv['}‘i[sgn}]]
1

1) a6 = 32l's(n)]-Av[s(n)] 4 ZPIB{SLnHAV[b_La(ii}
i

Note that the above 1s identical in form to.

2) 7 o= qls(n)l-vls(n)] - :E: Fl{sgnQJV[Fiisgn)J]
1

P




Recall that the steady state probability density, h's(r}],

was related to 3 in the followling manner:

3) G = (his{n)lqls{rj ids(n)

€
J
§n)

So the solution faraG in equation . 1is

4) AG = S (nPls(n)? 82(s(n))) ds(n)
n)

Since;

Ui[s(nl] £ 0 for all s(n)

and a property of all probability density functions is:

hB[san 20 for all s{n)

Therefore;

AG2 O

A new policy obtained using the algorithm rhas at least

as high a steady state gain as the old policy.

furthermore,

i1t is imposeible for a policy with higher steady sta.e gain

to exist and not be discovered ultimately by the iterative

routine,

ST




. ) Y X

Assume for twc policles X and Y, traet G°> 37 tut that
the iteratlion routine ras converged cn X,

Since X was chosen cver Y in the policy improvement

routine and the pclicy X set the test pollcy just rriar to

convergence:.
PR S < s ppamlc -
TEST {sin) 1 Z TEST [s(ny

qx[sgn)] + ZPlxlssn"]vX[sgnzj
i
2 qyls(n)] + ZPIYLS(n)]vX[Sme
i
3§[sgn!} = TESTx[sgnz] - TESTY[s!nz] 2 0

By the metnod of the previous proof:

Since the initial assumption was that Gf:r Gx, this
s a direct contradiction and hence it ls impossible for the
algorithm to ultimately converge or. a policy wnich has lesc:

than optimal galn.

3.5 Relnterpretatiorn of Relstive Values

It 15 not immediately obvious that the relative values,
v(s(n)], which are obtained for one fixed policy, shculd be

useful i» policy lmprovement, To obtaln scme insight into
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this matter and into the general concept of steady state

poiicy determination, consider a “pclicy space® which con-
sists of all =zoncelvable policles, For arny policy, kK, the
state of knowledge vector, s(nj}, can undergo certalr trars-

forzations, Tlisgn}], to obtaln a new "state of Xnowledge”

vector. The varlablies that are a function of policy k, are
the immediate earnings, qkiglglw. and the probabllitles
that speclfic transformatiors are applied, Plk[gk_l]. if
we have M possible transformations, there are M independent
functions in general that are set by the pollcy. There

are M=-1 independent Plk[s r)] and cne qk[ngl]. A policy
fixes the decision to be made for each s{n). Consider one
speciric put arnitrary s(pm). Yor this value of s{n), the

M independent parameters assoclated with the decision would
specify a point in a Fuclidean {-cpace. Thus, every con-
ceivable decislion could te represented by a point in this
*decision space'.' Only certain of those points would rep-

resent allowable decisions.

Consider two declslong A and 3, wiin points DA and DE

in the declsion space for a particular s{n}. Now consider
all posslitle declsions lying on the line segment Jjoining DA
and DB in the decision space. Plck a new declislon on that
line segment and define it to be a "randomization®™ of A

end B, If r is the randomization parameter and AB 1s the

randomized declsion, the new variables are related to the

A and E variables thualy.
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i .

) - B . . . A, =
ElA‘[r,sgng; - r.'r'.l raln) . (‘-r):i“[s,an
qAn[r,sgnif = mels(n)’ - li-v)q.is(n); |

The gains of poilcies A and R are:

gh = S h*Ls(ng lq lofuy asiay 1
.a
(97 —_

She{m}qglw]dﬂ_{i
The gain of the rardomlized policy 1is:
~AB AR |
37r) = S[h (rys{r)la, qlr,s(n)]les(n)
where
R*2lr,e(m)1 = thPigng s + (1-r)n*s(n}]
Relating this bacx to pollcy imprcvemenl, consider i

policy A as the initial policy and policy AB as the pelicy

being tested,

SQI {r,s(n)] = Ymprsvemeat in test Mantity

= Qupiteidn)) - q,ls(r)]

A\ , A
+ ﬁLP?B[r,s;n)]v Ty(s(n))



Eid[r.s’,nﬂ = x‘qg[sfnﬁ + (1e-r) qA[sgn‘] - qA[sfn‘g]

+ F(r?la[sgn}} + {l=1) ri"‘[sgn)]) vh‘l[sgnzj]
—
1

- ‘PA[sgng" vA[T I's{n)1]
i '] 1‘. .-.JJ

a

= r {(qusgnH - qAEsgnzﬁ; - ZFIB[sgnH vA[Ti[sjn]]]
: )
- TplA[s_'_n_U vA[T,[sgn)]]f
5
323[r.ssn)] = r 52[_:5_{21]
5 - 3% = S hAB[r,§iglE Kﬁq[r.s§n2]dsgn2
3 - 3% = Q hka[r,sgnz] KE[sgn}]dsfnz

Now let the randomized decision approach the original

decision, Divide by r and take the licit as r - C.

lim GAB(r) - ¢t - )GA“(r) A 5
~C = R*s{n}] UA[sgnz]dsgnz

r ¥r =0

- B .-

Slnce KA[s(nz] is the lmprovement in the test quanti:ty
of the policy improvement routine 1if decision 3 ls substi-
tuted for original decision A, and since hA[s!n2:)2 0 for

all syaj, then finaing the decislon B which gives maximum

]
N
(44

]




T r———

test quantity improvement 1s equlvalent to finding:

max bGAE(r)

R
or

For a gilven policy A, the alsoritha coaputes (for
each B) the directiconal derivative, evaluated at A, of
gain from A o B in decislon space. It then selects as the
new pollicy the one with the highest directional derivative
of gain, If A iy the optimal policy then all tne directional
derivatives evealuated at A willl be less than or equal Lo zZero,
With this interpretation of what the policy lmprovement
routine does, it becomes clearer why the relstive values,
vis(n)] at the old policy A are useful., They determine
Bi[gigl] which in turn is closely related to the directional

derivative of galn evaluated at A,

3.6 Example
Using the technique Jjust developed for steady statc

solution for the optimal policy, consider the numerical

example introduced in Chapter II.

A = cost of use of the perfect information channel,

>
I

5 + loss of lmmediate earnings for one time unit,
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Fo[sgo)] = C for all s(©)

A computer program has been written to find the steady
state gain, relative valies, and optimal! policy for a two
state partially observable Farkov process and 1s included
in Appendix II,

In this example the declsion-maker has three crntions

onen to him,

option 1 ! continue itransmitting until the next output
is recelved

option I [ stop transamlitting and check agaln one time
unit later

option 3 3 use perfect Informatlon channel

Recall trat in Chapter II it was found that the cost
of perfect informatlion was too high to warrant use of the
"noiseless” channel, This was found also to be true for
the steady state pollcy here, The results are given in
Table I and Figure 11 provides a graphical comparison of
the steady state relative values and the Flo[§i}£Q] expected
earnings curve found in Chapter II., They are almost iden-
tical in shape. By looking at the transient expected
earnings, the gain was predicted to be about 2,29 and th=
steady state galn was found to be 2,29897 using the computer
program of Appendix II and the techniques introduced in this
chapter. With the cost of perfect information reduced tc a

Treasonable level the example wss reworked.
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TABLE I

EXAMPLE RESULTS

~
kS 3

2,29897

with no perfect informaticn channel available the galn
in steady state was:

The relative values and declsions are;
sl(n) vis(nj) Decision sl(n) vis(n)) Declsion
c. 0G +0,21560 P .5 ~ .Gkl 1
. G2 -C,Q147¢ ; . SL ~J.y1Ein 1
. Ol -C,22287 .56 - 9kl 1
L06  =0.39100 é .55 ~l.09tl6 ]
e -C. 59865 < .60 ~.04197 i
.10 -0.77769 < .6 =7e53330 1
.12 -C.98507 2 .6l -2,42u63 1
14 -1,27914 z ) -2, 040k 1
.16 -1.41860 2 .68 -0.1.95z 1
.18 -1,62L05 2 .70 - . 05757 i
.20 -1,729C8 2 .77 -2.00757 1
- -1,93353 2 .74 -1.59419 1
Lo -2.1k215 2 .70 -1.7208¢C 1
.26 -2.36346 2 . 78 -l.0114¢ 1
LB ~-2.58545 2 Nye -1,5«C021 1
.30 -2.74256 2 =P -1.,47230 1
.32 =2.99491 2 Jobl -1,1994¢C 1
.3k -3.19564 2 .86 ~1.,C5039 1
.36 -3.39637 2 .88 -C.93b3c 1
.38 -3.,62377 2 .90 - C. 70434 i
0 -3.82285% 1 or «92 -C.03339 1
W42 -3.72195 1 T -0,38545 1
;uu =3,43766 1 .96 -C.2kg62 1
Lub -3.36893 1 .90 -0, 0915¢ 1
.48 -3.26575 1 1.CC -C. CCoCo 1
.50  =3.16257 1
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With perfect

state was;

The relative

viiues

G = 2.1}995&'

arnd dec:sions are:

information avallatle the gailn in steady

sl(n) vis{n)) Declsion sl(n) vis(n)) Decision
0. 00 +0,18509 - .5 -2, 05004 1
. G2 -0, Ok bk < . 56 -, 94558 1
L Ol -C, 25055 ¢ . 5¢ -y 334 1
. Co -C. 41867 2 .« 5U - THCHT 1
. 0o -C.0263k é e -2,66937 1
.10 -0.80534 < .62 - 56009 1
.10 -1.01=z71 2 .6l -z.452C1 1
Sk -1.306%0 2 ) -l 20700 1
.15 -1,44621 . .03 --.1561¢ 1
b -1.651606 2 .70 -0, 08440 1
.20 -1,75667 2 o T ~., G341 1
W20 -1.96112 2 b -1.9.C7k 1
Lo -2.,27965 2 .76 =1.75335 1
) -2.41102 2 .78 =1.6379¢0 1
L2t -2,61301 2 .80 -1.56673 1
.30 -2,77013 2 57 -1,4G32EC 1
.32 -3,02245 2 el =1,2179¢ 1
L34 -3.,22317 2 .86 -1.0buQ 1
.36 -3.,42389 2 LBh -C.yLb 0 1
. 36 -3,65127 2 «4GC -C.76979 1
40 ~-3.81191 3 92 -0. 55884 i
a2 =3, 74944 1 9l -0.41093 1
oLl =-3.45977 1 .96 =0..17510 1
A6 ~3.39098 1 . 906 -C.1179% 1
AT -3.28774 1 1.0C - 0. 00000 1
.50 ~-3,19451 1
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A = cost of use of perfect information channel.
= Joss of lmmedlate earnings for one time unit,

Tne steady state galn, relative values, and pol cy are
glven in Table II and Figure 1. providesz a graphical ccmpar-
ison of steady state relative valucs and Flo[gﬁ]g}]. the
expected carnings found when the came example was worked
in Chavter 13, Agaln thie curves are ncarly ldentical in
shape nna the steady state gain of 2,.6949% 1s near the ./, 30
previously predlcted, The results obtalned by Lhe two
different techniques support sach other. lotice that the
availatility of perfect Informatlion ircreased the galn,

If Tiner precision is deslred in the range of s{n)
where a chansc of "best option®™ tales place, a finer grid
could bte used in that region, That s, in breaklng thre
continuous gigl vector into descrete points, make more

divisicns in regions of particular interest.

.7 Yerifying the Numerically Determired Policy

Recausce the computer sclutlion Invoives a descrote
approximation to the continucus s{n) vector, the numeii-
cally produced ®"optimal” solutlon could vary from the true
optimal solutlon. To check on the accuracy of the numerical
solutlon, one might vary the number of descrete polnts used
to approximate the contlnuous vector snd note the effect
this has on the solution. A much better technique 1s to
test the steady state solutlon in questior. bty use of the tine-
depzrndent techniques of Chapter II. Hecell that the observer

specifies some
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inttial expected earmings, Po[glgl]. and the time-dependent
sechniques of Chapter II compute Fl[s 1)) and so forth
iteratively., The steady state reletive values were inter-
preted as specifying the shape of the F'(s(n)] expected
earmminrgs curve for n large, Therefore {f the true steady
state relative values, v(s(n)]; were used as the \nitlal
expected earnings Fo[ngl]. then F1[§111] should be simzply

>}
FY{s{Q)] rlus the steady state galrn.,

lisglg] = FC[3501J + G o= vis(n)] + 5

)

This provides a check on the numerjical steady state
rolicy which may be in question,

Figure 13 shows the result of such a check which was
un on the example which has been used throughout this

report.,

3,39 Computational Considerations
10

Schwelitzer develocped 7n improvement on Howard's
algorithm for descrete state Markov processes which makes
it computationally more practical for problems with a large
number cof states, Normally the policy lmprovemenrt portion
of the routine is used on all of the states before solving
the M simultaneous equations of the value determination
portion of the cycle. Schweitzer noted that if the policy

improvement was done on only on: state, the rolution to

the new set of simultanecus equations 3}: qulte simply
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related to the soclutlon of the: cld set of simultaneous squa-
tlors, Ey Judiciocus cholce of the arbitrary initial policy,
the initial solution to the simultaneous equations is trivial,
Effectlively, the set of equations need never be solved and
a major deterent to the use of the algorithm has been :emoved,
Schweltzer estimates that with his modification, Howard's
algorithm would be able to handle on the order of five thoue
sand des« rete states,

Thus, dynamic programming techniques have been shown
to be of use 1n the determination of optimal steady state

noliclies associated with partially observable Markov processes.
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CHAPTER IV

CONCLUDING REMARKS

The partlally observable ..urkov process hac been p:ie-
sented and sore of 1ts properties dlscussed., The primary
area of investigaticr in thls report was the selectlion of
a cource of action frem a4 set of alternatives using only
the information about the system which 1s availiable from
tue observable outputs,

Dynamic programmning techniques were shown to be of
use in the optimization of both transient and steady state
policlies. Whille theoretically the optimization can always
be done, there is a :definlte computational limltation which
was discussed,

There are several extencions of thils investigatlon
that could be made, The concept of dlscounting cf future
rewards could te considered. The optimum placement of in-
vestnent dollars to improve prediction abllities and average
earnings could be investigated. In addition, time-varlant
system parameters could be introduced.

The optimlzation technique used deals with a problem
of much higher dimensionality than that of the original
underlying process. A method is needed which will allow
solution of sequential decislion problems beyond the scope
of thoase that can be handled by the technique presented in

thls report.
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APPENDIX I

COMPUTEE SOLUTICKN FOf THE OPTINMAL
TIME DEPENDENT POLICY

In chapter two, equatlons for a two state process are
formulated. They are solved by this program for the case
where the decision-maker has avallable the options ofy

1) estimate statec 1 and act accordingly.

2) estimate state 2 and act accordingly.
3) use perfect information channel at added cost.

For the two state process the state of knowledge vector

sl(n), sz(n) is fully specified hy sl(n) since sz(n) = l-sl(n).
S E————t—]

The program breaks sl(n) (which can take any value from 0,0
to 1.0) into 51 points and calculates the maximum expected
utility of rewards, Fn(gigl). for each of the 51 points.,
The initial values F°(8{0)) must be specified and then the
program calculates Fl(iilj) by finding the maximum of the
three possible optlons rewanis, Fz(gigl) is then found
from Fl(ngl). This continues on up to n=n oo which 1is
specifled by the person using the program. The output 1s
in the form of expected total utility of rewards at each of
the 51 points for each n from 1 to nm“xplus the decision
D(n,k) to be made at each point k for each time n. This
decision 1s optimal basedon the criterion of maximizing the

expected utility of rewards.
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PHOGRAM LISTING - “VALUE"

DIMENSION ©ild
DIMENSION POBE
COMMON E,F,7,
FCRMAT (*'vf}
FOﬂMAT(

)F\~. )o“(‘ /) X(Sl)
0(51),TONE(51), TTWO(51),LONE(J1),L1WC(51)
wC, TONE TTWO,LONE,LTWwC

L V)
- t!‘)
3’\

od

1]

—

O ™
ll.(jll t} ‘(),U"U"'

o

+
il >

—~
[l
.
o

PONE(K)

DON’(V\

PTWO(K)

TONE( )=(X
wC(K)=
= 51

IF(NmﬂK)- X{J)) ©,9,9

J=J-1

IF(J) 11,10,1C

LONE(K) = J

J = 51

IF(TTWO(K)=X(J)) 13,12,12

J=J-1

IF(J) 7,14,14

LTWO(K) =

CONTINUE

PRINT 103,{PONE{J),J

PRINT 103, (PTWO(J),J

PRINT 103, (TONE(J),J

PRINT 103, (TTWO(J),J

DO 100 N = 2,11

N -1

LONE( 51)

I+1

(E(M,J)=E(M,I))/.02

J{F{1,1)nF(1,1)+
'F\K)+(1 O=-X{K)M P
- PONE(K)

JHP(l,1)wF(1,1
K)&P(1,1)&F(1,2

"
D —~\n
=—x>4+

AAH.C ol R

IR e

)
+F(2,1)MF(1,1))

(o]

1,1))/PONE(K)

(x MKEF(
(X Yee(1.2))/PTWC(K)

vv
/-\’-

o
[
-
N
(o]
Nt

QHQML«H:{
&
nnwmol un
e
O]

T3 = {TONE(51)=X(I))%SLOPE+E(M,I)
LTWO ()1)
I +

SLOFE = (E(M.J)-E(H I))/.02
TEST4 = (TTWO(5i)-X!{T) ) SLOPE+E(M,I)
TEST3 = (-A)+PONE( 51 b TEST 3+ PTWO( o1 M TESTL
DO 99 K = 1,51
K= N -1
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1
=

-3
+ 20N+
(94
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o
&
+3
8]
fln
—

TESTL = X(K)&«R(1,1)=(1.0-X(K))*R(1,2)+PAST

I =141
J =1
SLOF: E(M,J)=E(¥,I))/.02
PAST1 TONE(K) - X(I))XSLCPE+Z(M,I)
I = LTWS(X)
J =1
SLOPE E(M,J)=E(M,Ij)/. 02
: TTWO(K)=X(I))&SLCPE+E(M,I)
PAST = PONE(K)®PAST1 + PTWO(K)®PAST?2
}=(1
TESTZ = («X(K))#x(2,1) + (1.0 = X(K))®R(2,2)+ PAST
IF(TEST1 - TEST3) 63,65.65
CONTINUE
L=1I1-1

IF(TEST: - TEST3) 62,64,6L
E(N,K) = TEST1
DO 101 I = 1,11

5 FOBMAT(Z7H EXPECTED EARNINGS AT LEVEL,2X,J2)

PRINT 103,(E(I,J),J = 1,50)
FORMAT(10F10.5)
CALL EXIT

IF(TEST1-TEST2) 61,62,6
E(N,K) = TEST2
G0 TO 99
E(N,K) = TEST?
GC TO 99
CONTINUE
PRINT 5, L
END
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APPENDIX I1I
COMPUTER SCLUTJON FOR T CPTI ST Y STAT- POLICY

In Chapter I1II an algorithm is presented which allows
determination of certailn steady state pollcles assoclated
with partially observa®le Markov prccesses, That method is
used Iln thls program on the general two state proccss where

the decision-maker has avallable the optlons oft

1) estimate underlying Markov state 1 as the current
Markov state and act accordingly.

<) estlmate underlyilng Markov state 2 as the current
Markov state and act accordingly.

3) use verfect information channel at added cost,

For the two state process the state of knowledge «

vector, s(nj), is fully specified by sl(n) since sz(n)=1-sl(n).

The program breaks the continuous sl(n) into 51 peints 1

and determines the optimal policy and associated relative

values and gain, The declision is optimal based on the
criterion of maximlzing expected utllity of rewards. Figure 1C
of Chapter III very adequately serves as a flow grapn of this

Progranm.
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PROGHAM LISTING - "POLICY"

CIMENSION NA(52),K(51),P(153,51),a(3,51),V(51),A(51,51),B(51)
COMMON NA,K,P,Q,V,A,R
INITIAL POLICY VECTOR

NA(52) = 153
DO1 I =1,20
K(1) = 2

DC % I = 21,25
K{I) =3

DO 3 1 = 26,51
K(I) =1

FORMAT (11F9.5)
FOEMAT (6F9,5)
FORM Q VECTOR
FORMAT (2F6, 3)
FORMAT (7F6.3)
DO 53J = 1,51
READ &4, Q(1,J),Q{2,J)
DO 5 J = 1,51
Q(3,J) = 0.0
FORMAT (2H Q)
FORM +P VECTOR
FORMAT (U4F6,5)

DO 7 I = 1,153

DO 7 J = 1,51

P(I,J) = 0.0

FOHMAT (17F4,3)

DO 200 1 = 1,153

READ 9, (P(I,J),J = 1,51)
FORM NA(I)

NA(l) = ©

DO 10 I = 2,51
J=1+«1

NA(I) = NA(J) + 3
FORM A AND B VECTORS
V(s5l) = 0,0

DO 11 I = 1,51

L = K(I)

LL = NA(I) + K(I)
B(I) = Q(L,I)

A(I,51) = 1,0

DO 11 J = 1,50

A(IQJ) = (-P(LL!J))
DO 12 I = 1,50

A(I,I) = A(I,I) +1.0
CALL LINEAR EQN SUBROUTINE
SCALE = 1,0

FORMAT (3F9.5)
¥ = XSIMiQF(51,51,1,A,B,SCALE,V)
PULL RESULTS
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13 DC
16 V(
ITER =1

DC 166 1 = 1,51
TEMP = -93G99,
NTEMP = C

IMIN = NA(I) +
IMAX = NA(I + 1)

DG 17 M = IMIN,IMAA

KALT = ¥ - NA(I)
TE8T = R(KALT,I)
DC 1% J = 1,51
15 TLST = TEST + P(M,J)wV(J)

IF{T¥3T - TEMF) 17,7C,71
°1 NTEMP = T

GO TO 17
2C IF(NTEMP - K(I)) 21,17,21
17 CONTINUE
IF(NTEMP = K(I)) 22,100,22
22 ITER = &
K(I) = NTEMP
100 CONTINUE
GO TO (1¢1,102),ITER
PRINT OUTPUT
101 PHINT 23
23 FOAMAT (164 DECISION VECTOR)
24 FORMAT (511I2)
PRINT 24, (K(I),I=1,51)
PRINT 25
26 FOHMAT (F39.5)
PRINT 26, G
25 FORMAT (16H GAIN AND VALUES)
76 FOBKAT (11F9.5)
71 FORMAT (7F9.5)

PRINT 7C, (V(1),I = 1,11)

PRINT 7C, (V(I),I = 12,22)
PRINT 76, (V{(I),I = 2&,23)
PRINT 70, (V(I),I = 3L,44)
PRINT 71, (V(1),I = &5,51)

GO TO 103
14 PRINT 15
15 FORMAT (23H NO SOLUTION FOR VALUES)
103 CONTINUE
CALL EXIT
END
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