Parameter plane techniques for feedback control systems

Nutting, Roger M.

Monterey, California: U.S. Naval Postgraduate School

http://hdl.handle.net/10945/12804
PARAMETER PLANE TECHNIQUES FOR
FEEDBACK CONTROL SYSTEMS

ROGER M. NUTTING
PARAMETER PLANE TECHNIQUES
FOR FEEDBACK CONTROL SYSTEMS

by

Roger M. Nutting
Lieutenant, United States Navy

Submitted in partial fulfillment of
the requirements for the degree of

MASTER OF SCIENCE
IN
ELECTRICAL ENGINEERING

United States Naval Postgraduate School
Monterey, California

1965
PARAMETER PLANE TECHNIQUES
FOR FEEDBACK CONTROL SYSTEMS

by

Roger M. Nutting

This work is accepted as fulfilling
the thesis requirements for the degree of
MASTER OF SCIENCE
IN
ELECTRICAL ENGINEERING
from the
United States Naval Postgraduate School
ABSTRACT

Parameter plane techniques were first introduced in an IEEE paper dated November 4, 1964. The paper dealt mainly with the theory of the parameter plane whereby the roots of a polynomial could be determined graphically in terms of two parameters which may appear linearly in any of the coefficients.

In this text, parameter plane techniques are applied to the compensation of linear feedback control systems by both graphical and analytical means. Parameter plane equations are extended to include parameter products and three parameters. An attempt is made to show the complementary roles of the parameter plane and root locus.

The writer wishes to express his appreciation for the assistance and guidance given him by Dr. G. J. Thaler of the U. S. Naval Postgraduate School in this investigation.
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>Derivation of basic parameter plane equations</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>Application of the parameter plane to the compensation of linear continuous systems</td>
<td>8</td>
</tr>
<tr>
<td>3-1</td>
<td>Algebraic solution</td>
<td>8</td>
</tr>
<tr>
<td>3-1-1</td>
<td>Feedback compensation</td>
<td>8</td>
</tr>
<tr>
<td>3-1-2</td>
<td>Cascade compensation</td>
<td>22</td>
</tr>
<tr>
<td>3-1-3</td>
<td>Combination cascade and feedback compensation</td>
<td>27</td>
</tr>
<tr>
<td>3-2</td>
<td>Dominancy of the specified roots</td>
<td>39</td>
</tr>
<tr>
<td>3-2-1</td>
<td>A method of employing a third parameter</td>
<td>40</td>
</tr>
<tr>
<td>3-2-2</td>
<td>Application of the dominancy technique</td>
<td>43</td>
</tr>
<tr>
<td>3-3</td>
<td>Some sketching techniques</td>
<td>56</td>
</tr>
<tr>
<td>3-3-1</td>
<td>Table of symbols</td>
<td>56</td>
</tr>
<tr>
<td>3-3-2</td>
<td>Basic derivations</td>
<td>58</td>
</tr>
<tr>
<td>3-4</td>
<td>Graphical solutions on the parameter plane</td>
<td>79</td>
</tr>
<tr>
<td>3-4-1</td>
<td>Advantages of the graphical solution</td>
<td>79</td>
</tr>
<tr>
<td>3-4-2</td>
<td>Some examples of the graphical solution</td>
<td>79</td>
</tr>
<tr>
<td>4</td>
<td>Miscellaneous aspects of the parameter plane</td>
<td>91</td>
</tr>
<tr>
<td>4-1</td>
<td>Some general comments</td>
<td>91</td>
</tr>
<tr>
<td>4-2</td>
<td>Normalized third order curves</td>
<td>93</td>
</tr>
<tr>
<td>4-2-1</td>
<td>Discussion of the normalized curves</td>
<td>93</td>
</tr>
<tr>
<td>4-2-2</td>
<td>Derivation of the normalized transformations</td>
<td>93</td>
</tr>
<tr>
<td>4-2-3</td>
<td>Application of the method</td>
<td>99</td>
</tr>
<tr>
<td>4-3</td>
<td>Normalized parameter plane curves of higher order</td>
<td>107</td>
</tr>
<tr>
<td>4-4</td>
<td>Three dimensional parameter plane space</td>
<td>108</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4-4-1</td>
<td>Discussion</td>
<td>108</td>
</tr>
<tr>
<td>4-4-2</td>
<td>Example problem</td>
<td>108</td>
</tr>
<tr>
<td>4-5</td>
<td>Characteristic equations involving product terms of alpha and beta</td>
<td>111</td>
</tr>
<tr>
<td>4-5-1</td>
<td>Basic derivations</td>
<td>111</td>
</tr>
<tr>
<td>4-6</td>
<td>Design of double section cascade compensators</td>
<td>115</td>
</tr>
<tr>
<td>4-6-1</td>
<td>Discussion</td>
<td>115</td>
</tr>
<tr>
<td>4-6-2</td>
<td>Design of a double section compensator on the basis of given single section parameter values</td>
<td>115</td>
</tr>
<tr>
<td>4-6-3</td>
<td>Design of a double section compensator using general parameter plane methods</td>
<td>118</td>
</tr>
<tr>
<td>5</td>
<td>Root locus digital computer programs</td>
<td>124</td>
</tr>
<tr>
<td>5-1</td>
<td>A program to compute the coefficients of a polynomial from the given factors</td>
<td>125</td>
</tr>
<tr>
<td>5-2</td>
<td>A program to plot root loci from given characteristic equation in polynomial form</td>
<td>128</td>
</tr>
<tr>
<td>6</td>
<td>Parameter plane digital computer programs</td>
<td>133</td>
</tr>
<tr>
<td>6-1</td>
<td>A program to plot parameter plane curves with or without a third parameter</td>
<td>134</td>
</tr>
<tr>
<td>6-2</td>
<td>A program to plot parameter plane curves from characteristic equations involving product terms of alpha and beta</td>
<td>146</td>
</tr>
<tr>
<td>7</td>
<td>The complementary roles of the parameter plane and root locus</td>
<td>157</td>
</tr>
<tr>
<td>8</td>
<td>Conclusions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>176</td>
</tr>
<tr>
<td></td>
<td>Appendices</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Tables of Chevishev functions</td>
<td></td>
</tr>
<tr>
<td>A.</td>
<td>$T_k\left(\frac{j}{\omega} \right)$</td>
<td>173</td>
</tr>
<tr>
<td>B.</td>
<td>$U_k\left(\frac{j}{\omega} \right)$</td>
<td>174</td>
</tr>
<tr>
<td>II</td>
<td>The R.C. network as a lag-lead compensator</td>
<td>175</td>
</tr>
<tr>
<td>Figure</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3-1</td>
<td>A feedback compensated system</td>
<td>9</td>
</tr>
<tr>
<td>3-2</td>
<td>A third order system with tachometer and acceleration feedback</td>
<td>12</td>
</tr>
<tr>
<td>3-3</td>
<td>A third order system with tachometer feedback</td>
<td>16</td>
</tr>
<tr>
<td>3-4</td>
<td>A third order system with acceleration feedback</td>
<td>18</td>
</tr>
<tr>
<td>3-5</td>
<td>A third order system with tachometer and acceleration feedback not enclosing an amplifier</td>
<td>20</td>
</tr>
<tr>
<td>3-6</td>
<td>A cascade compensated system</td>
<td>23</td>
</tr>
<tr>
<td>3-7</td>
<td>A third order system with single section cascade compensation</td>
<td>28</td>
</tr>
<tr>
<td>3-8</td>
<td>A feedback and cascade compensated system</td>
<td>29</td>
</tr>
<tr>
<td>3-9</td>
<td>A third order cascade and tachometer feedback compensated system</td>
<td>35</td>
</tr>
<tr>
<td>3-10</td>
<td>Feedback compensation enclosing a cascade compensator</td>
<td>37</td>
</tr>
<tr>
<td>3-11</td>
<td>A second order system with single section cascade compensation</td>
<td>45</td>
</tr>
<tr>
<td>3-12</td>
<td>A fourth order system with tachometer and acceleration feedback</td>
<td>47</td>
</tr>
<tr>
<td>3-13</td>
<td>A fourth order system with single section cascade compensation</td>
<td>51</td>
</tr>
<tr>
<td>3-14</td>
<td>Third order root locus plot</td>
<td>54</td>
</tr>
<tr>
<td>3-15</td>
<td>Zeta equals 0 and .5 curves for a second order system</td>
<td>68</td>
</tr>
<tr>
<td>3-16</td>
<td>Zeta equals 0 and .5 curves for a third order system</td>
<td>69</td>
</tr>
<tr>
<td>3-17</td>
<td>Zeta equals 0 and .5 curves for a fourth order system</td>
<td>70</td>
</tr>
<tr>
<td>3-18</td>
<td>Zeta equals 0 and .5 curves for a fifth order system</td>
<td>71</td>
</tr>
<tr>
<td>3-19</td>
<td>A third order system with position feedback</td>
<td>73</td>
</tr>
<tr>
<td>3-20</td>
<td>A third order cascade compensated system</td>
<td>75</td>
</tr>
<tr>
<td>3-21</td>
<td>A fourth order system with position feedback</td>
<td>77</td>
</tr>
<tr>
<td>3-22</td>
<td>A fourth order system with tachometer and acceleration feedback</td>
<td>81</td>
</tr>
<tr>
<td>3-23</td>
<td>Parameter plane curves for the system of figure 3-22</td>
<td>83</td>
</tr>
<tr>
<td>Figure</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3-24</td>
<td>A third order system with position feedback</td>
<td>85</td>
</tr>
<tr>
<td>3-25</td>
<td>Parameter plane curves for the system of figure 3-24</td>
<td>87</td>
</tr>
<tr>
<td>3-26</td>
<td>A third order system with cascade compensation</td>
<td>88</td>
</tr>
<tr>
<td>3-27</td>
<td>Parameter plane curves for the system of figure 3-26</td>
<td>90</td>
</tr>
<tr>
<td>4-1</td>
<td>Normalized $B_0 - B_1$ curves</td>
<td>94</td>
</tr>
<tr>
<td>4-2a</td>
<td>Normalized $B_1 - B_2$ curves (large scale)</td>
<td>97</td>
</tr>
<tr>
<td>4-2b</td>
<td>Normalized $B_1 - B_2$ curves (small scale)</td>
<td>98</td>
</tr>
<tr>
<td>4-3</td>
<td>A third order system with tachometer feedback</td>
<td>101</td>
</tr>
<tr>
<td>4-4</td>
<td>A third order system with tachometer and acceleration feedback</td>
<td>103</td>
</tr>
<tr>
<td>4-5</td>
<td>A second order system with cascade compensation</td>
<td>105</td>
</tr>
<tr>
<td>4-6</td>
<td>A third order system with tachometer feedback enclosing a cascade compensator</td>
<td>110</td>
</tr>
<tr>
<td>4-7</td>
<td>Parameter plane curves for the system of figure 4-6</td>
<td>112</td>
</tr>
<tr>
<td>4-8</td>
<td>A third order system with double section cascade compensation</td>
<td>119</td>
</tr>
<tr>
<td>4-9</td>
<td>Constant zeta and omega curves for the system of figure 4-8</td>
<td>121</td>
</tr>
<tr>
<td>4-10</td>
<td>Constant sigma curves for the system of figure 4-8</td>
<td>122</td>
</tr>
<tr>
<td>7-1</td>
<td>A fifth order feed-forward compensated system (initial)</td>
<td>161</td>
</tr>
<tr>
<td>7-2</td>
<td>Parameter plane curves for the system of figure 7-1</td>
<td>162</td>
</tr>
<tr>
<td>7-3</td>
<td>A root locus for the system of figure 7-1</td>
<td>163</td>
</tr>
<tr>
<td>7-4</td>
<td>A root locus for the system of figure 7-4</td>
<td>164</td>
</tr>
<tr>
<td>7-5</td>
<td>Root locus for the basic system of figure 7-1 with tachometer feedback added</td>
<td>165</td>
</tr>
<tr>
<td>7-6</td>
<td>A fifth order feed-forward compensated system (final)</td>
<td>166</td>
</tr>
<tr>
<td>7-7</td>
<td>Root locus for the system of figure 7-6</td>
<td>167</td>
</tr>
<tr>
<td>7-8</td>
<td>Root locus for the system of figure 7-6</td>
<td>168</td>
</tr>
<tr>
<td>7-9</td>
<td>Parameter plane curves for the system of figure 7-6</td>
<td>169</td>
</tr>
<tr>
<td>Figure</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>7-10</td>
<td>Transient response for the compensated system of figure 7-6</td>
<td>170</td>
</tr>
<tr>
<td>II-a.</td>
<td>Typical lead network</td>
<td>175</td>
</tr>
<tr>
<td>II-b.</td>
<td>Typical lag network</td>
<td>175</td>
</tr>
<tr>
<td>Number</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------</td>
<td>------</td>
</tr>
<tr>
<td>3-1</td>
<td>Error coefficients</td>
<td>30</td>
</tr>
<tr>
<td>3-1</td>
<td>List of symbols</td>
<td>57</td>
</tr>
</tbody>
</table>
1. Introduction.

The analysis and synthesis of feedback control systems, or the compensation of same, can be effected by three general methods. The first of these can be called the integral criteria. Here a cost function, in which is inherent the system design specifications, is minimized with respect to certain variable system parameters. This method is mainly applied to the statistical properties of feedback control systems. The second method is the Bode frequency response method whereby the system's open loop transfer function is manipulated to obtain the desired system response. This method has its inherent weaknesses, such as difficulty of application to non-unity feedback control systems, difficulty in interpreting closed loop transient response in terms of open loop frequency response, difficulty of varying more than one parameter, and the shortcomings inherent in the approximations which are required when applying the frequency response method to compensation problems. Third are the algebraic methods. Under this heading can be listed the root locus method. The shortcomings of this widely known and widely used method are familiar to its users. Its greatest disadvantages lie in plotting the actual locus of roots\(^1\), and in the fact that only one parameter can be varied conveniently. In references (1) and (2), Ross-Warren and Pollak respectively developed algebraic methods of cascade compensation using root locus techniques, but the inherent disadvantages of the root locus were still present. In reference (3) Mitrovic developed an algebraic and graphical

\(^{1}\text{A computer program is introduced in section (5) which makes this disadvantage less significant.}\)
method of obtaining the roots of a polynomial in terms of two variable parameters. Later in reference (4) Ohta developed some additional sketching techniques which greatly facilitated the plotting of the Mitrovic curves. In references (5) and (6) Choe and Hyon respectively applied and extended the Mitrovic method to the compensation of linear continuous feedback control systems. The inherent disadvantage of the Mitrovic method is that the variable parameters may appear in no more than two coefficients of the characteristic equation, which reduces the flexibility of the method. In reference (7) Siljak introduced a method of obtaining the roots of a polynomial in terms of two variable parameters which can appear in any and all the coefficients of the polynomial. In this text, Siljak's method is applied and extended to the compensation of linear continuous feedback control systems. General methods of compensation will be developed and an attempt will be made to relate the root locus, and the parameter plane as a set of complementary techniques which when applied in conjunction with one another represent the most adequate tool to date for solving the problem of compensation of linear feedback control systems.

The relationship between being able to place the roots of a polynomial at specified locations in the S-plane and the compensation of feedback control systems is as follows. The basic idea is that any feedback control system, including any added compensators which may contain variables, can be reduced to or can be represented by a ratio of two polynomials which is the closed loop transfer function. Well known methods are available whereby a specified system response, in terms of overshoot, bandwidth, settling time, steady state accuracy, etc., can be
obtained by placing a pair of complex conjugate roots of the characteristic equation at a specified location in the S-plane, while ensuring that the real part of this complex root pair (called the dominant roots) is smaller in magnitude than the real parts of the remaining roots of the characteristic equation. The problem of compensation therefore reduces itself to one of moving the roots of the characteristic equation to the desirable locations. The usefulness of the parameter plane to achieve this will soon become apparent.
2. Derivation of the basic parameter plane equations.

A feedback control system's characteristic equation can be represented as a polynomial of the following form:

\[f(S) = \sum_{k=0}^{m} a_k S^k = 0 \]

(2-1)

Where the coefficients \(a_k (k = 0, 1, ..., m) \) are real, and \(S \) is the complex variable \(S = \sigma + jw = -\bar{\zeta} w + jw \sqrt{1 - \bar{\zeta}^2} \).

(2-2)

\(\bar{\zeta} w \) is the relative damping coefficient. It is noted in reference (7) that \(S^k \) may be represented by the following:

\[S^k = w^k (T_k(-\bar{\zeta}) \pm j \sqrt{1 - \bar{\zeta}^2} U_k(-\bar{\zeta})) \]

(2-3)

where \(T_k(-\bar{\zeta}) = (-1)^k T_k(\bar{\zeta}) \) and \(U_k(-\bar{\zeta}) = (-1)^{k+1} U_k(\bar{\zeta}) \). \(T_k(\bar{\zeta}) \) and \(U_k(\bar{\zeta}) \) are Chebishev functions of the first and second kind respectively. Values of \(\zeta \) will be considered such that \(0 \leq \bar{\zeta} \leq 1 \) and values of \(w \) such that \(0 \leq w \leq \infty \). The values of \(T_k \) and \(U_k \) are tabulated in Appendix I for various values of \(\zeta \). But more useful to digital computer employment, they can be obtained from the following recursion relations:

\[T_k + 1(\bar{\zeta}) - 2 T_k(\bar{\zeta}) + T_{k-1}(\bar{\zeta}) = 0 \]

(2-5)

\[U_k + 1(\bar{\zeta}) - 2 U_k(\bar{\zeta}) + U_{k-1}(\bar{\zeta}) = 0 \]

Here \(T_0(\bar{\zeta}) = 1, T_1(\bar{\zeta}) = \bar{\zeta}, U_0(\bar{\zeta}) = 0, U_1(\bar{\zeta}) = 1 \)

Substituting equation (2-3) into (2-1) and setting the real and imaginary parts to zero independently one obtains:
\[
\sum_{k=0}^{m} a_k w^k T_k (\gamma) = 0
\]
\[
\sum_{k=0}^{m} a_k w^k U_k (\gamma) = 0
\] (2-6)

Employing equations (2-5) one obtains from equations (2-6):
\[
\sum_{k=0}^{m} (-1)^k a_k w^k U_{k-1} (\gamma) = 0
\]
\[
\sum_{k=0}^{m} (-1)^k a_k w^k U_k (\gamma) = 0
\] (2-7)

Consider the coefficients \(a_k \) of the characteristic equation (2-1) as linear functions of the variable system parameters as follows:
\[
a_k = b_k \alpha + c_k \beta + d_k
\] (2-8)

Employing the above relation for \(a_k \), equations (2-7) give the following relations:
\[
\alpha B_1 + \beta C_1 + D_1 = 0
\]
\[
\alpha B_2 + \beta C_2 + D_2 = 0
\] (2-9)

Where:
\[
B_1 = \sum_{k=0}^{m} (-1)^k b_k w^k U_{k-1}
\]
\[
B_2 = \sum_{k=0}^{m} (-1)^k b_k w^k U_k
\]
\[
C_1 = \sum_{k=0}^{m} (-1)^k c_k w^k U_{k-1}
\]
\[
C_2 = \sum_{k=0}^{m} (-1)^k c_k w^k U_k
\] (2-10)
\[
D_1 = \sum_{k=0}^{m} (-1)^k d_k w^k U_{k-1}
\]
\[
D_2 = \sum_{k=0}^{m} (-1)^k d_k w^k U_k
\]

Since equations (2-9) are two linear equations in the two unknowns \(\alpha \) and \(\beta \), Cramer's rule can be applied to obtain:
\[
\alpha = \frac{C_1 D_2 - C_2 D_1}{B_1 C_2 - B_2 C_1}
\]
\[
\beta = \frac{B_2 D_1 - B_1 D_2}{B_1 C_2 - B_2 C_1}
\] (2-11)

Equations (2-11) are now functions of \(\zeta \) and \(w \). Hence by fixing \(w \) and varying \(\zeta \) or by fixing \(\zeta \) and varying \(w \), the constant \(w \) or constant
zeta S plane contours respectively can be mapped into the real domain of the alpha beta plane or parameter plane.

In reference (7) the following relationships are utilized:

\[S^k = P_k + jw \sqrt{1- \beta^2} Q_k \]

\[P_k + 1 + 2w P_k + w^2 P_{k-1} = 0 \quad (2-12) \]

\[Q_k + 1 + 2w Q_k + w^2 Q_{k-1} = 0 \]

\[P_0 = 1, P_1 = -w \beta, Q_0 = 0, Q_1 = 1 \]

\[P_k = -w \beta Q_k - w^2 Q_{k-1} \]

Here \(P_k \) and \(Q_k \) are related to the Chebyshev functions by

\[P_k = w^k T_k(-\beta) = (-1)^k w^k T_k(\beta) \quad (2-13) \]

\[Q_k = w^{k-1} U_k(-\beta) = (-1)^{k+1} w^{k-1} U_k(\beta) \]

By using equations (2-12), and (2-13), one obtains proceeding as before:

\[\sum_{k=0}^{m} a_k Q_{k-1} = 0 \quad \sum_{k=0}^{m} a_k Q_k = 0 \quad (2-14) \]

Employing equations (2-8), (2-14), along with Cramer's rule one again obtains equations (2-11) where the following expressions now apply:

\[B_1 = \sum_{k=0}^{m} b_k Q_{k-1} \quad B_2 = \sum_{k=0}^{m} b_k Q_k \]

\[C_1 = \sum_{k=0}^{m} c_k Q_{k-1} \quad C_2 = \sum_{k=0}^{m} c_k Q_k \quad (2-15) \]

\[D_1 = \sum_{k=0}^{m} d_k Q_{k-1} \quad D_2 = \sum_{k=0}^{m} d_k Q_k \]
Equations (2-11) and (2-15) are useful for mapping constant zeta-omega curves from the S-plane into the parameter plane. As will be seen later these curves play an important role in dominance considerations.

If the complex variable S is substituted in equation (2-1) by letting

\[S = -\sigma \]

where \(\sigma \) corresponds to values of S along the real axis, then in accordance with equations (2-8), the characteristic equation (2-1) becomes:

\[
\alpha \sum_{k=0}^{m} (-1)^k b_k \sigma^k + \beta \sum_{k=0}^{m} (-1)^k c_k \sigma^k + \sum_{k=0}^{m} (-1)^k d_k \sigma^k = 0 \tag{2-17}
\]

The above represents a straight line in the alpha-beta plane for a given value of sigma. Hence a point on the real axis in the S-plane maps into a straight line in the alpha-beta plane. Also for a given value of alpha, beta, and sigma which satisfies equation (2-17), then the characteristic equation (2-1) must have a real root at minus sigma. For the constant zeta and omega curves as defined previously, if for certain values of alpha and beta, say for a value obtained from equations (2-11) with a certain value of zeta and omega, then the characteristic equation (2-1) has a pair of complex roots at \(S = -\sigma \pm jw\sqrt{1 - \frac{1}{\beta^2}} \).

It is important to note that by applying equations (2-11) and (2-17) one can, for a specified value of zeta, omega, and sigma, compute the value of alpha and beta so that the characteristic equation will have a pair of complex roots at say \(S = -\sigma_{1} \pm jw_{1}\sqrt{1 - \frac{1}{\beta_{1}^2}} \), and a real root at \(S = -\sigma_{1} \). The m-3 remaining roots of the characteristic equation can then be determined by dividing out the three known or specified roots. This method where zeta, omega, and sigma, or just zeta and omega are specified, and the computations for alpha and beta are done algebraically, will be referred to as the algebraic parameter plane solution.
To solve the problem in general, for all values of \(\zeta, \omega, \) and \(\sigma \), it is necessary to plot a family of parameter plane curves for various values of \(\zeta, \omega, \sigma \), and if desired, \(\zeta-\omega \). On the resulting parameter plane plot one can, by picking an M point or operating point, graphically read from the curves the values of the \(m \) roots corresponding to the \(m^{\text{th}} \) order characteristic equation. This latter method will be called the graphical parameter plane solution.

The algebraic solution has the advantage that the labor of plotting the curves can be avoided, but it has the disadvantage that without the curves it is sometimes difficult to pick the most optimum value of \(\zeta \) and \(\omega \) so as to ensure dominance and still meet the system specifications. The graphical solution has the advantage that one has a picture of the way the roots of the characteristic equation move around in the \(S \)-plane as \(\alpha \) and \(\beta \) are varied. This enables one to pick the values of \(\alpha \) and \(\beta \) corresponding to the best values of \(\zeta, \omega, \sigma, \) and \(\zeta-\omega \) for all the roots of the characteristic equation. This latter feature of the parameter plane points out a strong argument for trying to obtain the parameter plane curves. If a digital computer is not available then by using the relationships derived in section (3-3) under sketching techniques, along with a desk calculator or slide rule, the curves can be plotted with some labor. Under these circumstances it is questionable whether the algebraic or the graphical solution would be better. Which one is used is a matter of personal preference.

\(^2\)The computer program presented in section (6-1) is most helpful in reducing this labor.
3. Application of the parameter plane to the compensation of linear continuous systems.

3-1. Algebraic solution.

In this section it will be assumed that the system performance specifications have been given in terms of placing a pair of complex roots at a specific value of zeta and omega, say \(\zeta_1 \) and \(\omega_1 \), with the error coefficient \(K_e \) being greater than or equal to a specified value. If the specified location of the roots is such that after computation of the necessary value of alpha and beta, the remaining roots of the characteristic equation are located so that the specified roots are not a dominant pair, then either a different value of zeta and omega will have to be used (possibly at the sacrifice of some measure of the system performance), or a different method of compensation will have to be used.

In section (3-2) a method is presented whereby the dominancy specification can be met by introducing a third parameter.

3-1-1. Feedback compensation.

Figure (3-1) represents a unity feedback control system. In order to meet the system specifications a feedback compensator \(H \) will have to be used. Let

\[
G = \frac{K}{e(S)} = \frac{K}{s^n + e_{m-1}s^{m-1} + \ldots + e_L}
\]

(3-1)

Where \(K \) is the forward path gain which can be varied and \(e(S) \) is a polynomial in \(S \) representing the poles of the open loop transfer function of the uncompensated system. The letter \(L \) in equation (3-1) corresponds to the system type. For a type 0 system, \(L = 0 \), for type 1, \(L = 1 \), for type 2, \(L = 2 \), etc. By definition, the error coefficient is given as follows:
\[K_c = \lim_{S \to 0} S L G_{cc} \]

(3-2)

Here \(G_{cc} \) is the open loop transfer function of the compensated system.

Sometimes, as for example in reference (8) the error coefficient is designated as \(K_p \) for a type zero system, \(K_v \) for a type one system, and \(K_a \) for a type two system.

Tachometer plus acceleration feedback.

Here one lets

\[H = K_t S + K_a S^2 \]

(3-3)

The resulting compensated system's characteristic equation becomes:

\[e(S) + K + (K_t S + K_a S^2) = 0 \]

(3-4)

or by expanding \(e(S) \), equation (3-4) becomes:

\[S^m + e_m S^{m-1} + \ldots + (e_2 + K K_a) S^2 + (e_1 + K K_t) S + e_o + K = 0 \]

(3-5)

where \(L \) is taken to be zero for a type zero system which one can consider as the most general case. The following results also apply to a type one system if \(e_o \) is set to zero, or to a type two system if both \(e_o \) and \(e_1 \) are set to zero, etc. From equations (3-2) and (3-4) the error coefficient becomes:

\[K_e = \lim_{S \to 0} \frac{S^o K}{e(S) + K (K_t S + K_a S^2)} = \frac{K}{e_o} \]

(3-6)

or if the uncompensated system is type one:

\[K_e = \frac{K}{e_1 + K K_t} \]

(3-7)

and if the uncompensated system is type two:

\[K_e = \frac{K}{K K_t} \]

(3-8)

Note: If the uncompensated system is type two, the compensated system
would be type one if tachometer feedback or tachometer plus acceleration feedback is used.

In the compensated system's characteristic equation (3-5) let alpha = KK_a and beta = KK_f. Equation (3-5) then becomes:

\[S^m + c_{m-1}S^{m-1} + \ldots + (c_2 + \alpha)S^2 + (e_1 + \beta)S + e_o + K = 0 \]

(3-9)

Recalling from equation (2-8) that in general the coefficients of the characteristic equation are of the form:

\[a_k = b_k \alpha + c_k \beta + d_k, \text{ and correspondingly in equation (3-9), } m = k, \text{ one finds that:} \]

\[d_o = e_o + k, \quad b_o = c_o = 0, \quad d_1 = e_1, \quad b_1 = 0, \quad c_1 = 1, \quad d_2 = e_2, \quad b_2 = 1, \]
\[c_2 = 0, \quad e_{m-1} = d_{k-1}, \quad b_{k-1} = 0, \quad c_{k-1} = 0, \text{ etc.} \]

Then from equations (2-10) one obtains:

\[B_1 = (-l)^2 w^2 U_1 = w^2 \quad \quad B_2 = w^2 U_2 \]
\[C_1 = -wU_o = 0 \quad \quad C_2 = -wU_1 = -w \]

(3-10)

\[D_1 = \sum_{k=0}^{m} (-l)^k d_k w^k U_{k-1} \quad \quad D_2 = \sum_{k=0}^{m} (-l)^k d_k w^k U_k \]

Use was made of the fact that \(U_{-1} = -1, \) \(U_o = 0, \) and \(U_1 = 1 \) (see appendix I-B). Using the expressions for alpha and beta as given in equations (2-11) along with the above information the following relations evolve:

\[\alpha = \frac{C_1 D_2 - C_2 D_1}{B_1 C_2 - B_2 C_1} = \frac{w \sum_{k=0}^{m} (-l)^k d_k w^k U_{k-1}}{-w^3} = -\sum_{k=0}^{m} (-l)^k d_k w^{k-2} U_{k-1} \]

(3-11)

\[\beta = \sum_{k=0}^{m} (-l)^k d_k w^{k-1}(U_{k-2} U_{k-1}) \]

At this point alpha and beta may be linear functions of \(K, \) the forward path gain, and one can use the steady state error specification to put \(K \) in terms of alpha and or beta. Since zeta and omega were assumed to be specified, then equations (3-11) can be used to solve for alpha and
Example 3-1

The system given in figure (3-2) is to be compensated using tachometer plus acceleration feedback. The system specifications are as follows:

1. Complex roots at $\zeta = 0.7$, $\omega = 10$.
2. $K_e \geq 6$, not to be reduced.

Solution:

From equation (3-2):

$$K_e = \lim_{S \to 0} S^L G_{cc} = \frac{K}{2 + KK_t} \geq 6$$

or $K \geq 12 + 6KK_t$. The compensated system's characteristic equation is:

$$S^3 + S^2(3 + KK_a) + S(2 + KK_t) + K = 0 \quad (3-12)$$

Letting $\alpha = KK_a$ and $\beta = KK_t$ equation (3-12) becomes:

$$S^3 + S^2(3 + \alpha) + S(2 + \beta) + K = 0 \quad (3-12a)$$

Employing equations (3-10) the following can be obtained:

$$B_1 = 100 \quad C_1 = 0$$
$$D_1 = -1100-K \quad B_2 = 140$$
$$C_2 = -10 \quad D_2 = -1120$$

Using equations (2-11) one obtains:

$$\alpha = \frac{10(-1100-K)}{-1000} \quad \beta = \frac{140(-1100-K) + 56000}{-1000} \quad (3-13)$$

Note: The preceding expressions could have been arrived at directly by employing equations (3-11). From the steady state accuracy specifications it is necessary that:

$$K \geq 12 + \beta, \text{ hence let } K = 12 + \beta \quad (3-14)$$

13
Using equation (3-14) and (3-13) \(\beta \) is found to be:
\[
\beta = 140(-1100-12-6 \frac{\alpha}{\beta}) + 56000 = 625
\]

Therefore \(K = 12 + 6(525) = 3762 \) and \(\alpha = 0.01(1100 + 3762) = 48.6 \)

Since \(\alpha = KK_a \) then \(K_a = \frac{48.6}{3762} = 0.129 \)

Also from \(\beta = KK_t \) it is seen that \(K_t = 0.166 \).

The compensated system's characteristic equation becomes:
\[
S^3 + 51.62S^2 + 627S + 3762 = 0
\] \hspace{1cm} (3-15)

Now \(\zeta = 0.7 \) and \(\omega = 10 \) corresponds to \(S^2 + 14S + 100 \). When this quadratic is divided out of equation (3-14), the remainder is \(S + 37.62 \). Hence \(\zeta-\omega \) of the desired roots = \(7 << 37.62 \), and the complex roots are dominant so the problem is solved.

Example 3-2

The problem presented in example (3-1) will now be solved by introducing the error specifications at the beginning of the solution instead of at the end. Equation (3-12) is as follows:
\[
S^3 + S^2(3 + KK_a) + S(2 + KK_t) + K = 0
\]

Again let \(\alpha = KK_a \) and \(\beta = KK_t \). Then from the steady state error requirement one obtains:
\[
K = 12 + 6\beta
\] \hspace{1cm} (3-16)

Substituting this expression for \(K \) into equation 3-12 results in:
\[
S^3 + S^2(3 + \alpha) + S(2 + \beta) + 12 + 6 \beta = 0
\]

Therefore \(b_0 = 0, c_o = 6, d_o = 12, \) and all other coefficients are as before. Hence from equations (3-10) it is seen that:
\[
b_1 = 100, c_1 = -6, d_1 = -1112, b_2 = 140, c_2 = -10, d_2 = -560
\]

and \(\alpha = -7760 -160 = 48.6 \) \(\beta = 625 \) \(K = 3762 \)
The above result agrees with example (3-1).

Note: Equations (3-11) could not be used here since they are based on applying the accuracy specifications at the end.

Tachometer feedback only.

Let \(H = K_t S \)

\[m + s \bar{e}_{m-1} + e_2 s^2 + (e_1 + \epsilon) s + o_s + \beta = 0 \]

(3-17)

The characteristic equation of the compensated system becomes:

\[S^m + s \bar{e}_{m-1} + e_2 s^2 + (e_1 + \epsilon) s + o_s + \beta = 0 \]

(3-20)

From equations (2-10) one obtains:

\[B_1 = 0 \quad B_2 = -w \]

\[C_1 = -1 \quad C_2 = 0 \]

(3-21)

\[D_1 = \sum_{k=0}^{m} (-1)^k d_k w^k U_{k-1} \quad D_2 = \sum_{k=0}^{m} (-1)^k d_k w^k U_k \]

From equations (2-11) it is seen that:

\[\lambda = \sum_{k=0}^{m} (-1)^k d_k w^k U_{k-1} \quad \beta = \sum_{k=0}^{m} (-1)^k d_k w^k U_k \]

(3-22)

If a given zeta and omega are specified, the alpha and beta can be computed from equations (3-22). The error coefficient is then determined directly from equations (3-6), (3-7), or (3-8). Hence the error coefficient is fixed once zeta and omega have been chosen, so if a certain error specification is to be met, the specified values of zeta and omega may have to be adjusted to meet it.

If the error specification was the overriding specification to be met, then zeta could be fixed at some reasonable value. By means of the given \(K_e \), alpha could be computed from equations (3-6), (3-7), or (3-8). Equations (3-22) could then be used to solve for first omega and then beta. The calculations would be more tedious however.

Example 3-3.

Figure (3-3) shows the same system as used in the previous two examples only now tachometer feedback alone will be tried. The same system
specifications are to be met, i.e., \(K_e \geq 6 \), \(\zeta = .7 \), and \(\omega = 10 \).

The compensated system's characteristic equation then becomes:

\[
S^3 + 3S^2 + (2 + KK_e)S + K = 0
\]

Using equations (3-19) and (3-23) one obtains:

\[
S^3 + 3S^2 + (2 + \alpha)S + \beta = 0
\]

From equations (3-22) \(\alpha \) is found to be:

\[
\alpha = -2 + 30(1.4) - 100(.96) = -56
\]

Since \(\alpha \) is negative it is seen that positive tachometer feedback is required. Since the coefficient of the first power of \(S \) in the characteristic equation would then be negative, the system would be unstable.

Hence the desired system specifications can not be met with tachometer feedback alone.

Acceleration feedback only.

Let \(H = K_aS^2 \)

The characteristic equation of the compensated system then becomes:

\[
S^m + e_{m-1}S^{m-1} + \ldots + (e_2 + KK_a)S^2 + e_1S + e_0 + K = 0
\]

Let \(\alpha = KK_a \) and \(\beta = K \).

Then from equations (3-26) one obtains:

\[
S^m + e_{m-1}S^{m-1} + \ldots + (e_2 + \alpha)S^2 + e_1S + e_0 + \beta = 0
\]

Using equations (2-10) and (3-28) results in:

\[
B_1 = w^2U_1 = w^2 \\
C_1 = U_{-1} = -1 \\
D_1 = \sum_{k=0}^{m} (-1)^kd_kw^kU_{k-1} \\
B_2 = w^2U_2 \\
C_2 = 0 \\
D_2 = \sum_{k=0}^{m} (-1)^kd_kw^kU_k
\]

Solving for \(\alpha \) and \(\beta \) results in:
\[K \frac{s(s+1)(s+2)}{s} \text{ or } K_s^2 \]
\[\omega = \frac{-\tau_d}{W^2U_2} = -\frac{1}{U_2} \sum_{k=0}^{m} (-1)^k d_k w^{k-2} U_k \tag{3-30} \]

\[\beta = \sum_{k=0}^{m} (-1)^k d_k w^{k} U_{k-1} - \frac{1}{U_2} \sum_{k=0}^{m} (-1)^k d_k w^{k} U_k \]

Calculations for alpha, beta, and the error coefficient are performed in the same manner as with the preceding tachometer feedback calculations.

Example 3-4

The system of examples (1) and (2) will now be compensated using acceleration feedback as indicated in figure (3-4). As before \(K_e \geq 6 \), \(\zeta = .7 \), \(\omega = 10 \). Therefore \(K_e = K/2 \) and the error coefficient is unaffected by the acceleration feedback. Hence one can choose \(K = 12 \) to meet the specifications. The compensated system's characteristic equation then becomes:

\[S^3 + (3 + KK_a)S^2 + 2S + K = 0 \tag{3-31} \]

If \(K \) in equation (3-31) is set to its prescribed value of 12, only one parameter remains and the parameter plane equations produce an indeterminate solution. Therefore \(K \) will be left as the variable beta. Since beta is fixed by the chosen values of zeta and omega, then so is the error coefficient, and it will most likely not agree with the error specification. In view of this, the solution proceeds as follows. Making the usual change of variables in equation (3-31) results in:

\[S^3 + (3 + \lambda)S^2 + 2S + \beta = 0 \tag{3-32} \]

By employing equations (3-30) one can solve for alpha and beta.

\[\lambda = -\frac{1}{1.4} [\ -2/10 + 3(1.4) -10(.96)] = 4 \]

\[\beta = 3(10)^2 -(10)^3(1.4) -144 [-2(10) + 3(10)^2(1.4)-(10)^3(.96)] \]

or \(\beta = -700 \)
From the negative value of beta it is concluded that the desired values of zeta and omega cannot be obtained using acceleration feedback, and of course neither can the desired error specification be obtained. One would therefore choose another method of compensation.

If one chooses to use feedback compensation then perhaps tachometer plus acceleration feedback should be tried first using equations (3-11) and the appropriate steady state error specifications. If the specifications cannot be met in this manner then it is obvious that they cannot be met by either tachometer or acceleration feedback separately. In this case either the system's specifications must be modified or another scheme of compensation must be employed. If it is found that the specifications can be met by combined tachometer and acceleration feedback, then if desired, equations (3-22) or (3-30) can be used to see if tachometer or acceleration feedback alone can be used.

Cases where feedback is not around the forward path amplifier.

Figure (3-5) illustrates a compensation situation that sometimes occurs in practice. This is the situation where it is not possible or practical to get at the input terminals of the error detector and the feedback has to be inserted at the output terminals of the amplifier. The solution to this problem is solved by means of an example.

Example 3-5

Figure (3-5) shows the system that was used in example (3-1) only now the feedback is inserted at the output terminals of the amplifier represented by the gain \(K \). The same system specifications are to be met i.e., \(K_c \geq 6 \), zeta = .7, and omega = 10. The characteristic equation now becomes:

\[
S^3 + (3 + K_a)S^2 + (2 + K_c)S + K = 0
\]

(3-33)
Letting $\alpha = K_a$ and $\beta = K_t$ equation (3-33) becomes:

$$s^3 + (3 + \alpha)s^2 + (2 + \beta)s + K = 0 \quad (3-35)$$

Comparing equation (3-35) to equation (3-12a) it is seen that they are identical, so the solution obtained for α and β in example (3-1) applies. This points out an important advantage of the parameter plane method. This is that the solutions depend only on the characteristic equation and not on the system that the characteristic equation was formed from.

From example (3-1) it was found that $\alpha = 48.6$, $\beta = 625$, and $K = 3762$. In this example there are no additional computations necessary to find K_a and K_t, since these are now the system's parameters α and β. So $K_t = 625$ and $K_a = 48.6$.

This same general principal can be applied to control problems involving tachometer feedback alone or acceleration feedback alone.

3-1-2 Cascade compensation.

Figure (3-6) represents a unity feedback control system which in order to meet the system's specifications a cascade compensator G_c is required. Let G have the form of equation (3-1).

$$i.e., G = \frac{K}{e(S)} = \frac{K}{S^m + e_{m-1}S^{m-1} + \cdots + e_1S + e_0} \quad (3-1)$$

K is the forward path gain which can be varied and $e(S)$ is a polynomial is S representing the poles of the open loop transfer function of the uncompensated system. The letter L again corresponds to the system type.

Let:

$$G_c = \frac{P(S + Z)}{Z(S + P)} \quad (3-36)$$

This compensator has a D.C. gain of unity so its placement in the forward path will not affect the steady state accuracy. It is assumed that the
uncompensated system's forward path gain had previously been adjusted to give the correct steady state accuracy. Using the form of G_c as indicated, the values of Z and P are computed to give the desired system response. If P is less than Z a lag network is needed and the factor P/Z of the compensator is inherently present due to the physical nature of the compensator, which is assumed to be an R-C network. See appendix II concerning the nature of lag-lead R-C networks. In this case all forward path amplifier gains can remain unchanged to meet the stipulated accuracy specifications. If however, the computed values of Z and P are such that P is greater than Z, a lead network is required and the compensated system's forward path gain will have to be raised by a factor of P/Z. The physical nature of the lead network is such that the factor P/Z is not inherently present, so to maintain steady state accuracy this factor will have to be provided either by adding an amplifier in cascade with the lead network or by raising the gain K of the existing amplifier by this factor.

Continuing then, the procedure is as follows. The compensated system's forward path transfer function is:

$$G_{cc} = G_c G = \frac{P}{e(S)} \frac{S + Z}{Z} = \frac{\gamma(S + P/\gamma)}{S + P} \frac{K}{e(S)}$$ \hspace{1cm} (3-37)

Applying the definition of the error coefficient to the compensated system one obtains:

$$K_e = \lim_{S \to 0} S^L \left[\frac{K}{e(S)} \frac{\gamma(S + P/\gamma)}{(S + P)} \right] = \frac{K}{e_L}$$ \hspace{1cm} (3-38)

Again assuming a type zero system where $L = 0$, the compensated system's characteristic equation becomes:

$$e(S) (S + P) + K \gamma (S + P/\gamma) = 0$$ \hspace{1cm} (3-39)

or in general after expanding equation (3-39):
\[S^{m+1} + (P + e_{m-1})S^m + (Pe_{m-1} + e_{m-2})S^{m-1} + \ldots + (Pe_2 + e_1)S^2 + (Pe_1 + e_0)S + P(e_0 + K) = 0 \]

Letting \(\alpha = P \) and \(\beta = \gamma \), equation (3-40) becomes:

\[S^{m+1} + (\alpha + e_{m-1})S^m + (\alpha + e_{m-2})S^{m-1} + \ldots + (e_2 \alpha + e_1)S^2 + (e_1 \alpha + e_0)S + \alpha (e_0 + K) = 0 \]

Comparing equation (3-41) to the general form of the characteristic equation as specified in equations (2-1) and (2-8), it is apparent that \(K = m + 1 \) (the order of the equation), \(b_o = e_0 + K \), \(c_o = d_o = 0 \), \(b_1 = e_1 \), \(c_1 = K \), \(d_1 = e_0 \), \(b_2 = e_2 \), \(c_2 = 0 \), \(d_2 = e_1 \), etc.

It is important to note that the parameter plane variable \(\beta \) represents the pole to zero ratio of the cascade compensator. In references (1) and (2), Ross-Warren and Pollak respectively, utilized the concept of root relocation zones to divide the S-plane into regions where lag compensation or lead compensation is required. By assigning variables in the above manner, the parameter plane is effectively divided into corresponding regions above and below the straight line \(\beta = 1 \). For values of \(\beta \) less than one, a lag network is required and for values of \(\beta \) greater than one, a lead network is required. In addition if \(\beta \) is greater than 10 or less than .1, a multiple lead or multiple lag respectively is required. A multiple section compensator will also be required if the computed value of either \(P \) or \(Z \) turns out to be negative. A method is given in section (4-6) for the design of double section compensators. If more than two sections are required, the compensation has to be done in steps.

In this case complex roots are placed at some intermediate value of \(\zeta \) and \(\omega \) and a new characteristic equation is then computed. Another compensator can then be designed on the basis of this new characteristic equation to place the roots at the desired value. Thus by compensa-
tion in steps in conjunction with the double section design of section (4-6), a four section compensator could theoretically be designed. The use of more than four sections is questionable and in this event it would be better to employ combined cascade and feedback compensation, or perhaps feedback compensation alone.

On the basis of equations (3-41) and (2-10) it is found that:

\[B_1 = -(e_o + K) + \omega^2 e_2 + \ldots + (-1)^{k-2} \omega^{k-2} U_{k-3} + (-1)^{k-1} \omega^{k-1} U_{k-2} \]

\[C_1 = 0 \]

\[D_1 = \omega^2 e_1 + \ldots + (-1)^{k-2} \omega^{k-2} U_{k-3} + (-1)^{k-1} \omega^{k-1} U_{k-2} + \]

\[(-1)^{k} \omega^{k} U_{k-1} \] \hspace{1cm} (3-42)

\[B_2 = -\omega e_1 + \omega^2 e_2 U + \ldots + (-1)^{k-2} \omega^{k-2} U_{k-2} + (-1)^{k-1} \omega^{k-1} U_{k-1} \]

\[C_2 = -\omega K \]

\[D_2 = -\omega e_1 + \omega^2 e_2 U + \ldots + (-1)^{k-2} \omega^{k-2} U_{k-2} \]

\[+ (-1)^{k-1} \omega^{k-1} U_{k-1} + (-1)^k \omega^k U_k \]

and from equations (2-11) it is found that:

\[\alpha = \frac{D_1}{B_1} \quad \beta = \frac{B_2 D_1 - B_1 D_2}{-\omega KB_1} \] \hspace{1cm} (3-43)

In equations (3-42), one sets \(e_o = 0 \) for a type one system, \(e_o = e_1 = 0 \) for a type two system, etc. On the basis of equations (3-42) and (3-43) a cascade compensator can be designed.

Example 3-6

Problem:

Design a cascade compensator for the system shown in figure (3-7) to place a pair of characteristic roots at \(\zeta = .5 \) and \(\omega = 1 \). The error coefficient \(K_e \) should be 50.
Solution:

From figure (3-7) it is apparent that \(K_e = K/10 = 50 \) or \(K = 500 \). The characteristic equation is:

\[
S^4 + S^3(8 + P) + S^2(17 + 8P) + S(10 + 17P + K\gamma) + P(10 + K) = 0 \quad (3-44)
\]

Letting \(\alpha = P \) and \(\beta = \gamma \), equation (3-44) becomes:

\[
S^4 + S^3(8 + \alpha) + S^2(17 + 8\alpha) + S(10 + 17\alpha + 500\beta) + (10 + 500)\alpha = 0 \quad (3-45)
\]

Applying equations (3-42) and (3-43) one obtains:

\[
\begin{align*}
B_1 &= -503 \\
C_1 &= 0 \\
D_1 &= 9 \\
\lambda &= 0.0179 = P \\
\beta &= 0.0117 = \gamma
\end{align*}
\]

But \(\gamma = P/Z \) so \(Z = 1.529 \).

\[G_c \] then becomes:

\[
\frac{0.0117}{(S + 0.0179)} (S + 1.529)
\]

This is a lag network where the factor .0117 is inherent in the R-C filter design. Due to the small value for gamma, the size of the filter components may be unreasonable, and a double lag network could be designed using the method of section (4-6-2). Instead the problem will be solved in section (3-1-3) using combination cascade plus tachometer feedback compensation which will permit the use of a single section lag network.

3-1-3 Combination cascade and feedback compensation.

Derivative signal not enclosing a cascade compensator.

In figure (3-8), \(G = K/e(S) \) and

\[G_c = \frac{\gamma S + P}{S + P} \quad (3-46) \]

First let \(H(S) = K S \). Then in view of equations (3-46) the compensated system's forward path transfer function becomes:

\[
G_{cc} \frac{\gamma S + P}{S + P} \quad \frac{K/e(S)}{1 + KH(S)/e(S)} = \frac{\gamma S + P}{S + P} \quad \frac{K}{e(S) + KH(S)} \quad (3-47)
\]

27
\[K \frac{\gamma(S+\frac{P}{\delta})}{(S+P)(S+P)} \]

\[\Theta_R \]

\[\Theta_C \]
Figure 3-8
and \(K_c = \lim_{S \to 0} S^L G_{cc} = \frac{K}{e_L(C) + \lim_{S \to 0} KH(S)/S^L} \) (3-48)

Note: The system type will change if the lowest order of the derivative signal fed back is less than the system type number. A few error coefficients are given in table (3-1) for different types of uncompensated systems. In the table let \(L \) be the type number of the uncompensated system.

<table>
<thead>
<tr>
<th>Table of (K_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L \rightarrow)</td>
</tr>
<tr>
<td>(H(S) \downarrow)</td>
</tr>
<tr>
<td>(K_t S)</td>
</tr>
<tr>
<td>(K_a S^2)</td>
</tr>
</tbody>
</table>

Table (3-1)

The compensated system's characteristic equation is:

\[Se(S) + Pe(S) + SKH(S) + PKH(S) + K \gamma S + PK = 0 \] (3-49)

Using equation (3-1) for \(e(S) \) and letting \(\alpha = P \), \(\beta = \gamma \), and \(k = m+1 \), equation (3-49) becomes:

\[S^k + (\alpha + e_{m-1})S^{k-1} + (e_{m-1}\alpha + e_{m-2})S^{k-2} + \ldots + (e_1 + KK_t + e_2 \alpha)S^2 + (e_1 \alpha + KK_t \alpha + K \beta + e_o)S + \alpha (K + e_o) = 0 \] (3-50)

The parameter plane variables are then:

\[B_1 = -e_oK + w^2e_2 + \ldots + (-1)^{k-2}e_{m-1}w^{k-2}u_{k-3} + (-1)^{k-1}w^{k-1}u_{k-2} \]

\[C_1 = 0 \]

\[D_1 = (e_1 + KK_t)w e_2 w^2u_2 + \ldots + (-1)^{k-2}e_{m-2}w^{k-2}u_{k-3} + \ldots + (-1)^{k-1}e_{m-1}w^{k-1}u_{k-2} + (-1)^{k}w^k u_{k-1} \] (3-51)
\[B_2 = -(c_1 + K K) w + e_2 w^2 U_2 + \ldots + (-1)^k e_{m-1} w^k U_{k-2} \]
\[+ (-1)^{k-1} e_{m-1} w^{k-1} U_{k-1} \]
\[C_2 = -Kw \]
\[D_2 = -e_0 w + (e_1 + K K) w^2 U_2 + \ldots + (-1)^k e_{m-2} w^k U_{k-2} \]
\[+ (-1)^{k-1} e_{m-1} w^{k-1} U_{k-1} + (-1)^k w U_k \]

In terms of equations (3-51) one can solve for alpha and beta:
\[\alpha = -D / B_1 \]
\[\beta = \frac{B_2 D_1 - B_1 D_2}{-w K B_1} \] (3-52)

One can now compare the above expressions for alpha and beta with equations (3-42) and (3-43) to see the effect of tachometer feedback.

Let \(B_1', C_1', D_1', C_2', B_2', \) and \(D_2' \) represent the quantities given by equations (3-42) where only cascade compensation was used. Then in terms of the primed quantities, equations (3-51) become:
\[B_1 = B_1' \]
\[C_1 = C_1' = 0 \]
\[D_1 = D_1' + K K w^2 \]
\[B_2 = B_2' - K K w \]
\[C_2 = C_2' \]
\[D_2 = D_2' + K K w^2 U_2 \] (3-53)

Let the expressions for alpha and beta as given by equations (3-43) be designated \(\alpha' \) and \(\beta' \). Then in terms of these quantities, equations (3-52) can be expressed as:
\[\alpha = \frac{-D_1' - K K w^2}{B_1'} = \alpha' - K K w^2 / B_1' \] (3-54)
\[\beta = \frac{-B_2' K K w + K D_1' + K^2 K w^2}{B_1'} + K w U_2 + \beta' \]

Now it can be seen from equations (3-54) how tachometer feedback modifies the values of \(\alpha' \) and \(\beta' \) as computed for cascade compensation alone.

For instance if the pole to zero ratio \(\beta' \) is too small, then tachometer
feedback can be used to increase this ratio, if for the specified values of zeta and omega, B_1' is negative, etc.

Now letting $H(S) = K S^2$ in figure (3-8), the characteristic equation becomes:

$$Se(S) + Pe(S) + KK_a S^3 + Pkk S^2 + K \gamma S + PK = 0 \quad (3-52)$$

By making the same substitutions as in equation (3-49) one obtains:

$$S^k + (\alpha + e_{m-1})S^{k-1} + (e_{m-1} \alpha + e_{m-2})S^{k-2} + \ldots + (e_2 + e_3 \alpha + kk_a)S^3$$

$$(e_1 + e_2 \alpha + kk_a \alpha)S^2 + (e_1 \alpha + K \beta + e_0)S + \alpha (K + e_0) = 0 \quad (3-53)$$

It then follows readily that:

$$B_1 = -(K + e_0) + (e_2 + KK_a)w^2 - e_3 w^3 U_2 + \ldots + (-1)^{k-2} e_{m-2} w^{k-2} U_{k-3}$$

$$+ (-1)^{k-1} w^{k-1} U_{k-2}$$

$$C_1 = 0$$

$$D_1 = e_1 w^2 - (e_2 + KK_a)w^3 + \ldots + (-1)^{k-2} e_{m-2} w^{k-2} U_{k-3}$$

$$+ (-1)^{k-1} e_{m-1} w^{k-1} U_{k-2} + (-1)^{k} w^k U_{k-1} \quad (3-53a)$$

$$B_2 = -e w + (e_2 + KK_a) w^2 U_2 - e_3 w^3 U_3 + \ldots + (-1)^{k-2} e_{m-1} w^{k-2} U_{k-2} +$$

$$+ (-1)^{k-1} w^{k-1} U_{k-1}$$

$$C_2 = -K w$$

$$D_2 = -e w + e_1 w^2 U_2 - (e_2 + KK_a) w^3 U_3 + \ldots + (-1)^{k-2} e_{m-2} w^{k-2} U_{k-2} +$$

$$+ (-1)^{k-1} e_{m-1} w^{k-1} U_{k-2} + (-1)^{k} w^k U_k$$

After writing equations (3-53a) in terms of the primed quantities, which correspond to the situation of cascade compensation only, it can be seen that the following expressions result:

$$B_1 = B_1' + KK_a w^2 \quad B_2 = B_2' + KK_a w^2 U_2$$
\[C_1 = C'_1 = 0 \quad C_2 = C'_2 \] \quad (3-54)
\[D_1 = D'_1 - KK a w^3 \quad D_2 = D'_2 - KK a w^3 u_3 \]

Solving for alpha and beta one obtains:
\[\lambda = -\frac{(D'_1 - KK a w^3)}{(B'_1 + KK a w^3)} \] \quad (3-55)
\[\beta = \frac{(B'_2 + KK a w^2 u_2) (D'_1 - KK a w^3) - (B'_1 + KK a w^2) (D'_2 - KK a w^3 u_3)}{-wK (B'_1 + KK a w^2)} \]

There is no straight forward way of observing from equations (3-55) how \(\lambda' \) and \(\beta' \) are modified by acceleration feedback. However, assuming that one would logically try cascade compensation alone before attempting combination, one could easily compute the alpha and beta with acceleration feedback added since the quantities \(B'_1, B'_2, D'_1, \) and \(D'_2 \) in equations (3-55) would already have been computed.

Example 3-7

Problem:

Design a cascade compensator with tachometer feedback as shown in figure (3-9), so as to place a pair of characteristic roots at \(zeta = .5 \) and \(omega = 1 \). \(K_e \) should be 50.

Solution:

Referring to example (3-6) it is seen that this is the same problem except that tachometer feedback has been added. As was found in example (3-6) the value of beta using a single section compensator was too small. The problem now is to see if tachometer feedback will increase this value.

As was determined previously, \(K = 500, B'_1 = -503, C'_1 = 0, D'_1 = 9, B'_2 = -9, C'_2 = -500, D'_2 = 6, \lambda' = .0179, \) and \(\beta' = .0117 \), where the primes have been added to indicate cascade compensation only. Using equations (3-55) one finds:
\[\beta = \left(9K_t + 9K_t^2 + 500K_t^2\right)/(-503) + K_t + 0.0117 \]

(3-55a)

It follows from the above equation that for beta to increase the following inequality must hold:

\[K_t > \left(18K_t + K_t^2\right)/503 \]

or

\[K_t^2 < \left(485K_t\right)/500 \]

(3-56)

Since one excludes values of \(K_t \) less than or equal to zero, equation (3-56) reduces to:

\[0 < K_t < 0.97 \]

\(K_t \) can arbitrarily be taken as 0.4. Beta can then be obtained from equation (3-55a) and is found to be 0.238 which is in the acceptable region of \(0.1 \leq \beta = \gamma \leq 10 \).

Calculating alpha from equations (3-54) one finds that:

\[\alpha = \alpha' - KKWw^2/B_1' = 0.414 = \rho \]

The cascade compensator becomes:

\[\frac{0.238}{(S + 1.744)} \]

R-C lag network. The compensated system's characteristic equation is as follows:

\[S^4 + 8.4158S^3 + 220.3S^2 + 219.06S + 211.69 = 0 \]

(3-57)

The roots of equation (3-57) are:

\[r_1 = -0.499 - j0.866 \]

\[r_2 = -0.499 + j0.866 \]

\[r_3 = -3.708 - j14.077 \]

\[r_4 = -3.708 + j14.077 \]

The roots \(r_1 \) and \(r_2 \) are the desired ones, and since \(0.499 << 3.708 \), they are also dominant.
Derivative signal enclosing a cascade compensator.

In figure (3-10), \(G = K/e(S) \) and \(G_c = \frac{\gamma S + P}{S + P} \), where these quantities have been defined previously. Let \(H(S) = K_t S \). The forward path transfer function is then seen to be:

\[
G_{cc} = \frac{G_c G}{1 + H(S)G_c G} = \frac{K \gamma (S + P/\gamma)}{(S + P)e(S) + K \gamma (S + P/\gamma)H(S)} \tag{3-58}
\]

Since the D.C. gain of \(G_c \) is unity, the error coefficients for figure (3-10) are the same as those given in table (3-1).

By expanding equation (3-58) into the characteristic equation one gets after letting \(\alpha = P \) and \(\beta = \gamma \):

\[
S^2 + (\alpha + e_{m-1})S^{k-1} + (e_{m-1} + e_{m-2})S^{k-2} + \ldots + (e_1 + KK \beta + Pe_\alpha)S^2
+ (e_1 \alpha + KK \alpha + K \beta + e_\alpha)S + \alpha(K + e_\alpha) = 0 \tag{3-59}
\]

Then as before one obtains:

\[
B_1 = -(e_\alpha + K) + w^2e_2 + \ldots + (-1)^{k-2}e_{m-1}w^{k-2}u_{k-3} + (-1)^{k-1}w^{k-1}u_{k-2}
\]

\[
C_1 = KK_t w^2
\]

\[
D_1 = e_1w^2 + \ldots + (-1)^{k-2}e_{m-2}w^{k-2}u_{k-3} + (-1)^{k-1}e_{m-1}w^{k-1}u_{k-2}
+ (-1)^{k-1}w^k u_{k-1}
\]

\[
B_2 = -(e_1 + KK \alpha)w + e_2w^2u_2 + \ldots + (-1)^{k-2}e_{m-1}w^{k-2}u_{k-2} + (-1)^{k-1}w^{k-1}u_{k-1}
\]

\[
C_2 = -Kw + KK_t w^2 u_2
\]

\[
D_2 = -e_\alpha w + e_1w^2u_2 + (-1)^{k-2}e_{m-2}w^{k-2}u_{k-2} + (-1)^{k-1}e_{m-1}w^{k-1}u_{k-1}
+ (-1)^{k}w^k u_{k}
\]

With primed quantities corresponding to the case of cascade compensation only it follows that:

\[
B_1 = B'_1
\]
\[C_1 = C_1' + KK w^2 = KK w^2 \]
\[D_1 = D_1' \]
\[B_2 = B_2' - KK w \]
\[C_2 = C_2' + KK w^2 U_2 \]
\[D_2 = D_2' \]

and
\[\alpha = KK w^2 D_2' - (C_2' + KK w^2 U_2) D_1' \]
\[\beta = (B_2' - KK w) D_1' - B_1' D_2' \]
\[\frac{C}{B_1'(C_2' + KK w^2 U_2) - (B_2' - KK w) KK w^2} \]

In figure (3-10) letting \(H = K_a S^2 \), the characteristic equation becomes:
\[S^k + (\alpha + e_{m-1})S^{k-1} + (e_{m-1} + e_m)S^{k-2} + \ldots + (e_2 + e_3) S^3 + (e_1 S^2 + (e_1 + K_a) S + (K + e_0)) = 0 \]
\[(3-62) \]

Then in terms of the primed quantities it is found that:
\[B_1 = B_1' + KK w^2 \]
\[C_1 = C_1' - KK w^3 U_2 = -KK w^3 U_2 \]
\[D_1 = D_1' \]
\[B_2 = B_2' + KK w^3 U_2 \]
\[C_2 = C_2' - KK w^3 U_3 \]
\[D_2 = D_2' \]

and
\[\alpha = -KK w^3 U_2 D_2' - (C_2' - KK w^3 U_3) D_1' \]
\[\beta = (B_1' + KK w^3)(C_2' - KK w^3 U_3) + (B_2' + KK w^3 U_2) KK w^3 U_2 \]
\(\frac{\beta}{\alpha} = \frac{(B'_2 + KK_w^2U_2)D_1'}{(B'_1 + KK_w^2)(C'_2 - KK_w^3U_3) + (B'_2 + KK_w^2U_2)KK_w^3U_2} \)

Comparing the expressions for alpha and beta for the case of the derivative signal not enclosing a cascade compensator to the case of the derivative signal enclosing a cascade compensator one finds that the latter are considerably more complex. So if one had a choice between the two methods, the former could be tried first since it is easier to analyze.

If the values for alpha and beta thus obtained were still not acceptable then the latter method could be tried.

3-2 Dominancy of the specified roots.

In the preceding examples nothing was done in the calculations to make the specified roots a dominant pair. As was mentioned in section (1), being able to predict a system's response on the basis of the location of a pair of complex roots was based on the assumption that the magnitude of the real part of the primary or specified roots was much less than the magnitude of the real parts of all the other roots of the characteristic equation. In most cases, if the real part of the primary roots is one half to one fifth or less of the real parts of all the secondary roots, the system is said to be dominant in the primary roots. In many cases the system will still meet the specifications even if two pairs of complex roots have the same real part, providing the zetas for both pairs of roots meet the specifications, and the undamped natural frequencies are such that the component time responses are not highly additive. The presence of closed loop zeros will also greatly affect the dominancy factor needed.

For instance even if there exists a characteristic root whose real part is closer to the origin than the real part of the primary root, the presence
of a closed loop zero could make the residue of the close in root negligible as compared to the residue of the primary roots. However, if possible, one tries to make the real parts of all secondary roots as large in magnitude as possible.

In the preceding examples it should be noted that in many cases there were actually three and sometimes four variable parameters. For instance, the forward path gain was usually set at a fixed value in the computations so as to meet the minimum steady state accuracy requirements. There is, however, usually no reason why the gain cannot be raised above the minimum value, thus permitting a third degree of freedom. When cascade and feedback compensation are employed simultaneously, the forward path gain and tachometer gain become the third and fourth parameters.

3-2-1 A method of employing a third parameter.

Recall that the system characteristic equation has the following form

\[f(S) = \sum_{k=0}^{n} a_k S^k = 0, \]

where \(a_k = b_k \alpha + c_k \beta + d_k \) (equations (2-1) and (2-8)). In order to meet the system specifications, one places a complex root pair at \(S = -\beta_{1} w_1 \pm jw_1 \sqrt{1-\beta_1^2} \), which implies that

\[S^2 + 2 \beta_{1} w_1 S + w_1^2 = 0. \]

(3-65)

Since the coefficients of equation (3-65) are known, this quadratic can be divided out of the characteristic equation, leaving a polynomial which contains all the secondary roots of the characteristic equation. Since only two of the degrees of freedom or variable parameters were used in fixing the roots of equation (3-65), the remaining variable parameters will appear in the coefficients of the quotient polynomial, and it is these coefficients that can be varied to achieve dominance. Instead of division to find the quotient polynomial, coefficients of like powers will be equated to achieve a set of equations. Let the quotient polynomial be
given by:

\[f_1(S) = \sum_{k=0}^{n} f_k S^k = 0 \]

(3-66)

where \(n = m-2 \), i.e., equation (3-66) is order two less than the characteristic equation. Using equations (2-1), (3-65), and (3-66) it is seen that:

\[(S^2 + 2 \sum w_1 S + w_1^2)(\sum_{k=0}^{n} f_k S^k) = \sum_{k=0}^{m} a_k S^k \]

(3-67)

Equating coefficients of like powers and taking \(a_k = 1 \), results in:

\begin{align*}
 a_k &= f_n = 1 \\
 a_{k-1} &= f_{n-1} + 2 w_1 f_1 \\
 a_{k-2} &= f_{n-2} + f_{n-1}^2 w_1 \\
 &\vdots \\
 a_2 &= f_o + 2 w_1 f_1 + f_2 w_1^2 \\
 a_1 &= 2 w_1 f_o + f_e^2 \\
 a_0 &= f o^2 w_1
\end{align*}

(3-68)

The formulas (3-67) can be solved for the coefficients \(f \) in terms of the coefficients \(a \). The solution will be made for the following cases:

Case of \(k = 3, n = 1 \)

Equation (3-67) becomes:

\[(S^2 + 2 \sum w_1 S + w_1^2)(f_1 S + f_o) = S^3 + a_2 S^2 + a_1 S + a_o \]

Equating coefficients of like powers one obtains:

\begin{align*}
 a_3 &= 1 = f_1 \\
 a_2 &= f_o + 2 w_1 f_1 \\
 a_1 &= f_1 w_1^2 + 2 w_1^2 f_o
\end{align*}

Solving for the coefficients \(f \) results in:
\[f_1 = 1 \]
\[f_o = a_o / w_1^2 = (a_1 - w_1^2) / (2 \bar{z}_1 w_1) = a_2 - 2 \bar{z}_1 w_1 \]
\[(3-69) \]

Case of \(k = 4, n = 2 \)

Proceeding as before the coefficients become:

\[a_4 = 1 = f_2 \]
\[a_3 = 2 \bar{z}_1 w_1 + f_1 \]
\[a_2 = w_1^2 + 2 \bar{z}_1 w_1 f_1 + f_o \]
\[(3-70) \]
\[a_1 = f_1 w_1^2 + 2 \bar{z}_1 w_1 f_o \]
\[a_o = f_o w_1^2 \]

When solved for the coefficients \(f \), equations \((3-70) \) yield:

\[f_2 = 1 \]
\[f_1 = a_3 - 2 \bar{z}_1 w_1 = a_2 / 2 \bar{z}_1 w_1 - w_1 / 2 \bar{z}_1 - a_o / 2 \bar{z}_1 w_1^2 \]
\[f_1 = 1 / w_1^2 \ (a_1 - 2 \bar{z}_1 a_o / w_1) \]
\[(3-71) \]
\[f_o = a_o / w_1^2 = a_1 / 2 \bar{z}_1 w_1 - a_3 w_1 / 2 \bar{z}_1 + w_1^2 = a_2 - 2 \bar{z}_1 w_1 a_3 - w_1^2 + 4 \bar{z}_1^2 w_1^2 = a_2 - 2 \bar{z}_1 w_1 a_3 + w_1^2 u_3 \]

Case of \(k = 5, n = 3 \)

Proceeding as before the coefficients \(a \) are:

\[a_5 = 1 = f_3 \]
\[a_4 = 2 \bar{z}_1 w_1 + f_2 \]
\[a_3 = w_1^2 + 2 \bar{z}_1 w_1 f_2 + f_1 \]
\[a_2 = f_o + 2 \bar{z}_1 w_1 f_1 + w_1^2 f_2 \]
\[a_1 = 2 \bar{z}_1 e f_o + f_1 w_1 \]
\[a_o = f_o w_1^2 \]

42
Solving for the coefficients f one obtains:

$$f_3 = 1$$

$$f_2 = a_4 - 2 \frac{z}{w_1} = a_2 / w_1^2 = a_0 \left(4 \frac{z}{w_1}^2 - 1 / w_1^4 \right) - 2 \frac{z}{w_1} a_1 / w_1$$

$$f_2 = a_3 / 2 \frac{z}{w_1} - a_1 / 2 \frac{z}{w_1}^3 + a_0 / w_1^4 - w_1 / 2 \frac{z}{w_1}$$

$$f_1 a_1 / w_1^2 - 2 \frac{z}{w_1} a_0 / w_1 = a_3 - 2 \frac{z}{w_1} a_4 + \frac{z}{w_1}^2$$ \hspace{1cm} (3-73)

$$f_o = a_0 / w_1^2 = a_1 / 2 \frac{z}{w_1} - a_3 w_1 / 2 \frac{z}{w_1} + a_4 w_1^2 + s \frac{z}{w_1}^3$$

$$f_o = a_2 - a_3^2 \frac{z}{w_1}$$

In formulas (3-69), (3-71), and (3-73), the coefficients a are of the form $a_k = b_k \alpha + c_k \beta + d_k$. In section (3-1), formulas for alpha and beta were developed for various forms of compensation techniques. Since the formulas for alpha and beta will in general contain other variable parameters, then the coefficients f as derived above will be functions of these parameters. In most cases the coefficients f will be functions of only one parameter (or they can be made to be). Hence the roots of $f_1(S)$ can readily be placed algebraically for the cases of $n = 1$, and $n = 2$.

For the case of $n = 3$, a root locus sketch will usually suffice. Although the coefficients f have been derived for only up to a fifth order case, they could easily be obtained for higher order cases if necessary.

3-2-2 Applications of the dominancy technique.

Example 3-8 (Third order characteristic equation)

Problem:

Compensate the system of figure (3-11) with a cascade compensator to obtain:

1. Characteristic roots at zeta = .5 and omega = 40.

2. $K_e = 250$.

43
3. The specified roots are to be made dominant.

Solution:

The characteristic equation of figure (3-11) is:

\[S^3 + (4 + P)S^2 + (4P + K \gamma)S + KP = 0 \]

or

\[S^3 + (4 + \alpha)S^2 + (4\alpha + K \beta)S + K\alpha = 0 \]

where \(\alpha = P \) and \(\beta = \gamma \).

Now \(G = K/e(S) = K/(s^2 + 4s) \), so \(e_0 = 0, e_1 = 4, e_2 = 1, U_2 = 1, U_3 = 0. \)

Equations (3-42) are now applied to obtain:

\[B_1 = -K + w^2 = -K + 1600 \]
\[C_1 = 0 \]
\[D_1 = 4w^2 - w^3U_2 = -5.7x10^4 \]
\[\beta_2 = -4w + w^2U_2 = 1440 \]
\[C_2 = -wK = -40K \]
\[D_2 = 4w^2U_2 - w^3U_3 = 6400 \]

From equation (3-43) are obtained:

\[\alpha = \frac{5.76x10^4}{-K+1600} \]
\[\beta = \frac{(1440)(-5.76x10^4) - (-K + 1600)(6400)}{-40K(-K + 1600)} \quad (3-74) \]

Now for any value of \(K \), equations (3-74) will provide a value of alpha and beta to provide characteristic roots at \(zeta = .5 \) and \(\omega = 40. \)

The value of \(K \) will now be chosen on the basis of dominance and steady state error considerations. To satisfy the error specifications it is necessary that \(K \geq 1000. \) Since \(f_1(S) \) is of order one, the appropriate equations are (3-69), hence:
Figure 3-11

\[\frac{\kappa(s + \frac{P}{8})}{(s + P)} \quad \frac{K}{s(s + 4)} \]
\[f_1 = 1 \]
\[f_0 = a_0 / w_1^2 = (a_1 - w_1^2) / 2 \]
\[\zeta_1 w_1 = a_2 - 2 \zeta_1 w_1 \]

From the characteristic equation it is seen that

\[a_2 = 4 + \zeta \]
\[a_1 = 4 \zeta + K \beta \]
\[a_0 = K \zeta \]

The real part of the specified roots is \(\frac{\zeta}{\zeta_1 w_1} = 20 \). Arbitrarily choosing a dominance factor of five, the dominance criteria becomes:

\[f_0 > 5 \zeta_1 w_1 = 100. \]

To satisfy this requirement, the simplest form of \(f_0 \) will be chosen, namely \(f_0 = a_0 / w_1^2 \). Therefore it is seen that

\[f_0 = K \zeta / 1600 = (5.76 \times 10^4) \]
\[\frac{36 \zeta}{1600(-K + 1600)} > 100, \]

where equation (3-74) was employed.

The above inequality implies that \(K > 1180 \). Since \(K > 1180 \) also satisfies the error specification, a value of \(K = 1200 \) is chosen arbitrarily. Using this value of \(k \), the following quantities are computed:

\[\alpha = 144, \beta = 4.2, \] and \(f_0 = 108 \).

As a check, the expression \(f_0 = a_2 - 2 \zeta_1 w_1 \) can be employed. Hence:

\[f_0 = (4 + 144) - 2(0.5)(40) = 108. \]

Example 3-9 (Fourth order characteristic equation)

Problem:

Compensate the system shown in figure (3-12) employing tachometer plus acceleration feedback to obtain:

1. Characteristic roots at \(\zeta = 0.5 \) and \(\omega = 2 \).
2. \(K_e \approx 12 \).
3. The specified roots should be dominant.
Solution:

The characteristic equation from figure (3-12) is:

\[S^4 + 16.5S^3 + (73 + \alpha)S^2 + (82.5 + \beta)S + 25 + K = 0 \]

Here \(\alpha = K \kappa_a \) and \(\beta = K \kappa_t \).

\[G = K/e(S) = K/(S^4 + 16.5S^3 + 73S^2 + 82.5S + 25) \]

By inspection it is seen that:

\[e_o = 25, \quad e_1 = 82.5, \quad e_2 = 73, \quad e_3 = 16.5, \quad e_4 = 1, \quad U_2 = 1, \quad U_3 = 0, \]

and \(U_4 = -1 \). By employing equations (3-11) one can find:

\[\alpha = (185 + K)/4 \]

and

\[\beta = (K - 23)/2 \]

From the characteristic equation it is seen that:

\[a_4 = 1, \quad a_3 = 16.5, \quad a_2 = 73 + \alpha, \quad a_1 = 82.5 + \beta, \quad a_o = 25 + K. \]

Since the quotient equation \(f_1(S) \) is a quadratic, i.e., \(S^2 + f_1S + f_o = 0 \), it would be desirable from the dominancy standpoint if \(f_1 > 5 \sqrt[4]{1} w_1 \) = 5. However, looking at the dominancy equations for this case (equations (3-71)), it is seen that one of the several expressions for \(f_1 \) is \(f_1 = a_3 - 2 \sqrt[4]{1} w_1 \). Since all the expressions for \(f_1 \) have to be simultaneously satisfied, it is seen in this problem that \(f_1 \) is a fixed constant since \(a_3 \) and \(\sqrt[4]{1} w_1 \) are fixed. This is true even though the remaining expressions for \(f_1 \) involve one or more variable coefficients. Therefore \(f_1 \) is found to be 14.5. Observing the pertinent expressions for \(f_o \) it is seen that none of them contain only constants, so the simpler expression \(f_o = a_o /w_1^2 \) is chosen. Now since \(f_1 = 14.5 > 5 \), a dominant situation already exists, but the system's performance can be further improved by choosing a reasonable value of zeta and omega for the secondary roots. From the error specification it is necessary that \(K/25 \geq 12 \), or \(K \geq 300 \). Now
\[f_1(S) = S^2 + 14.5S + a/\omega_1^2 \text{ or } f_1(S) = S^2 + 14.5S + 6.25 + .25k. \]

For \(K = 300 \), \(f_1(S) \) becomes: \(S^2 + 14.5S + 81.25 \). Therefore, \(2 \sqrt{2} \omega_2 = 14.5 \), \(\omega_2^2 = 81.25 \) or \(\omega_2 = 9 \). Then \(\zeta = .806 \). These are reasonable values for \(\sqrt{2} \) and \(\omega \) since the secondary roots taken by themselves would produce much less overshoot and a much smaller settling time than the primary roots. Using this smaller value of \(K \) one can compute \(\alpha \) and \(\beta \).

\[
\begin{align*}
\alpha &= 121.2 \\
\beta &= 138.5
\end{align*}
\]

Since \(\alpha = K K_t + 300K \) and \(\beta = K K_a + 300K \) then \(K_t = .405 \) and \(K_a = .462 \).

As an added bonus of the method, all roots of the characteristic equation are now known and the time response could be computed if desired.

Example 3-10 (Fifth order characteristic equation)

Problem:

Compensate the system shown in figure (3-13) to obtain:

1. Characteristic roots at \(\zeta = .5 \), and \(\omega = 4 \).
2. \(K_e \geq 8 \).
3. The specified roots should be made dominant.

Solution:

The characteristic equation is after letting \(\alpha = P \) and \(\beta = \gamma \):

\[
\begin{align*}
S^5 + (\gamma + 17)S^4 + (17\gamma + 84)S^3 + (148 + K K_t + 84\gamma)S^2 + (148\gamma + K K_t\gamma + K (\beta + 80)S + \gamma (K + 80) &= 0. \\
G &= K/e(S) = K/(S^4 + 17S^3 + 84S^2 + 148S + 80)
\end{align*}
\]

From the above it follows that: \(e_0 = 80, e_1 = 148, e_2 = 84, e_3 = 17, e_4 = 1, U_2 = 1, U_3 = 0, U_4 = -1, \) and \(U_5 = -1 \). Employing equations (3-42) one obtains:
\[B_1 = K + 1196 \quad B_2 = 492 \]
\[C_1 = 0 \quad C_2 = -4K \]
\[D_1 = -1986 \quad D_2 = -1276 \]

Therefore:

\[\alpha = \frac{1986}{K + 1196} \quad \beta = \frac{(1276K - 555000)}{[4K(K + 1196)]} \]

For \(\beta \) to be positive it is necessary that \(K \) be greater than 435. The accuracy specification implies that \(K \) be greater than 640. For \(K = 640 \), \(\beta = 0.0555 \) which is out of the desired range of \(0.1 \leq \beta \leq 10 \).

Of course, increasing \(K \) makes \(\beta \) even smaller. At this point one could design a multiple section compensator in accordance with section (4-6-2) or feedback compensation could be added. The latter course of action is chosen and tachometer feedback not enclosing the cascade compensator is chosen. The applicable equations are (3-54). From them are obtained the following, where the above \(\alpha \) and \(\beta \) now become \(\alpha' \) and \(\beta' \).

\[\alpha = \frac{1986 - 16KK_t}{K + 1196} \]
\[\beta = \frac{-492(4)K_t - 1986K_t + 16KK_t^2}{K + 1196} + 4K_t + \beta' \]

To simplify the analysis let \(K = 640 \) which meets the accuracy specification. Then \(\alpha \) and \(\beta \) become

\[\alpha = \frac{1986 - 10210K_t}{1836} \quad (3-75) \]

Here \(\alpha \) is positive for \(K_t \) less than 0.193.

\[\beta = 5.64K_t^2 + 1.83K_t + 0.0555 \quad (3-76) \]

The appropriate dominancy equations are (3-73) where it is seen that neither \(f_0 \), \(f_1 \), or \(f_2 \) are restricted to constant values. From the characteristic equation it is seen that:
\[a_5 = 1 \]
\[a_4 = \alpha + 17 \]
\[a_3 = 17\alpha + 84 \]
\[a_2 = 148 + K_k + 84\alpha \]
\[a_1 = 148\alpha + K_K + K_\beta + 80 \]
\[a_0 = \alpha (K + 80) \]

On the basis of these equations the following expressions are chosen from equations (3-73) for the \(f_1(S) \) coefficients:
\[f_2 = a_4 - 2 \, \frac{3}{1 \, w_1} = \alpha + 13 \]
\[f_1 = a_3 - 2 \, \frac{3}{1 \, w_1} a_4 + U_3 w^2 = 13\alpha + 16 \]
\[f_0 = a_0 / w_1^2 = 180\alpha \]

Then \(f_1(S) \) becomes:
\[S^3 + (\alpha + 13)S^2 + (13\alpha + 16)S + 180\alpha = 0 \] \hspace{1cm} (3-77)

Equation (3-77) contains only one variable so it can be put in root locus form as follows:
\[S^3 + 13S^2 + 16S + \alpha (S^2 + 13S + 180) = 0 \]

After dividing by \(S^3 + 13S^2 + 16S \) the above equation becomes:
\[\frac{S^2 + 13S + 180}{S(S^2 + 13S + 16)} = \frac{(S + 6.5 + j11.7)}{S(S + 1.37)(S + 11.6)} = -1 \] \hspace{1cm} (3-78)

By plotting the root locus poles and zeros of equation (3-78) or by inspection if one wishes, it is apparent that there will be a real root of \(f_1(S) \). Also the magnitude of the real part of the complex roots can never be greater than 6.5, and it approaches this value as \(\alpha \) tends to plus infinity. For dominancy therefore, a large value of \(\alpha \) is desired. From equation (3-75), the maximum value of \(\alpha \) is for \(K_k = 0 \),
but then beta is too small since \(K_t = 0 \) implies the case of cascade compensation only. It is obvious that \(K_t \) should be as small as possible, which from equation (3-76) implies that beta should be as small as possible. Applying the lower limit of beta = .1 to equation (3-76) one can show after solving the quadratic in \(K_t \) that \(K_t = .023 \) is the necessary value.

From equations (3-75) and (3-76) one can solve for alpha and beta obtaining:

\[
\alpha = .955 = P \quad \beta = .1 = \gamma
\]

The cascade compensator is then:

\[
\frac{.1(s + 9.55)}{(s + .955)}
\]

This can be realized by an R-C lag network. Equation (3-77) for \(f_1(s) \) becomes:

\[
S^3 + 13.955S^2 + 28.4S + 172 = 0 \tag{3-79}
\]

A root locus of equation (3-77) for \(0 \leq \alpha \leq \infty \) is shown in figure (3-14). The root locus was done by the computer program presented in section (5-2). The roots of equation (3-79) were obtained from the printed out data from the program and are as follows: for alpha = .955; \(S = -.585 + j3.64 \) and -12.8. Since .585 is less than \(\frac{1}{2} \omega_1 \) which is two, the primary or specified roots are dominant. Now the maximum value of alpha is obtainable when \(K = K_t = 0 \) and even for this extreme case, the specified roots will not be dominant. To solve the problem, therefore, a compromise on the specifications must be made. One approach would be to specify omega as some value less than four and repeat all the preceding calculations, but one could also do the following:

From equation (3-75) observe that alpha can be decreased by increasing \(K_t \). From the root locus data it is observed that if alpha =
X-SCALE = 2.00E+00 UNITS/INCH.
Y-SCALE = 2.00E+00 UNITS/INCH.
RM NUTTING
\[S^3 + (A + 13)S^2 + (13A + 16)S + 180A = 0 \]
.117, then \(\zeta_2 = .5 \), and \(\omega_2 = 1.34 \). If this reduced value of \(\omega \) can be tolerated then the problem is solved since the secondary roots located at \(\zeta_2 \) and \(\omega_2 \) are now dominant and only the settling time has been modified (due to the decreased value of \(\omega \)). On the other hand since the roots \(\zeta_1 \) and \(\omega_1 \) are still located at \(\zeta = .5 \) and \(\omega = 4 \), the overall system response will probably be acceptable to the designer.

The final results are therefore as follows:

- \(K = .173 \) obtained from equation (3-75)
- \(\alpha = \beta = \gamma = .5405 \) obtained from equation (3-76)

Characteristic roots are located at \(\zeta = .5 \), \(\omega = 4 \); \(\zeta = .5 \), \(\omega = 1.34 \); and a real root at \(S = -11.8 \). The cascade compensator is of the form:

\[
\frac{.5405(S + .216)}{(S + .117)}
\]

This can be synthesized as an R-C lag network.
3-3 Some sketching techniques.

The graphical solution will be discussed in following sections and of course this involves plotting curves. Due to the complexity of the parameter plane equations, two methods of curve plotting are recommended. The easier and faster method is by means of a digital computer. A computer program which will do this is presented in section (6). The second method is by means of a desk calculator or slide rule. To facilitate the use of the latter method, the parameter plane equations are manipulated to put them into forms more suitable to non-computer plotting.

Due to the time limitations usually imposed on digital computer operation and due to the time consumed in plotting the curves by hand, it would be desirable to just sketch, say the zeta equals zero and the zeta equals one-half curve for various values of omega to see if the type of compensation proposed will do the job. This type of rapid sketching is also helpful when choosing a scale for the digital computer graph plot. For this reason, in the following sections, special characteristics of the zeta equals zero and the zeta equals one-half curve have been derived for characteristic equations of order two through five.

3-3-1 Table of symbols.

In table (3-2) are listed various symbols which apply to the derivations made in section (3-3-2). The change of variables as indicated in table (3-2) is useful because many of these products and sums appear repeatedly. When doing hand computations of the parameter plane curves it is only necessary to compute these quantities once, so substantial labor is saved.

56
<table>
<thead>
<tr>
<th>TABLE (3-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J = -b_2c_1 + b_1c_2</td>
</tr>
<tr>
<td>K = b_0c_1 - b_1c_0</td>
</tr>
<tr>
<td>L = c_1d_2 - c_2d_1 - c_0</td>
</tr>
<tr>
<td>M = c_0d_1 - c_1d_0</td>
</tr>
<tr>
<td>N = b_1d_o - b_0d_1</td>
</tr>
<tr>
<td>P = b_2d_1 - b_1d_2 + b_o</td>
</tr>
<tr>
<td>R = d_0c_2 - d_2c_0</td>
</tr>
<tr>
<td>T = b_2c_o - b_o c_2</td>
</tr>
<tr>
<td>U = b_od_2 - b_2d_o</td>
</tr>
<tr>
<td>A = b_2c_3 - b_3c_2</td>
</tr>
<tr>
<td>B = b_3c_o - b_o c_3</td>
</tr>
<tr>
<td>C = c_2d_3 - c_3d_2 - c_1</td>
</tr>
<tr>
<td>D = c_3d_o - c_o d_3</td>
</tr>
<tr>
<td>E = b_3d_2 - b_2d_3 + b_1</td>
</tr>
<tr>
<td>F = b_od_3 - b_3d_o</td>
</tr>
<tr>
<td>G = B + J</td>
</tr>
<tr>
<td>H = D + L + c_o</td>
</tr>
<tr>
<td>I = P - b_o + F</td>
</tr>
<tr>
<td>X = c_3d_1 - c_1d_3 + c_o</td>
</tr>
<tr>
<td>Y = b_3c_1 - b_1c_3</td>
</tr>
<tr>
<td>Z = b_1d_3 - b_3d_1 - b_o</td>
</tr>
<tr>
<td>K = c_4d_2 - c_2d_4</td>
</tr>
<tr>
<td>L = c_2d_4 - d_2c_4</td>
</tr>
<tr>
<td>m = c_2d_3 - c_3d_2</td>
</tr>
<tr>
<td>N = c_1d_4 - c_4d_1</td>
</tr>
<tr>
<td>P = d_0c_4 - c_o d_4</td>
</tr>
<tr>
<td>K = d_1c_3 - c_1d_3</td>
</tr>
<tr>
<td>T = c_0d_3 - c_3d_o</td>
</tr>
<tr>
<td>b = b_4c_3 - b_3c_4</td>
</tr>
<tr>
<td>o = b_2c_4 - c_2b_4</td>
</tr>
<tr>
<td>y = b_3c_2 - b_2c_3</td>
</tr>
<tr>
<td>e = c_o b_4 - b_o c_4</td>
</tr>
<tr>
<td>s = b_2d_4 - b_4d_2</td>
</tr>
<tr>
<td>u = b_0d_4 - d_o b_4</td>
</tr>
<tr>
<td>p = b_3d_4 - d_3b_4</td>
</tr>
<tr>
<td>r = d_3c_4 - c_3d_4</td>
</tr>
<tr>
<td>T = b_4d_1 - b_1d_4</td>
</tr>
</tbody>
</table>
3-3-2 Basic derivations.

Case I (Second order characteristic equation)

The characteristic equation is of the form:

\[S^2 + (b_1 \alpha + c_1 \beta + d_1)S + b_o \alpha + c_o \beta + d_o = 0 \]

Employing equations (2-10) one can obtain:

\[
\begin{align*}
B_1 &= -b_o \\
C_1 &= -c_o \\
D_1 &= -d_o + w^2
\end{align*}
\]

Solving for \(\alpha \) and \(\beta \) using equations (2-11) results in:

\[
\begin{align*}
\alpha &= (c_1 w^2 - c_o U_2 w + M)/K \quad (3-80) \\
\beta &= (-b_1 w^2 + b_o U_2 w + N)/K
\end{align*}
\]

To find the maximum and minimum points, the first derivatives of \(\alpha \) and \(\beta \) with respect to \(\omega \) are taken and set equal to zero.

\[
\begin{align*}
d \alpha /dw &= (2c_1 w - c_o U_2 w) / K = 0 \quad \text{or} \quad w = c_o U_2 / 2c_1 \quad (3-81) \\
d \beta /dw &= (-2b_1 w + b_o U_2 w) / K = 0 \quad \text{or} \quad w = b_o U_2 / 2b_1
\end{align*}
\]

In equations (3-80) after letting \(w = 0 \) one obtains:

\[
\begin{align*}
\alpha &= M / K \\
\beta &= N / K \quad (3-82)
\end{align*}
\]

Letting \(w \) tend to plus infinity one obtains:

\[
\begin{align*}
\alpha &\to \pm \infty \\
\beta &\to \pm \infty
\end{align*}
\]

Equations (3-80) through (3-82) are valid for all values of zeta between zero and one. Since \(U_2 = 0 \) when \(\zeta = 0 \), then equations (3-80) and (3-81) become:

\[
\begin{align*}
\alpha &= (c_1 w^2 + M) / K \\
\beta &= (-b_1 w^2 + N) / K \quad (3-80a) \\
d \alpha /dw &= 2c_1 w / K \quad w = 0 \quad (3-81a) \\
d \beta /dw &= -2b_1 w / K \quad w = 0
\end{align*}
\]

The relative magnitudes of the coefficients determine whether \(\alpha \) and \(\beta \) approach plus or minus infinity.
Equations (3-82) remain unchanged. Also since \(U_2 = 1 \) when \(\zeta = 0.5 \) one can obtain:

\[
\begin{align*}
\alpha &= \frac{(c_1 w^2 - c_0 w + M)}{K} \\
\beta &= \frac{(-b_1 w^2 + b_o w + N)}{K}
\end{align*}
\]

(3-80b)

\[
\begin{align*}
\frac{d\alpha}{dw} &= \frac{(2c_1 w - c_o)}{K} \\
\frac{d\beta}{dw} &= \frac{(-2b_1 w + b_o)}{K}
\end{align*}
\]

(3-81b)

Equations (3-82) remain unchanged.

Case II. (Third order characteristic equation)

The characteristic equation is of the form:

\[
s^3 + (b_2 \alpha + c_2 \beta + d_2) s + (b_1 \alpha + c_1 \beta + d_1) s + b_0 \alpha + c_0 \beta + d_0 = 0
\]

proceeding as before the following expressions are obtained:

\[
\begin{align*}
\alpha &= \frac{w^4 (-c_2 U_3 + c_2 U_2) - c_1 U_2 w^3 + (L + c_0 + c_0 U_3) w^2 + U_2 R w + M}{Jw^2 + U_2 T w + K} \\
\beta &= \frac{w^4 (-b_2 U_2^2 + b_2 U_3) + b_1 U_2 w^3 + (P - b_0 - b_0 U_3) w^2 + U_2 U w + N}{Jw^2 + U_2 T w + K}
\end{align*}
\]

For \(w = 0 \),

\[
\begin{align*}
\alpha &= \frac{M}{K} \\
\beta &= \frac{N}{K} \text{ (Same as equation (3-82))}
\end{align*}
\]

For \(w \to +\infty \),

\[
\begin{align*}
\alpha &= \pm \infty \\
\beta &= \pm \infty \text{ (Same as equation (3-82))}
\end{align*}
\]

Due to the increased complexity of the expressions for \(\alpha \) and \(\beta \), the derivatives are only computed for the \(\zeta \) equals zero and the \(\zeta \) equals one-half curves.

Letting \(\zeta = 0 \), equations (3-83) become:

\[
\begin{align*}
\alpha &= \frac{c_2 w^4 + Lw^2 + M}{Jw^2 + K} \\
\beta &= \frac{-b_2 w^4 + Pw^2 + N}{Jw^2 + K}
\end{align*}
\]

(3-83a)

For \(w = 0 \) and \(w = \infty \), equations (3-82) apply.

Taking derivatives of equations (3-83a) one obtains:
\[\frac{d^2 \alpha}{dw^2} = \frac{w^4 c_2 J + w^2 2c_2 K + KL - JM}{(Jw^2 + K)^2} \]
(3-84)

The derivative goes to zero for:

\[w^2 = \frac{-2c_2 K \pm \sqrt{(2c_2 K)^2 - 4c_2 J(KL - JM)}}{2c_2 J} \]
(3-84)

\[\frac{d^2 \beta}{dw^2} = \frac{w^4 (-b_2 J) - w^2 (2b_2 K) + KP - NJ}{(Jw^2 + K)^2} \]
(3-84)

The derivative goes to zero for:

\[w^2 = \frac{2b_2 K \pm \sqrt{(2b_2 K)^2 + 4b_2 J(KP - NJ)}}{2b_2 J} \]
(3-84)

Letting \(\zeta = 0.5 \), equations (3-83) become:

\[\alpha = \frac{c_2 w^4 - c_1 w^3 + (I + c_o)w^2 + Rw + M}{Jw^2 + Tw + K} \]
(3-83b)

\[\beta = \frac{-b_2 w^4 + b_1 w^3 + (P - b_o)w^2 + Uw + N}{Jw^2 + Tw + K} \]
(3-83b)

For \(w = 0 \) and \(w = \infty \), equations (3-82) apply. Taking derivatives of equations (3-83b) one obtains:

\[\frac{d \alpha}{dw} = \left[2c_2 Jw^5 + (-3c_1 J + 4c_2 T - c_2 T + 2c_1 J)w^4 + (4c_2 K - 2c_1 T)w^3 + (JR + LT + c_T - 3c_1 K + 2JR)w^2 + (-2JM + 2LK + 2c_o K + KR - MT)]/(Jw^2 + Tw + K)^2 \]
(3-85)

\[\frac{d \beta}{dw} = \left[-2b_2 Jw^5 + (-2b_2 T + b_1 J)w^4 + (-4b_2 K + 2b_1 T)w^3 + (3b_1 K + PT - b_0 T - UJ)w^2 + (2PK - 2b_0 K + 2JN)w + (UK - NT)]/(Jw^2 + Tw + K)^2 \]

In the general case, equations (3-85) involve fifth order polynomials in \(\omega \). In specific problems, however, some quantities in
these equations will be zero, enabling one to more readily solve for the critical values of omega.

Case III. (Fourth order characteristic equation)

The characteristic equation is of the form:

\[S^4 + (b_3 \alpha + c_3 \beta + d_3)S^3 + (b_2 \alpha + c_2 \beta + d_2)S^2 + (b_1 \alpha + c_1 \beta + d_1)S + b_0 \alpha + c_0 \beta + d_0 = 0 \]

Proceeding as before the following expressions are obtained:

\[
\alpha = \left[w^6 c_3 (U_3^2 - U_2 U_4) + w^5 c_2 (U_4 - U_2 U_3) + w^4 (-C - c_1 \\
+ c_1 U_3 + U_2^2 (C + c_1)) + w^3 (U_2 (X - c_0) - c_0 U_4) + \\
w^2 (-U_3 D + L + c_o) + wU_2 R + M \right] / \Delta
\]

\[
\beta = \left[w^6 b_3 (U_2 U_4 - U_3^2) + w^5 b_2 (U_2 U_3 - U_4) + w^4 (U_2 (E - b_1) - b_1 U_3 - U_3 (E - b_1)) + w^3 U_2 (Z + b_0) + b_0 U_4 + \\
w^2 (P - b_0 - U_3 F) + wU_2 U + N \right] / \Delta
\]

\[
\Delta = w^4 A (U_2^2 - U_3) + w^3 Y U_2 + w^2 (-B U_3 + J) + w T U_2 + K
\]

For \(w = 0 \) and \(w = \infty \), equations (3-82) apply. Letting \(\zeta = 0 \), equations (3-86) become:

\[
\alpha = \frac{c_3 w^6 + C w^4 + H w^2 + M}{A w^4 + C w^2 + K} \quad (3-86a)
\]

\[
\beta = \frac{-b_3 w^6 + E w^4 + I w^2 + N}{A w^4 + C w^2 + K}
\]

For \(w = 0 \) and \(w = \infty \), equations (3-82) apply. Taking derivatives of equations (3-86a) one obtains:

\[
\frac{d^2 \alpha}{dw^2} = \left[w^8 A c_3 + w^6 C c_3 G + w^4 (AH + CG + 3Kc_3) + w^2 (2CK + \\
GH - 2A(H + M)) + KH - G(H + M) \right] / (A w^4 + C w^2 + K)^2
\]

(3-87)
\[
\frac{d^2 \beta}{dw^2} = [-w^8A_b - w^6b_3C + w^4(EG - AI + 3Kb_3) + w^2(GI + 2EK - 2AN) + KI - NG)/(Aw^4 + Gw^2 + K)^2
\]

In the general case, equations (3-87) involve eighth order polynomials in omega. In specific problems, however, some quantities in these equations will be zero, enabling one to more readily solve for the critical values of omega.

Letting \(\zeta = 0.5 \), equations (3-86) then become:

\[
\alpha = \frac{c_3w^6 - c_2w^5 + (C + c_1)w^4 + Xw^3 + (L + c_0)w^2 + Rw + M}{Aw^4 + Yw^3 + Jw^2 + Tw + K}
\]

(3-86b)

\[
\beta = \frac{-b_3w^6 + b_2w^5 + (E - b_1)w^4 + Zw^3 + (P - b)w^2 + Uw + N}{Aw^4 + Yw^3 + Jw^2 + Tw + K}
\]

For \(w = 0 \) and \(w = \infty \), equations (3-82) apply. Due to the increased complexity of equations (3-86b), it does not appear practical to compute the derivatives for the general case.

Case IV. (Fifth order characteristic equation).

The characteristic equation is of the form:

\[
S^5 + (b_4 \alpha + c_4 \beta + d_4)S^4 + (b_3 \alpha + c_3 \beta + d_3)S^3 + (b_2 \alpha + c_2 \beta + d_2)S^2 + (b_1 \alpha + c_1 \beta + d_1)S + b_0 \alpha + c_0 \beta + d_0 = 0
\]

Proceeding as before the following expressions are obtained:

\[
\alpha = \frac{w^8c_4(U_5 + U_4^2) - w^7c_3(U_2U_5 + U_3U_4) + w^6(\gamma(U_2U_4 - U_3^2) + c_2(U_5 + U_2U_4)) + w^5(U_2U_3K + U_4\omega - c_1U_4) + w^4(U_2\mu - U_3\mu + U_3\gamma + c_0) + w^3(U_4\rho + U_2\theta) + w^2(U_3\tau + L + c_0) + wU_2R + M]{\Delta}
\]

(3-88)
\[\beta = [-w b_4 (U_4^2 - U_3 U_5) + w^7 b_3 (U_3 U_4 + U_2 U_5) + w^6 \rho (U_2 U_4 - U_3^2 - b_2 (U_2 U_4 + U_5)) + w^5 ((U_2 U_3 - U_4) Z + b_1 U_4) + w^4 (-U_3 (E - b_1) + U_3 T + U_2^2 (E - b_1) + b_o U_5) + w^3 (U_4 U + U_2 (Z + b_o)) + w^2 (-U_3 F + P - b_o) + w U_2 U + N2/\Delta] \]

\[\Delta = w^6 \theta (U_2 U_4 - U_3^2) + w^5 \theta (U_4 - U_2 U_3) + w^4 \gamma (U_3 - U_2^2) + w^3 (U_4 \xi + U_2 \eta) + w^2 (J - U_3 B) + w U_2 T + K \]

For \(w = 0 \) and \(w = \infty \), equations (3-82) apply. Letting \(\zeta = 0 \), equations (3-88) become:

\[\alpha = \frac{w^8 c_4 + w^6 (c_2 - \gamma) + w^4 (\eta - \gamma + c_o) + w^2 (L + c_o - T) + M}{\Delta_1} \]

(3-88a)

\[\beta = \frac{w^8 b_4 - w^6 \rho (b_2 + 1) + w^4 (E - b_1 - \tau + b_o) w^2 (F + P - b_o) + N}{\Delta_1} \]

\[\Delta_1 = -w^6 \theta - w^4 \gamma + w^2 (J + B) + K \]

Letting \(\zeta = 0.5 \), equations (3-88) become:

\[\alpha = \frac{[w^7 c_3 - w^6 (\gamma + 2c_2) + w^5 (c_1 - \lambda) + w^4 \gamma + w^3 (\rho - \rho) + w^2 (L + c_o) + w R + M] / \Delta_2}{\Delta_2} \]

(3-88b)

\[\beta = \frac{[-w^8 b_4 - w^7 b_3 + w^6 \rho (2b_2 - 1) + w^5 (S - b_1) + w^4 (E - b_1 - b_o) + w^3 (Z + b_o - \mu) + w^2 (P - b_o) + w U + N]}{\Delta_2} \]

\[\Delta_2 = -w^6 \theta - w^5 \gamma - w^4 \gamma + w^3 (Y - \xi) + w^2 J + w T + K \]

Example 3-11 (Case I example)

Problem:

Sketch the \(\zeta = 0 \) and the \(\zeta = 0.5 \) curves for the following
characteristic equations. Let the abscissa variable be \(\alpha \) and the ordinate variable be \(\beta \).

\[
S^2 + (\alpha + 2)S + \beta + 1 = 0
\]

Solution:

From equations (3-80) it is found that:

\[
\alpha = U_2 w - 2 \quad \text{beta} = w^2 - 1
\]

From equations (3-81):

\[
\frac{d\alpha}{dw} = U_2 \quad \frac{d\beta}{dw} = 2w
\]

From equations (3-82):

\[
\alpha = -2 \text{ and } \beta = -1 \text{ for } \omega = 0.
\]

Therefore for \(\zeta = 0 \) the following relations apply:

\[
\alpha = -2 \quad \beta = w^2 - 1 \quad \text{and} \quad \frac{d\beta}{dw} = 2w,
\]

which implies a minimum for \(\beta \) at \(\omega = 0 \). The \(\zeta = 0 \) curve is therefore a vertical line in the \(\alpha-\beta \) plane, going from \(\alpha = -2 \), \(\beta = -1 \) to plus infinity as \(\omega \) increases from zero to infinity.

Setting \(\zeta \) to \(.5 \), one finds that:

\[
\alpha = w - 2 \quad \beta = w^2 - 1
\]

or

\[
w = \alpha + 2 \quad \text{beta} = (\alpha + 2)^2 - 1.
\]

The \(\alpha-\beta \) curve is therefore a parabola with vertex at \(\alpha = -2 \) and \(\beta = 0 \); symmetric about the line \(\alpha = -2 \), and opening in the plus beta direction. The curve can readily be plotted after calculating a few critical points.

The above curves are plotted in figure (3-15).

Example 3-12 (Case II example)

Problem:

Repeat example (3-11) for the following equation:

\[
S^3 + (\alpha + 1)S^2 + (\beta + 2)S + 3 = 0
\]
Solution:

From equations (3-83a) for \(\zeta = 0 \), it is found that:

\[
\alpha = -1 + \frac{3}{w^2} \quad \beta = w^2 - 2
\]

For \(\omega = 0 \), \(\alpha = + \infty \) and \(\beta = -2 \).

From equations (3-84):

\[
d^2 \alpha / dw^2 = -\frac{3}{w^4} \quad d^2 \beta / dw^2 = 1
\]

But \(d \beta / dw = 2w \), so \(\alpha \) has a minimum at \(\omega \) equals infinity. \(\beta \) has a minimum at \(\omega = 0 \) and it is -2. The curve is asymptotic to the lines \(\alpha = -1 \) and \(\beta = -2 \).

The following points are readily obtained:

<table>
<thead>
<tr>
<th>(\omega)</th>
<th>(\alpha)</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.414</td>
<td>.5</td>
<td>0</td>
</tr>
<tr>
<td>1.732</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

From equations (3-83b) for \(\zeta = .5 \), it is found that:

\[
\alpha = w - 1 + \frac{3}{w^2} \quad \beta = w^2 - 2 + \frac{3}{w}
\]

For \(\omega = 0 \), \(\alpha = + \infty \), and \(\beta = + \infty \).

Also,

\[
d \alpha / dw = 1 - \frac{6}{w^3} \quad d \beta / dw = 2w - \frac{3}{w^2}
\]

It is therefore obvious that:

\[
d \beta / d \alpha = w(2w^3 - 3)/(w^3 - 6), \text{ from which the critical points are found to be: } w = 0 \text{ and } w = (3/2)^{1/3} = 1.145. \text{ This point is a minimum since the second derivative is negative.}
\]

The following values can be obtained:

<table>
<thead>
<tr>
<th>(\omega)</th>
<th>(\alpha)</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.145</td>
<td>2.435</td>
<td>1.93</td>
</tr>
<tr>
<td>.1</td>
<td>300</td>
<td>28</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2.33</td>
<td>8</td>
</tr>
</tbody>
</table>

The curves are sketched in figure (3-16).

Example 3-13 (Case III example)
Problem:

Repeat example (3-11) for the following equation:

\[S^4 + (\zeta + 1)S^3 + 2S^2 + \zeta S + \beta = 0 \]

Solution:

From equations (3-86a) for zeta = 0:

\[
\alpha = -w^2/(w^2 - 1) \quad \beta = (-w^6 + 3w^4 - 2s^2)/(w^2 - 1)
\]

As omega tends to plus infinity, both alpha and beta tend to minus infinity. As omega tends to zero, both alpha and beta tend to zero.

Also:

\[
d^2 \zeta /dw^2 = [-(w^2 - 1) + w^2]/(w^2 - 1)^2
\]

\[
d^2 \beta /dw^2 = [(w^2 - 1)(-3w^4 + 6w^2 - 2) - (-w^6 + 3w^4 - 2w^2)]/(w^2 - 1)^2
\]

It can be seen from the above derivatives that \(d \beta /d \zeta = 0 \), implies six critical points. It appears unpractical to compute them.

From equations (3-86b) for zeta = .5, it can be shown that:

\[
\alpha = -w^3 + 2w = w(2 - w^2)
\]

\[
\beta = w^6 - 2w^4 - w^3 + 2w^2 = w^2(w^4 - 2w^2 - w + 2)
\]

As omega tends to plus infinity, alpha tends to minus infinity and beta tends to plus infinity. As omega tends to zero, alpha and beta both tend to zero.

Using a slide rule or desk calculator along with the above information the curves can be plotted as shown in figure (3-17).

Example 3-14 (Case IV example)

Problem:

Repeat example (3-11) for the following equation:

\[S^5 + 3S^4 + S^3 + 2S^2 + \zeta S + \beta = 0 \]

Solution:

From equations (3-88a) for zeta = 0:

\[
\alpha = w^2 - w^4 \quad \beta = 2w^2 - 3w^4
\]
exists at $\omega = .578$. The following points can readily be calculated:

<table>
<thead>
<tr>
<th>ω</th>
<th>α</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>.578</td>
<td>.222</td>
<td>.333</td>
</tr>
<tr>
<td>.816</td>
<td>.222</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>

From equations (3-88b) it is seen that:

$$\alpha = -3w^3 + 2w$$

$$\beta = w^5 - w^3 + 2w^2$$

Therefore:

$$\frac{d \alpha}{dw} = -9w^2 + 2$$

$$\frac{d \beta}{dw} = 5w^4 - 3w^2 + 4w$$

Hence $\frac{d \beta}{d \alpha} = 0$, implies that $w(5w^3 - 3w + 4) = 0$. It is not worthwhile to factor the above cubic in ω to obtain the three corresponding critical points. The critical point at ω equal zero indicates that the curve starts at the origin. A slide rule or desk calculator can now be employed along with the above information to plot the curves as shown in figure (3-18).
Figure 3-15
Figure 3-18
Example 3-15

Problem:

For the system shown in figure (3-19) let alpha = K_2K_3 and beta = K_1K_2, and satisfy the following requirements:

1. Assuming that a computer will plot the curves for zeta = 0, .5, and 1, determine an appropriate graph scale.
2. Only first quadrant values of alpha and beta are of interest and the graph is eight inches wide and fourteen inches high. Alpha is the abscissa and beta is the ordinate.
3. Due to bandwidth considerations, omega should be less than 1500.

Solution:

From figure (3-19) the characteristic equation is determined to be:

$$s^3 + 1100s^2 + (10^5 + \omega)s + \beta = 0$$

From this it is seen from table (3-2) that:

$$L = 1 \quad P = -1100 \quad J = 0$$
$$M = 10^5 \quad N = 0 \quad K = -1$$
$$R = -1100 \quad T = 0 \quad U = 0$$

Using equations (3-83a):

$$\alpha = (Lw^2 + M)/(Jw^2 + K) = w^2 - 10^5$$
$$\beta = (Pw^2 + N)/(Jw^2 + K) = 1100w^2$$

For omega = 1500:

$$\alpha = 21.5 \times 10^5 \quad \beta = 24.7 \times 10^8$$

From equations (3-84) or by taking derivatives directly:

$$\frac{d^2 \omega}{dw^2} = 1 \quad \frac{d^2 \beta}{w^2} = 1100$$

Hence:

$$\frac{d \beta}{d \omega} = 1100$$

Letting zeta = .5 and employing equations (3-83b):
Figure 3-19
\[\alpha = \frac{(Rw + 10^5)}{(Tw - 1)} \]
\[\beta = \frac{(w^3 - 1100w^2 + Uw)}{(Tw - 1)} \]

Therefore:
\[\alpha = 1100w - 10^5 \quad \beta = -w^2(w - 1100) \]

It can be seen that the \(\zeta = 0.5 \) curve is not in the first quadrant for \(\omega \) greater than 550, so this curve does not influence the scaling problem.

The origin point of the curves for \(\omega = 0 \), is obtained from equations (3-82) resulting in:
\[\alpha = -10^5 \quad \beta = 0 \]

From the above data it is concluded that it would be best to scale using the values of \(\alpha \) and \(\beta \) for the \(\zeta = 0 \) curve corresponding to \(w = 1500 \).

Therefore:
\[\alpha\text{-scale} = 3 \times 10^5 \text{ units per inch} \]
\[\beta\text{-scale} = 2 \times 10^8 \text{ units per inch} \]

Example 3-16

Problem:

For the system shown in figure (3-20) it is desired to have roots with \(\zeta \) greater than 0.5 and a maximum error coefficient. Plot parameter plane curves to find the best values for \(K \) and \(\zeta \).

Solution:

The characteristic equation is:
\[S^4 + 15S^3 + 150S^2 + (100 + K)S + KZ = 0 \]

Let \(\alpha = K \) and \(\beta = KZ \) to obtain:
\[S^4 + 15S^3 + 150S^2 + (100 + \zeta)S + \beta = 0 \]

From equations (3-86a) corresponding to \(\zeta = 0 \):
\[\alpha = \frac{(Cw^4 + Hw^2 + M)}{(Aw^4 + Gw^2 + K)} \]
\[\beta = \frac{(Ew^4 + Iw^2 + N)}{(Aw^4 + Gw^2 + K)} \]
\[\frac{K(S+Z)}{S(S+10)(S^2+5S+100)} \]
Using table (3-2) one can obtain:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>K</td>
<td>R</td>
</tr>
<tr>
<td>H</td>
<td>E</td>
<td>Z</td>
</tr>
<tr>
<td>M</td>
<td>I</td>
<td>P</td>
</tr>
<tr>
<td>A</td>
<td>N</td>
<td>U</td>
</tr>
<tr>
<td>G</td>
<td>X</td>
<td>U</td>
</tr>
</tbody>
</table>

Then:

\[
\alpha = 15w^2 - 1000 \\
\beta = -w^2(w^2 - 15)
\]

Hence:

Beta is greater than zero for \(w^2 \) less than 150 and alpha is greater than zero for \(w^2 \) greater than 66.5, so both alpha and beta are greater than zero for \(66.5 < w^2 < 150 \).

Letting \(\zeta = .5 \) and employing equations (3-86b) it is found that:

\[
\alpha = -w(w^2 - 15) - 1000 \\
\beta = -15w^2(w - 10)
\]

From these it is seen that for omega greater than ten, beta is less than zero and alpha is less than zero. For omega greater than zero and less than ten, beta is greater than zero and alpha is less than zero. Hence the \(\zeta = .5 \) curve is not in the first quadrant. Since the order of the characteristic equation is only four, it is safe to assume from the above data that all constant zeta curves for zeta greater than or equal to .5 are not in the first quadrant. Since the specifications of the problem cannot therefore be met, it is unnecessary to plot the curves.

Example 3-17

Problem:

Referring to figure (3-21),

1. Determine a scale for alpha and beta and plot the curves.
2. Place a pair of roots with zeta = .5.
3. Make the roots dominant.
4. Due to bandwidth considerations, omega must not be greater than 4000.
Figure 3-21

\[K_1 \frac{S(s+100)}{S+5s+100} \]

\[K_2 \frac{S(s+1000)}{S(s+1)} \]
Solution:

From figure (3-21) the characteristic equation is found to be:

\[s^4 + 1005s^3 + (5100 + \alpha) s^2 + (1005 + 5\alpha) s + 100\alpha + \beta = 0 \]

Here \(\alpha = K_2K_3 \) and \(\beta = K_1K_2 \).

Since the purpose of plotting the curves is to determine \(\alpha \) and \(\beta \) to meet specifications 2, 3, and 4, the sketching techniques are first employed to determine if curve plotting is necessary.

From table (3-2) one can find:

\[
\begin{align*}
c_0 &= 0 & L &= -1 & R &= -5100 \\
X &= 1 & M &= 10^5 & E &= -1000 \\
Z &= 4925 & U &= 5.1 \times 10^5 & N &= -10^7 \\
A &= 0 & Y &= 0 & J &= 0 \\
T &= 1 & K &= -5 & P &= 74600
\end{align*}
\]

From the above values along with equations (3-86b) one finds:

\[
\alpha = \frac{w^2 (w - 5100) + 10^5}{(w - 5)}
\]

It can be seen that for \(\omega \) greater than 5100, \(\alpha \) is positive, and for \(\omega \) less than 5100, \(\alpha \) is negative.

\[
\beta = \frac{w^4 (w - 1005) + 4925w^3 + 74500w^2 + 10^7 (0.051w - 1)}{(w-5)}
\]

Hence for \(\omega \) greater than or equal to 5100, \(\beta \) is positive.

To avoid positive feedback, it is concluded that \(\zeta = 0.5 \) can be obtained only for values of \(\omega \) greater than 5100, which violates specification 4. It is therefore not necessary to plot the curves.
3-4 Graphical solutions on the parameter plane.

3-4-1 Advantages of the graphical solution.

The previously discussed algebraic solutions have the disadvantage that a fixed value of zeta and omega must first be chosen. In some cases, the remainder polynomial can then be modified to ensure that the specified roots are dominant. However, it is not always possible to guarantee that roots placed at a specified location can be made dominant, and a trial and error procedure may have to be employed to achieve the best values for the various parameters. Trial and error may also have to be used in the design of cascade compensators where a specified root location may require parameter values that are not physically realizable.

In these instances, the calculations have to be redone in terms of slightly modified specifications or a different means of compensation may have to be used. In general, system specifications are not rigidly fixed, but can be met by a given range of values or by some upper or lower limit.

To avoid this trial and error analytical procedure one can employ the graphical solution. If a net of curves is plotted by a computer or otherwise, one can, by picking an M point or operating point in the parameter plane, read from the curves the n roots of the nth order characteristic equation. The trial and error procedure can then be done visually to pick an operating point which best meets the given specifications.

3-4-2 Some examples of the graphical solution.

In this section only first quadrant values of alpha and beta are assumed to be of interest. The graphs were plotted with the aid of the computer program presented in section (6-1). At the end of each curve on the graph is a letter and a number. The letters are abbreviations for the following quantities:

\begin{align*}
Z(zeta), \quad S(sigma \text{ or the real part of the complex variable } S), \quad Zw \\
(zeta-omega \text{ or the real part of the complex roots}), \quad w(omega \text{ or the undamped}
\end{align*}
natural frequency of the complex roots).

Example 3-18

Problem:

For the system shown in figure (3-22) set K at the stability limit. Place a dominant root pair within the following region of the S-plane:

\[0.4 \leq \gamma \leq 0.7, \text{ and } 2 \leq \omega \leq 6. \]

Both tachometer and acceleration feedback can be used. If possible use only one or the other.

Solution:

From figure (3-22) the uncompensated system's loop transfer function is:

\[G_H = \frac{-1}{K/[S(S + 10)(S^2 + 5S + 100)]}, \]

which when expanded becomes:

\[S^4 + 15S^3 + 150S^2 + 1000S + K = 0 \]

To determine the value of K at the stability limit the Routh array is formed:

\[
\begin{array}{ccc}
1 & 150 & K \\
15 & 1000 & 0 \\
1250 & 15K & 0 \\
1.25x10^6 - 225K & 0 & 0 \\
15K & 0 & 0
\end{array}
\]

From the Routh array the stability limit is seen to be:

\[K = 5555.5 \]

If both tachometer and acceleration feedback are used the compensated system's characteristic equation becomes:

\[S^4 + 15S^3 + (150 + 5555.5 \alpha)S^2 + (1000 + 5555.5 \beta)S + 5555.5 = 0 \]

where \(\alpha = K_a \), \(\beta = K_t \) and K has been set at the stability limit.

Parameter plane curves for this characteristic equation are shown in figure (3-23).
From these curves, the following analysis can be made. The origin of the parameter plane corresponds to the roots of the uncompensated system. Since the \(\zeta = 0 \) curve passes through the origin, two roots are located on the \(j\omega \) axis of the S-plane as was to be expected from the Routh array. The other two roots are also complex and are located at \(\zeta = .8 \), and \(\omega = 5 \).

It is important to note that when an operating point involves two different pairs of complex roots, then the curves for two different values of \(\omega \) and two different values of \(\zeta \) will have to pass through the point. To determine which value of \(\omega \) goes with which value of \(\zeta \), it is necessary to refer to the computer printout data. Due to lack of space, this data is not provided herewith.

With \(K_a \) set to zero, the effect of tachometer feedback alone corresponds to movement of the M point along the Y-axis. In figure (3-23) the unstable region is determined by an inspection of the way the constant \(\zeta \) curves tend as \(\zeta \) increases. Since the Y-axis is always in the unstable region, it is concluded that tachometer feedback alone cannot stabilize the system.

The effect of acceleration feedback alone can be observed by moving along the X-axis of figure (3-23). If \(K_a \) is varied between .01 and .06, the system will have two pairs of complex roots with the following ranges of values for \(\zeta \):

\[
.3 < \zeta < .5 \text{ and } .25 < \zeta < .32
\]

If both tachometer and acceleration feedback are used, it is concluded that tachometer feedback will in general cause the \(\zeta \) of one pair of roots to increase while the \(\zeta \) of the other pair decreases. It appears that acceleration feedback alone would be better.

From the graph it is determined that with \(K_t = 0 \) and \(K_a = .012 \), that complex roots are located at \(\zeta = .45 \), \(\omega = 4 \), and \(\zeta = .32 \), \(\omega = 82 \).
Since it is true that
\((.45)(4) = 1.8 < < (.32)(13) = 4.15\), it is apparent that the roots at \(\zeta = .45\) and \(\omega = 4\) are dominant. The specifications have therefore been met and the problem is solved.

Example 3-19

Problem:

With the \(K_1K_2\) product set at the stability limit of the uncompensated system, use position feedback as shown in figure (3-24) to obtain dominant characteristic roots with maximum possible \(\zeta\) and \(\omega\), and with a dominancy factor of about two to one (i.e., the ratio of the real part of any secondary root to the real part of the primary roots is about two or greater).

Solution:

From figure (3-24) the characteristic equation becomes:

\[s^3 + 2100s^2 + (\alpha + 1.2\times10^6)s + 100\alpha + \beta + 10^8 = 0 \]

where \(\alpha = K_2K_3\) and \(\beta = K_1K_2\). Setting \(K_3 = 0\) and using the Routh criteria, the value of \(K_1K_2\) at the stability limit of the uncompensated system is found to be: \(2.42\times10^9\).

In figure (3-25) are plotted parameter plane curves for the above system. Constant \(\zeta-\omega\) curves have also been included to assist in the dominancy considerations.

The analysis proceeds as follows. The unstable region is to the left of the \(\zeta = 0\) curve. Root values for the uncompensated system are obtained for \(M\) point values along the Y-axis, since this corresponds to \(K_3 = 0\). The stability limit of the uncompensated system corresponds to the intersection of the \(\zeta = 0\) curve and the Y-axis. The value of \(\beta = K_1K_2\) at this point is observed by the Routh check. The \(M\) points of interest therefore lie along a horizontal line drawn through this point as shown in figure (3-25).

The maximum \(\zeta\) obtainable for any value of \(\alpha\) along this line is about .33. As \(\alpha\) increases then \(\zeta-\omega\) increases and the magnitude
Figure 3-24

\[\frac{K_1}{(s+100)} \]

\[\frac{K_2}{(s+1000)^2} \]

\[K_3 \]
of the real root decreases and the root becomes more dominant. Omega also increases with alpha. Therefore the overriding criteria is the dominancy factor. On this basis an M point located at alpha = \(K_2 K_3 \) = 2.5 x 10^6 and beta = \(K_1 K_2 \) = 2.42 x 10^9 is chosen. Characteristic roots are read from the graph and are located at: zeta = .32, omega = 1680, zeta-omega = 550, and a real root at -1000. The dominancy factor is computed to be 550/1000 or 1.82. Since this is about two and the maximum zeta and omega have been obtained, the solution is complete.

It can be remarked that since \(K_1 K_2 \) was set at a specific value for analysis purposes, the problem was then reduced to only one variable and root locus techniques could have been employed. This example illustrates the flexibility of the parameter plane and it also points out the interesting fact that root values determined along either a horizontal or a vertical line in the parameter plane constitute a root locus in terms of the variable parameter. Root values along a sloped straight line in the parameter plane constitute a sort of hybrid root locus where the two root locus parameters are linearly related.

Example 3-20

Problem:
1. Set K such that the system of figure (3-26) will follow a ramp input, \(\theta_R = 1.0t \).
2. Steady state error should be less than two degrees.
3. Step response overshoot should be less than 30%.
4. Find values of \(\zeta \) and P to meet the above specifications.

Solution:

It is known that steady state error = \(\theta_R / K_e \), where in this problem \(K_e = K/10 \), and \(\theta_R = 1.0 \). Error = 2° = .0349 rad. Therefore, \(K_e = 28.6 \) and K = 286. If the above system can be made second order dominant, the second order curves can be used. For an overshoot of 30%, a zeta of .35
MULTIPLY W, S, AND E W BY 10
X-SCALE = 3 X 10^6 UNITS/IN.
Y-SCALE = 2 X 10^6 UNITS/IN.

FIG. 3-21
Figure 3-26
The characteristic equation of the compensated system then becomes:

$$S^4 + (11 + \alpha)S^3 + (10 + 11\alpha)S^2 + (10\alpha + 286\beta)S + 286\alpha = 0$$

In the above equation, \(\alpha = p \) and \(\beta = \gamma \). Fourth order parameter plane curves are plotted in figure (3-27). It is seen that the \(\zeta = 0.35 \) curve has a minimum value of \(\beta = 25.5 \). Since \(\beta \) is greater than ten, a multiple lead compensator or perhaps a lag-lead compensator is indicated. To enhance the chances of having to use no more than two sections, the minimum value of \(\beta = 25.5 \) is chosen for the single section.

From figure (3-27) the following root locations can be read off corresponding to \(\beta = 25.5 \) and \(\alpha = 87 \): \(\zeta = 0.35 \), \(\omega = 8.2 \), and real roots at -90 and -4.5. Zeta-omega for the complex roots is three. Since \(4.5 = 1.5 \times 3 \), the compensated system is second order dominant with a dominance factor of 1.5.

At this point either a multiple section compensator can be designed from the above values of \(\alpha \) and \(\beta \), or another scheme of compensation can be used. Both alternatives are considered in section (4).
X-SCALE = 3.00E+01 UNITS/IN.
Y-SCALE = 3.00E+01 UNITS/IN.
RM NUTTING FIG. 3-2:
K-SCALE = P=ALPHA, Y-SCALE= GAMMA=BETA
Miscellaneous aspects of the parameter plane.

4-1 Some general comments.

In section (3-2-2) it was shown that constant zeta parameter plane curves of order two through five originate at a point where \(\alpha = M/K \) and \(\beta = N/K \), where \(M, N, \) and \(K \) are determined by the zero and first power coefficients only. Inductive reasoning can be used to conclude that constant zeta curves of any order originate at this common point which is determined only by the zero and first power coefficients. An exception is when \(K = 0 \). In this case the origin point depends on higher order coefficients and its location will be obvious given a specific equation. If \(K \) is not zero, the origin point is independent of the order of the characteristic equation.

Inspection of the expressions for \(\alpha \) and \(\beta \) in section (3-2-2) indicates that the shape of the constant zeta curves as omega becomes larger is primarily determined by the coefficients of higher power, and in general the curves become more complex and less well behaved as the order of the characteristic equation increases. For a given characteristic equation, an increase in complexity can be observed as \(\alpha \) and \(\beta \) appear in more coefficients. As indicated in section (3-2-2) all constant zeta curves tend to plus or minus infinity. The relative magnitudes of the coefficients determine whether the limit is plus or minus infinity. It is therefore necessary to choose a frequency range of interest before plotting the curves, thus limiting the analysis to one "window" of the infinite plane.

Mitrovic curves, since they involve equations which have only one parameter appearing in each of two coefficients, are in general simpler and more well behaved than the parameter plane curves. It is also interesting to note that when parameter plane curves are plotted for characteristic equations of the Mitrovic type, the resulting curves are identical to
those plotted from the Mitrovic equations. This can be seen as follows.

From reference (8) page 349, B_0 and B_1 are given by the following relations where notation has been changed to conform to this text.

$$B_0 = - \sum_{k=2}^{n} d_k w^k \phi_{k-1}$$
$$B_1 = \sum_{k=2}^{n} d_k w^{k-1} \phi_k$$

where $\phi_k = -(2 \phi_{k-1} + \phi_{k-2})$ for $k > 2$

and $\phi_0 = 0, \phi_1 = 1$

Comparison of the tabulated ϕ functions in table (10-1) of reference (8) with appendix (IB) of this text leads to the following relation:

$$\phi_k = (-1)^k U_k$$

The $B_0 - B_1$ Mitrovic characteristic equation is of the form:

$$s^n + \ldots + d_2 s^2 + B_1 s + B_0 = 0$$

If $B_0 = \alpha$ and $B_1 = \beta$, α and β can be computed from the parameter plane equations (2-10) and (2-11) and are as follows:

$$\alpha = \sum_{k=2}^{n} (-1)^k d_k w^k U_{k-1}$$
$$\beta = \sum_{k=2}^{n} (-1)^k d_k w^{k-1} U_k$$

If the relationship between the ϕ_k and U_k functions is employed in the Mitrovic expressions for $B_0 - B_1$, one obtains:

$$B_0 = \sum_{k=2}^{n} d_k w^k (-1)^k U_{k-1}$$
$$B_1 = \sum_{k=2}^{n} d_k w^{k-1} (-1)^k U_k$$

It is seen that $B_0 = \alpha$ and $B_1 = \beta$. The above procedure can be repeated for variables appearing in any two of the coefficients of the characteristic equation. This duality property is employed in section (4-2) to compensate parameter plane type characteristic equations employing normalized Mitrovic $B_0 - B_1$ and $B_1 - B_2$ third order curves which have been plotted using the parameter plane computer program presented in section (6-1).

Since in the parameter plane, a negative value for alpha or beta does not necessarily imply a negative coefficient of the characteristic
equation, one is not restricted to first quadrant values of alpha and beta. In most applications however a negative value for alpha or beta corresponds to a right half plane pole or zero in a cascade compensator or to positive feedback. For all of these cases only the first quadrant of the parameter plane is of interest.

Since no stability criteria, either relative or absolute, has been established for the parameter plane, it is necessary to base the stability analysis on observing which way the curves tend as omega and zeta are varied. For this reason it is desirable to plot curves for as many values of zeta, omega, sigma, and if desired, zeta-omega, as is necessary to fix the pattern.

4-2 Normalized third order curves.

4-2-1. Discussion of the normalized curves.

Third order curves are available for finding the roots of polynomials where the coefficient of zero power is one variable and the coefficient of the first power is the other variable. Such a set of curves is presented in reference (8), and the curves are called normalized Mitrovic B_0-B_1 curves.

In this section a method is presented whereby parameter plane type characteristic equations of third order can be compensated on two different types of normalized curves. One type is the B_0-B_1 curves of reference (3), and the other type is the B_1B_2 curves which are presented in this section. The method here presented is divided into three cases.

4-2-2 Derivation of the normalized transformations.

Case I

Characteristic equations of the type

$$S^3 + d_2S^2 + (b_1 \alpha + c_1 \beta + d_1)S + b_0 \alpha + c_0 \beta + d_0 = 0 \quad (4-1)$$

are considered, where alpha and beta are the variable parameters.

In equation (4-1) letting $S = d_2s$ one obtains:
\[d_2^3 s^3 + d_2^3 s^2 + (b_1 \alpha + c_1 \beta + d_1) d_2 s + b_o \alpha + c_o \beta + d_o = 0 \]

The above equation is divided by \(d_2^3 \) resulting in:

\[s^3 + s^2 + s(b_1 \alpha + c_1 \beta + d_1)/d_2^2 + (b_o \alpha + c_o \beta + d_o)/d_2^3 = 0 \quad (4-2) \]

Let:

\[B_1 = (b_1 \alpha + c_1 \beta + d_1)/d_2^2 \]
\[B_o = (b_o \alpha + c_o \beta + d_o)/d_2^3 \]

Rearranging equations (4-3), two linear equations in \(\alpha \) and \(\beta \) are obtained:

\[b_1 \alpha + c_1 \beta = d_2^2 B_1 - d_1 \quad (4-3a) \]
\[b_o \alpha + c_o \beta = d_2^3 B_o - d_o \]

Equations (4-3a) can be solved by Cramer's rule or by the inversion of the matrix of coefficients to obtain:

\[\alpha = [(d_2^2 B_1 - d_1)c_o - (d_2^3 B_o - d_o)c_1]/(b_1 c_o - b_o c_1) \]
\[\beta = [(d_2^3 B_o - d_o)b_1 - (d_2^2 B_1 - d_1)b_o]/(b_1 c_o - b_o c_1) \quad (4-4) \]

Substituting equations (4-3) into equations (4-2) one obtains:

\[s^3 + s^2 + B_1 s + B_o = 0 \quad (4-5) \]

Equation (4-5) is a normalized \(B_o - B_1 \) type equation.

In figure (4-1) parameter plane curves have been plotted for equation (4-5) where \(B_1 \) is the alpha or X-axis variable and \(B_o \) is the beta or Y-axis variable.

Systems whose characteristic equation is of the case I type can therefore be compensated on the normalized curves of figure (4-1), and the necessary values of alpha and beta can be found from equations (4-4).

Case II.

Characteristic equations are considered of the type:

\[s^3 + (b_2 \alpha + c_2 \beta + d_2) s^2 + (b_1 \alpha + c_1 \beta + d_1) s + d_o = 0 \quad (4-6) \]
Letting $S = \sqrt[3]{d_0}$ s in equation (4-6) and dividing through by d_0 one obtains:

$$s^3 + (b_2 \alpha + c_2 \beta + d_2)s^2/d_0^{\frac{1}{3}} + (b_1 \alpha + c_1 \beta + d_1)s/d_0^{\frac{2}{3}} + 1 = 0 \quad (4-7)$$

Let:

$$B_2 = (b_2 \alpha + c_2 \beta + d_2)/d_0^{\frac{1}{3}}$$

$$B_1 = (b_1 \alpha + c_1 \beta + d_1)/d_0^{\frac{2}{3}} \quad (4-8)$$

Equations (4-8) when rearranged, reduce to two linear equations in alpha and beta as follows:

$$b_2 \alpha + c_2 \beta = d_0^{\frac{1}{3}}B_2 - d_2 \quad (4-9)$$

$$b_1 \alpha + c_1 \beta = d_0^{\frac{2}{3}}B_1 - d_1$$

Solving for alpha and beta as in case I results in:

$$\alpha = [(d_0^{\frac{1}{3}}B_2 - d_2)c_1 - (d_0^{\frac{2}{3}}B_1 - d_1)c_2]/(b_2c_1 - b_1c_2) \quad (4-10)$$

$$\beta = [(d_0^{\frac{1}{3}}B_2 - d_2)b_2 - (d_0^{\frac{2}{3}}B_1 - d_1)b_1]/(b_2c_1 - b_1c_2)$$

As a result of equations (4-8), equation (4-6) becomes:

$$s^3 + B_2s^2 + B_1s + 1 = 0 \quad (4-11)$$

Equation (4-11) is a normalized B_1-B_2 type equation. In figure (4-2), parameter plane curves have been plotted for equation (4-11) where B_2 is the alpha or X-axis variable and B_1 is the beta or Y-axis variable.

Systems whose characteristic equation is of the case II type can therefore be compensated on the normalized curves of figure (4-2), and the necessary values of alpha and beta can be found from equations (4-10).

Case III.

Characteristic equations are considered of the type:

$$s^3 + (b_2 \alpha + c_2 \beta + d_2)s^2 + (b_1 \alpha + c_1 \beta + d_1)s + b_0 \alpha + c_0 \beta + d = 0 \quad (4-12)$$

Letting $S = (b_2 \alpha + c_2 \beta + d_2)s$ and dividing through by $(b_2 \alpha + c_2 \beta + d_2)^3$
equation (4-12) becomes:
\[s^3 + s^2 + (b_1 \alpha + c_1 \beta + d_1)s/(b_2 \alpha + c_2 \beta + d_2)^2 + (b_o \alpha + c_o \beta + d_o)/(b_2 \alpha + c_2 \beta + d_2)^3 = 0 \] (4-13)

Let:
\[B_1 = (b_1 \alpha + c_1 \beta + d_1)/(b_2 \alpha + c_2 \beta + d_2)^2 \] (4-14)
\[B_o = (b_o \alpha + c_o \beta + d_o)/(b_2 \alpha + c_2 \beta + d_2)^3 \]

In equations (4-14) after rearranging, expanding, and collecting terms, one obtains:
\[B_1 b_2^2 \alpha^2 + B_1 c_2^2 \beta^2 + (2B_1 b_2 d_2 - b_1) \alpha + 2B_1 b_2 c_2 \alpha \beta + (2B_1 c_2 d_2 - c_1) \beta + B_1 d_2^2 - d_1 = 0 \]

and
\[B_o b_2^3 \alpha^3 + B_o c_2^3 \beta^3 + 3B_o b_2^2 c_2 \alpha^2 \beta + 6B_o b_2 c_2 d_2 \alpha \beta + 3B_o b_2 c_2 d_2 \beta^2 + (3B_o b_2 d_2^2 - b_o) \alpha + (3B_o c_2 d_2^2 - c_o) \beta + B_o d_2^2 - d_o = 0 \] (4-15)

When the substitution of equation (4-14) is made in equation (4-12), a normalized \(B_o - B_1 \) type equation results. Systems whose characteristic equation is of the case III type can be compensated on the curves given in figure (4-1), to obtain a value of \(B_1 \) and \(B_o \) which can be substituted into equations (4-15). Equations (4-15) contains the solutions for alpha and beta. In the most general case where none of the coefficients in equation (4-15) are zero, a graphical solution of the second and third order polynomials can be made. That is the polynomials of equation (4-15) can be plotted on an alpha-beta plane and the necessary values of alpha and beta can be read from the curve intersections. When some of the coefficients of equations (4-15) are zero, an analytical solution may be easiest, or perhaps a combination of the two can be used.

4-2-3 Application of the method.

Example 4-1 (Case I type)
Problem:

In figure (4-3) find the values of K and K_t to obtain:

1. Characteristic roots at zeta = .5, and omega = 10.
2. Error coefficient should be greater than or equal to 6.

Solution:

The appropriate characteristic equation is:

$$S^3 + 11S^2 + (30 + \alpha)S + \beta = 0,$$

where $\alpha = KK_t$, $\beta = K$.

Specification 2. can be satisfied if:

$$K_e = K/(30 + KK_t) = \frac{\beta}{(30 + \alpha)} \geq .5$$

The characteristic equation is of the case I type, and the appropriate frequency transformation is therefore: $S = \frac{d_s}{s} = 11s$

Letting w_N represent the undamped natural frequency on the normalized plane, one can obtain via the frequency transformation: $w_N = .91$

The value of zeta is unaffected by the transformation. From the $B_0 - B_1$ curves of figure (4-1), a value of $w_N = .91$ and zeta = .5 is seen to correspond to $B_0 = .075$ and $B_1 = .91$. Employing equations (4-4) along with the appropriate coefficient values one can solve for alpha and beta.

The result is:

$$\alpha = 121(.91) - 30 = 80 \quad \beta = (11)^3(.075) = 100$$

Since $\alpha = KK_t = 100K \quad K_t = 80$ it is seen that: $K_t = .8$ and $K = 100 = \beta$.

The error coefficient is therefore:

$$K_e = \frac{\beta}{(30 + \alpha)} = .91,$$

which is greater than .5 so the specifications are satisfied.

Note: If the error coefficient was required to be greater than .91, the specified value of zeta and omega would have to be modified so as to increase beta, decrease alpha, or both.

Example 4-2 (Case II type)
Problem:

In the system shown in figure (4-4) find K, K_c, and K_a to obtain the following:

1. Characteristic roots at $\zeta = .7$, $\omega = 10$.
2. The error coefficient should be greater than or equal to 6.

Solution:

The characteristic equation is:

$$S^3 + (3 + \alpha)S^2 + (2 + \beta)S + K = 0,$$

where $\alpha = KK_a$ and $\beta = KK_c$. The equation is of the case II type and the appropriate frequency transformation is: $S = \frac{1}{d^3_o}s$, where d_o is as yet unknown.

Therefore:

$$w_N = 10\frac{1}{d^3_o} \tag{4-16}$$

Employing equations (4-10) with the appropriate coefficients one obtains:

$$\alpha = \frac{d^2_o}{d^3_o}B_2 - 3 \quad \beta = \frac{d^2_o}{d^1_o}B_1 - 2 \tag{4-17}$$

The error coefficient restriction can be satisfied if:

$$d_o = 12 + 6\beta \quad \text{or} \quad (d_o - 12)/6 = \beta = \frac{d^2_o}{d^1_o}B_1 - 2 \tag{4-18}$$

From equation (4-16) it is seen that:

$$d^2_o = 10/w_N, \quad d^3_o = 100/w^2_N, \quad \text{and} \quad d_o = 1000/w^3_N \tag{4-19}$$

Employing equations (4-19) and (4-18) one obtains:

$$1000/6w^3_N - 2 = 1000B_1/w^2_N - 2 \quad \text{or} \quad B_1 = 1.67/w_N \tag{4-20}$$

The B_1-B_2 curves of figure (4-2) can now be employed.

In figure (4-2) one can pick of various values of w_N along the line $\zeta = .7$. The desired value of w_N is one that satisfies equation (4-20). Referring to figure (4-2), the following values can be obtained when $\zeta = .7$:

$$w_N = .8$$

and

$$B_1 = 2.2$$

and using equation (4-20) it is found that $B_1 = 2.1$.

Also from figure (4-2) when $\zeta = .7$ it can be seen that:
\(W_N = .76 \) and \(B_1 = 2.2 \) and from equation (4-20): \(B_1 = 2.2 \).

The latter set of values are the desired ones and the corresponding value of \(B_2 \) is 2.5. From equation (4-19):

\[
d_o = \frac{1000}{(\cdot76)^3} = 2280 = K
\]

From equations (4-17):

\[
\alpha = 29.9 \quad \beta = 379
\]

Therefore: \(\beta = 379 = K_{Kt} = 2280K_t \) or \(K_t = .166 \) and \(\alpha = 29.9 = K_{Kt} \) or \(K_t = .0131 \).

The error coefficient specification should automatically be satisfied due to the way the analysis was performed, but as a check:

\[
K_e = K/(2 + KK_t) = K/(2 + \beta) \geq 6.
\]

Now:

\[
K/(2 + \beta) = 2280/381 = 6 \text{ which confirms the result.}
\]

Example 4-3 (Case III type)

Problem:

In figure (4-5) find values of gamma, \(P \), and \(K \) to obtain:

1. Characteristic roots at \(zeta = .7 \), \(omega = 15 \).
2. The error coefficient should be equal to 20.

Solution:

The characteristic equation becomes:

\[
S^3 + (\alpha + 5)S^2 + (5\alpha + 100\beta)S + 100\alpha = 0, \text{ where } \beta = \gamma, \alpha = P, \text{ and } K = 100 \text{ to satisfy specification 2. This is recognized as a case III type and the appropriate frequency transformation is: } S = (\alpha + 5)s. \text{ The appropriate curves are the } B_0-B_1 \text{ curves of figure (4-1).}
\]

Employing equations (4-15) after dropping the terms with zero coefficients one obtains:

\[
B_1 \alpha^2 + (10B_1 - 1)\alpha - 100\beta + 25B_1 = 0 \quad (4-21a)
\]

\[
B_0 \alpha^3 + 15B_0 \alpha^2 + (75B_0 - 100)\alpha + 125B_0 = 0
\]

The latter equation when divided by \(B_0 \) becomes:
\[
\alpha^3 + 15\alpha^2 + (75 - 100/B_0)\alpha + 125 = 0 \tag{4-21b}
\]

From the frequency transformation it is seen that:

\[
w_N = \frac{15}{\alpha + 5} \tag{4-22}
\]

The procedure is to find values of \(B_0\) and \(w_N\), employing the zeta = .7 curve of figure (4-1) such that equations (4-21b) and (4-22) are simultaneously satisfied. This can best be done by trial and error.

Trial 1.

From the curves, \(B_0 = .065\) and \(w_N = .58\). From equation (4-22) one finds that \(\alpha = 20.9\). These values are used in equation (4-21b) to see if the left side of the equation becomes zero. Hence:

\[
(20.9)^3 + 15(20.9)^2 - 1465(20.9) + 125 = -14895 \neq 0
\]

Trial 2.

Try \(B_0 = .07\), then from the curves, \(w_N = .55\). From equation (4-22) one finds that \(\alpha = 26\). Using equation (4-21b):

\[
(26)^3 + 15(26)^2 - 1355(26) + 125 = -17775 \neq 0
\]

Trial 3.

Try \(B_0 = .075\), then from the curves: \(w_N = .5\). From equation (4-22) one finds: \(\alpha = 25\). From equation (4-21b):

\[
(25)^3 + 15(25)^2 - 1255(25) + 5(25) = -250, \text{ which can be considered to be close enough to zero for the size numbers involved. Therefore from the curves, } B_1 = .45.
\]

Equation (4-21a) can now be employed to find beta:

\[
\beta = [((B_1\alpha)^2 + (10B_1 - 1)\alpha + 25B_1]/100
\]

or

\[
\beta = [(0.45)(25)^2 + (10x0.45 - 1)25 + 25(0.45)]/100 = 3.8
\]

The final results are:

\[
\gamma = 3.8 \hspace{1cm} P = 25 \hspace{1cm} K = 100
\]
Normalized parameter plane curves of higher order.

In the preceding section, essentially two types of transformations were made to normalize the third order characteristic equations. The first being the magnitude scaling, was tacitly assumed since the b_3 coefficient of the characteristic equation was taken to be one. Dividing through by b_3 constituted the magnitude scaling. The second transformation, which was frequency scaling, was used to make one of the remaining coefficients unity. This left only two variable parameters, and normalized curves could readily be plotted. If the characteristic equation is higher than third order, more than two parameters are involved since only two coefficients can be made unity, so general normalized curves of higher order than three are not feasible except in the special form as follows.

In reference (5), Choe introduced normalized families of fourth order curves where the family parameter was taken as the B_2 coefficient. Parameter plane transformations similar to those given in section (4-2) could be derived for the fourth order case, but they would be too complex to be of practical use. Obviously normalized curves for higher than fourth order are impractical.
4-4. Three dimensional parameter plane space.

4-4-1. Discussion.

Many compensation problems involve finding values for more than just two parameters. Such is true in multiple section cascade compensation and combination feedback and cascade compensation. This type of problem can be solved by conventional parameter plane methods if all but two parameters are set at some arbitrary value. A more illuminating approach, however, involves the use of three dimensional parameter plane space. (When the problem involves or can be reduced to three parameters).

Since the parameter plane equations are obtained by equating the real and imaginary parts of the characteristic equation to zero, unique solutions exist for only two parameters. However, a third parameter can be introduced by plotting families of alpha-beta curves in two dimensional space. Theoretically a three dimensional parameter space surface could be plotted, but interpreting the results would be difficult.

4-4-2. Example problem.

In section (6-1) a computer program is presented which will plot families of parameter plane curves in terms of a third parameter as a variable. The third parameter may appear linearly or non-linearly in any of the coefficients. The following example shows one application of the method.

Example 4-4.

Experience has shown that if the parameter values necessary to compensate a system using a single section cascade compensator are not realizable, then the application of tachometer feedback will often permit the use of values within the acceptable limit. The system shown in figure (4-6) is the problem of example (3-20) but with tachometer feedback employed. Problem:

Using the same criteria as in example (3-20), use tachometer feedback
to find more reasonable values for the cascade compensator parameters.

Solution:

From figure (4-6) it can be seen that:

\[Ke = KP/(10P + KK_t P) = K/(10 + KK_t) \]

From example (3-20), \(K_e = 28.6 \).

Hence: \(K = 286 + 28.6KK_t \).

The characteristic equation is found to be:

\[S^4 + (11 + \alpha)S^3 + (10 + 11\alpha + KK_t \beta)S^2 + (10\alpha + KK_t \alpha + K\beta)S + K\alpha = 0 \]

where \(\alpha = P \) and \(\beta = \gamma \). The third parameter is seen to be \(KK_t \).

The above characteristic equation is seen to be identical to that of example (3-20) when \(KK_t \) is set to zero. The error coefficient restriction can be incorporated into the above equation by letting \(K = 286 + 28.6KK_t \).

This results in:

\[S^4 + (11 + \alpha)S^3 + (10 + 11\alpha + KK_t \beta)S^2 + (10\alpha + KK_t \alpha + 286\beta + 28.6KK_t \beta)S + 286\alpha + 28.6KK_t \alpha = 0 \]

Third parameter values of 10, 50, 100, 200, 300, 400, 500, and 1000 are investigated, employing the computer program of section (6-1). The resulting constant zeta and constant omega curves are shown in figure (4-7). For simplicity the only constant zeta curves that are plotted are for the required value of zeta of .35. If the M-point shown in figure (4-7) is chosen, the following values are applicable:

\[KK_t = 300 \quad \gamma = 10 \quad P = 113 \]

This results in the compensator zero being located at \(S = -11.3 \), which is also a closed loop system zero. For the above parameter values the closed loop system poles were found using the digital computer and are as follows:

\[-11.056 \quad -90.835 \quad -11.054 + j29.56 \]

The residue of the real root at \(S = -11.056 \) is approximately zero due to the closed loop zero at -11.3, so the complex roots which give the zeta
of .35 are dominant and the problem is solved. It is seen that tachometer feedback increases the undamped natural frequency of the complex roots by about a factor of three so the settling time is decreased by a factor of one-third. It is noted however, that settling time is not of interest in this example.

At this point one should investigate to see if tachometer feedback alone could produce the desired results. The Routh check is first employed.

The applicable characteristic equation is:

\[S^3 + 11S^2 + (10 + KK_t)S + K = 0 \]

and

\[K_e = 28.6 = K/(10 + KK_t), \text{ hence } K = 286 - 28.6KK_t. \]

Using this value for \(K \), the characteristic equation becomes:

\[S^3 + 11S^2 + (10 + KK_t)S + 286 + 28.6KK_t = 0 \]

The Routh array is:

\[
\begin{array}{cc}
1 & 10 KK_t \\
11 & 286 + 28.6KK_t \\
-176 - 17.6KK_t & 0 \\
286 + 28.6KK_t & 0 \\
\end{array}
\]

Since a negative value of \(KK_t \) is required to even stabilize the system, it is concluded that tachometer feedback alone will not work.

4-5 Characteristic equations involving product terms of alpha and beta.

4-5-1 Basic derivations.

Assume that the coefficients of the characteristic equation are of the form:

\[a_k = b_k \alpha + c_k \beta + h_k \alpha \beta + d_k \] \hspace{1cm} (4-23)

Employing equations (2-7) one can obtain:

\[\alpha B_1 + \beta c_1 + \alpha \beta A_1 + D_1 = 0 \] \hspace{1cm} (4-24a)

\[\alpha B_2 + \beta c_2 + \alpha \beta A_2 + D_2 = 0 \] \hspace{1cm} (4-24b)
FIG. 4-7

X-SCALE = 2.00E-01 UNITS/INCH.
Y-SCALE = 3.00E+00 UNITS/INCH.
RM NUTTING, X-AXIS = P, Y-AXIS = GAMMA
THIRD PARAMETER = KKT
Where:

\[A_1 = \sum_{k=0}^{m} (-1)^k h_k w_k u_{k-1} \quad \quad A_2 = \sum_{k=0}^{m} (-1)^k h_k w_k u_k \quad (4-25) \]

\(u_{k-1}, u_k, f_1, c_1, d_1, b_2, c_2, \) and \(d_2 \) are as defined in section (2).

Equations (4-24) contain in general, two unique solutions for alpha and beta. Note that if \(A_1 = A_2 = 0 \), equations (4-24) reduce to equations (2-9) and determinants can be used to obtain the one unique solution.

Solving equations (4-24a) and (4-24b) for alpha and equating the results one obtains:

\[D_1 + \beta C_1 + B_2 + \beta A_1 = -D_1 + \beta C_1 \quad (4-26) \]

Equation (4-26) can be solved for beta resulting in:

\[\beta = -\left(\frac{\triangle_{AD} + \triangle_{BC}}{2 \triangle_{AC}} \right) \pm \sqrt{\left(\frac{\triangle_{AD} + \triangle_{BC}}{2 \triangle_{AC}} \right)^2 - 4 \triangle_{AD} \triangle_{BC}} \quad (4-27) \]

The deltas in equation (4-27) are shorthand notation for terms of the form:

\[\triangle_{BC} = B_1 C_2 - B_2 C_1, \quad \triangle_{AD} = A_1 D_2 - A_2 D_1, \text{ etc.} \]

Proceeding in a similar manner, alpha is found to be:

\[\alpha = -\left(\frac{\triangle_{DA} + \triangle_{BC}}{2 \triangle_{BA}} \right) \pm \sqrt{\left(\frac{\triangle_{DA} + \triangle_{BC}}{2 \triangle_{BA}} \right)^2 - 4 \triangle_{DA} \triangle_{BC}} \quad (4-28) \]

Equations (4-27) and (4-28) contain four solution pairs for alpha and beta, only two of which satisfy equations (4-24). To find the two correct solutions, equation (4-27) can be used to find two values of beta which can then be substituted into equation (4-26) to find the corresponding values of alpha. The two solutions can also be found from equations (4-27) and (4-28) where the two correct solution pairs are the ones that make equations (4-24a) or (4-24b) go to zero.

Constant zeta and constant omega curves can be plotted from equations (4-27) and (4-28). Proceeding as in section (2), constant zeta-omega curves can also be plotted from equations (4-27) and (4-28) where \(B_1, C_1, \)
D_1, B_2, C_2, and D_2 are defined by equations (2-15) and where:

$$A_1 = \sum_{k=0}^{m} h_k Q_{k-1} \quad A_2 = \sum_{k=0}^{m} h_k Q_k$$

(4-29)

Constant sigma curves however are no longer straight lines when an alpha-beta product is involved. In this case equation (2-17) becomes:

$$\alpha \sum_{k=0}^{m} (-1)^k b_k \in k + \beta \sum_{k=0}^{m} (-1)^k c_k \in k + \alpha \beta \sum_{k=0}^{m} (-1)^k h_k \in k$$

$$+ \sum_{k=0}^{m} (-1)^k d_k \in k = 0.$$

(4-30)

If one assumes the following notation:

$$DDD = \sum_{k=0}^{m} (-1)^k d_k \in k \quad CCC = \sum_{k=0}^{m} (-1)^k c_k \in k$$

$$BBB = \sum_{k=0}^{m} (-1)^k b_k \in k \quad BC = \sum_{k=0}^{m} (-1)^k h_k \in k$$

Then equation (4-30) becomes:

$$\alpha BBB + \beta CCC + \alpha \beta BC + DDD = 0$$

(4-31)

Equation (4-31) is a special form of a conic section and can be plotted by solving for alpha and incrementing beta over a range of values of interest. The above equations are programmed for the digital computer in section (6-2).

Example problems involving the above concepts are presented in the following section.
4-6 Design of double section cascade compensators.

4-6-1 Discussion.

Double section compensators can be designed by use of the parameter plane in two ways. The double section compensator can be made equivalent to a single section at a specific complex frequency of interest. Here the system is first designed using a single section compensator but the single section parameter values turn out to be physically unrealizable. This method has the disadvantage that control is maintained over only one pair of complex roots and dominance is difficult to ensure.

The second method involves writing the characteristic equation with a double section compensator inserted and drawing the parameter plane curves. Control over all the roots is obtainable and the dominance problem is much simplified.

Both the above methods involve characteristic equations with alpha-beta product terms appearing in the coefficients, and new parameter plane equations have been derived to handle this situation in section (4-5-1).

4-6-2 Design of a double section compensator on the basis of given single section parameter values.

This method was proposed by Hyon in reference (6) but Hyon used the Mitrovic equations to obtain a solution. Parameter plane techniques will now be employed.

Let the open loop transfer function of a double section cascade compensated system be:

\[
\gamma_1 \gamma_2 \frac{(S + P_1/ \gamma_1)(S + P_2/ \gamma_2)}{(S + P_1)(S + P_2)} \cdot G = -1
\] \hspace{1cm} (4-32)

The uncompensated system's forward path transfer function is \(G\), where unity feedback is assumed. The open loop transfer function of a single section compensated system is:

\[
\gamma \frac{(S + P/ \gamma)}{(S + P)} \cdot G = -1
\] \hspace{1cm} (4-33)
Assume complex roots are required at:

\[S_1 = -\frac{2}{1}w_1 \pm jw_1 \sqrt{1 - \frac{2}{1}} \] \hspace{1cm} (4-34)

Equations (4-32) and (4-33) are equated and G is divided out:

\[\frac{\gamma_1 \gamma_2}{(S + P_1)(S + P_2)} \frac{(S + P_1)(S + P_2)}{S} = \frac{(S + P/\gamma)}{(S + P)} \] \hspace{1cm} (4-35)

After rearranging, collecting terms of like power, and dividing by S, equation (4-35) becomes:

\[S^2(\gamma - \gamma_1 \gamma_2) S(P_1 + P_2) \gamma + P(1 - \gamma_1 \gamma_2) - P_1 \gamma_2 - P_2 \gamma_1 + P\gamma = 0 \] \hspace{1cm} (4-36)

The unknowns in equation (4-36) are \(P_1, P_2, \gamma_1, \gamma_2 \), and S.

By substituting a specific frequency for S and equating the real and imaginary parts of equation (4-36) to zero separately, two equations in two unknowns can be obtained. The parameters \(\gamma_1 \) and \(\gamma_2 \) can be pre-set to a fixed value, thus determining whether the compensator will be double lead, double lag, or lag lead. Values for the remaining unknowns \(P_1 \) and \(P_2 \) can then be obtained from the resulting two equations.

It can be noted however, that when \(\gamma_1 \) and \(\gamma_2 \) are given fixed values, the parameter plane techniques of section (4-5) can be applied directly if one lets \(P_1 = \alpha \), \(P_2 = \beta \), and \(P_1 P_2 = \alpha \beta \). Equations (4-27) and (4-28) give the desired values of \(P_1 \) and \(P_2 \) when the specified value of zeta and omega for the complex roots is substituted. Only one or at most two points in the parameter plane are of interest thus obviating the need for plotting curves. Hence straight analytical techniques can be used.

Example 4-5.

Problem:

Apply the above techniques to design a double section filter equivalent
to the single section filter of example (3-20) at the specified frequency of \(\zeta = .35 \) and \(\omega = 8.2 \). Of the possible solutions, choose the one that makes the specified complex roots most dominant.

Solution:

From example (3-20) a value of \(\gamma = 25.5 \) was needed, indicating a double section lead filter might work. The value of \(P \) was 87. Let \(\gamma_1 = \gamma_2 = 5 \), which is a reasonable value for a lead filter. When the above values are substituted, equation (4-36) becomes:

\[
S^2 + (21\alpha + 21\beta - 2118)S + 25\alpha \beta - 348(\alpha + \beta) = 0 \tag{4-37}
\]

when \(\zeta = .35 \):

\[
U_{-1} = -1; \quad U_0 = 0; \quad U_1 = 1; \quad U_2 = .7
\]

From equation (4-37) the coefficients can be used along with equations (2-10) and (4-25) to obtain the following quantities:

\[
\begin{align*}
A_1 &= -25 & A_2 &= 0 \\
B_1 &= 348 & B_2 &= -172 \\
C_1 &= 348 & C_2 &= -172 \\
D_1 &= 67.2 & D_2 &= 17397
\end{align*}
\]

The deltas are then found to be:

\[
\begin{align*}
\Delta_{AD} &= -4.349 \times 10^5 \\
\Delta_{BC} &= 0 \\
\Delta_{AC} &= 4300 \\
\Delta_{BD} &= -4.349 \times 10^5 \\
\Delta_{DA} &= -6.066 \times 10^6 \\
\Delta_{BA} &= -4300 \\
\Delta_{AD} &= -6.066 \times 10^6
\end{align*}
\]

Using equations (4-27) and (4-28) the solutions are:

\[
\begin{align*}
\alpha_1 &= 16.7 & \beta_1 &= 84.4 & \beta_2 &= 16.7 \\
\alpha_2 &= 84.4 & \beta_2 &= 16.7
\end{align*}
\]

From equations (4-24) it is found that \(\alpha_1 \) paired with \(\beta_1 \) and \(\alpha_2 \) paired with \(\beta_2 \) are the consistent solutions.

Since in equation (4-37), the coefficients of alpha and beta are identical, both solutions produce the same result. \(\alpha_1 \) and \(\beta_1 \) are arbitrarily chosen. The characteristic equation of the compensated system
then becomes:

\[s^5 + 112.14s^4 + 2533.2s^3 + 2.3678 \times 10^4s^2 + 1.587 \times 10^5s + 4.0344 \times 10^5 = 0 \]

Using the digital computer the roots are found to be:

\[-4.205 \quad -16.79 \quad -85.51 \quad -2.82 \pm j7.674\]

The complex roots are at the specified value of \(\zeta \) and \(\omega \).

Comparing the above roots with those obtained in example (4-4) where the single section plus tachometer feedback was employed, one concludes that the double section compensator produces dominant complex roots whereas the tachometer feedback and single section scheme does not. In example (4-4) however, the complex roots were found to be effectively dominant since the residue of the nearby real root was about zero. In this example, closed loop zeros are located at -3.34 and -16.9. Therefore, the magnitude of the residues of the complex poles and the real pole at -4.205 are almost the same so it is fortunate that the complex roots are dominant.

4-6-3 Design of a double section compensator using general parameter plane methods.

This method involves incorporating the double section cascade compensator equations into the uncompensated system's characteristic equation. This technique has the advantage that parameter plane curves can then be drawn and control maintained over all the characteristic roots rather than only the two specified complex roots as is the case with the method of section (4-6-2).

Here the technique can best be explained by an example.

Example 4-6

Problem:

Figure (4-8) shows the system of example (3-20) but with a double section compensator employed. Solve example (3-20) using a double section compensator as indicated in figure (4-8).
\[\frac{\gamma_1 \gamma_2 \left(S + \frac{P_1}{\delta_1} \right) \left(S + \frac{P_2}{\delta_2} \right)}{(S + P_1)(S + P_2)} \]

\[\frac{286}{S(S+1)(S+10)} \]
Solution:

For comparison with the results of example (4-5) let:

\[y_1 = y_2 = 5. \]

The characteristic equation then becomes:

\[
S^5 + (\alpha + \beta + 11)S^4 + (\alpha \beta + 11 \alpha + 11 \beta + 10)S^3 + \\
(11 \alpha \beta + 10 \alpha + 10 \beta + 7150)S^2 + (10 \alpha \beta + 1430 \alpha + \\
1430 \beta)S + 286 \alpha \beta = 0
\]

Here: \[\alpha = P_1, \beta = P_2, \text{ and } \alpha \beta = P_1 P_2. \]

Parameter plane curves for equation (4-38) have been plotted in figures (4-9) and (4-10) utilizing the computer program of section (6-2). Since the curves are rather complex, the constant zeta and constant omega curves are plotted in figure (4-9) and the constant sigma curves are plotted in figure (4-10). In figure (4-9) it is noted that there are two sections of constant zeta curves for each value of zeta and two section of constant omega curves for each value of omega. This agrees with the results proven earlier that two unique solutions exist for each value of zeta and omega.

In figure (4-10), the discontinuities of the constant sigma curves are indicated by the horizontal straight line. The straight line is not part of the curve and should be ignored. A study of the curves indicates that for a given curve, if one chooses a point, say \((\alpha_1, \beta_1)\), then there exists a corresponding point \((\beta_1, \alpha_1)\). This is due to the fact that the coefficients of alpha and beta are identical in the characteristic equation.

If the M-point indicated in figures (4-9) and (4-10) is chosen then the following characteristic roots are indicated:

\[-9.21 \quad -26.14 \quad -65.34 \quad -2.1 \pm j5.61\]

The accuracy of the root values was obtained from the printed out computer data, given that alpha = 31.2 and beta = 62.5. The complex roots are located at zeta = .35 and omega = 6.
Y SCALE = 2.88E+81 UNITS/INCH
X SCALE = 2.88E+81 UNITS/INCH
RM NUTTING FIG. 4-9
XSCALE = P1 = ALPHA , YSCALE = P2 = BETA
X-SCALE = 2.80E+01 UNITS/IN
Y-SCALE = 1.00E+01 UNITS/IN
RM NUTTING FIG. 4-10
XS = P1 = ALPHA, YSCALE = P2 = BETA
The roots obtained in example (4-5) are:

-4.205 -16.79 -85.51 -2.82 + j7.674

Comparison of the two sets of roots indicates that in example (4-5) the ratio of the nearest real root to the real part of the complex roots is 1.44 whereas in this example it is 4.4. Hence the dominancy factor has improved by a factor of three in this example.

The effectiveness of the method of this section is thus apparent.
5 Root locus digital computer programs.

The programs of this section were written using Fortran 60 along with subroutines available at the computer facility of the U. S. Naval Postgraduate School. It is necessary to have the coefficients of the polynomial or characteristic equation to use the root locus program of section (5-2), so a program is presented in section (5-1) to compute the coefficients in case the equation is in factored form.

The use of the programs is explained in the comment cards at the beginning of the programs.
..JOB0141F,NUTTING

PROGRAM COMBINE
C PROGRAMMER RM NUTTING
C THIS PROGRAM WILL COMPUTE THE COEFFICIENTS OF A POLYNOMIAL UP TO ORDER
C SIX FROM THE CORRESPONDING FACTORS.
C SUBMIT THE DATA IN THE FOLLOWING MANNER. MULTIPLE RUNS MAY BE MADE
C BY ADDING ADDITIONAL COMPLETE SETS OF DATA CARDS TO THE BOTTOM OF THE
C DECK. INSERT A BLANK CARD BETWEEN THE LAST END CARD AND BEFORE THE FIRST
C SET OF DATA CARDS. NO BLANK CARD SHOULD BE INSERTED BETWEEN THE SETS OF
C DATA CARDS.
C CARD 1 THE ORDER OF THE EQUATION (12 FORMAT)
C CARD 2 THE REAL PARTS OF THE FACTORS (8E10.4 FORMAT)
C CARD 3 THE IMAGINARY PARTS OF THE FACTORS (8E10.4 FORMAT)
C ENSURE THAT THE SIGNS OF THE FACTORS AND NOT THE SIGNS OF THE ROOTS
C ARE USED.
D I M E N S I O N R R (100), R I (100), C R (100), C I (100)
203 F O R M A T (12)
99 R E A D 203, NO
206 F O R M A T (8E10.4)
20 F O R M A T (5I2)
21 F O R M A T (4I2)
22 F O R M A T (3I2)
R E A D 206, (R R (I), I=1, NO)
R E A D 206, (R I (I), I=1, NO)
250 F O R M A T (1H1, 17HTHE INPUT DATA IS, // / /)
P R I N T 250
251 F O R M A T (17HORDER OF EQUATION)
P R I N T 251
P R I N T 203, NO
252 F O R M A T (///, 21HREAL PARTS OF FACTORS, ///)
P R I N T 252
P R I N T 206, (R R (I), I=1, NO)
253 F O R M A T (///, 26HIMAGINARY PARTS OF FACTORS, ///)
P R I N T 253
P R I N T 206, (R I (I), I=1, NO)
N C = N O + 1
D O 1 7 I = 1, N C
C R (I) = 0.
17 C I (I) = 0.
G O T O (11, 12, 13, 14, 15, 16), NO
16 I = 1
J = 2
K = 3
L=4
M=5
N=6
ARI=RR(I)*RI(J)+RI(I)*RR(J)
ARR=RR(I)*RR(J)-RI(I)*RI(J)
BRR=ARR*RR(K)-ARI*RI(K)
BRI=ARR*RI(K)+ARI*RR(K)
CRR=BRR*RR(L)-BRI*RI(L)
CRI=BRR*RI(L)+BRI*RR(L)
DRR=CRR*RR(M)-CRI*RI(M)
DRI=CRR*RI(M)+CRI*RR(M)
CR(7)=DRR*RR(N)-DRI*RI(N)
CI(7)=DRR*RI(N)+DRI*RR(N)
15 DO 9 I=1,NO
 DO 9 J=1,NO
 DO 9 K=1,NO
 DO 9 L=1,NO
 DO 9 M=1,NO
 IF(I-J)9,9,30
 IF(I-K)9,9,31
30 IF(I-L)9,9,32
31 IF(I-M)9,9,33
32 IF(J-K)9,9,34
33 IF(J-L)9,9,35
34 IF(J-M)9,9,36
35 IF(K-L)9,9,37
36 IF(K-M)9,9,38
37 IF(L-M)9,9,40
10 ARR=RR(I)*RR(J)-RI(I)*RI(J)
 ARI=RR(I)*RI(J)+RI(I)*RR(J)
 BRR=ARR*RR(K)-ARI*RI(K)
 BRI=ARR*RI(K)+ARI*RR(K)
 CRR=BRR*RR(L)-BRI*RI(L)
 CRI=BRR*RI(L)+BRI*RR(L)
 CR(6)=CRR*RR(M)-CRI*RI(M)+CR(6)
 CI(6)=CRR*RI(M)+CRI*RR(M)+CI(6)
PRINT 20,I,J,K,L,M
9 CONTINUE
14 DO 7 I=1,NO
 DO 7 J=1,NO
 DO 7 K=1,NO
 DO 7 L=1,NO
 IF(I-J)7,7,40
41 IF(I-L)7,7,42
42 IF(J-K)7,7,43
43 IF(J-L)7,7,44
44 IF(K-L)7,7,8
8 ARR=RR(I)*RR(J)-RI(I)*RI(J)
ARIO=RR(I)*RI(J)+RI(I)*RR(J)
BRR=ARR*RR(K)-ARI*RI(K)
BRI=ARR*RI(K)+ARI*RR(K)
CR(5)=BRR*RR(L)-BRI*RI(L)+CR(5)
CI(5)=BRR*RI(L)+BRI*RR(L)+CI(5)
PRINT 21,I,J,K,L
7 CONTINUE
13 DO 5 I=1,NO
DO 5 J=1,NO
DO 5 K=1,NO
IF(I-J)5,5,50
50 IF(J-K)5,5,51
51 IF(I-K)5,5,6
6 ARR=RR(I)*RR(J)-RI(I)*RI(J)
ARIO=RR(I)*RI(J)+RI(I)*RR(J)
CR(4)=ARR*RR(K)-ARI*RI(K)+CR(4)
CI(4)=ARR*RI(K)+ARI*RR(K)+CI(4)
PRINT 22,I,J,K
5 CONTINUE
12 DO 3 I=1,NO
DO 3 J=1,NO
IF(I-J)3,3,4
4 CR(3)=RR(I)*RR(J)-RI(I)*RI(J)+CR(3)
CI(3)=RR(I)*RI(J)+RI(I)*RR(J)+CI(3)
3 CONTINUE
11 DO 1 J=1,NO
CR(2)=RR(J)+CR(2)
1 CI(2)=RI(J)+CI(2)
CR(1)=1.
CI(1)=0.
254 FORMAT(1H1,///,46HREAL PARTS OF COEFFICIENTS IN DESCENDING ORDER, 1//)
PRINT 254
255 FORMAT(5E20.5)
PRINT 255(CR(J),J=1,NC)
256 FORMAT(///,51HIMAGINARY PARTS OF COEFFICIENTS IN DESCENDING ORDER 1,///)
PRINT 256
PRINT 255 (CI(J),J=1,NC)
GO TO 99
END
END
..JCB0141F, NUTTING
PROGRAM RLOCUS
C
PROGRAMMERS RH NUTTING AND JO FENICK
C
THIS PROGRAM WILL PLOT A ROOT LOCUS FOR A CHARACTERISTIC EQUATION UP TO
ORDER 30. ROOT LOCUS POLES ARE PLOTTED WITH AN X, ROOT LOCUS ZEROS ARE
PLOTTED WITH A SQUARE, AND INTERMEDIATE ROOT POINTS ARE PLOTTED WITH A
PLUS. THE STARTING VALUE OF ROOT LOCUS GAIN AND THE NUMBER OF DECADES
TO BE SPANNED BY THE GAIN MUST BE SPECIFIED. THE GRAPH PLOT IS BASED ON
PLOTTING EVERY TENTH POINT AS THE GAIN VARIES BETWEEN ITS INITIAL AND
FINAL VALUE IN 300 STEPS.
C
THE DATA CARDS ARE SUBMITTED IN THE FOLLOWING MANNER. SUBMIT A
COMPLETE SET OF DATA CARDS FOR EACH ROOT LOCUS TO BE PLOTTED.
C
CARD 1 THE FIRST LINE OF THE GRAPH TITLE (IN COLUMNS 1-48)
CARD 2 THE SECOND LINE OF THE GRAPH TITLE (IN COLUMNS 1-48)
CARD 3 THE ORDER OF THE CHARACTERISTIC EQUATION (12 FORMAT)
CARD 4 CONSTANT COEFFICIENTS IN DESCENDING ORDER. (8E10.5 FORMAT)
CARD 5 COEFFICIENTS OF THE VARIABLE IN DESCENDING ORDER (8E10.5 FORMAT)
CARD 6 INITIAL VALUE OF THE VARIABLE (E10.5 FORMAT), MUST NOT BE ZERO
CARD 7 NUMBER OF DECADES TO BE SPANNED. (FROM 1-10) (13 FORMAT)
CARD 8 GRAPH SCALE TO ONE SIGNIFICANT FIGURE. (E10.5 FORMAT)
DIMENSION R(129), X(129), IT(10), ROOT(128), ROOTI(128), TITLE(12),
1A(129), B(129), ROOTT(128), ROOTM(128), AP(129), AZ(129)
COMMON R, VAR, NO, ROOTR, ROOTI
DO 15 K=1,129
15 X(K)=.0,0
206 MOD=1
LAB=4H
68 FORMAT(8E15.5)
70 FORMAT(////.14HIMAGINARY PART,///)
69 FORMAT(////.9HREAL PART,///)
200 FORMAT(6A8)
203 FORMAT(13)
204 FORMAT(E10.5)
READ 200,(ITITLE(I),I=1,6)
READ 200,(ITITLE(I),I=7,12)
24 FORMAT(1H1,///.17HTHE INPUT DATA IS,///)
PRINT 24
324 FORMAT(///.11HGRAPH TITLE,///)
PRINT 324
PRINT 200,(ITITLE(I),I=1,6)
PRINT 200,(ITITLE(I),I=7,12)
28 FORMAT(///.36HORDER OF THE CHARACTERISTIC EQUATION,///)
PRINT 28
READ 203,NO
PRINT 203, NO
N=NO+1
205 FORMAT(8E10.5)
207 FORMAT(8E12.5)
22 FORMAT(///,41HCONSTANT COEFFICIENTS IN DESCENDING ORDER,///)
 PRINT 22
 READ 205,(A(K),K=1,N)
 PRINT 207,(A(K),K=1,N)
23 FORMAT(///,48HCOEFFICIENTS OF THE VARIABLE IN DESCENDING ORDER,///)
 PRINT 23
 READ 205,(B(K),K=1,N)
 PRINT 207,(B(K),K=1,N)
25 FORMAT(///,29HINITIAL VALUE OF THE VARIABLE,///)
 PRINT 25
 READ 204,VAR
 PRINT 204,VAR
26 FORMAT(///,31HNUMBER OF DECADES TO BE SPANDED,///)
 PRINT 26
 READ 203, ND
 PRINT 203, ND
27 FORMAT(///,5HSSCALE,///)
 PRINT 27
 READ 204, XSCALE
 PRINT 204, XSCALE
 YSCALE=XSCALE
201 FORMAT(21HTHE SYSTEM POLES ARE,///)
 PRINT 201
 M=N
 DO 67 K=1,N
 AP(K)=A(M)
 M=M-1
 CALL POLYRT(AP,X,NO,ROOTR,ROOT1,1.E-05)
 PRINT 69
 PRINT 68, (ROOTR(K),K=1,NO)
 PRINT 70
 PRINT 68, (ROOTI(K),K=1,NO)
 CALL DRAW(NO,ROOTR,ROOT1,MOD,1,LAB,ITITLE,XSCALE,YSCALE,
 11,6,2,2,7,8,1,LAST)
 MOD=2
202 FORMAT(///,21H THE SYSTEM ZEROS ARE,///)
 K=1
 3 IF(B(K)) 1,2,1
 2 K=K+1
 GO TO 3
1 NORD=N-K
 IF(NORD-1) 6,4,5
4 ZERO=-B(K+1)/B(K)
7 FORMAT(16H THE SYSTEM ZERO=,E10.5,///)
 PRINT 7,ZERO
 GO TO 8
6 PRINT 9
9 FORMAT(25H ALL ZEROS ARE AT INFINITY)
 GO TO 8
5 NN=NORD+1
 DO 10 L=1,NN
9 R(L)=B(K)
10 K=K+1
 PRINT 202
 M=NN
 DO 46 K=1,NN
46 AZ(K)=R(M)
 M=M-1
 CALL POLYRT (AZ,X,NORD,ROTM,ROOTJ,1.E-05)
 PRINT 69
 PRINT 68,(ROOTM(K),K=1,NORD)
 PRINT 70
 PRINT 68,(ROOTJ(K),K=1,NORD)
 CALL DRAW(NORD,ROOTM,ROOTJ,MOD,3,LAB,ITITLE,XSCALE,YSCALE,
11,6,2,2,7,8,1,LAST)
 MOD=2
8 CONTINUE
 GO TO(31,32,33,34,35,36,37,38,39,40),ND
31 G=1.0076
 GO TO 41
32 G=1.016
 GO TO 41
33 G=1.0245
 GO TO 41
34 G=1.0312
 GO TO 41
35 G=1.0394
 GO TO 41
36 G=1.0483
 GO TO 41
37 G=1.0568
 GO TO 41
38 G=1.0633
 GO TO 41
G=1.071
GO TO 41
G=1.078
1492 FE(MA)=0.
20 BETAN =ROOTI(M) +EE(M)
ALFAN=ROOTR(M) +FE(M)
DO 7 I=1,100
S=2.*ALFAN
J=-((ALFAN**2+BETAN**2)/2)
C(1)=R(1)
C(2)=R(2)+S*R(1)
NC=NO+1
DO 2 L=3,NC
 2 C(L) = R(L)+S*C(L-1) + T*C(L-2)
AN= C(NO+1)-ALFAN*C(NO)
BN= BETAN*C(NO)
IF (NO-3) 21, 17, 18
17 CN = 3.*R(1)*(ALFAN**2-BETAN**2) + 2.*R(2)*ALFAN + R(3)
DN = 6.*R(1)*ALFAN*BETAN + 2.*R(2)*BETAN
GO TO 19
21 CN = 2.*R(1)*ALFAN + R(2)
DN = 2.*R(1)*BETAN
GO TO 19
18 D(1) = C(1)
D(2)=C(2)+S*D(1)
NU=NO-1
DO 3 N=3,NU
 3 D(N)=C(N)+S*D(N-1)+T*D(N-2)
CN= C(NO)-2.*D(NO-2)*BETAN**2
DN= 2.*BETAN*(D(NO-1)-ALFAN*D(NO-2))
19 ALFA=ALFAN-(AN*CN+B*N*DN)/(CN**2+DN**2)
BETA=BETAN+(AN*DN-B*N*CN)/(CN**2+DN**2)
EE(M)=((ALPHA-ALFAN)/(ALFAN+1.))**2.
FE(M)=((BETA-BETAN)/(BETAN+1.))**2.
IF (ABSF(EE(M))<5.E-4)
 4 IF (ABSF(FE(M))<5.E-4) 6,6,5
 5 ALFAN=ALFA
 7 BETA=BETA
PRINT 50
50 FORMAT (46H NO CONVERGENCE IN100 ITERATIONS AT THIS GAIN)
GO TO 12
6 ROOTR(M)=ALFA
1 ROOTI(M)=BETA
IF (ABSF(ROOTI(M))<5.E-4) 12,12,13
13 ROOTR(M+1) = ROOTR(M)
ROOTI(M+1) = -ROOTI(M)
M=M+1
12 IF (M-NO) 15,16,16
15 M=M+1
GO TO 20
16 RETURN
END
END
6 Parameter plane digital computer programs.

The programs of this section were written using Fortran 60 along with subroutines available at the computer facility of the U. S. Naval Postgraduate School.

The use of the programs is explained in the comment cards at the beginning of the programs.
PROGRAM PARAM A

PROGRAMMER RM NUTTING

THIS PROGRAM IS APPLICABLE TO POLYNOMIALS WHERE COEFFICIENTS ARE OF THE
FORM (B^ALPHA + C^BETA + D) WHERE ALPHA AND BETA ARE VARIABLE PARAMETERS
AND B, C, AND D ARE CONSTANTS. THIRD PARAMETERS CAN ALSO BE SPECIFIED
AS INDICATED BELOW.

THIS PROGRAM WILL PLOT ON ONE 9 INCH BY 15 INCH GRAPH, PARAMETER PLANE
CURVES OF THE FOLLOWING TYPE: CONSTANT ZETA CURVES AS A FUNCTION OF OMEGA,
THE STARTING VALUE OF OMEGA AND THE NUMBER OF DECADES THAT OMEGA WILL
SPAN WILL BE SPECIFIED IN THE DATA CARDS), CONSTANT OMEGA CURVES FOR
PRE-PROGRAMMED VALUES OF ZETA BETWEEN ZERO AND ONE, CONSTANT SIGMA LINES,
CONSTANT ZETA-OMEGA CURVES, THE VALUES OF ZETA FOR THE CONSTANT ZETA
CURVES, THE VALUES OF OMEGA FOR THE CONSTANT OMEGA CURVES, THE VALUES OF
SIGMA FOR THE CONSTANT SIGMA LINES, AND THE VALUES OF ZETA-OMEGA FOR THE
CONSTANT ZETA-OMEGA CURVES MAY BE SPECIFIED IN THE DATA CARDS.

IF HOWEVER NO CURVES OF A CERTAIN TYPE ARE DESIRED PLACE A ZERO
IN THE APPROPRIATE COLUMN CORRESPONDING TO THE NUMBER OF CURVES. IN
THIS CASE SUBMIT A BLANK CARD FOR THE LABELS AND FOR THE CURVE VALUES.
IF NO CONSTANT ZETA CURVES ARE DESIRED, SET NZ AND ND TO ZERO, AND
SUBMIT A BLANK CARD FOR THE ZETA LABELS, FOR THE ZETA CURVE VALUES, AND
FOR THE STARTING VALUE OF OMEGA.

ALL CURVES ARE PLOTTED ON THE SAME GRAPH.

AN ADDITIONAL FEATURE OF THE PROGRAM IS THAT FAMILIES OF CONSTANT
ZETA, OMEGA, SIGMA, AND ZETA-OMEGA CURVES MAY BE PLOTTED IN TERMS OF A
THIRD PARAMETER, UP TO 10 VALUES OF THE THIRD PARAMETER MAY BE SPECIFIED.
THE THIRD PARAMETER MAY APPEAR LINEARLY OR NON-LINEARLY IN ANY OF THE
COEFFICIENTS. THE X-AXIS VARIABLE IS ALPHA AND THE Y-AXIS VARIABLE IS BETA
CONSTANT SIGMA LINES WILL BE COMPUTED ONLY FOR THOSE VALUES OF SIGMA ALONG
THE NEGATIVE REAL AXIS IN THE S-PLANE. THESE SIGMA VALUES SHOULD BE
ENTERED IN THE DATA CARDS AS POSITIVE QUANTITIES HOWEVER.

THE FOLLOWING SYMBOLS ARE PERTINANT TO THE PROGRAM,
ND— THE NUMBER OF DECADES SPANNED BY OMEGA FOR THE CONSTANT ZETA CURVES.
NO—THE ORDER OF THE EQUATION, NZ, NS, NW, AND NZW—THE NUMBER OF CONSTANT
ZETA, SIGMA, OMEGA, AND ZETA-OMEGA CURVES RESPECTIVELY, NE—THE NUMBER OF
VALUES OF THE THIRD PARAMETER, IXUP—DISTANCE IN INCHES OF THE X-AXIS FROM
THE BOTTOM OF THE GRAPH, IYRIGHT—THE DISTANCE IN INCHES OF THE Y-AXIS
FROM THE LEFT SIDE OF THE GRAPH, LAB2, LAB5, LABY, LABZW—THE LABELS FOR THE
CONSTANT ZETA, SIGMA, OMEGA, AND ZETA-OMEGA CURVES, WN—THE STARTING VALUE
OF OMEGA FOR THE CONSTANT ZETA CURVES, E—THE THIRD PARAMETER, BJ, CJ, DJ —
ALPHA, BETA, AND CONSTANT COEFFICIENTS RESPECTIVELY.

IF A THIRD PARAMETER IS NOT SPECIFIED THE DATA CARDS ARE SUBMITTED IN THE
FOLLOWING MANNER.
CARD 1 THE FIRST LINE OF THE GRAPH TITLE (IN COLUMNS 1-48)
CARD 2 THE SECOND LINE OF THE GRAPH TITLE (IN COLUMNS 1-48)
CARD 3 IN 8110 FORMAT ENTER FROM LEFT TO RIGHT
 ND NO NZ NS NW NZW IXUP IYRIGHT
CARD 4 IN COLUMN 10 ENTER A 1 IF PRINTOUT IS DESIRED. LEAVE BLANK IF NO
PRINTOUT IS DESIRED.
CARD 5 LABZ (20A4 FORMAT), LEAVE BLANK IF NZ = 0
CARD 6 LABS (20A4 FORMAT), LEAVE BLANK IF NS = 0
CARD 7 LABW (20A4 FORMAT), LEAVE BLANK IF NW = 0
CARD 8 LABZW (20A4 FORMAT), LEAVE BLANK CARD IF NZW = 0
CARD 9 VALUES OF ZETA FOR CONSTANT ZETA CURVES (8E10.5 FORMAT)
CARD 10 VALUES OF SIGMA FOR CONSTANT SIGMA CURVES (8E10.5 FORMAT)
CARD 11 VALUES OF OMEGA FOR CONSTANT OMEGA CURVES (8E10.5 FORMAT)
CARD 12 VALUES OF ZETA-OMEGA FOR CONSTANT ZETA-OMEGA CURVES (8E10.5 FORMAT)
CARD 13 CONSTANT COEFFICIENTS IN ASCENDING ORDER (8E10.5 FORMAT)
CARD 14 ALPHA COEFFICIENTS IN ASCENDING ORDER (8E10.5 FORMAT)
CARD 15 BETA COEFFICIENTS IN ASCENDING ORDER (8E10.5 FORMAT)
CARD 16 OMIT
CARD 17 VN (E10.5 FORMAT)
CARD 18 XSCALE (E10.5 FORMAT; USE 1 SIGNIFICANT FIGURE)
CARD 19 YSCALE (E10.5 FORMAT; USE 1 SIGNIFICANT FIGURE)
 IF A THIRD PARAMETER IS SPECIFIED THE DATA CARDS ARE SUBMITTED IN
 THE FOLLOWING MANNER:
 CARD 1 SAME AS CARD 1 IN PREVIOUS SECTION
 CARD 2 SAME AS CARD 2 IN PREVIOUS SECTION
 CARD 3 SAME AS CARD 3 IN PREVIOUS SECTION
 CARD 4 SAME, EXCEPT ENTER THE VALUE OF NE IN COLUMNS 11-20 (USE 1 FORMAT)
 CARD 5 SUBMIT NZ GROUPS OF LABELS WITH NE LABELS IN EACH GROUP. SUBMIT
 IN CONSECUTIVE ORDER (20A4 FORMAT); SUBMIT BLANK CARD IF NZ = 0.
 CARD 6 SAME AS CARD 5 ONLY SUBMIT NS GROUPS; SUBMIT BLANK CARD IF NS = 0
 CARD 7 SAME AS CARD 5 ONLY SUBMIT NW GROUPS; SIBMIT BLANK CARD IF NW = 0.
 CARD 8 SAME AS CARD 5 ONLY SUBMIT NZW GROUPS; SUBMIT BLANK CARD IF NZW = 0
 CARD 9 SAME AS CARD 9 IN PREVIOUS SECTION
 CARD 10 SAME AS CARD 10 IN THE PREVIOUS SECTION
 CARD 11 SAME AS CARD 11 IN THE PREVIOUS SECTION
 CARD 12 SAME AS CARD 12 IN THE PREVIOUS SECTION
 CARD 13 OMIT
 CARD 14 OMIT
 CARD 15 OMIT
 CARD 16 VALUES OF THE THIRD PARAMETER (8E10.5 FORMAT)
 CARD 17 SAME AS CARD 17 IN PREVIOUS SECTION
 CARD 18 SAME AS CARD 18 IN PREVIOUS SECTION
 CARD 19 SAME AS CARD 19 IN PREVIOUS SECTION
 THE COEFFICIENTS OF THE CHARACTERISTIC EQUATION MUST BE ENTERED IN
SUBROUTINE COEF. FOR EXAMPLE, GIVEN AN EQUATION OF THE FOLLOWING FORM
WHERE E CORRESPONDS TO THE THIRD PARAMETER, DJ5(5)*S**4 +
(BJ4)*ALPHA + CJ4)*BETA + DJ4(4)*S**3 + (BJ3)*ALPHA + CJ3)*BETA +
DJ3(3)*S**2 + (BJ2)*ALPHA + CJ2)*BETA + DJ2)*S + (BJ1)*ALPHA +
CJ1)*BETA + DJ1)) = 0
THE COEFFICIENTS OF THE ABOVE EQUATION WOULD BE ENTERED EACH ON A
SEPARATE CARD BETWEEN THE COMMON AND RETURN CARDS IN SUBROUTINE COEF.
FOR EXAMPLE
COMMON E,BJ,CJ,DJ
BJ1) = 2. +E
CJ1) = 1.
DJ1) = 3.
BJ2) = 10. +E
CJ2) = 286. + 28.6 *E
DJ2) = 0.
BJ3) = 11.
CJ3) = E
DJ3) = 10.
BJ4) = 1.
CJ4) = 0.
DJ4) = 11.
BJ5) = 0.
CJ5) = 0.
DJ5) = 1.
RETURN
DIMENSION A(350), B(350), ITITLE(12), ZETA(100), LABZ(100, 10),
SIGMA(100), LABS(100, 10), W(100), LABW(100, 10), ZW(100), LABZW(100, 10),
HS(350), H(350), EJ(100), BJ(100), CJ(100), DJ(100)
COMMON E,BJ,CJ,DJ

250 FORMAT(1H1, 17HTHE INPUT DATA IS, ///)
1485 CONTINUE
PRINT 250
200 FORMAT (6A8)
READ 200,(ITITLE(I), I=1,6)
READ 200,(ITITLE(I), I=1,12)
PRINT 200,(ITITLE(I), I=1,6)
PRINT 200,(ITITLE(I), I=1,12)
251 FORMAT(///, 8X, 2HND, 8X, 2HNO, 8X, 2HNZ, 8X, 2HNS, 8X, 2HNW, 7X, 3HNZW, 6X,
14HIXUP, 3X, 7HIYRIGHT, //)
PRINT 251
203 FORMAT(8I10)
READ 203,ND, NO, NZ, NS, NW, NZW, IXUP, IYRIGHT
NC=NO+1
PRINT 203,ND, NO, NZ, NS, NW, NZW, IXUP, IYRIGHT
<table>
<thead>
<tr>
<th>Line Number</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>463</td>
<td>FORMAT(/1,4X,6H1PRINT,//)</td>
</tr>
<tr>
<td>464</td>
<td>PRINT 463</td>
</tr>
<tr>
<td>465</td>
<td>FORMAT(2110)</td>
</tr>
<tr>
<td>466</td>
<td>READ 464,1PRINT,NE</td>
</tr>
<tr>
<td>467</td>
<td>PRINT 464,1PRINT,NE</td>
</tr>
<tr>
<td>468</td>
<td>AIXUP=1XUP</td>
</tr>
<tr>
<td>469</td>
<td>A1YRT=1YRT</td>
</tr>
<tr>
<td>252</td>
<td>FORMAT(/1,4HLABZ,//)</td>
</tr>
<tr>
<td>253</td>
<td>PRINT 252</td>
</tr>
<tr>
<td>255</td>
<td>FORMAT(2CA4)</td>
</tr>
<tr>
<td>256</td>
<td>READ 255,((LABZ(M,N),M=1,NZ),N=1,NE)</td>
</tr>
<tr>
<td>257</td>
<td>PRINT 255,((LABZ(M,N),M=1,NZ),N=1,NE)</td>
</tr>
<tr>
<td>258</td>
<td>FORMAT(/1,4HLABS,//)</td>
</tr>
<tr>
<td>259</td>
<td>PRINT 258</td>
</tr>
<tr>
<td>259</td>
<td>READ 255,((LABS(M,N),M=1,NS),N=1,NE)</td>
</tr>
<tr>
<td>260</td>
<td>PRINT 255,((LABS(M,N),M=1,NS),N=1,NE)</td>
</tr>
<tr>
<td>261</td>
<td>FORMAT(/1,4HLABW,//)</td>
</tr>
<tr>
<td>262</td>
<td>PRINT 261</td>
</tr>
<tr>
<td>263</td>
<td>READ 255,((LABW(M,N),M=1,NW),N=1,NE)</td>
</tr>
<tr>
<td>264</td>
<td>PRINT 255,((LABW(M,N),M=1,NW),N=1,NE)</td>
</tr>
<tr>
<td>265</td>
<td>FORMAT(/1,5HLABZ,//)</td>
</tr>
<tr>
<td>266</td>
<td>PRINT 266</td>
</tr>
<tr>
<td>267</td>
<td>READ 266,(ZETA(M),M=1,NZ)</td>
</tr>
<tr>
<td>268</td>
<td>PRINT 266,(ZETA(M),M=1,NZ)</td>
</tr>
<tr>
<td>872</td>
<td>FORMAT(/1,5HSIGMA,//)</td>
</tr>
<tr>
<td>873</td>
<td>PRINT 873</td>
</tr>
<tr>
<td>874</td>
<td>READ 266,(SIGMA(M),M=1,NS)</td>
</tr>
<tr>
<td>875</td>
<td>PRINT 266,(SIGMA(M),M=1,NS)</td>
</tr>
<tr>
<td>212</td>
<td>FORMAT(/1,1HW,//)</td>
</tr>
<tr>
<td>213</td>
<td>PRINT 213</td>
</tr>
<tr>
<td>214</td>
<td>READ 206,(W(M),M=1,NW)</td>
</tr>
<tr>
<td>215</td>
<td>PRINT 206,(W(M),M=1,NW)</td>
</tr>
<tr>
<td>216</td>
<td>FORMAT(/1,2HZW,//)</td>
</tr>
<tr>
<td>217</td>
<td>PRINT 217</td>
</tr>
<tr>
<td>218</td>
<td>READ 206,(ZW(M),M=1,NZW)</td>
</tr>
<tr>
<td>219</td>
<td>PRINT 206,(ZW(M),M=1,NZW)</td>
</tr>
<tr>
<td>220</td>
<td>IF(NE)214,214+6</td>
</tr>
<tr>
<td>221</td>
<td>FORMAT(/1,37HCONSTANT COEFFICIENTS ASCENDING ORDER,//)</td>
</tr>
<tr>
<td>222</td>
<td>PRINT 214</td>
</tr>
</tbody>
</table>
JG=0
WNA=WN.
DO 49 L=1,300
D1=0.0
D2=0.0
C1=0.0
C2=0.0
B1=0.0
B2=0.0
DO 10 N=1,NC
K=N-1
IF(K)2,3,2
3 U=0.0
UK=-1.0
2 U2=2.0*ZETA(M)*U-U1
D1=(-1.0)*K*DJ(N)*WNA*K*U1+D1
D2=(-1.0)*K*DJ(N)*WNA*K*U+D2
C1=(-1.0)*K*CJ(N)*WNA*K*U1+C1
C2=(-1.0)*K*CJ(N)*WNA*K*U+C2
B1=(-1.0)*K*BJ(N)*WNA*K*U1+B1
B2=(-1.0)*K*BJ(N)*WNA*K*U+B2
U1=U
10 U=U2
Z=1.0E-63
IF(ABS(F(B1*C2-B2*C1)-Z)) 11,11,12
11 GO TO 49
12 J=J+1
A(J)=(C1*D2-C2*D1)/(B1*C2-B2*C1)
IF(IPRINT)447,447,2000
1001 FORMAT(5E20.5)
2000 PRINT 1C01,A(J),B(J),WNA,ZETA(M),E
447 IF(FRAN-A(J)) 777,777,49
777 IF(ABS(A(J)-AROGE)) 778,778,49
778 IF(CHEK-B(J)) 779,779,49
779 IF(ABS(B(J)-ADAUE)) 800,800,49
800 JG=JG+1
AG(JG)=A(J)
BG(JG)=B(J)
49 WNA=G*WNA
CALL DRAW(JG,AG,BG,MOD,0,LABZ(M,ME),ITITLE,XSCALE,YSCALE,IXUP,
11YRIGHT,2,2,9,15,0,LAST)
1 CONTINUE
4 CONTINUE
704 IF(NS) 22, 22, 601
601 IF(IPRINT)448, 448, 221
221 FORMAT(1H1, 21HCONSTANT SIGMA CURVES, //)
 PRINT 221
222 FORMAT(15X, 5HALPHA, 16X, 4HETA, 15X, 5HSIGMA, 5X, 13HTHIRD PARAMETER, //
 1/)
 PRINT 222
448 DO 7 ME=1, NE
 E=EJ(ME)
 IF (NE) 13, 13, 14
 CALL COEF
13 DO 22 M=1, NS
 DD=0.0
 CC=0.0
 BB=0.0
 DO21 N=1, NC
 K=N-1
 DD=(-1.0)**K*D(N)*SIGMA(M)**K+DD
 CC=(-1.0)**K*CJ(N)*SIGMA(M)**K+CC
 BB=(-1.0)**K*BJ(N)*SIGMA(M)**K+BB
21 CONTINUE
 J=1
 A(J)=-DD/BB
 B(J)=0.0
 IF(IPRINT)449, 449, 1002
1002 FORMAT(4E20.5)
 PRINT 1002, A(J), B(J), SIGMA(M), E
449 IF(AROG-A(J)) 110, 110, 310
110 IF(A(J)-AROGE) 111, 111, 310
111 J=J+1
310 A(J)=0.0
 B(J)=-DD/CC
 IF(IPRINT)450, 450, 451
451 PRINT 1002, A(J), B(J), SIGMA(M), E
450 IF(A(J)-A(J)) 112, 112, 311
451 IF(B(J)-A(J)) 113, 113, 311
113 J=J+1
311 B(J)=(15.0-AIXUP)*YSCALE
 A(J)=(-CC*B(J)-DD)/BB
 IF(IPRINT)452, 452, 453
453 PRINT 1002, A(J), B(J), SIGMA(M), E
452 IF(AROG-A(J)) 114, 114, 312
114 IF(A(J)-AROG) 117, 117, 312
312 A(I) = (90 - AIYRGHT) * XSCALE
 B(I) = (-BB*A(I) - DD) / CC
 IF (IPRINT) 454, 454, 455
 455 PRINT 1002, A(I), B(I), SIGMA(M), E
 454 IF (ADAV - B(I)) 116, 116, 116
 116 IF (B(I) - ADAVE) 117, 117, 117
 118 J = J - 1
 117 CALL DRAW(J, A, B, 2, 0, LABS(M, ME), 1TITLE, XSCALE, YSCALE, IXUP, IYRIGHT
 1, 2, 3, 9, 15, 0, LAST)
 22 CONTINUE
 7 CONTINUE
 IF (NZW) 702, 702, 602
 602 IF (IPRINT) 456, 456, 225
 225 FORMAT (1H1, 26HCONSTANT ZETA - OMEGA CURVES, //)
 225 PRINT 225
 226 FORMAT (15X, 5HALPHA, 16X, 4HBETA, 10X, 10HZETA - OMEGA, 5X,
 115THIRD PARAMETER, //)
 226 PRINT 226
 456 DO 15 ME = 1, NE
 15 E = EJ(ME)
 16 IF (NE) 16, 16, 17
 17 CALL COEF
 16 DO 31 M = 1, NZW
 31 J = 0
 32 JG = 0
 33 AZETA = 0.00333
 35 DO 35 L = 1, 299
 35 WN = ZW(M) / AZETA
 36 D1 = 0.0
 37 D2 = 0.0
 38 C1 = 0.0
 39 C2 = 0.0
 40 B1 = 0.0
 41 B2 = 0.0
 42 DO 32 N = 1, NC
 33 Q1 = 0.0
 34 Q = -1.0 / WN**2
 32 D2 = DJ(N) * Q1 + D2
 34 C2 = CJ(N) * Q1 + C2
 36 B2 = BJ(N) * Q1 + B2
 38 D1 = DJ(N) * Q + D1
 40 C1 = CJ(N) * Q + C1
B1=BJ(N)*Q+B1
Q2=2.0*Z(W(M))*Q1-WN**2*Q
Q=Q1
32 Q1=Q2
IF(ABSF(B1*C2-B2*C1)-Z) 35,35,29
29 J=J+1
A(J)=(C1*D2-C2*D1)/(B1*C2-B2*C1)
IF(I(PRINT)457,457,458
458 PRINT 1002,A(J),B(J),Z(W(M)),E
457 IF(FRAN-A(J)) 104,104,35
104 IF(A(J)-AR0GE) 105,105,35
105 IF(CHEK-B(J)) 106,106,35
106 IF(B(J)-ADAVE) 107,107,35
107 JG=JG+1
AG(JG)=A(J)
BG(JG)=B(J)
35 AZETA=AZETA+.00333
37 CALL DRAW(JG,AG,BG,2,0,LABZW(M,ME),ITITLE,XSCALE,YSCALE,IXUP,
1IYRIGHT,2,2,9,15,0,LAST)
31 CONTINUE
15 CONTINUE
IF(NW)1006,1006,702
702 IF(I(PRINT)459,459,223
223 FORMAT(1H1,2HCONSTANT OMEGA CURVES,/)
PRINT 223
224 FORMAT(15X,5HALPHA,16X,4HBETA,15X,5HOMEGA,15X,5HAZETA,5X,
115THIRD PARAMETER,/)
PRINT 224
459 DO 18 ME=1,NE
E=EJ(ME)
IF(NE) 19,19,20
20 CALL COEF
19 DO 24 M=1,NW
J=0
JG=0
AZETA=0.0
DO 25 L=1,300
D1=0.0
D2=0.0
C1=0.0
C2=0.0
B1=0.0
B2=0.0
DO 26 N=1,NC
K=N-1
IF(K) 27,28
27 U=0.0
U1=0.0
U2=2.0*AZETA*U-U1
D1=(-1.0)**K*DJ(N)*W(M)**K*U1+D1
D2=(-1.0)**K*DJ(N)*W(M)**K*U+D2
C1=(-1.0)**K*CJ(N)*W(M)**K*U1+C1
C2=(-1.0)**K*CJ(N)*W(M)**K*U+C2
B1=(-1.0)**K*BJ(N)*W(M)**K*U1+B1
B2=(-1.0)**K*BJ(N)*W(M)**K*U+B2
U1=U
26 U=U2
IF(ABS(B1*C2-B2*C1)-Z)25,25,30
30 J=J+1
A(J)=(C1*D2-C2*D1)/(B1*C2-B2*C1)
IF(IPRINT)460,460,461
461 PRINT 1001,A(J),B(J),W(M),AZETA,E
460 IF(FRAN-A(J)) 100,100,25
100 IF(A(J)-AROGE) 101,101,25
101 IF(CHEK-B(J)) 102,102,25
102 IF(B(J)-ADAVE) 103,103,25
103 JG=JG+1
AG(JG)=A(J)
BG(JG)=B(J)
25 AZETA=AZETA+.0033
24 CALL DRAW(JG,AG,BG,MOD,0,LABW(M,ME),ITITLE,XSCALE,YSCALE,IXUP,
11YRIGHT,2,2,9,15,0,LAST)
18 CONTINUE
1006 AG(1)=0.0
BG(1)=0.0
AG(2)=XSCALE
BG(2)=0.0
LABEL=4H
CALL DRAW(2,AG,BG,3,0,LABEL,ITITLE,XSCALE,YSCALE,IXUP,
11YRIGHT,2,2,9,15,0,LAST)
GO TO 1485
END
SUBROUTINE COEF
DIMENSION BJ(100), CJ(100), DJ(100)
COMMON E, BJ, CJ, DJ
BJ(1) = 0.
CJ(1) = 1.
DJ(1) = 0.
BJ(2) = 1.
CJ(2) = 0.
DJ(2) = 0.
BJ(3) = 0.
CJ(3) = 0.
DJ(3) = E
BJ(4) = 0.
CJ(4) = 0.
DJ(4) = 1.
BJ(5) = 0.
CJ(5) = 0.
DJ(5) = 1.
RETURN
END

R M NUTTING, NORMALIZED FOURTH ORDER BO-B1 CURVES
S**4+S**3+ES**2+B15+B0=0, E= 1
3 4 6 8 1 1
1
Z0 Z1 Z2 Z3 Z4 Z5
W0 W 0.05 W 1 W 1.5 W 2 W 2.5 W 3 W 3.5
0 1 2 3 4 5
0.05 0.1 0.15 0.2 0.25 0.3 0.35
0.1 0.0035
0.02
0.0002
program param b

this program is applicable to polynomials whose coefficients are of the
form (b*alpha + c*beta + h*alpha*beta + d) where the alpha and beta are
variable parameters and b, c, h, and d are constants.
this program will plot on one 9 inch by 15 inch graph, parameter plane
curves of the following type. constant zeta curves as a function of omega,
(the starting value of omega and the number of decades that omega will
span will be specified in the data cards), constant omega curves for
pre-programmed values of zeta between zero and one, constant sigma curves,
constant zeta-omega curves. the values of zeta for the constant zeta
curves, the values of omega for the constant omega curves, the values of
sigma for the constant sigma curves, and the values of zeta-omega for the
constant zeta-omega curves may be specified in the data cards.
if however no curves of a certain type are desired place a zero
in the appropriate column corresponding to the number of curves. in
this case submit a blank card for the labels and for the curve values.
if no constant zeta curves are desired, set nz and nd to zero, and
submit a blank card for the zeta labels, for the zeta curve values, and
for the starting value of omega.
all curves are plotted on the same graph.
the x-axis variable is alpha and the y-axis variable is beta.
constant sigma curves will be computed only for those values of sigma
along the negative real axis in the s-plane. these sigma values should be
entered in the data cards as positive quantities however.
the following symbols are pertinent to the program.
nd- the number of decades spanned by omega for the constant zeta curves.
n- the order of the equation, nz, ns, nw, and nzw - the number of constant
zeta, sigma, omega, and zeta-omega curves respectively, ixup-distance in
inches of the x-axis from the bottom of the graph, iyright- the distance in
inches of the y-axis from the left side of the graph, labz, labs, labw, labzw- the
labels for the constant zeta, sigma, omega, and zeta-omega curves, wn-
the starting value of omega for the constant zeta curves.
the data cards are submitted in the following manner.
card 1 the first line of the graph title (in columns 1-48)
card 2 the second line of the graph title (in columns 1-48)
card 3 in 8110 format enter from left to right
nd no nz ns nw nzw ixup iyright
card 4 in column 10 enter a 1 if printout is desired, leave blank if no
printout is desired.
card 5 labz(20a4 format), leave blank card if nz=0
card 6 labs(20a4 format), leave blank card if ns=0
CARD 7 LABW(20A4 FORMAT), LEAVE BLANK CARD IF NW=0
CARD 8 LABZ(20A4 FORMAT), LEAVE BLANK CARD IF NZW=0
CARD 9 VALUES OF ZETA FOR CONSTANT ZETA CURVES (8E10.5 FORMAT)
CARD 10 VALUES OF SIGMA FOR CONSTANT SIGMA CURVES (8E10.5 FORMAT)
CARD 11 VALUES OF OMEGA FOR CONSTANT OMEGA CURVES (8E10.5 FORMAT)
CARD 12 VALUES OF ZETA-OMEGA FOR CONSTANT ZETA-OMEGA CURVES (8E10.5 FORMAT)
CARD 13 CONSTANT COEFFICIENTS IN ASCENDING ORDER (8E10.5 FORMAT)
CARD 14 ALPHA COEFFICIENTS IN ASCENDING ORDER (8E10.5 FORMAT)
CARD 15 BETA COEFFICIENTS IN ASCENDING ORDER (8E10.5 FORMAT)
CARD 16 ALPHA*BETA COEFFICIENTS IN ASCENDING ORDER (8E10.5 FORMAT)
CARD 17 WN (E10.5 FORMAT)
CARD 18 XSCALE (E10.5 FORMAT, USE 1 SIGNIFICANT FIGURE)
CARD 19 YSCALE (E10.5 FORMAT, USE 1 SIGNIFICANT FIGURE)
DIMENSION A(800), B(800), ITITLE(12), ZETA(100), LABZ(100), SIGMA(100), 1LABS(100), W(100), LABW(100), ZW(100), LABZW(100), AG(800), BG(800), BJ(1 200), CJ(100), DJ(100), BCJ(100), AA(350), AB(350), BA(350), BB(350), AK(35 30), BK(350)
250 FORMAT(1H1,17HTHE INPUT DATA IS,////)
1483 CONTINUE
PRINT 250
200 FORMAT (6A8)
READ 200,(ITITLE(I), I=1,6)
READ 200,(ITITLE(I), I=7,12)
PRINT 200,(ITITLE(I), I=1,6)
PRINT 200,(ITITLE(I), I=7,12)
251 FORMAT (///,8X,2HND*,8X,2HNO,8X,2HNZ,8X,2HNS,8X,2HNW,7X,3HNZW,6X, 14HIXUP,3X,7HIYRIGHT,///)
PRINT 251
203 FORMAT (8I10)
READ 203,ND,NO,NZ,NS,NW,NZW,IXUP,IYRIGHT
PRINT 203,ND,NO,NZ,NS,NW,NZW,IXUP,IYRIGHT
463 FORMAT (///,4X,6HIPRINT,///)
PRINT 463
464 FORMAT (1I10)
READ 464,IPRINT
PRINT 464,IPRINT
AIXUP=IXUP
AIYRIGHT=IYRIGHT
252 FORMAT (///,4HLABZ,///)
PRINT 252
205 FORMAT (20A4)
READ 205,LABZ(M), M=1,NZ)
PRINT 205,LABZ(M), M=1,NZ)
207 FORMAT (//////,4HLABS,///)
PRINT 207
READ 205,(LABS(M),M=1,NS)
PRINT 205*(LABS(M),M=1,NS)
208 FORMAT(///,4HLABW,///)
PRINT 208
READ 205,(LABW(M),M=1,NW)
PRINT 205*(LABW(M),M=1,NW)
209 FORMAT(///,5HLABZW,///)
PRINT 209
READ 205,(LABZW(M),M=1,NZW)
PRINT 205*(LABZW(M),M=1,NZW)
206 FORMAT(8E10.5)
210 FORMAT(///,4HZETA,///)
PRINT 210
READ 206,(ZETA(M),M=1,NZ)
PRINT 206*(ZETA(M),M=1,NZ)
872 FORMAT(///,5HSIGMA,///)
PRINT 872
READ 206,(SIGMA(M),M=1,NS)
PRINT 206*(SIGMA(M),M=1,NS)
212 FORMAT(///,1HW,///)
PRINT 212
READ 206,(W(M),M=1,NW)
PRINT 206*(W(M),M=1,NW)
213 FORMAT(///,2HZW,///)
PRINT 213
READ 206,(ZW(M),M=1,NZW)
PRINT 206*(ZW(M),M=1,NZW)
214 FORMAT(///,37HCONStANT COEFFICIENTS ASCENDING ORDER,///)
PRINT 214
NC=NO+1
READ 206,(DJ(N),N=1,NC)
PRINT 206*(DJ(N),N=1,NC)
215 FORMAT(///,34HALPHA COEFFICIENTS ASCENDING ORDER,///)
PRINT 215
READ 206,(BJ(N),N=1,NC)
PRINT 206*(BJ(N),N=1,NC)
216 FORMAT(///,33HBETA COEFFICIENTS ASCENDING ORDER,///)
PRINT 216
READ 206,(CJ(N),N=1,NC)
PRINT 206*(CJ(N),N=1,NC)
9216 FORMAT(///,39HALPHA-BETA COEFFICIENTS ASCENDING ORDER,///)
PRINT 9216
READ 206, (BCJ(N), N=1, NC)
PRINT 206, (BCJ(N), N=1, NC)
217 FORMAT(///, ///, INITIAL VALUE OF OMEGA, ///)
PRINT 217
199 FORMAT(E10.5)
READ 199, WN
PRINT 199, WN
218 FORMAT(///, ///, 6HXSCALE, ///)
PRINT 218
READ 199, XSCALE
PRINT 199, XSCALE
418 FORMAT(///, ///, 6HYSCALE, ///)
PRINT 418
READ 199, YSCALE
PRINT 199, YSCALE
ROG=-5+AIYRGT
DAV=-5+AIXUP
AROG=-ROG*XSCALE
ADAV=-DAV*YSCALE
ROGE=9.5-AIYRGT
DAVE=15.5-AIXUP
AROGE=ROGE*XSCALE
ADAVE=DAVE*YSCALE
FRAN = -AIYRGT*XSCALE
CHEK = -AIXUP*YSCALE
IF(NZ) 41, 343
343 GO TO(61, 62, 63, 64, 65, 66, 67, 68, 69, 70), ND
61 G=1.0076
GO TO 41
62 G=1.016
GO TO 41
63 G=1.0245
GO TO 41
64 G=1.0312
GO TO 41
65 G=1.0394
GO TO 41
66 G=1.0483
GO TO 41
67 G=1.0568
GO TO 41
68 G=1.0633
GO TO 41
69 G=1.071
GO TO 41
70 G=1.078
41 CONTINUE
 AG(1)=0.
 BG(1)=0.
 AG(2)=XSCALE
 BG(2)=0.
 LABEL=4H
 CALL DRAW(2,AG,BG,1.0,LABEL,ITITLE,XSCALE,YSCALE,IXUP,
 IYRIGHT,2,2,9,15,0,Last)
 MOD = 2
 IF(NZ) 5,5,344
344 IF(IPRINT)446,446,220
220 FORMAT(1H10/10/20HCONSTANT ZETA CURVES/)//
 PRINT 220
527 FORMAT(//14X,6HALPHA+,15X,5HBETA+,14X,6HALPHA-,15X,5HBETA-,15X,5H
 OMEGA,16X,4HZETA,//)
 PRINT 527
446 DO 5 M=1,NZ
 J=0
 JJ=0
 JG=0
 WNA=WN
 DO 49 L=1,300
 D1=0.0
 D2=0.0
 C1=0.0
 C2=0.0
 B1=0.0
 B2=0.0
 BC1=0.
 BC2=0.
 DO 10 N=1,NC
 K=N-1
 IF(K)2,3,2
 3 U=0.0
 U1=-1.0
 2 U2=2.0*ZETA(M)*U-U1
 D1=(-1.0)**K*DJ(N)*WNA**K*U1+D1
 D2=(-1.0)**K*DJ(N)*WNA**K*U+D2
 C1=(-1.0)**K*CJ(N)*WNA**K*U1+C1
 C2=(-1.0)**K*CJ(N)*WNA**K*U+C2
\[B_1 = (-1.0)**K*B_J(N)*W_NA**K*U_1+B_1\]
\[B_2 = (-1.0)**K*B_J(N)*W_NA**K*U+B_2\]
\[B_C_1 = (-1.0)**K*B_C(J(N)*W_NA**K*U_1+B_C_1\]
\[B_C_2 = (-1.0)**K*B_C(J(N)*W_NA**K*U+B_C_2\]
\[U_1 = U_2\]

10 \[U = U_2\]

\[D_B = B_1*C_2-B_2*C_1\]
\[D_D = D_1*C_2-D_2*C_1\]
\[D_D = D_1*B_C_2-D_2*B_C_1\]
\[D_B = B_1*B_C_2-B_2*B_C_1\]

6114 FORMAT(27X,26HALPHA AND BETA ARE COMPLEX,27X,2E20.5)
\[Z = 1.0E-60\]
\[D_E = (D_D + D_B)*2-4.0*D_B * D_D\]
\[I F(D_E) 6113, 6112, 6112\]

6113 PRINT 6114, W_NA, ZETA(M)
GO TO 49

6112 IF(ABS(F(D_B)-Z))49,49,12

12 \[J = J+1\]

\[A_A(J) = (-D_D + D_B)*S_QRTF((D_D + D_B)**2-4.0*D_B * D_D)/(2.0*D_B)\]
\[A_B(J) = (-D_D + D_B)*S_QRTF((D_D + D_B)**2-4.0*D_B * D_D)/(2.0*D_B)\]
\[B_A(J) = (-D_1-A_A(J)*B_1)/(C_1+A_A(J)*B_C_1)\]
\[B_B(J) = (-D_1-A_B(J)*B_1)/(C_1+A_B(J)*B_C_1)\]
\[I F(I_P RINT) 447, 447, 1001\]

1001 FORMAT(6E20.5)

2000 PRINT 1001, A_A(J), A_B(J), A_B(J), B_B(J), W_NA, ZETA(M)

447 IF(FRAN-AA(J)) 777, 777, 1447

777 IF(AA(J)-AROGE) 778, 778, 1447

778 IF(CHEK-BA(J)) 779, 779, 1447

779 IF(BA(J)-ADAVE) 800, 800, 1447

800 JG=JG+1

AG(JG)=AA(J)

BG(JG)=BA(J)

1447 IF(FRAN-AB(J)) 3777, 3777, 49

3777 IF(AB(J)-AROGE) 3778, 3778, 49

3778 IF(CHEK-BB(J)) 3779, 3779, 49

3779 IF(BB(J)-ADAVE) 3800, 3800, 49

3800 JJ=JJ+1

AK(JJ)=AB(J)

BK(JJ)=BB(J)

49 W_NA=G*W_NA

CALL DRAW(JG,AG,BG,MOD,0,LABZ(M),ITITLE,XSCALE,YSCALE,IXUP,IYRIGHT
1,2,2,9,15,0,LAST)
CALL DRAW(JJ,AK,BK,MOD,OLABZ(M),ITITLE,XSCALE,YSCALE,IXUP,IRIGHT
1,2,2,9,15,0,LAST)
5 CONTINUE
IF(NS) 555,555,601
601 IF(IPRINT)448,448,221
221 FORMAT(1H1,21HCONSTANT SIGMA CURVES,///)
PRINT 221
222 FORMAT(15X,5HALPHA,16X,4HBETA,15X,5HSIGMA,///)
PRINT 222
448 DO 22 M=1,NS
DDD=0.
CCC=0.
BBB=0.
BC=0.
DO21 N=1,NC
K=N-1
DDD=(-1.)**K*D(N)*SIGMA(M)**K+DDD
CCC=(-1.)**K*C(N)*SIGMA(M)**K+CCC
BBB=(-1.)**K*B(N)*SIGMA(M)**K+BBB
BC=(-1.)**K*B(N)*SIGMA(M)**K+BC
21 CONTINUE
JG=0
ABC=-AIXUP*YSCALE
DO 7 J=1,750
B(J)=ABC+.02*YSCALE
ABC=B(J)
A(J)=(-CCC*B(J)-DDD)/(BBB+BC*B(J))
8463 FORMAT(3E20.5)
IF(IPRINT)449,449,7666
7666 PRINT 8463,A(J),B(J),SIGMA(M)
449 IF(AROG-A(J))110,110,7
110 IF(A(J)-AROGE)111,111,7
111 JG=JG+1
AG(JG)=A(J)
BG(JG)=B(J)
7 CONTINUE
CALL DRAW(JG,AG,BG,MOD,OLABS(M),ITITLE,XSCALE,YSCALE,IXUP,IRIGHT
1,2,2,9,15,0,LAST)
22 CONTINUE
555 IF(NZW) 703,703,602
602 IF(IPRINT)456,456,225
225 FORMAT(1H1,26HCONSTANT ZETA-OMEGA CURVES,///)
PRINT 225
226 FORMAT(14X,6HALPHA+,15X,5HBETA+,14X,6HALPHA-,15X,5HBETA-,10X,10HZE)
1TA-OMEGA+//)
PRINT 226

456 DO 31 M=1,NZW
 J=0
 JJ=0
 JG=0
 AZETA=0.00333
 DO 35 L=1,299
 WN=ZW(M)/AZETA
 D1=0.0
 D2=0.0
 C1=0.0
 C2=0.0
 B1=0.0
 B2=0.0
 BC1=0.0
 BC2=0.0
 DO 32 N=1,NC
 K=N-1
 IF(K) 33,34,33
533 Q1=0.0
 Q=-1.0/WN**2
 D2=DJ(N)*Q1+D2
 C2=CJ(N)*Q1+C2
 B2=BJ(N)*Q1+B2
 D1=DJ(N)*Q+D1
 C1=CJ(N)*Q+C1
 B1=BJ(N)*Q+B1
 BC1=BCJ(N)*Q+BC1
 BC2=BCJ(N)*Q1+BC2
 Q2=-2.0*ZW(M)*Q1-WN**2*Q
 Q=Q1
32 Q1=Q2
 DBC=B1*C2-B2*C1
 DDC=D1*C2-D2*C1
 DDA=D1*BC2-D2*BC1
 DBA=B1*BC2-B2*BC1

6116 FORMAT(27X,26HALPHA AND BETA ARE COMPLEX,27X,1E20.5)
 DESC=(DDA+DBC)**2-4.*DBA*DDC
 IF(DESC) 6115,129,129
6115 PRINT 6116,ZW(M)
 GO TO 35
129 IF(ABSF(DBA)-Z)35,35,29
29 J=J+1
AA(J)=-(DDA+DBC)+SRQTF((DDA+DBC)**2-4*DBA*DDC)/(2*DBA)
AB(J)=-(DDA+DBC)-SRQTF((DDA+DBC)**2-4*DBA*DDC)/(2*DBA)
BA(J)=(-D1-AA(J)*B1)/(C1+AA(J)*BC1)
BB(J)=(-D1-AB(J)*B1)/(C1+AB(J)*BC1)
1002 FORMAT(5E20.5)
 IF(IPRINT)457,457,458
458 PRINT 1002,AA(J),BA(J),AB(J),BB(J),ZW(M)
457 IF(FRAN-AA(J))104,104,1457
104 IF(AA(J)-AROG)105,105,1457
105 IF(CHEK-BA(J))106,106,1457
106 IF(BA(J)-ADA)107,107,1457
107 JG=JG+1
 AG(JG)=AA(J)
 BG(JG)=BA(J)
1457 IF(FRAN-AB(J))3104,3104,35
3104 IF(AB(J)-AROG)3105,3105,35
3105 IF(CHEK-BB(J))3106,3106,35
3106 IF(BB(J)-ADA)3107,3107,35
3107 JJ=JJ+1
 AK(JJ)=AB(J)
 BK(JJ)=BB(J)
35 AZETA=AZETA+.00333
 CALL DRAW(JG,AG,BG,MOD,LABZW(M),ITITLE,XSCALE,YScale,IXUP,IFYRIGHT,
 12,2,9,15,0,LAST)
 CALL DRAW(JJ,AK,BK,MOD,LABZW(M),ITITLE,XSCALE,YScale,IXUP,IFYRIGHT,
 12,2,9,15,0,LAST)
31 CONTINUE
703 IF(NW)1006,1006,702
702 IF(IPRINT)459,459,223
223 FORMAT(1H1,21HCONSTANT OMEGA CURVES,//)
PRINT 223
224 FORMAT(14X,6HALPHA++,15X,5HBETA++,14X,6HALPHA-,15X,5HBETA-,15X,5HOME
1GA,15X,5HAZETA,///)
PRINT 224
459 DO 24 M=1,NW
 J=0
 JJ=0
 JG=0
 AZETA=0.0
 DO 25 L=1,300
 D1=0.0
 }
D2=0.0
C1=0.0
C2=0.0
B1=0.0
B2=0.0
BC1=0.0
BC2=0.0
DO 26 N=1,NC
K=N-1
IF (K) 28,27,28
27 U=0.0
U1=-1.0
28 U2=2.0*AZETA*U-U1
D1=(-1.0)**K*DJ(N)*W(M)**K*U1+D1
D2=(-1.0)**K*DJ(N)*W(M)**K*U+D2
C1=(-1.0)**K*CJ(N)*W(M)**K*U1+C1
C2=(-1.0)**K*CJ(N)*W(M)**K*U+C2
B1=(-1.0)**K*BJ(N)*W(M)**K*U1+B1
B2=(-1.0)**K*BJ(N)*W(M)**K*U+B2
BC1=(-1.0)**K*BCJ(N)*W(M)**K*U1+BC1
BC2=(-1.0)**K*BCJ(N)*W(M)**K*U+BC2
U1=U2
26 U=U2
DBC=B1*C2-B2*C1
DAC=BC1*C2-BC2*C1
DBD=B1*D2-B2*D1
DDC=D1*C2-D2*C1
DDA=D1*BC2-D2*BC1
DBA=B1*BC2-B2*BC1
6118 FORMAT(27X,26HALPHA AND BETA ARE COMPLEX,27X,2E20.5)
DESC=(DDA+DBC)**2-4.0*DBA*DDC
IF (DESC) 6117,630,630
6117 PRINT 6118,W(M),AZETA
GO TO 25
630 IF (ABS(DBA)-Z)25,25,30
30 J=J+1
AA(J)=(-(DDA+DBC)+SQRT((DDA+DBC)**2-4.0*DBA*DDC))/(2.0*DBA)
AB(J)=(-(DDA+DBC)-SQRT((DDA+DBC)**2-4.0*DBA*DDC))/(2.0*DBA)
BA(J)=(-D1-AA(J)*B1)/(C1+AA(J)*BC1)
BB(J)=(-D1-AB(J)*B1)/(C1+AB(J)*BC1)
IF (IPRINT)460,460,461
461 PRINT 1001,AA(J),BA(J),AB(J),BB(J),W(M),AZETA
460 IF (FRAN-AA(J)) 100, 100, 1460
100 IF (AA(J)-AROGE) 101, 101, 1460
101 IF (CHFK-RA(J)) 102, 102, 1460
102 IF (BA(J)-ADAVE) 103, 103, 1460
103 JG=JG+1
 AG(JG)=AA(J)
 BG(JG)=BA(J)
1460 IF (FRAN-AB(J)) 3100, 3100, 25
3100 IF (AB(J)-AROGE) 3101, 3101, 25
3101 IF (CHEK-BB(J)) 3102, 3102, 25
3102 IF (BB(J)-ADAVE) 3103, 3103, 25
3103 JJ=JJ+1
 AK(JJ)=AB(J)
 BK(JJ)=BB(J)
25 AZETA=AZETA+.00333
 CALL DRAW(JG, AG, BG, MOD, 0, LABW(M), ITITLE, XSCALE, YSCALE, IXUP, IYRIGHT, 2, 2, 9, 15, 0, LAST)
 CALL DRAW(JJ, AK, BK, MOD, 0, LABW(M), ITITLE, XSCALE, YSCALE, IXUP, IYRIGHT, 1, 2, 2, 9, 15, 0, LAST)
24 CONTINUE
1006 AG(1)=0.0
 BG(1)=0.0
 AG(2)=XSCALE
 BG(2)=0.0
 LABEL=4H
 CALL DRAW(2, AG, BG, 3, 0, LABEL, ITITLE, XSCALE, YSCALE, IXUP, IYRIGHT, 2, 2, 9, 15, 0, LAST)
 GO TO 1483
END
7- The complementary roles of the parameter plane and root locus.

As was mentioned previously, parameter plane curves are infinite in extent. The curves also exhibit discontinuities and become less well behaved as the order increases. In addition, choosing a good graph scale involves a good deal of trial and error or pre-plotting calculations. The root locus can be very useful in overcoming some of the above difficulties.

The general procedure is to use the root locus to limit the range of parameter values of interest, and to gain additional insight into the problem. This is particularly true if a computer is used to plot the root locus. Since a correct root locus graph scale can be fixed in one or two computer runs, several root loci can be plotted in fairly short time. The parameter plane can then be used to complete the problem.

The technique can best be illustrated by the following example.

Example 7-1

Problem:

For the system shown in figure (7-1) find values for K_1, K_2, K_3, K_4, and K_5 to give a good transient response. Low settling time is the primary consideration. Suggest modifications to improve the system.

The following parameters have fixed values:

\[P_1 = 6.28 \times 10^6 \quad P_3 = 2.5 \times 10^5 \quad w = 6.28 \times 10^6 \]

\[\text{zeta} = 0.5 \]

Solution:

It is known that the block diagram elements of figure (7-1) that involve K_4 and K_5 were added on the basis of physical reasoning to help reduce the settling time. The basic uncompensated system consists of the single loop unity feedback control system involving K_1, K_2, and K_3. From the block diagram reduction of figure (7-1) the characteristic equation
is computed and the given parameter values are substituted. Letting
\[\alpha = K_1 K_4 \] and \[\beta = K_1 K_2 K_3 \] one then obtains:
\[
S^5 + 1.281 \times 10^7 S^4 + (8.194 \times 10^{13} + \alpha)S^3 + (2.678 \times 10^{20} +
\beta + 2.5 \times 10^5 \alpha)S^2 + (6.18 \times 10^{25} + 6.28 \times 10^6 \beta + \]
\[K_1 K_2 K_3 K_4 K_5 S + 3.94 \times 10^{13} \beta = 0 \quad (7-1) \]

To study the effect of the \(K_4 \) compensator, \(K_5 \) is set equal to zero in equation (7-1) and parameter plane curves are plotted in figure (7-2) for the remaining system.

The unstable region for these curves is above and to the right of the zeta equals zero curve. From the Routh check, the stability limit gain of the uncompensated system, i.e., \(K_1 K_2 K_3 \), is equal to \(1.025 \times 10^{19} \). This value corresponds to point B in figure (7-2). The effect of the \(K_4 \) compensator is to make the system less stable as \(K_1 K_4 \) is increased. With \(K_1 K_2 K_3 \) set to \(1.025 \times 10^{19} \), a root locus is plotted in figure (7-3) with \(K_1 K_4 \) as the variable. This plot shows the system to be unstable for all \(K_1 K_4 \) greater than zero. Gain changes have small effect on the right half plane root locations.

Now \(K_1 K_4 \) is arbitrarily set to \(9.1 \times 10^8 \) and \(K_1 K_2 K_3 \) is left unchanged. The effect of the \(K_5 \) compensator is seen from figure (7-4) to have a stabilizing effect. It is known that settling time is inversely proportional to the undamped natural frequency of the complex roots. In figure (7-4), point A represents a zeta and omega that would be satisfactory for the complex roots, but the location of the real root shows the latter to be dominant.

Two avenues of approach appear to be open. Try a different means of compensation, or modify the suggested means. The former is investigated first.

The effect of tachometer feedback around the entire forward path,
with $K_4 = K_5 = 0$, is shown in figure (7-5). From the root locations as tachometer gain increases from point A to B to C, it is seen that the real root is highly dominant. Tachometer feedback would therefore be unsatisfactory. Since the system's operating frequency is in the megacycle range, higher forms of derivative feedback would not be practical.

The fact that the K_4 compensator, which is the feedback path around K_2K_3 in figure (7-1), makes the system less stable, suggests that this path could be eliminated. When this is done the resulting system is shown in figure (7-6) and the characteristic equation is as follows:

$$S^5 + 1.281 \times 10^7 S^4 + 8.194 \times 10^{13} S^3 + (26.67 \times 10^{19} + \beta)S^2 + (6.18 \times 10^{25} + 6.28 \times 10^6 \beta + \alpha)S 3.94 \times 10^{13} \beta = 0 \quad (7-2)$$

In equation (7-2), alpha $= K_1K_2K_3K_4K_5$ and beta $= K_1K_2K_3$. The advantage of this scheme over the original system is that the K_4K_5 compensator can be realized by an R-L-C circuit, whereas due to the physical nature of the problem, the original scheme would require electromechanical implementation with the inherent disadvantages.

In figure (7-6), $K_1K_2K_3$ is again set at the stability limit of the uncompensated system and a root locus with variable K_4K_5 is plotted in figure (7-7). A study of figure (7-7) shows that a slightly better dominance factor can be obtained with the modified system. It is concluded that the latter system not only performs as good or better than the former, but it is simpler and cheaper to implement.

To see if system performance can be improved by increased gain, the forward path gain $K_1K_2K_3$ is increased by a factor of ten. The resulting root locus in figure (7-8) indicates that the system is unstable for all K_4K_5. This illustrates the difficulty in choosing the best values for system parameters by root locus techniques when more than one parameter is involved.

The parameter plane can now be advantageously employed. The resulting
curves are plotted in figure (7-9) with variables $K_1K_2K_3$ and $K_1K_2K_3K_4K_5$.
A close study of the curves indicates that the M-point shown is perhaps
the best one. The five characteristic roots can be read directly from
the curves and are as follows:

\[
\begin{align*}
\text{zeta} &= .55 & \text{omega} &= 3 \times 10^6 \\
\text{zeta} &= .71 & \text{omega} &= 6.5 \times 10^6 \\
S &= -2.2 \times 10^6
\end{align*}
\]

The damping factor of the first pair of roots is 1.65×10^6 which
when compared to 2.2×10^6, indicates that these roots are dominant.

In the original uncompensated third order system, for a zeta of .55,
the maximum obtainable omega for the dominant roots is only about $3 \times
10^6$. On the basis of the dominant roots only, one can conclude that the
compensation has reduced the settling time by a factor of ten. The trans-
ient response of the compensated system to a unit step input was computed
by digital computer and is given in figure (7-10). The settling time is
about four microseconds and the overshoot is 50%.
MULTIPLY S AND W BY 10^6

X-SCALE = 4 \times 10^4 UNITS/IN.
Y-SCALE = 3 \times 10^4 UNITS/IN.

FIG. 7-2
FIG. 7-4

X-SCALE = 1.00E+06 UNITS/INCH.
Y-SCALE = 1.00E+06 UNITS/INCH.

RM NUTTING EE415 SPECIAL C
K1K4=9.1E+08, K1K2K3=1.02E+19, K4K5=VAR
marks of the same letter correspond to roots of same KT

KT = VAR, basic system with tach feedback

fig. 7-5
FINAL SYSTEM

FIG. 7-6
FIG. 7-7

RM NUTTING

$K_{4K5} = \text{VAR}$, NO FEED FORWARD AROUND K_{2K3}

$K_{1K2K3} = 1.025 \times 10^{19}$
FIG. 7-8

K3 is set at 10 x K at the stability limit.

K-scale = 2.00E+06 units/inch.
Y-scale = 2.08E+06 units/inch.

RM NUTTING
K4K5=VAR, NO FEED FORWARD AROUND K2K3
X-Scale = 1.00E+26 Units/Inch
Y-Scale = 3.00E+18 Units/Inch

RM NUTTING
A = K1K2K3K4K5, B = K1K2K3K4K5 MULT. 5 AND W BY E+06
FIG. 7-10

X-SCALE = 2.08E-06 UNITS/INCH.
Y-SCALE = 2.00E-01 UNITS/INCH.

R. NUTTING
8- Conclusions.

Parameter plane techniques have been applied to the compensation of linear feedback control systems. In particular, general equations have been derived for the cases of feedback, cascade, and combination feedback-cascade compensation, to enable one to analytically place a pair of complex roots at a specific location in the S-plane, while simultaneously satisfying the steady state accuracy requirements.

A dominancy technique has been introduced whereby once the specified pair of complex roots is fixed, the remaining roots of the characteristic equation can be placed to ensure that the specified roots are dominant.

Sketching techniques are developed enabling one to quickly sketch the zeta equals zero and zeta equals one-half curves. This can be useful in determining the type of compensation to use and in choosing an appropriate graph scale for the digital computer plots.

Graphical solutions on the parameter plane are discussed in terms of engineering example problems.

Miscellaneous aspects of the parameter plane are discussed. In particular, transformations are derived to enable one to compensate parameter plane type characteristic equations on normalized Mitrovic third order $B_0 - B_1$ and $B_1 - B_2$ curves. Three dimensional parameter plane space is discussed and applied to an example problem.

A derivation of parameter plane equations involving product terms of alpha and beta is made and the results are applied to the design of double section cascade compensators. Double section compensators are designed on the basis of unrealizable single section parameters and by incorporating the double section compensator into the characteristic equation and plotting the parameter plane curves.

Digital computer programs are introduced that one can use to plot root loci and parameter plane curves. Parameter plane curves can be plotted for
characteristic equations involving three parameters and alpha-beta product terms.

Finally an engineering example is presented that points out the complementary nature of the root locus and parameter plane.

A basis for further investigation involves plotting constant bandwidth curves on the parameter plane and determining the nature of parameter plane curves resulting from characteristic equations containing squared terms of alpha and beta.
<table>
<thead>
<tr>
<th>(h)</th>
<th>(u_1)</th>
<th>(u_2)</th>
<th>(u_3)</th>
<th>(u_4)</th>
<th>(u_5)</th>
<th>(u_6)</th>
<th>(u_7)</th>
<th>(u_8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.10</td>
<td>0.99</td>
<td>0.02</td>
<td>0.04</td>
<td>0.08</td>
<td>0.15</td>
<td>0.20</td>
<td>0.25</td>
<td>0.30</td>
</tr>
<tr>
<td>0.20</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>0.30</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.40</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.60</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.70</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.80</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.90</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
A. Synthesis of R-C lead network

\[\frac{L_0}{L_{IN}} = \frac{S + \frac{1}{R_1 C_1}}{S + \frac{1}{R_1 C_1} \left[\frac{R_2 + R_1}{R_2} \right]} = \frac{S + \frac{1}{\gamma}}{S + \frac{1}{\alpha \gamma}} \]

where \(\gamma = R_1 C_1 \) and \(\alpha = \frac{R_2}{(R_1 + R_2)} \). The above transfer function has a D.C. gain of \(\alpha \) so to make the D.C. gain unity an amplifier of \(\frac{1}{\alpha} \) gain will have to be added. The pole to zero ratio, \(\frac{1}{\alpha} \), is greater than one, indicating that the circuit of figure (a) is a lead network.

If the pole to zero ratio and \(\gamma \) become very large the filter behaves like a pure differentiator and noise problems arise. If the pole to zero ratio is kept less than ten, the noise problem is reduced.

B. Synthesis of R-C lag network

In figure (b) the transfer function is:

\[\frac{S}{S + \frac{1}{C_2 (R_1 + R_2)}} = \frac{\alpha S + \frac{1}{\gamma}}{S + \frac{1}{\gamma}} \]

where \(\gamma = C_2 (R_1 + R_2) \) and \(\alpha = \frac{R_2}{(R_1 + R_2)} \).

The D.C. gain of the above transfer function is unity and the pole to zero ratio is alpha. Since alpha is less than one, the circuit of figure (b) is a lag network.

