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ABSTRACT

A general method is established to calculate the pressure distri-
bution and the moment of force for a two-dimensional, supercavitating
hydrofoil with a flap. The wake flow model is adopted to describe the
configuration of the flow field. Some numerical results for a super-
cavitating flat plate with a flap are compared with the corresponding
experimental data.
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NOMENCLATURE

a scale factor

distances from the hinge point, P, to the respective centers

of pressure of the main body and the flap
aspect ratio
distances along the chord, measured from the hinge point

total drag coefficient

total normal force coefficients acting at the centers of pressure

total lift coefficient

momett coefficients about the hinge point

moment coefficient of the flap about the hinge point, CM =

total moment coefficient about the leading edge
pressure coefficients

force components in x-direction

force components in y-direction

complex potential

flap to chord ratio

) . ey 1 af(t)
an analytic function: g(t; t.o) = =53 E
function in the integrand of ﬁa

the ratio of the depth of submergence to the chord length

integrals in the calculation of 21 and lz

Cauchy integrals in the calculation of chord length
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£, dl ths: ¢ L =1 =L /(2 i
chord lengths: £ +1 » flc 2/(l+ 2}
Q function in the integrand of V_

r,zv distance parameters in the calculation of Vf and ﬁf

(note the subscripts 1 and 2z do not refer to the
main body and the flap for these parameters)

R the prescribed value of f/c

8 (x) chord distance measured from the leading edge

t a mapping plane of the flow region

t, image point of z = @ in the t-plane: ty = Ve"ip

T image of the hinge point in the t-plane

u free stream velocity: U™-=1+0

v magnitude of t,

w(t) complex velocity

x coordinate in z-plane and transformation variable
y coordinate in z-plane

z physical plane

a angle of attack

&) polar angle of t, in the t-plane

€T flap angle

491 , 92 angies between the tangents to the foil profile and the chords
o cavitation number

T integration variable in the t-plane
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Introduction

In practical applications of supercavitating hydrofoils the adoption
of flaps or other load modulators as motion control devices is of funda-
mental importance. An accurate determination of the moment and hinge-

moment acting on supercavitating hydrofoils with deflected {laps is essen-

tial to the structure design on one hand, and to the development of success-

ful control and maneuvability on the other. Furthermore, a detailed study
of the pressure distribution is also valuable for establishing the general
validity of any theoretical model and also for elucidating the role of effec-

tiveness of the flap.

Recently, the supercavitating flap problem has been investigated

using the linearized theory for the case of zero cavitation number, corres-

ponding to an infinitely long cavity. The case of infinite flow extent was
first treated by Tulin and Burkart [1]1. This theory has been extended by
Johnson [2] who incorporated the classical work of Kirchhoff and Rayleigh,
and that of Green, the latter including- the effect of the free water surface,
but neglecting the gravity effect. In Johnson's taecry, an estimate of the
effect of finite aspect ratio is also evaluated. A linearized theory was
subsequently developed by Auslaender [3] for the caue of zero cavitation
number and at a finite depth of submergence. Using a nonlinear theory,
Lin [4] treated the flap problem for the flat plate hydrofoil at zero cavita-
tion number. In an approximate sense, the limiting condition of zerco

cavitation number corresponds to ihe shallow submergence case wheu: the

Numbers in brackets designate references at end of paper.
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cavity becomue completely open to the atmosphere. However, a fine
difference in this correspondence arises from the fact that the dynamic
effect due to the upper half filow field is actually modified in the pre-
sence of a free water surface at shallow submergences. In accordance
with this analogous configuration, some model investigations with flaps
have been carried out by Johrson [2], Brown [5], Conolly [6] and Wetzel
and Maxwell [7] . In order to establish the fully cavitating configuration
at small incidences, the technique of base ventilation has been employed
in some casee of these experiments.

The objective of the present investigation is to establish a general
and gystematic method for caizulating accurately the pressure distribu-
tion, moment of force, and hinge-moment acting on & supercavitating
hydrofoil of arbitrary profile, especially when the angle of attack, flap
deflection and the cavitation number are moderate or large. This calcu-
lation is based on the nonlinear theory developed recently by Wu and
Wang [8] . To meet the general operating conditions in practice, this
theory can be further extended to include the effects of free water sur-
face and gravity, and finally the effect of finite aspect ratio and three-dim-
ensional features. The scope of the present work, however, will be limited
to the case of two-dimensional flow of infinite extent, with emphasis on the
pressure distribution over a flapped hydrofoil. The formulas for the fosce
moment and hinge-moment are also derived here. Since the information
about pressure distribution in cavity flows is relatively scarce in the ex~
s literature, it is hoped that the resul’s of this study may provide use-
ful data for future applications as well as for further development of this

general field.
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The numerical computation has been performed with an IBM 7094
Computer, for which the method and computing program are explained
in detail in this report. The final results for the case of flat plate hydro~-
foil with a flap are presented in figures ‘or different angles of attack,
flap angles, flap~chord ratio and the cavitation number. The calculation
for hydrofoils of arbitrary profile is also discussed. The computation
program for this case follows an approximate numerical scheme developed
by Wu and Wang fol. This approximate method greatly shortens the csin-
putation of the final integral equations in the theory, while still retaining
a high degree of accuracy of the result.

A parallel experimental program has been accomplished by Meijer,
the results of these experiments will be presented in a separate report by
Meijer [10]. It can be stated here that the general agreement between the
theory and experiments is very satisfactory, and the experimental obser-
vation has also revealed some interesting points, such as the viscous
effect near the flap hinge. With the theory now well established in the
typical cases so far investigated. the present method can be applied with

confidence for the g~reral case of arbitrary profile.

General Formulation

We consider a steady, irrotational plane flow of an incompressible
fluid past an arbitrary profile AB in sucli a way that the flow is separated
from the lezding and trailing edges A and B, foriming a fully developed
cavity behkind the foil AB. The foil AB consists of a main foil AP anda

flap PB, as shown in Fig. I{a). A set of Cartesian coordinates, x and
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;& v, is chosen with the origin at the leading edge A and the x-axis lying
, zA along the chord AP. The incoming free stream has a speed U and is
2
s at an angle of attack ¢ to the x-axis. The flap angle, ew, is the angle
L
' g measured from the x-axis to the chord of the flap PB, positive in the
‘:{ clockwise senge.
g
. In the following 2nalysis the wake flow model, as formulated in
A
f {8], will be used to describe the flow. For the sake of convenience, a
i general descripgtion of the wake model will be given briefly in the follow-

ing: The part AC and BC' of the free sireamlines, as shown in Fig.1{a),
form the boundary of a near-wake of constant pressure p, which

is less than the free stream pressure p,, From this part onward the
pressure varies continually and monotonically from p c 10 Py along the
far-wake boundary, €l and C'I. It is further assumed that the values

of the complex potential, £, and the complex velocity, w, at the point

8 IPUEICT T X PR

C are equal to those at the point C' respectively. With the introduction

of the so-called "hodograph-slit condition" for the streamlines CI and

C'I, we assume that the entire flow region in the z-plane can be imapped

W}\ onto the interior of the lower-half unit circie in a {~plane, 28 shown in
: é Fig. 1{b), where T is the image of the point P, and %, that of the
-4 point 1. On the t-plane the complex potential, f, and the complex veloc-
».\:.j‘i; ity, w, with the spced on the cavity wall normalized to unity, «an be
e,
e written respectively as
i f= At ’ (1a)
L £-t "t-? j-t-'—l—)(t-l)
=7 v 0" fo) ‘ t z
o o

, e
- SN S

W o :

Y

TR




e - e e

C s

s -\\!h/\

\
o
{

3

}

-

and

o] foe [ 052 ) RS}

where 6 (z(7)) is the angle measured from the chord AP (or, chord PB),
counter ~-cleckwise as positive, to the tangent at any point 2z on the sur-

face profile curve AP _'(or, curve PB), as shown in Fig. l(a). At z = o,

H

w=Ue™ and t= t,» hence

Tt -14€
e wig | e 1-2) 0  6lz{r)ar
i ty = Ue (t -T) {EXP[ 7 S-; (T-to)(non)]} ' @)

o

For any point on the foil, corresponding to t =T, T7Tbeing real, -1<T<],
the distance along AP and PB between the leading edge A and the pro-

jection of this point to AP or PEB is given by:

%
Ly & . i o (Tlnd,rs
) = 24 S [ L2t | gt Lt (0 BT Teos oaten} at
C( ) » T -1 g( 0) {exp[ ™ S.x T~ ENT T - ] }
(3)

where * above the integral sign signifies that the Cauchy principal value

-

of the integral is taken and

fa,

G
&
e,

1

a -2 Dt b +E N1+t T E T

Cle-ty) (t-E) (-t (-2

e

gltit)) = 5 (4)

R VRt

The condition that the points C, C' lie on the lower unit circle in the

e
Cf ._E;;ﬁwﬁ

t-plane, or -~m<arg tc<0, may be expressed as
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This condition is equivalent to stating that the constant pressure region
extends beyond the trailing edge B.

By writing t_ = Ve'iﬁ, Eq. (4) becomes

gltit )o =21 4E -1+ VNV cos p)] . (5)

_ ﬂ " [(t? + VE-2tV cos BHtEV? - 2tV cos P + 1)] 2
r“ﬂ Similarly, sulistituting t, = Ve-ifj into Eq. (2), expanding and separating
- \,-:i" the real and imnaginary parts, we obtain the parametric relations for t,
= as follows :
b |
= V=V;Vas ()
- - and
¥ B=p +8,, (7)
. g where
| "‘ Trz ¢
W Ve= U (—z"_) : (8)
3
| 1 ¢!

) V_ = exp [TTS Q(t)6 (t)at] , (9)

Te -1
P
S 2, .2 |1 2
os S afrt -l -T
tr';% Bp=a+t e{cos 1[ i (3 ) ]}. (10)
% y T,
o 1 !
L. f,= -z Vsinp II{t) 6 {t) dt, (11)
LA -1

L

. r =(T? + V2 - 2TV cos B)?, (12)
e 1 ,
1.4 1
| 4 — 2=(T'2+ V- 2T V cos BJ, {13}
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Qt) = tv: -V cos B _ t-V cos P
2Vi-2tV cosp+ 1 t2+ V-2tV cos 8

(14)
and

H(t) = 1 + 1 ) (15)
V-2tV cosp+1 24+ V2 -2tV cos 8

Let J(t) denote the Cauchy integral in Eq. (3}, Then, noting that

*
1

ar -
' r-tiFt-1)
the singularity of the integrand in J{t) can be removed, giving
¥

L g(1) d- ooy -6(x)
“"‘S FoOwEsT) © ), Toom-1y °7

T em-6) L o(r)-8(t)
-, e STF-TTR?EL-T)‘“’ (16

If we let the chord of AP be .21' and the chord of PB be Zf, then

-
[

1-* Il"rt lg(t t ){ex (1 tz) J(t)] cos 6(t)}

(17)

-
Ll

. = ZAS Il Tt ) glt;t ){exp[(1 t) J (t)] cos B(t)}

where 11, lz, 61 and 9z are shown in Fig. lc.

4 and 1,
1 2

For given U, ¢, 9 (x),
Eqs. (2), (3) and (17) provide a set of functional equations

1 The subscripts 1 and 2 in all following equations refer to the main foil
and the flap respectively.
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for unknown to’ c(r), A and T.

To facilitate the numerical computation of the above integrals it

is convenient to introduce the following changes of variables

C(x) = 22Xy ) = X {18)
i 1-Tx? z 1+ Tx?

so that t1 varies from T to -1, tz from T to +1, as x increases

from 0 to 1. Then Eq. (17) may be written as
- -2
4 = 4A(1-T )Ik (19}

where, with k=1,2,

1Ll - 2¢) gl x)it,) 1 ~tkz
Ik=S° [1+(-)kaz]z " {exp[ = Jk(x)] cos Gk(x)}dx, (20)

TG = 201 - T) Sx [91(“) -Gl(x)]u du . S; [ez(u)-el(x)] u du
1 R 3

(-rz -tl)('rztl- 1)1 + Tu?})?

(r -t)lre - 1K1 - Tu?)?

and (21)

Jz(x) =2(1-1T9

Sl [Gi(u) - 92(::)] u du . Sn -[Gz(u) - 9z(x)]u du
o o (T -t }7t-1)1+Tu?)?
z 2''zz

(1'1- ta)('rltz - 1)1 - Tu?}?

Gl(x) and Gz {x) in Eqs. (20) and (21) are the angles between the tangents

and the chords of AP and PB at < {x) and c (x) respectively, as

shown in Fig. 1{c}.

If we now normalize the total chord (1l + 12) to be unity, we have

I, < e b
L T ;
,IV‘ W

ke

A= 1 ; (22)

TN

4(1 - Tz)(Il + Iz)

2ty
e A

e B,

by,

e
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and hence

(1 =2€) gt x);t)) 1-t.2
ck(y) I +1 g [1+( Txt 2 Ve {exp[ R

(e = 1,2) (23)

The ratio of the fiap chord f to the total chord ¢ is

2 1
= - 2
°‘1JT'-1+ - = T'T,m . (24)

Making the same changes of variable, Egs. (9) and (11} become

x9 (x)ax xe(x)dx
V. = exp —(1-'1‘z S Q(t (x)) — S Q(t (x)) —fe——
1-Txd {1+ Tx*)?

"

and

2 xG {x)dx 1 x 0 (x)dx
B, = --Vsmﬂ(l-Tz) S H(t (x)) —t—— + H(t (x))—?'—-—-—] ,
{1 - Tx#)? o ¢ (14 Tx*)?
(26)
where Q and H are given by Eqs. (14) and {15} respectively.
The pressure coefficient at any point is
c, =it @7)
p - lp 'l'_]’z

where p is the pressure at the wetted surface of the plate and P, the

constant pressure in the cavity. From the Bernoulli equation we cbtain

Cp= U™ (1-g¥)= (143 )1 -q%) (28a)

), ix)] cos Gk(x)} ax,

e

o A a e
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or
CP = (1+o)l -ww), {28b)

where ¢ is the wake under-pressure coefficient, or the cavitation number

Py Pc

, and W is the complex conjugate
zpU*

for cavity flows, given by o=

of w.

The cormplex force coefficient for the main body, Cx + iCY , can

1 i
be written as
T o (P e
x1+1Cy1-1 dez=1(1+0)§ {1-ww)dz
A A
i(1 T & 2
=i(l+o) [(‘P'ZA)-.S; w at—dt] , (29)

From Eqs. (1), (4), (22) and the transformation (18), we can write the

above equation as

r
C, +1CY = 1(1+O)L!‘

1 1
\ . glt (x)it)) 1 -t 23(x)] .
- S NOEE) PPN Ll LG Bl Tkl Y08 B dx].
L 2 Yo i vt 1
(30a)
Similarly, the complex force coefficient for the flap, Cx + iCY , be-
2 z
comes
C_+iC_ =i(l +o-)e‘i‘“'[z_
"2 72 L
t(x);t) 1-t3x)] .
1 Sl (1+Z¢=) 2 g( 2 [ 2 . if
- T x t ?(x) —Ete———— exp| - ——2——J(x)} e 2dx|.
Il+ 2 o 2 v4 L z
{30b)
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The lift and drag coefficients, CL and CD' are given by

Cp+iC; = [(C"x+ iCyl) + (sz+ icyz)] e 2, (31)

Special Case: Flat Plate

© As a special case, we now consider a flat plate with a flap as
shown in Fig. 2. This configuration is pa.rticuia.rly simple since 6 = 0
everywhere along the chord. By putting 6 = 0 in our formulae, Va.
given by Eq. (9) becomes unity and [Sa given by Eq. (11) becomes zero

so that

V= A/ (32)
and

g= ﬂf ' (33)
where Vf and [Sf are given by Eqs. (8) and (10) respectively. Similarly
W, 11’ Iz’ <, and c, are given by Eqs. (lb}, (20) and (23) with the
factor inside the curly brackets equal to unity.

From the above and Eq. (28b) we obtain the pressure coefficient

_ T-t 2€
Cp-(1+c)[1~tzli—_—ﬁl ]- (34)
In terms of the variable x defined by Eq. (18), Eq. (34) may be written

as
Cp )= (140) [1 -tkz(x)x“] . (k= 1,2). (35)

The moment coefficients about the hinge point P due to the pressure

over the main foil, AP, and of the flap, PB, as shown in Fig. 2, are

T
CMI = S-I Cpi(t) Cn(t) dcl
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and

*l
c =3 C_ (t) c_(t) dc
Mz " P, 2 2

respectively. From Eq. {23) we get

C =__.1__...S’C x) xl1 -2¢) G(tlc(“)”o)SX -2 sltdy)it)
Y @+ 1) P [+ (-)°al? v Yo LTyl v

(k=1,2) (37)

where I1 and Iz are given by Eq. {(20) with the factor inside the curly
brackets equal to unity and g(t; to) is given by Eq. (4).

It is also derirable to know the location of the centers of pressure
of both the main body and the flap as well as the total forces at those
points. Let a and aa.z be the distances from the hinge point, k P, to the
center of pressure on the main foil and to that on the flap respectively,

and let CF and CF be the force coefficients acting at these points.

2z
We may now write
T "
C.. = C_de, C =‘S C_dc,
Fx R Fz T P

with the help of Eq. (23) the final results are

x(l -2¢) g(tk(x);to)

1 !
C = C ( ) dx, (k = 1:2):
F IFT ')o Py [14+(-)Tx?]? Ve

(38)

k=1,2). (39)

dy dx

e A e PO
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Knowing these quantities we can transfer the total moment to the leading
edge, giving
C = C.-a)+C. (2 cosem+a ), (40)
MLE Fl 1 1 FZ 1 2
where CM is considered to be positive in the nose down sense. The
LE
hinge moment is defined as the moment of the flap about the hinge point,
hence
C = C . (41)
MH Mz
The pressure distribution is given in the parametric form s(x),
C'p-(x). where s{x) denotes the length along the foil surface measured
from the leading edge such that 0<s<1,
s(x):l--f--c(x) on AP
c 1
=1- fc— + c, {x) onPB (42)

and C!' p is the pressure coefficient whicl: is defined as unity at the stagna-

tion point D and is equal to negative ¢ on the cavity side. Then we have
' - -3 2 3 =
Gty ) = (1+0) [1-t 2] -6 =1,2). (43)

The lift and drag coefficients are given by (refering to Eq. (78)

of Ref. (8))

_TA _(U+ Uescp [ oq, ell - TPl(1+ TVPconB- TV{L + V3 cos 28] |
Lyt (v v2-2 cos2p) (T2 + V2% - 2tV cosPB)}{T?V3+ 1 - 2tV cosf) }

(44)

e o mm e

. A




|
L.

;o
S

; ﬂ‘%

AL
iy

§

i

14

o= TA - oy - V2) 1+yes S1- T’)[(l+Tz)v2(1+vi)-2'rv¢:os;3(1+v‘)]
D (T2 V2-2TV cos P} (T2VZ4+ 1 ~ 2TV coaf)

U? (V"% v2-2 cos 2p)

where A is given by Eq. (22).

Numerical Procedures:

a) Flat plate with a flap.

A double iteration procedure is required to evaluate the force co-

efficients for prescribed U, a, ¢ and £/c. We first solve the inverse

problem: choose U, a, ¢ and T as the independent parameters, solve

{45)

for V and 3 {hence to) by iterating the parametric relations in Eqs.(32)

and (33). We then obtain the corresponding flap-to-chord ratio, f/c

= 12/(11+ Iz). where I1 and L are given by Eq. (20) with the factors in-

side the curly brackets equal to unity. A type of iteration similar to

Newton's method is thenused on T tofind V and $ corresponding to

the desired value of f/c.

Once V and P are established, the moment coefficients, C

Mg

and CMH. are obtained £ ‘qs. (37)-(41), the pressure distribution

from Eqs. (42) and (43) ax ft and drag coefficients from Eqs. (44)

and (45).

The details of the cai. :ions outlined above are described in

Appendix a*.

‘The program listing is available upon request.
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b) Arbitrary profile.

The iteration scheme for the arbitrary profile is a combination
of the above method and the approximate scheme of Wu and Wang [ 9]
and is described in detail in Appendix B™.

Results:

The numerical calculations outlined above were carried out for
three models of flapped flat plate hydrofoils with flap to chord ratios
of 0.2, 0.4 and 0. 6. For each model the flap angle, ew, was varied
from 10° to 60° and the angle of attack, a, from 5° to 60° for cavitation
numbers between 0 and 1. 0**.

Figures 3 through 5 show the total moment coefficient about the

leading edge, CMLE, and the moment of the flap about the hingepoiat,
Cy1 » @s functions of G for a = 5° through 60°. For each model the
H

flap angles 10°, 20°

, 40° and 60° are shown. CM
LE
is given in Fig. 6 for all three models at varioas cavitation numbers
for a = 10°, 20° and 30°. Figure 7 shows the lift coefficient. Cy
versus ¢ 7 for the same conditions. The polar plots of CL/CD versus
CL for o= 0 are shown in Fig. 8, in which the solid lines are lines of
constant a and the dashed lines are those of congtant en Since, within
the range of the cavitation numbers concerned, C L/ Cp, is almost inde-

pendent of o, no corresponding curves are needed for other values of o.

Some typical pressure distributior curves for the model with

E3
The program listing is available upon request.

Tabulated results are available upon request.

‘ag a function of e,
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£/c = 0.2 at a=10° and ev = 0°, 20°, 40° and 60° are shown in Fig. 9.
The experimental points are taken from the work by Meijer [10]. In
Meijer's experiments, different sized models were tested in order to
make wall effect corrections. In Fig. 9 the theoretical results agree
very well with the experimental ones, except around the hinge region.
The discrepancy there may be aitributed to viscous effect. Curves were
faired through Meijer's experimental points, given in Fig. 9, and then
integrated to obtain C L and CD. The results are plotted along with the
corresponding theoretical lift and drag curves in Fig. 10. As would be
expected from the pressure distribution cor.relation in Fig. 9, the agree-~
ment in CL and CD i very good.

Figure 11 illustrates the agreement between Parkin's experiment
[11] and the theory of CM as a function of o for a flat plate at angles
of attack from 10° to 30°. The experimental points of Parkin's experi-
ment have not been corrvected for wall effects.

Besides the above comparisons between tvo-dimensional results,
it is also interesting to compare the present two-dimensional theoretical
results with experiments having three-dimensional effect. Wetzel and
Maxwell [7] performed experiments with ventilated finite aspect ratio

models at different subinergences in a free jet. Some of these results

are shown in Figs. 12 and 13. In general, the agreement between the two-

dimensional theory and three-dimensional flow is not as good as the agree-

ment with the two-dimensional experiments of Parkin and Meijer, but
as agpect ratio and submergence are increased the agreement tends to

improve.
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APPENDIX A

The double iteration procedure outlined in the text for the flat
plate problem presents no problem when done on a high speed computer.
All calculations presented here were done on the IBM 7094 at Boeoth
Computing Center, California Institute of Technology.

Choose U, a, ¢ and let the first approximation of T be 0.5,
then calculate V and P by iteration of Egs. (32) and {33). Since V
and P are rather close to U and o in value, let V‘0)= U and ﬁ‘o) =a

be the first approximations, then

vl < vz, vi0, g0
and

a1 < g r, vi0), 6O

are the next approximations. Coatinue this procedure until | yin-1)
- V(n) | and [(S(n' 1) p(“) | are less than the allowable error. This
iteration converges very well; on the average about 6 iterations will
produce an accuracy such that the error is less than 0. 00001.

Once V and B are determined the corren;ponding flap to chord
ratio, f/c, can be calculated from Eq. (24), where Ix’ and Iz are
given by Eq. (20) with the curly brackets equal to one. Let the desired
f/lc be R and the first approximations to T and f/c be T(o) and r!®

respectively. Since f/c decreases as T increases, the second approxima-

tion to T is arbitrarily set to be either

oo0.1; rR-r%S0

v

PR WP

e




crement size was sufficiently emall to produce an accuracy ©

or

W .0.9; r-r"<o0.

The corresponding R(l) is calculated from the first iteration process

and now we can apply a modified Newton's method,

(2) _ (0) (o3 [ (@) 1) ]
Tz Py [R-rYY [—(UT"‘TT)
R'YV"7« R

and
R L (),

Continue these successive approximations of T according to

Lot 1), pln=1), (5 gla-1)y [T(::”- 'r(‘;’ ]
R.t T, R.t‘ )
until [R-R™® 1| is less than the allowable error.

It should be pointed out here that only positive values of T are
of intecest for the physical application considered here. If T becomes
negative then the stagnation point D has moved to the flap side of the
hinge point. This situation oncurs when f/c—~1 and a and ¢ become
large.

Once T, V, and $ are determined the pressure distribution,
lift, drag and moment coefficients are readily calculated as outlined
in the text. The numerical integration required was programed using

Simpson's rule on increments of x = 0. 005 and y = 0. 0001. This in-

h

% 0. 0001 for all cases that were calculated. A good check of the accuracy
is to print out a‘(x = 1) and sz(x = 1) as theae values should be (0 and

1.0 respectively.
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APPENDIX B

The iteration procedure required for the arbitrary profile is
arrnewhat longer and more complex than the flat plate problem be-
cange of the adided slope function, 0. This additional parameter gives
rige to an integration in the V and P calculations; furthermore, the
cherd calenlasion becomer a double integral. We have used a modifica-
tion of the approximate numerical scheme originated by Wu and Wang {10].
Thia rewlificalion is nccnﬂnnr}" because of the additional requirement of
fixed (/e mothat ‘T cannot be prescribed as it was in that reference.

We firsl solve the flat plate problem for the prescribed a, 0, €
aml /e, ‘This solution gives us a good [irst approximation for the un-
known parameters V. 3 and T. Using these initial values we now iterate
Figqe. {6). {(7) and (24) except that the value of ¢(x), required to determine
1 (x). i= the flat plate value given by Eq. (23) with the curly brackets equal
tov one (=ince 0 ir equal to zero). The values so calculated are designated
with ¥. As bhefore we let the prescribed f/c be R and the calculated
/v he R("). This fime we do not iterate V* and iS* for each value of
'l‘* {(And hence R* ) because they are less sensitive than R* to changes
in "I‘*. U is alzo neces=sary to adjust the chord values cx (x) and cZ (x).
At cach iteration =0 that cl(x =1)=1-R and c2 (x=1)=R. This adjust-
ment in the chord values is necessary because the 6 values are defined
onlv i the regions 0:‘:1 <1 - R) and Oic:_\’_ R. With these exceptions
this iteration is carried out in the same way as in the flat plate iteration
until

, \_-*(“ -1 ) - \-*(n) l . l 3*(2\ = 1)- 5*(71)

iand | R*(n)- R .
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are less than the allowable error. We then calculate the exact value of

c(x) (with the curly brackets) and recalculate V(n), ﬁ(n) aand R(n). If

necessary this last gtep is iterated until

lv(n'l)_v(nst lp(n"l)_p(n)l and IR(n)“'R‘

are less than the allowable error. When the camber is small it is found

that it is not necessary to iterate this last step.
Our program is written so that the 6 values may be obfained
either by a four point interpolation from a stored set of 8 versus c¢

values or from an analytic expression.
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