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ABSTRACT

The basic laws ¢of & special relativistic theory of continucus
media suitable for the treatment of electromagnetic interactions
with materials are formulated. The kinematics, dynamics and thermo-
dypamics of a continuum are dis-ussed from a relativistic viewpoint.
Constitutive equations are deduced for thermcelisstic sollds, thermo-

viscous fluids and electrumagnetic materials.
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INTROTUCTION

In this article there is prescnted a nonlinear relativistically
{special) invariant theory of continuous media. The object of such
e study is & consistent treatment of the interaction of electromag-
netic fields with the defcrmation of mattér. In recent years several l
theoretical works have appeared concerning the simultaneous action

of large deformations and electromagnetic fields cn material bodies.

In general these rerearches have either considered only static de-
formations {cf. Toupin [i], Eringen [2], Jordan and Eringen [3], (4]}
or developed a dynamical theory along nonrelativistic lires (cf. 4
Toupin (5], and Dixon and Eringen [6])}.
It is well known that the invariance group of the basic equations
of electromagnetism is the Lorentz group. The modern theories of
continuunm mechanics, however, make use of the Galilean group for the
basic laws of motion and the invariance under the group of rigid
motions for the constitutive theory. At the turn of the century, the
invariance of the laws of mechanica under the Galilean group was dis-
carded at least for the physical phenomena which fall within the scope
of relativistic considerations. Thus we believe that a satisfactory
and consistent theory of electromaguetic interactions with deforming
materials cannot be obtained until the ground rule {(the invariance
principles) for mechanice and electromagnetism is taken to be the same.

Within the scope of the special theory of relativity the most natural




and the simpleet invariance principle is the Lorentz group of trans-
formations.

Following the scheme of classical theoriles of continuum mechanics,
Eringsn [7], Truesdell and Toupin [8), we begin our study with the
geometrical and kinematical description of deformation and motion.
Afterwards the bvasic lawg:co;cerning the motion and physical phenomena
are introduced. The fo;mulation is then completed with the consti-
tutive theories in accé;dance with certain methodological principles
set forth in [9].

In the literature;the kinematics of continuous media 1is seldom
discussed from a relativistic viewpoint. Exceptions are the works of
Bressan {10] and Toupin [11). Bressar has formulated a relativisti-
cally (general) invariant kinematics by noting that the motion of a
material particle with undeformed coordinates KNk = 1, ..., 3) can
be described oy x" = x* (XK, t) (=1, «u., 4) where t 45 some
temporal parameter., Cbserving that such a temporal parameterization
is highly arbitrary, he stipulates that the description of the de-
formetion ie independent of the choice of 1t .

Our approach to kinematics is based on an extension of the work
of Toupin [11]. Our strain measures are invariant under the Lorentz
group and they coincide with thoss of Bressan under appropriate modifi-
cations. The world velocity that is selected i3 a kinematical one,

In geversl vorks the worll velocity of a continuous body is defined as

either the time-like eigenvector of the energy-momentum tensor (cf,




Synge [12) or lichoerowicx [13]) or ae the upnit vector parallel to the
momentum density (cf. Mgller [14] or Landau and Lifekitz [15]..
Mgller actually employs also the kirematical veloeity.) This velocity
of energy propagation will coincide with our kinemstical velocity only
in special cases, for example, when the hzat conduction and electro-
magnetic phenomena are neglected.

For basic mechanical and thermomechanical balance conditions
we eelect, in Chapter II, the comservation of particle-number, the
talance of energy-momentum, the balance of moment of energy-momertum
and the eecond law cf thermodynamice. We consider the consarvation of
particle pumber as the appropriate generalization of the conservation
of maes in nonrelativistic continuum mechanics. Thie point of view
ie accepted by several authors (for example, landau and Lifehitz [15],
Van Lentzig [1€] and Eckart [17)). An alternate viewpoint ie that the
clageical conservation of mase ls obtained through the equation of
energy in the limit as the epeed of light approaches infinity (for
example, Bergmann [18], Thomas [19] or Edelen [20])). From thie point
of view it ie difficult to consider thermodynamice without an additional
axiom, In nonrelativietic theories the thermodynamical balance equations
are deduced from the enpergy equation. It would seem appropriate to
do the eame in relativietic theories. Thus, for example, the energy
equation should be ueed to derive the equation of heat conduction.

The form of the balance Of epergy-momentum ie well known and

hardly neceds any explanation. It should be noted that in a relativistic
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theory part of the momentum is due to monmechanical scurces such as
the heat fiux and stress tensor. In most of the works on relativistic
theories of continua the energy-momentum tensor is assumed to be
symmetric. This is ususlly deduced from tke balance of angular mo-
mentum., In the classical theory of continuum mechanics the strees
tensor is symmetric only if there are no torques acting on the body
and the bhody does not possess an intrinsic spin., We generalize this
idea to the relativistic case by intreducing a spin tensor ani & body
torque tenmsor in four dimerpsions. The idea of a spin tensor can be
found in such works as Bogoliubov ard Shirkov [21] and Pspapetrou [22].
If the spin and torque tensors vanish, it follows from the halance
of moment of energy-momentum that the energy-momentum tensor is syametric.

The second law of thermodypamics is formulated in & manner
apalogous to tbe law given by Eckart [17] with the provision that
it is considered &as a restriction on the form of the comstitutive
equations rather than ¢on the electromechanical procsss,

In Chapter III the methodological principles for formulating
constitutive equations are set down, They are obvious generalizations

of those employed in nonrelativistic continuum mechanics. The major

difference between these principles and those of modern continuum

mechanics is the requirement that the constitutive equations are to

be form-invariant under the lorentz group. This is adequate for the f
theories treated in this paper. A different approach using the idea l

of non-sentient response is to be fo=4 elsevhere, Bragg (23],




As examples of the above formulation of constitutive equations,
relativistie theories of thermcsolids and thermoviscous fluide are
deduced. The second law of thermodypamics forces the acieptance
of the heat conduction law of Eckart [17] as opposed to thise of
Bressan (2k] or Pham Mau Quan (25] who attempt <o generalize Fourier's
law.

In Chapter IV the Minkowski form of the equations of electro-
magnetism are formulated in the usual four dimensiopal form. In
Chapter V the interaction between eleciromagnetic fields and matter
is treated. An interaction term is written down using the analysie
of Dixon and Eringen [6]. If ope wishes to treat the interaction
of electromagnetic fields and metter one needs a physical model
(cf. Dixon and Eringen [6], Jordan and Eringen [3], or the appendix
of Fano, Chu and Adler (26]). The seemingly fond wish to use the
Minkowskl stress tensor or its symmetric part is erronecus uniess
the material has no polsrization or magnetization, in which case this
tensur is symetric.

In Chapter VI the constitutive theory of electromagnetic materials
is set down for an elastic sclid and a viescous fluid. Such effects
as heat conduction, electrical conduction, polarization, and migosti-
zation are included iu the theory. The consequences of the azcond law
of thermodynamices are fully investigated.

Finally an appendix on the invariants of tensors and vectors for the
Lorentz group is included. In special cases it is showa that the use of
results of the three dimensional orthogomal group is permissible. ‘This
facilitates greatly the constructiorn of constitutive equations since a
revorking of the theory of iavariants of teasors and vectors for the

Lorentz group would be lengthy and tediocus,




Notaticn

In this paper we use ths standard tensor notation and summstion

convention of repeated indices. The sigmature of the lorexntz metric

) 18 (44 -), L. 711-722=-755-1,7u--1,and;11

other 7“3 =0 . It is convenient to use the following convention:

gyt * Byt

wvhere e

opys is the permutation symbol snd define

3ince det (V) = -1

gy % BBy 77y 5
« =y “y Ty T 7 .
G878

The short hand notation

:057 = ‘Gﬁﬁ:

ub

is often employed to define the "cross product” between two four

vectors a.a s ¥ s 2.8., 8 X 1is the vector
. 4 *yap
(axb) = ¢ s by

By the outer product notaticn p @b we will mean

(2®b)y = ;%

i
§
B
r




For a second order tensor Am and & four vector ve will mean by

the notation g x 4 the second order temsor

: &
(gxg)ca 2 o6, 8 O,
and by 4 x & the second order temsor

z 7 e 5
(4 x ‘)Cﬁ D 8y €t

vhere wo raise and lower Greek indices with the metric (7@) = (70‘3).
Ir ACG is & second order tensor and a° a vector by 48 ve mean
the vector

@)y = 8p9°

For two vectors a° ’ v* the inpner product a * b is defiped hy

a
ahzaha

Units

For simplicity the speed of light ¢ is set equal to unity,
c =l ., Inthe electromagnetic section of this article 1ationalized
patural units axe smployed. Accordingly we take the dielectric
constant of free space L 1l apd since ¢ = 1 , the permeability

of free space p°=1.
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CHAPTER I

RETATIVISTIC KIMEMATICS CF A CONTINUOUS MEDIUM

Motion

AZthough some sccounts 0n the relativietic treatment of the
dynamics of a continuous medium may be found in various tiaxts on
relativity (cf. Mfller [1k], Tolman [27], Bergmenn [18], landau and
Lifshitz [15, 28], Synge [12]), very little aiscussion has been

directed tovards a relativistically invariant kinemmtics of a cor-

timous body. Tbe present chbapter is, tberefore, dsvoted to a dis-
cussion of deformation and motion (kinematics) from the point of
viev of the special thecry of relativity.
In classical contizuum mechanics the deformation of a body is j
described by specifying the mapping of one configuration of a body,

B , onto andother configuration, Bt .

"

Fig. 1. Deformetion

The configuration B , called the reference atate, (usually taken as
the undeformed body) can be made explicit by specifying the rectangular

coordinctes xx , (X =1, 2, 3) of a set of material points, (B} , in




throwghout body 3 excop: possibly some singular surfeces. liaee and
points. In fsct, uniess otherwise steted ve shall not only assume
the validity of (1.3) throughcat B btut also the existence of partial
dsrivatives of (1.1) and (1.2) as many times as ve need.

In classical mechanics the parsmeter t 1is identified as time.
Here Lt is considered as the fourth coordinate in space-time

x* = (xh , ct) , (set ¢ = 1) which has the metric

o
[
(=)
(=)

(b)) H= g s (¢ =1)

0 0 0 -1
L. 4

The following convention is used: The small Latin subscripts or
superscripts will alvays assume the values 1, 2, 3 . They will
signify the spatial coordiomtes of the space-time of events. The
spail Gre¢k subscripts or superscripts will alvays assume the values
1,2, %, 4, They will desiguate the coordinates of space-time,

They will be raised and lowered by the metric 7*¥ . The large Latin
subsceipts or superscripts assume the values 1, 2, 3 and vill be

raised and lowvered by the Kronecker delta bn' « They will signify
the coordi.«tes of the reference stiate.
Similur %o (1.2) the inverse motion of a contimuous medium may

be describyd by thres functions

10




(2.5) xx = xK(xu) (Kel,2 3;u=1,2 3,4

The domain of XK() is the material tube swept out by the body:

D u (x*: :r.kth , 0 <t <w) in sprce - time., The range of
xx() is the set {B). In the following it will be implicitly assumed
that x ¢« D and X ¢ B and no further reference will he made to
this fact.

The three functions X1() &re sssumed to be invariant functions

of x' under the group of homogeneous Lorentz transformstions, A ,

that is:
1.7 ) - @

Mathematically this is all that is peeded to develop a rela-
tivistically invariant kinematics., However, for a physical theory,
some meaning must be attached to the functions XK() . FPhysically,
consider an undeformed body B which before deformation is at reat
in some frame. In “hat frame the body B is described by a set (B)

in the three dimensional space with coordinates )l(K . The three

i
i




functions XK() degcribe the mapping of the set D omto B . It
vill be assumed that such a reference state exists. Thuxs xx can
be used to describe lengths and angles in that frame,

It 1s also sssumed that (1.5) is invertible in the first three
variables xk s that is
£ a xk(xK, xh)
k
(1.8) det (x ) # O
2
X = «h)

X =
»K E:EK

World Lipes, Velocity, Deformation Gradients

It is now meaningful to define the world line of a particle -AK

by the curve in space - time defiped by

(1.9) A%« M)

The particle velocity is defined as

k b
1.10 k ax(xxx)
( ) v '_—gx-nl__xx

The world veloclity vector is !




. _,.-._._-MM

a k vk 1
(x') 1 (e )
: * “Nlev Jl-v!

Q1) F6P) 1 LEEER), <)

Since ua(xﬂ‘) is the unit tangsnt to the world line passing through
xﬁ s ua transforms as & four vector under Lorentz transforzation.
The following notation is convenient, Consider a tenscr function

¢ = o(x') we defipe

» (%)

(1.12) o,ﬁ H = x"‘;lxp

From (1.8) the function ¢ can alsc be considered as a function of

X x' . The vame symbol ¢ will be used for both ¢(x") and

O(xk(xx, xh) , xh) z O(XK,xh) . Vo define ¢ . and é'.'h' by
I ax
e BO(XL xh
R h
’ x [ XX x
(1.13) X4 |
d . (x*,x’)
= a X

Obviously the four numbers [XK,B] (X fixed) are components of

s four vector. Using (1.7), (1.8) and {1.10) one sees that

b4 k
x’KxK,h"'v

[ ]
"
®
-
=
L]

k k k
) 2 X x,KXK,‘




Thus the following useful identities are derived:

x . .X
ﬂxﬁﬁ'bz
(1.8) x £, 7 °KL
) 4 ,L
X
xx,u E -V xx’k

The las* equation ylelds the identity

(1.1%) fﬁa=o

Material SBurfaces and Vilumes

It is convenient to introduce the invariant derivctive

(1.16) De

"
=
<

&

If ¢ 1is a tensor under Lorsntz transformations, D¢ is a tensor
under Lorentz transformmtions. This is the relativistic geperaliza-

tion of the material derivative g-t- , 1n fact

The concept of a material surface is important for the formu-

lation of the dynamical laws of & eccitimuous mwedium.

1k

=

-




Def. A surface £(x¥) 20 is a mterisl surface if and only if
CRYIEFE A PSR B

A pecesaary and sufficient condition for the surface r(x“) =0

t0 be materisl is that
(1.18) Df = O

The proof is obvious.

From (1.17) or (1.18) it followe that if the surface determined
by £(x®) 2 0 1s a material surface, the surface f(%>) = O , where
%% 1s related to by (1.6), is also a muterial surface. That is,
the concept of a material surface is 1nvur1u_xt rnder Lorentz trans-

formations.

A materisl volume is & three dimentional volume containing

material points.

Decompcsition ﬁ Vectors

A four vector fa is called apace-like if fa fa >0, mll it

o ¢, =0, and time-like if £ £%< 0. From (i.11) the four vector

u“ is & unit tiae-like vector. In the sequel it will be found convenient
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to decompose all vectors and tensors into space-like and time-like
components .
An arbitreary four vector Fa ¢can be decomposed into a time-like

component perallel to ua and a space-like component perpendicular

to ua » To this end we introduce the projectors Saa
Sa s baﬁ + ua uB
(1.19)
a ar o a a
= = +
S5 "7ﬂ°7 81, bﬁ uuﬂﬂﬁ5

g g = &
y 7
(1.20)
uy Py uﬂs°a= 0

In general. the four vector Fa can be uniquely written in the form

Fa = fa+uaf

(1.21)

From (1.20) sapd (1.21) it follcws that

(1.22) £ = -Faua

(1.23) % = s“ﬁre

It can be easily seen that




—— -”-’
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2e >0

a

That is £ is space-like or a null vector (light signal).
From ()1.15) and (1.19) it follows that

(1.24) B“a x = &£

1) &

Therefore the vectors xx 0 are space-like,
>

Deformation Tensors

The deformation of bodies can be describded by the deformation
gradients XK "

L

The invariant strain measure (Toupin [11])

-1
CKL

AT |

o 1
c - ¢

(1.25)
LK

is the relativistic gensralization of the inverse Gresn deformation
tensor. These are six Lorentz invariant scalars. Froam (.‘L.lli)5

(1.26) g’“ . ei-’x“ixLJ-thxL,h=(siJ --viv‘j)xxdx:i

From (1.26) it is clear that éKL is the inverse Green deformation

tensor of & local instantspeous rest frame.
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From (1.26) ve celculate

det (-c]:m‘) = det (819 - v ¥9) [det (Ff-'(,i)l2

1.27)
( = {1 -v°) [det (O 1)12 > 0

The ipnequality follows from (1.8 )2 and the physical assumption that
no body can move faster than the speed of light (w2 <1) . The

matrix 3”‘ is invertible and it is easily verified that

(1.28) e 5

ayxd o
L. (6134-\11 JJ)X x

K7L

-1
is the inverse of ¢ U y 1.2,

5] -1

(1.29) cmc = C cm( = rsK

The six quantities CI{L are scalar invariants under the Lorent:z

group sioce they mre invariant functions of the invariants C .

Toe matrix C has a very simple physical meaning: it glves

KL
the changes in le.gith and angle due to the deformation as viewed by

an observer in a local instantaneous rest frame, To an observer in a
local ins‘antanecus rest frame vE % 0 , W r0 and (1.26) and {1.28)
revert 1o th: forms known to us from non-relativistic comtinuum

mechanics for which the connection of CKL to length and angle

changes is well known (cf. Eringen [ 7, Art. 71).




bkt P W_”ﬁ
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The inveriant strain tensor BEL is defined as

(1.%0) 2e = C

XL - G

KL "KL

The atrain measures which have been introduced so far sre the
relativistic generalization of the lagrangian strain measures of
classical continuum mechanics. To introduce the Eulerian strain

maasures, note that

(1.31) Cop * 8 X X = 8

This may also be expressed as

a B
(1.32) Cnl T Xk XL

where

"
¢
[

(1.33)  x%

a I
8 B xﬂK = X K
xK xﬂ = E’KL
(1.34) P L
xa = Sa
K ,B p
u xa = 0
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Theorem: The quantities xal. (X rixed) are four vectcrs,
Proof':
2 - 3P
p
From (1.34) we have
a a
x Kxx,ﬁ r 8 B
o
Since B8 B is a tennor
§a a & .7
= A 8
B yB s
'
Thus
o 5 v xK . A a y 2K Aa
A H A X 8
yh *xX s T 95 y*r" s T %
since

Pe =1\B7)cK

N 37

Put from (1.5102

K B o K
,ﬁxL = EL
Consequently
Ag A - a 4 AK Aﬂ - a 7
BBxBL = AerX’BxL Any

3




or in viev of (1'3”1

which is the proof. Thus xﬂ K

that xﬁK is a vector under changs of X'K s With p fixed, is more

or less obvious).

is a tvo point tensor. (The fact

The relstivistic generalizations of the Cauchy deformxtion

tensors cre:

(1.35) p £ Ber. xx,a XI',ﬁ
& =1
(3.36) :‘” = g xaKxﬂL = 8% 8, ¢ X
where
ik _ KL k _2
- % x X x ,L

From these and (1.34) we can establish the identity

=1 a

a7 =
(1.3 ¢ ¢0 A

The following interpretation can be given %o ¢ An infinites-

aﬂ .
imal spatial measurement by an observer in a Lorentz frame is the

separation of two simultenecus events, (xk, xh) ard (xk + ax" R xh) .

a0 A




DU———.

Since two events simultaneous in one Lorentz frame are not necessarily
simltansous in another Lorentz frams, the act of spatial measuremsnt

is not an invariant operation., The difference between tvo events

xB and xB + d.xB is a spatial measurement in the local inetantaneous

rest frame at x‘a if and only if
uadxﬂ-o at x

2
If the two pairs of events [xﬂ,xﬂ+d.l]:.a] and [xa,xa+dxﬂ] are

spatiel measurements of two material lines in the local instantaneous
rest frame at x , then

1 2
a 5B
[ (Wb’
) op X &
Jc & ax® Jc ax® axP

e og

is the coaine between the msaterial lines before deformation.

Invarients of Strain, Volume Changes

By use of the defining equations (1.35), (1.36) of the Cauchy
deforuation teuvsors and (1.25) and (1.32) of Green deformation meagures
the relations of invariants cf ?} and ¢ to those of material strain

measures can be deduced. Thus,




e

e R
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(1.38) trg = tr® , trg = w®® , trg = tr (@

-1 5 -l

(L.39) trg = trg , trg

vwhers we used the notation

'trgi%aa s trglcaa ’ trg_elca P ,

d 4

trgnCK s 1'.1-QICK

K 2 L L] L]

Suppose that the material volume dV is deformed into dv in

the Lorentz frame Pl In an instantaneous rest frame coineciding

vith x*° the deformed volume is av, glven by

d.vo
(1ch0) F = J

vwhere J is the Jacobjan defined hy
1 aBrd
(LB) 7 = g “om xK,Ol xL,ﬂ S

Alternatively

(142) = =
(o)

4
tr (0)°2 ,  tr 9,5 = tr (c)°




2k

(1.43) 3 1 KIM a p 7y &

Trom (1.41) &nd (1.%3) we carn also deduce the identities

(1.4%) €

o
@76 u = J ‘m Xx’a XL’S XM,_’

o y B
(1.45) € = Je¢ bexﬂanu

KIM Py

The apove identities are useful in the reduction of constitutive

equations for isotropic materials.

Compatibility Conditions

In classizal continuum mechanics the compatibility conditions
for the deformations tepsors are deduced from the requiremsnt that
the space remain Euclidean. This is not the case in the relativistic
theory presented here, Suppose the deformation tensor ¢ o8 is given

at each event (x) , then the system of equations for Xx(gg)

(1.48) O

is over determined. Differentiate (1.46) with respect to x’ .




(1.57) ¢ = b x‘m xl‘,ﬁ . xl,a xL’w

o,y

Define a Christosfel symbol of the second kind by

(e 1

Ny =

(l.hB) [Cﬁ,.’].ﬂ, " ay,B * cB?’;a B C:w.ﬂ'

Then using {1.%7), (1.48) we see that
(1.39)  [a8,7], = 8 "K,oa x“,y
But (1.49) is equivelent to

(1.50) xx,aﬁ xx? %

where

(151 () i [og,8],

is celled Christoffel’s symbol of the secord kind,

The system (1.50) is completely integrable if and only ir

; 7 €
XK,7 [073115 * Xr,7 [‘ 8} [f‘! B}
(1.52) ]
. 14 7 «
SRS SRR NN

(See Eisenbart [29], p. 1 apd pp. 186-188,)




Tous a necessary and sufficient condition that (1.%50) is completely

integrable is that the "curvature" tensor vanish, i.e.

(1.53) HFE;a =0

vhere

n a T T T g T |
(138) Ko & (5%, - () + () - (a2,

Thie is the relativistic generalization of the compatibility condi-

tiops fo .
DE r ¢ Cﬁ

Rates of Deformation Gradients and Strain

The following lesms is useful in the kinemmtics of continuous

media

{1.55) DXK = - ua XK

2P B 0
o prove this we note from the definition (1.16) of the operator D that
oD Y P b o
WX g = (WX G) g -

?B :B 2

According to (1.15) the first term on the right hand side is zero and




we get (1.55).
A dual to (1.55) 1ie

(1.%6) s* pxP

For the proof of this we use (1.}11-)2.

8 B
D(xx,p"ﬂr,) % DX'K’BxL+xK,BDxL -

Miltiplying this by xaK and using (1.55) and (1.3%) we obtain (1.56).

It is useful to introduce
W
1s57) W& = sg "

in terms of which (1.%6) may be expressed as

(1.58) &% ¥’ = W& <P

Using (l.}h)h we have |

a a
uanK --xKDua

When this and the expression (1.19)1;:-. employed in (1.58) we find

a *x | a
(1.59) Dxy = quBK+u ’PKDua




The invariant derivative of C may now be cslculated by

KL

. B
(1.60) DCy = edoﬁx"xxL

vhere

(1.61) Em s

+ + *
(u +u, ) = u

% K (aB)

e o

The proof of (1.60) is immediate from taking the invariant deriva-
tive of (1.32) and using (1.59).

The tensor i is the relativistic generalization of the deforma-
tion rete temsor. It is clear that for locally rigid motions D CKL =0
consequently, we have
Theorem: A npecespary and sufficient cordi*ion for locally rigid

motion 1is

*
.62 d = 0
(1.62)  dyg
This is the relativistic genmeralization of the Killing’s theorem of
differential geometry.
The relativistic generalization of spin is defined by
*

* 1 * *
(1.63) g 8 E(uaﬁ -uaa) = g

.
2




T e

Upon adding this to (1.61) we have

* #*
. = d.
(1.64)  ug = dyg +ug
The invariant dexivatives of various strain weasures and other
tesors can be calculated by use of the apparatus set above, Here
we tive

(1.65) De _+u .e_+u _e = 0

w :B a’ ;a 75
which is obtained by taking the invariant derivative of (1.35) and
using (1.5%5). This expression will be found useful in the treatment
of isotropic materials.

Another useful result is the identity

(1.66) D = -} 5“0

which can be proven by (1.43) and (1.59).
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CHAPTER 11
RELATIVISTIC BALAXNCE LAWS FOR A CORTTMUOUS MEDIUM

Generel Balance laws

In nonrelati{rilt:l.c continmuum mechanics the halance laws are

written in the form

(2.1) g f ¢dv-f }_-dg-i-f s dv

v(t) 4(t) v(t)
vhere ¢ is some quantity whose influx is } and vhose supply is & .
Equation (2.1) holds for an arbitrary material volume v(t) whose

enclosing surface is £(t) . This equation can be integrated from

tl to ta for arbitrary tl < ta to obtain
ty s
(2.2) fodv-fcav-f dtf i-ag=fdtfsdv
V(ta) V(tl) ty 2(t) t vit)

Under the proper smocthness conditions the left hand side of (2.2)

can be replaced by an integral over the three dimensional circuit in

space-time enclosing the four dimensional volume {called material

tube) svept out by the material volume v(t) in the interval

(tl_. t2) . Hence

f ‘a d'ﬁﬂ L fl dvh
(2.3) 4

dvh s dv dx




where

(2.4)

and d‘ia and dvh respectively denote the elements of three diwan-
sional oriented surface aund the volume.
To obtein (2.3) we recall that a materiasl volume in space-time

is & three dimensional surface with paramet: {zation

X XX (XK?;:) K= 1,2, 3
(2.5)

x 4 (t = constant)

Alsc a three dimensional surface in space-time swept cut by a material
aurface can be parametrized by
k k
(2.6) X = X (XK (ul, ua), uB) ) X Sug
80 that the oriented three-dimensional surface element da, can be

expressed by

ax[aL Sxﬂ y : 3
o : 1,2
(2 . T) dﬂ}l‘ Gl.l:ﬁ" El 52 E} da” du du

where a bracket enclosing indices indicates skew-symmetry as d=fiped by




s e — ————————— =

o !
Rt -
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The quantity ¢ will be said to be conserved if 15z 0, s =0 .

From {2.3) and (2.4) the quantity ¢ is conserved if and only if

S0 far all this holds for either claasical continuum mechanics or
relativistic continuwm mechanics. The only distinection between them

is the group of trenslormutions in space-time for which the integral

(2.9) 9 ls, 85] = f«»" 85

‘3
has a specified transformation law -- i.®2 Galilean group for classical
mechanics or the Lorentz group for relativistic mechanics. In the
following subsections the laws of conservation of mass, balance of
ener;y-momentum, balance of angular momentum, and the secord law
of thermodynamics are formulated in a relativistically invariant
manner, In general, these laws will have the form {2.2) witk a
transformation law for a set of quantities of the form (2.9) specified

for the Lorentz group.
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* Conservation 2{ Particle Number

In nonrelativistic mechenics the postulate of conservation
of mass and the conservation of the number of particles are equivalent
for nonreacting systems. It is well known that this is not the case
in relativistic mechanics. In relativity the masas is closely related
to the epergy of a particle, In geperal the mass, even the rest
mass, of a particle varies. The concept of the non-.creation or
indestructability of particlss still remains valid in classical
relativietic theories of nonreacting substances (the word classical is
used in opposition to relativistic quantum theories where the idea
of creating or destroying particles is essential). It is aesumed that
the pumber of particles contained in a material vclume v(t) is
a constunt of the motion. :

To formilate* the law of conservation of particle number we
assign, to every three dinensional surfac: 33 » & positive scalar

ll[15] of the form

*Each lav formulated in theme subsections is deduced along the

lines leading from (2.1) to (2.3) from the corresponding classical

law. Though the correspondencs (2.4) is usually listed, it should be
noted that this is not needed for a relativistic formulation of the

laws of mechanies. Only the form of the equations is necessary. For
a physical feeling and interpretation of the various components of
space-time tensors and vectors the correspondencs (2.4) is indispensable
and will usually be given.




(2.0)  Hls,] = fn“cum

3

vhich is postulated to be invariant under the group of Lorsntz
trapaformations. The lav of conservation of particle-pumber rtsates
that for every material volume, V(t) , !l[a.j] is conserved.

From (2.8) this is equivalent to

(2.11) 2 = n i
(]
no = -n ua >0

vhere the integral is over an arbitrary material tube. The scalar

n, is called the rest frame particle number and is related to the

particle nupber , n , by

(2.12) n = T

J1-v2

The use of Green-tiauss theorem in the integral 2quation (2'11)1 leads,
in the usual way, to the following differential equation and Jump
conditicn:
(2.13) . : & 2] scross I (x*) = O

< ~ =~
where [£] 8 £ . £~ denotes the jJump of f st any discontinuity

surface Z(x") = 0.




It is convenient to write (2.13) as
(2.1%)  Dn_+n W’ g * O
where the following identity has been employed
(2.15) L
By using (1.66) one can show that (2.14) bas a solution of the form
(2.16) n = o }
vhere n: is & function of XK .
In the following, varicus scalars ¢ will appear in the balance

equationa. It is convenient to define another scalar ‘o related

to ¢ by

{2.17) L)

u
=]
[+]

From (2.1%)

B o
(2.18) (ou ),B = n D

This identity is used frequently in the formulation of the remaining

balance laws.




Balance <_>_f_ Energrbbmentum

In relativity theory ihe lawe of calance of momentum and eaergy
are closely conrpected. They are the comporents of a four vector.
For physical reasons it is expected that the time rate of change cf
the momentum is equal to the forces applied to the body and that
the time rate of change of the epergy is equal to the work done on
the tody. In a classical nonrelativistic theory of a continuocus
mediun these laws take the form: the time rate of change of the mo-
mentum contaired in a material volume is equal to the sum of the
forces applied to the volume. These forces can be decomposed into
twvo parts, one arising from surface tractions and the other frum the
body forces., The time rate of change of the energy conteined in a
material volume is squal to the heat flow through the surface plus
& heat supply inside the volume plus the work done by the surface
tractions apd body forces. In nonrelativistic mechanics the momentum

is usually due to the moticn (kinetic momentum) anl the spergy 1s

the sum of the kinetic energy and the internal epergy. In relativistic

theories it is possible to heve momentum of nonkinetic origin. There
is no advantage in decomposing, & priori, the snergy momentum ‘ensor
into kinetic, thermodypamic, and other parts.

The energy-momentum of & matsrial body is determined by assigning
to svery ihree-dimensional subspace, 83 , of a four-dimensional
material tube four functions P [53] which are components of a four

vector under Lorentz transformations. The functions P"[BB] have




the form:

(2.19) P“[-}] = f o a8
[ ]
>

vhere ™ s second order tenscr. The balance of energy-momentum

gtates that for every material tube we have

(2.20) f o da,, < f v,

where the four vector f* represents the body forces and energy

supply per unit volume,

In nonrelativistic continuum mechanics we have the identifications:

(2.21) T1h= pt ’ TiJ--tiJ+pivJ ’ Tu-e s
Thi=qi-t‘uvd+evi
apd

(2.22) ¢ < e = h+gf:.¥

where ;p1 iz the momentum density, tiJ is the stress tepnzor, e is

the energy density (internal plus kinetic) anmd qi is the Leat flux,

i

£~ is the body force end h 1is the body heat supply. This identifi.



cation is useful for establishing & familiarity with the physical
meaning of the componsnts of the eperzy-momsntum tensor; however,
it is not essential for a treatment of relstivistic mechanics. The
cnly sssurption employed in decomposing the epergy-momentum tensor
is the existence of a world velocity vector in the four dimensicnal
material tube in space-time,

In the usual manner (2.20) leads to

(2.23) ¥ et [PY]2 =0 ecross z(x*) =0

v P

The tensor ’I‘m can be decomposed into a scalsr, two spatial

vectors and a spatial tensor by applying the projection operators

s‘:"5 . To this end define
(0] H Tw ua \JB
a a e
q &£ -8 B T u7
(2.2%)

a a B
-S
P S a u7

a B 5
-5736'1‘

It is easily shown that

(2.25) Taﬂ = o’ u? + @ qﬁ + pa uﬁ - %
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It should be noted that this decomposition is perfectly gepersl and
depends only on the character of the world velocity field. We have
the following physical interpretations: The tepsor w ug up is the
kinetic energy-momentum tensor with the mass density given by the
famous formule of Einstein E = mc2 . Thus there is a contribution
to the mass density due to the internsl energy of the body. The

four vector qP in the local instantaneous rest frame reduces to

[q}, 0] , where qi in tke heat flow vector. Thus qP is called
the heat flow four vector. The four vector p° becomes [pi, 0]

in the local instantaneous rest frame, where pi iz the nommechanical
momentum. Thus pa is called the pnommechanical momentum four vector.

aB

The four tensor t is the relativistic atress tensor since it

reduces to
tiJ Q0
0 0]

in the local instantanecus rest frame.

From {2.24) and {1.20) the following idcntities fcllow:

a4 u, = 0
(2.26) P u, =0
LI
t uB =t uB 0

The fourth component of (2.23)1 is the balance of energy. Conse-

guently the first law of thermodynamics 18 ccntained in these equations;

T Aliagint. i




however, it is not the fourth component of (2.23). To obtain the
first law of thermodypamics one rmst take the projection of (2.23)
onto u, - This operation in the reiativistic generslizatica ia
the counterpart of taking the rcalar product of Cauchy's equations
and the velocity apd subtracting the result from the energy

equation. We recall that thie operation eliminates thes kinetic

energy. Hence

ua Tw,ﬁ = faua
a
(221 (v, m“ﬁ),ﬁ Y ugp = £y,
But from (2.25), using (2.26), we have
ua T@ = - W llB - qB
(2.28)
o ap
Y = P Mgt Vg
l
Thus equation (2.27) reduces to i
|
(2.29) -(w uﬁ),ﬁ - qB,B - pa Du, + tcﬂ uﬂ,ﬁ - ¢ u,

Define & by |

(2.50) W = n €




1
From (2.14), (2.29) bvecomes
p £ op a
2- D‘ + + m - t o - f
(2:31)  myDer @ g p g -t ug g %
This is the relativistic geperalizetion of the first law of thermo-
dynamics for a continuous medium (see Eckart [17]).
The generalization of Cauchy's laws can be obtained by applying
S"cz to (2.23). The result is:
7
a a B a op Bv a x B
(2.32) B, ¢ Du +n°S?D(£T;)+q u,B-t ,B+t ug,y Y -Saf‘

Only three of the four equations (2.32) are independent.

Principle of M.ment of Energy-Momentum

In the classical theory of continuum mechanics, for nompolar
materials, there is & balance law of angular momentum which by the
arguments presented at the beginning of this chapter can be written

in th=2 form:
(2.33) f x[J T”“ dsja = f x“ r“ dv, (1,5 =1, 2, 3)

for an arbitrary material tube. (2.33) is the spatial part of the

four tensor




(2.34) f X LGpf sy, =fx[° £ av,

If it 18 required that the angular momentum is balanced in every
Lorentz frame then {2.33) implies (2.34). The remaining th-ee com-

ponente of (2.34), otber than (2.33), i.e.,
(2.75) f K i ds, - f xl# g1l av;,

are the expressions of equivalence of energy flux and momentum flow.
If (2.35) 1s assumed to hold in every Lorentz frame, (2.33) and {2.7h)
must hold., This would indicate that (2.34%) must be a basic law for
nonpolar materials.

That there should be a skew-symmetric four tensor balance law
to replace (2.33) 1s indicated also by the following argument:
Consider a closed conssrvative syetem. In modern physics the con-
servation of momentum 1s interpreted as the invariance under spatial
translation, while the conservation of energy 1s implied by the
ipvariance under time displacements. In classical mechanics this
leads to one vector law and ope scalar law because the Galilean group
iz used. 1In relativistic mechanics this leads to a four vector aqua-
tion aince the Lorentz group 1s used. 1In classical mechanics the
Galilean group allows spatial rotations and invariance under these
leads to the conservation of anguler momentum. The Lorentz group,

however, allows rotations in the four dimensional space Of events and

k2




thus implies threc extra conservation laws. (See Bogoliubov and
Shirkaov [21] for an excellent discussion of these points.) Con-
tinuum mechanics treats open systems. The corservation laws of &
closed symtem are replaced by corresponding balance laws. The
balance of epergy-moementum for & continuous medium has already been
formilated. The follovwing assumptiorn formulates the principle of
moment of epergy-momentum which serves &s the relativistic generali-
zation of the balance of angular momentum.

To every three dimensional subapace, 93 y of the four dimensional

material tube assign & skew symrmetric tensor function P [35]

WPls,) = f WO,
(2.36) 53
M(@)u 2 0

The tensor M Pu is usually written as

wou o Gla Bl o

(2-37) B(@)u = o

aw“ is called the spin tensorl (ct.Pupapetrou [22]). For nonpolar

aBy

materials & g 0.

l'I'his tersor includes such effects as the couple stress anl the
intrineic spin of contimyum mechanics.

53




The law of balance of momsnt of energy-momentum ig that for

every material tube

f Mo s, f{x[“ 14 1%) ay,

(2.38)
8 |

ap

where L is the four dimensional analogue >f the body torque.

Equstion {2,38) leads to

B o o Bl e

1

(2.39)
bfﬁ“} z r 0 acros:r Z(x) =0

- ~ B

Using (2.23) and (2.37), (2.39) leads to

(2.40) aw“’u _pleel . o8

For nonpolar materials Ldi = 0 and {2.40) reduces to
(2.41) 'r[w] z 0

From {2.25), (2.41) is equivalent to

(2.52) % . o , o=z g




Thwoughout this work saﬂ” 2 0. In the cace of electromagnetic
intersction with a material body, s body torque I° of electro-
magnetic origin will be introduced. The inclusion of acﬁ" is
necessary if one wishes to formulate a relativistic generalization
of mechanical theories of couple siresses. A fuller investigation

of the properties of this tensor is left for further research.

Second law of Thermodynamics

In modern continuum mechanics the second law of thermodynamics
is considered to be a restriction on the form of the constitutive
equations. However, formulation of this law 1$ independent of the
character of the media under consideration. This law is expressed
in the form of an inequality called thea Clausius-Duhem inequality
which has the form (2.1) with the equality replaced by an inequality.

To formulate the relativistic extension of this inequality,
assign to every three dimensional subspace, 33 ; of a material tube

s scalar invariant H[33] of the form:

v}
(2.43) H(s;] = f N dsy
*3
The second law of thermodynamics is the statement

(2.44) f n“aa5a+ fx-avl+ 2 0

¥5




for every material tube, FHere the scalar invariant r is the supply

of entropy from extraneous sources. Inequality (2.44) leads to tbe

local law

+r 2 0
Watr 2

{2.45%)

% Iag 2?0 acroes I(x") =0

It 1s convenient to decompose fla into its space-like and time-like

components.

a . Qa ' I
(2.46) & = an" , RS
s0 that

(2.57) o n s

A simple thermodynamics process is one for vhlich

1] h
s - [o]
{2.48)
m
ho s 7 u, o e > 0

The quantity 6 1is a scalar invariant called the temparature, and

ho is the heat supply term Define qoo by

(2.49) . s n N

k6

el




wpo—

Toé secord lav (2.4%5) is then
g

(2.50) B D+ gth 20

For a simple thermodypamic procass (2.50) becomes:
g h,

(2.51) DY +(F) g+ 5 2 0

This is the furm of the second isw introduced by Eckhart [17] for
fluids. Eliminating b from (2.31) and (2.51) we get

: 1 a a,p
(2'52) no mnoo - 3 D() - ? G,B - ] + 2 0

The ipequality (2.52) is useful for the reduction of constitutive

equations.
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CHAPTER II1

CONSTITUTIVE THEORY OF MECBANICAL MATERIALS

Ceneral Principles

In gensral the system of belance lsws proposed in Chapter II
is insdequate for the treatment of problems of relativistic continua
except in some special cases., 7The properties of the medium are
brought into consideration through a set of constitutive equations,
In general a constitutive theory should satisfy certein principleal:

i) Principle of Causality: The behavior of the material at

the event x 1s determined only by events lying in the past light
cone at x . That is only by those events 2 which satisfy the

~—

following inequalities.

(-%x) 2 g0

where u is the world velocity at x .

11) Principle of locality: The behavior of the material at

an event depends atrongly on the properties of the material in the
neighborhood of the event.

R
pp——

i

i:['i')""f.orehtz Invarisnce: The constitutive equations are covariant

under the orthochronous prorer inhomogenecus Lorentz group, i.e., the

lFor a discussion on non-relstivistic coastitutive theory see
Eringen [7, Ch. V)] and [9).

b&




group for which det A = +1 , Ahh >0,

iv) Material Invariance: The constitutive equations are invariant

under the syrmetry group vwhich cherscterizes the material in the
legrangian frame XK .

v) Conliatencx: The constitutive equations must he consistent

with the balance laws of particle-number, epergy-momentum, moment of
epergy-momentum, the lave of electromagnetism (to be formulated in
the pext chapter), and the eecond lav of thermodynamics.

vi) Equipresence: An independent variable that sppears in one
copstitutive equation should appesr in all constitutive equations
unless excluded by one of the above principles 1. - v.

A word ie in order about the requirement of invariance inder
Lorentz transformations. In the modern theories of contimaum
mechanice the constitutive equations are covariant under rigid body
motions. Although it appears that claesically the invariant group of
mechanics is the Calilean group [30), {31], the forrulation of modern
continwum theories decomposee the forces acting on the body into

external forcee and internsl forcee and assumee that the intermal

forces are objective under ri>id motions while the external forcee
are not objective [32]. In this erticle we make no such distinction
between forces. The obJectivity under lLorentz transformations 1s
adequate for the theories presented in the following sectiocus,

In the next two subsections, relativistically invariant consti-

tutive theoriee for thermoelaetic solids and thermoviecous fluids

T B WP e S




are pregented, These are simple relativistic generalizations of the

corresponding classical theories of nonpolar materials for vhich

PR oo, 1.0, Thos (2.42) 1s valid.

»

Thermoelastic Solid

For the comstruction of constitutive équn.t:l.ons of a theramcelastic

s0lid, an appropriate set of independeant variables is:

+*
(3'1) 9 ; xx,a .; ea ] xﬁ
where
5 a
(3.2) 6g ® Sy (e’aq- 6 Dug)

®
Tis cholce of 9a as an independent variable appears to be & natural

one through the examination of the second law of thermodynamics (2.52)
for nonpolar materials:

1

B © tcﬁ *
(3.3) n, (D% - % De) %, by + <5~ dpg 2 0

vhere (2.42) has been used.

We now write constitutive equations for the dependent variables

a
€, n.,q :tm

o0 in the general forms
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€ 2 I(G » xx,a » ;B » xﬂ)

=
n

»*
7100(8 ’ XK,B ’ GB ’ xﬁ)

a *
| 'Q(esxx,a)es)xﬁ)

o K %
t(0, X0 gy 650 Xg)

The invariance of (3.4) under space-time displacements eliminates the

dependence on Xy - Thus (3.4) becomes:

€ = ‘(9 » xxﬂ » GK)
R WO rﬁ,ﬁ , 6
(3.5)

@ = Mo, Xy, 0

t® . tw(e,xKB,GK)

vhere we have made the variable change
3,
(3.6) ¢ = x* &
s

By chain rule differentiation and the use of {(1.55), the second law

of thermodynamics (*.3) reduces to:

-_(33.+n )De-no—gx Dot - QKGK

xx)x DxL

(3.7)

1
-5 WPy v Qr—

,B

S AT AUt At 5
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(3.8) ¥, ® oe-en

(3.9) o = x%q

The quantity *o is called the fres energy.

At any event x the following quantities
(3.10) o ; Do ; xxia; & ; pe~ ; nx"a (K =1,2,3; G=1,2,3,k)

are independent in the sense that there always exists a motion such

that for an arbitrary set of numbers

X

{3.11) T;B;l'xa;‘fx;kx; D, (@ =1,2,3,b ; x=1,2,3)

subject to T >0, det (708 l'xa FLB) > 0 , there exists an allowable

mection such that
K K K K
(3.12) SUT,DB-B,xx’a- a,e-TK,De a A ,Dxx’a-Da

at an arbitrary event x . The inequality (3.7) contains terms of

the form:

I e s, (FRRT v s
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(3.13) gl )y+2() 20

vhere y is from the set (3.10) and g( ) ard £( ) do not depend

on y . Since y is independent in the above sense, a necessery '

and suffivient condition that (3.13) holds, for arbitrary values

of y , is that

(3.1%) gl ) o , () 20

A repeated application of this argument to (3.7) leeds to the follow-

ing result: A pecessary and sufficient condition that (3.7} holds

is that:
1 o Ho . 0
00 % ! ;K

(3.15) §
tﬂ

o
a:-noj— x](,a » QKGKSO
p
’

The equation (3.15) implies v, is independent of & . By using
(2.26)3 we have

(3.16) il P oz o0
' XK

,P

We also note that ¢ s t

B B * Consequently we have the following

results

l .




a*O
311 tg = R X % p)
»”

a*o
(5.18} g— s)’[axx,ﬂ] = 0

[ 4

The most general form of the constitutive equations for an

anisotropic thermoelastic solid satisfying the reguirements g_f_ lorentz

invarience and nonnegative entropy production is the following:

i. The free energy *o has the functional form:

(3.19) ¥ ¥ (9: ¢

(0::)
ii. _'IEe_entr@x noo and the stress tensor t = are determined

from the free energy \ro 11

a‘o

(3.20) Yo * TS
b
K L o]
. = - X X —
(3.21) Yop X aX s o

iii. The heat flow vector qa has the form:

(3.22) q * o,KxK,a
vwhere

-] .
(3.29)  q = Qgle, ¢, )




and satisfies the inequality

(3.24) Q. 6 g 0

The inequality (3.24) implies that

(3.25)  oge, T, 0) = o

Tha proof of statement (i) follows fror (3.13), and Loreatz
[

invarience. According to (3».],:;)2 we have

1o ® vole, X )

Now *o is an invariant function so that
B =
ACHESE SN EERACIE S
for an arbitrary Lorentz transformation AGB .

at each event x a Lorentz transformation, é » such that

. B & AK
AP X

There oxists

1

f\ha xK,B = 0

A
From (1.14) the matrix X°, is invertible, therefore it has a

i
2
unique polar decomposition

?(K,:I. s VKLB.m

e




vhere

Ve . T
and R,

YR T AR
Thus

Therefore at each event x , there exists a Lorentz transformation

AF such that

g
I o L A v
and
RlB K o L B o
B 2B
Thus *o can be considered as a function

v, = v(e, v

=]

-1
8ince VKL is & function of CKL

we have the proof of (1). The
proof of the first part of (ii), (eq. 3.20), was already given by
(3.18). The mecond part {eq. 3.21) follows using
ov oF
*] = 0 L K
e ol (o o hy e x 0
B X




in equation (3.17). Equations (3.16) end (3.18) are nov satisfied
identically. The proof of etatement (iii) follows from the fact
that QK(G , & B GK) is an invariant function under Lorentz

3

transformations:

K

HOPRAS S SR O XX o 69

Using the same argument that was employed above for \l!o ’ Ql( must
have the form:

ol
Qe = Qls, ¢, )

Therefore (3.22) and (3.23) follow.
The inequality (3.2%) implies that if b = 65 o,
>0 if 6. <0 and QY <0 if g >0 . If ve assume that

1 1
-lKL
)

QK is a continuous function then Ql(s , 0) =0 . A similar

~
argument being valid for & and Q3 we have the proof of (3.25).

The constitutive functions may also be expressed in terms of

1
C.. . For this we note that CKL is invertible. Hence we may write

KL

(3.26) ¥ v(e,cC.)

o] o] KL
(3.28) ¢, = <& &

k. ~ T *k*L

Equation (3.21) for the stress tensor becomes in this casze:
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¥
afp . a B 0
(3-29) t = Eno X K # L EE

The grgoment for material symmetry restrictions follows the
clagsical lines fcr varioua crystal classes. In particular, for an
isotropic material with & center of symmetry *o is & scalar

invariant vnder the full orthogorel group of transformations, [Q} ’

ML ™ . L
QMKQ' = Q:(M'Q = 5!(

The free energy is thus a fuinction ¢f the three invariants

-l
Il = tr ¢ = trg
-1
(3.30) 1, = tr(g)® = tr?
-1
I, = tr(g_)5 = tr g?

For &n lsotropic material *o nean be cragidered & function of

nd .
g & caﬁ

v, = w6, c)

ap

One can also show that (3.21) .s equivalent to

¥
(04 - 0
(3.31) ¢ B * -2, 3;;; cyg

From the reduced form of the Clayley-Hamilton theorem (A.41)

58




59

we have
3,4=
- I -
5 . 2_(1’112) | (a1, 1) .
j*3 1 & —5 £ T
The stress tensor t is finally

op

(3.32) t = (I3+2I-3I I) <= S -m[zaw° 3’121)3*"]
. B - o' 3 2 11’ 3T, “op oﬁ'"l'aa'f;"afs

3 1
o] o Y
.no[k EI—E- + 6 Il a-f;] Cay o] B

For isotropic materials, following & similar argument to thet of
nonrelativistic continuum mechanics [33], it can be shown that
o

a a "w 7
(3.33) qas(Klsa+K2cB+n3c7cB) (9,a+ BDua)

where K. , KE and K3 are scalar functions of the invariante

I 12 y 1

1’ 3
(3-3]") * @ *
- - @ = H = ! < B)’ -
Bl 83 e’3 H 82 qa c 95 H 83 ea c B c 97

The inequality {3.2%) becomes in the isotropic caue

(3.35) K191+K293+K383 < 0

The only other theory of this order of generality 1s that of

Sressan [24]. The stress-strain law which was deduced in this section



80

from the sccond law of thermodynamics was arrived at by Bressan by
assuming that a strees function exists. The heat conduction law (3.33)
is a generalization of the one proposed by Eckart [17). Bressan,

as does Fham Man GQuan [25], ettempts to gemeralize Fourier’s law of
heat conduction without any regard for the second law, It seems that
it is impossible to satisfy the second law (as stated by (2.%2))
vithout eliminating the heat flux if one assumes their foims of the

heat conduction law.

Thermoviscous Fluids

For a viscous fluid with heat conduction an appropriate set

of independent variables is:

* *
(3.36) o, ,6, 8, das , U

4

In the classical theory one usually starts with the velocity

gradients and :mploys the principle of objectivity to deduce

v
i,J

that since w is pot invariant under rigid motions of

13 " Vl4,4]
the spatial frame, it cannot appear in a constitutive equation. By

*
starting with u
ng o

*
of the constitutive functions on wbﬁ can be eliminated by the
*
requirepen’. of Lorentz invariance., GSince only 4 occurs in the

ap
entropy production one would expect that this tensor would be sufficient

it is impossible to show that the dependence

to describe a wide class of simple materials. Thus in the present

lNote that these are independent variables as tensors; however, not

all components of these tensors are independent, cf. footnote, p. 61.

el
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framework the dependence of the constitutive equetions om 505 is
a constitutive assumption defining a class of materials.

The procedure followed here is identical to that used for
thermoelastic solids. The second law of thermodynamics for non-

polar materials reduces to:

n v n_ o n N n_ oy .
o] o o 0 0o ‘o 0O 0
"é"(ET +qoo)De'e—¥'mB'G_TDGB'8_T"DdQﬁ
B 96 od
B af
(3.37) -
B* *
1 m, 2N
-e,_GB'PG(E. +n°$°a )dmzo

vhere we used (2.14) and

*O

€ - 6 “oo
At any event x the following quantities

&7
»

(3.38) ¢, Do,y Doy ags D u Dy (1,9 7 1,2,3)

can be varied independently in the sense deseribed vy (3.19). By
repeated use of the argument employed to deduce (3.14) from (3.13)
one finds that a necessary and sufficient condition that the second

law (3.37) 1e satisfied is thatl

bwo
(3.39) floo * s

1since a1l the components of the tensors in the set (3.36) are not in-

dependent. in deducing (3.40) to (3.42) one should consider vo as a
¥* *

function of 6 , n, diJ » ei s Vg

-




i Yo,
(3.40) = ° 0
B
Bio i
(3.481) == = O
aaB
a*0 -
(3.42) 54— = 0
adaﬁ
P%
q
(3.43) 9—‘3-Dt"”3 Eoﬁ < 0
where

&
B _ 08 2 Y o8
(3.’4’4) Dt s t + no a% 8

is the dissipative stress tensor.

By using the results given in the appendix on matrix functions
of lorentz invariunt functions and the conclusions (3.39 to (3.4%4)
for the satisfaction of {he second law, one deducee that:

The constitutive equations of a thermoviscous fluid satisfy

the second law or thexmodynamics and the requirement of lorentz

inveriance if and only if

i. The free energy vo depends only on the temperature and

particle mumber.

(3.45) ¥, = ¥ (6, n)
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ii. The antro_plgnd stress tensor are ¢2termined from:
o¥ o OH

(346) n = -3 , £ = =B =" B+
Q

111. The energy flux q and the dissipative part of the stress
tensor DE have the form:1

* * * *

SEEERN-ERY PSRN Y- YRR Y- TR RN U YY)
VY 28 STT IRV DE Y
(3.47) ¢ aglex 8- By 4 A x 8% - BB x )
+ kloiﬁe(féx 18 +(8x38 @8

+ ?\HIEQ(EX LB+ ExLHRE

(3.48) *
+ us'(i _Q)x(i,2 jé)

vhere Al, ceey A apd K_, ..., Hg are functions of the invarients

— 1 —

* %2 *3 x %
Id-trg ) IId’trQ ’ IIId'trQ ’ el'ﬁ.ﬁ ;
(3.49)

d *2

.! d
92 + g

-8 @Ex@ D

ox

% d * ¥p ¥
B, 0 =846, 8

vhere .t and q must satisfy the inequality (3.43).

1we have not assumed that the fluid possecses a center of symmetry. In
the latter cese further reductions are possible. Kor this us=2 conclusions
made in the apperdix.




CHAPTER IV

ELECTROMAGNETIC THEORY

The tasic laws of electromagnetic theory are the conservation

of charge, the conservation of magnetic flux, s«nd Ampere’s and

Guass’ laws. The relativistic formulation of these laws is well "

koown (cf. Post [34], Truesdell and Toupin [8] and Méller [14]).

Conservation of Charge

Te¢ formulate the law of conservation of charge assign to every
three dimensional subspace in space-time a scalar function Q[35]

of the form:

(1) als,] f o dsy,
B3

whe_e oa is called charge-current vector. The law of conservation

of charge states that Q[35] vanishes for every three dimensional

circuit.

(4.2) fﬁmmzo

By familiar arguments of the Green-Gauss theorem this leads to the

following differentiql equation and jump conditions.




(4.3) oa’a = 0 , _[_aa_]_ Z,a = 0 scross I(x") = 0

It is useful to resolve the vector o° into & space-like vactor

and a time-like vector, i.e.,

¢4
ey £ oz 88 Fu =0
¢ = n, 0,
so that
(&.5) & = n 9, ua+3a
0

Equation (h—.})l with the use of (2.14%) becomes
a
(%.6) n I)cr° + ) a " 0

The physical interpretations of o and ja are;
o 1s the charge density in the instantanecus local rest frame.
Ja reduces to [Ji, 0] in the instantaneous local res: frame where

Ji is the conduction current.

65
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Conservation g:E hgtic Flux

The conservatiorn of magnetic flux is obtained by sassigning to
every twe dimensional subspace ip space-time a scalar guantity

¢ [52] , called the magpetic £ R

. 1 ap ) -
1) ols,] = §f b 88, ° 5 ey T
[ ]
2

The law of conservation of magnetic flux is the statement that the

scalar 0[;21 vanishes for every two dimensional circuit.

By use of Stokes' theorem, this leads to the well known equations:

A = 0

€
75,P

(4.9)

£€°ﬁ76 @_’&l 2,3 = 0 acroes I(x*) = o

The tensor @w is phyeically

{4.20} °aB = [dusl } , E]

vhere B i: the density of magpetic flux and E is the electric field.

lm surfact element of the surface s, with parameterization wu, ., u

a2
(@ o 8]
ap x'T ax
is defined by d.l2 = 2 '&3 ;2 dul du2 .
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That is:

=

(b.22) ey, ® 3k

Maxwell’s equations (4.9) are often encorutered in the literature in

the form

(L.12) ¢ = 90

+ ¢ + ¢
ag,” BY,x o f

This is cbtained by multiplying (4.9). by € and using equation
1

It
E A
(A.33). Sometimes it is convenient to use tire dual of ¢ , ¢

408 . _ 1 afrd
(hcl}) L - = 5 € 075

In terms of E and B, ¢ ts:

P . ([dual E , Bl

The conservation of nagnetic flux (4.9) in terms of ¢ reduces to:
(b.14) % = o

)5 ’ - -~ ;5

It is possible to dxcompose ‘Cﬁ (cf. Mfller [14]) into




(4.15) o = &

o8
vhere

€, * ¢a5ua 3 Paua = 0 ;
(4.16) :aa ! say sﬂs " :aa £ = o0

*

The spatial temsor ¢ is converiently written as

B

L _ 7 B o] -
' i Sopy® TV , & uy £ 0
(%.17)
a . 1 g . = OB78 3
o) 5 € %, Ug 5 ¢ %y Ug

The magnetic flux teasor ¢ of becomes;

(4.18) )

< . 7R
@ " Sp¥% " Galpteps 8 U

A0B

erd the dual of ¢ , ¢ , can he decomposed into:

(4.19) 3% - B o - 8'3 u* + €w78ép u
y &

The two decompssition (4.18) and (4.19) are useful for the formulation

of constitutive equations for the electromagnetic quantities and for

expreesing the interacticn of electromagnetic fields with matter. In

terms of E and B the four vector & Y ana BY are




(h20) g% (BXIxR  L-E; @, R-IxE L 2
41-V§ J]_?- JT:F;'Q fl-va

Upon substituting (4.19) into (4.14 )1 and multiplying the results by

u, and Bya and using (A.26) we find the following equations which

are equivalent to (h.lh)l.

4 B _ *opy . .
N R TR

*oBy . B . a B a B _gf a
(h22) G, - Gp Dyt S DB B B, O

It should te observed that only three of the four equations of (4,22)

are independent.

mere’s and Gauss’ Lava

Anpere’s and Gauss’ laws are combined into one invarlart law by
assigning to every tvo dimensional subspace 8, & scalar invariant

P[ﬂal

3 ap A . ap pa | & i r

(#.23) s, fe G 3 0P 2 P theg
s

2

Ampere’s and Gauss’ laws state that foo every closed two dimensional

circuit enclosing a three dimensional subspace 85
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B 2 a
(&.2k) f G d'eqs f g dah
The differential form of (4.24) and the jump conditicns are:

(4.25) GaBﬁ=Ua ’ [GGB] Z’.pl 0 amcrose I(x*) = 0
’ -~ ’

The tensor Goa is the electric displacement-magnetic field intensity

tensor:
(4.26) 6® = (dusl E, -D]

where D 1is the electric displacement and H is the magnetic field
intensity. Fxplicitly (4.26) gives

(.27) gl = o13E B Ghi g _Gik - pl , th =0

b

Similar to (4.15) we decomposs & into

op p a agyd .
(4,28) e) = D ua-m uﬁ-i-c 9{7%

vhere

@B = Gﬁaua ’ DBuB=0 ’ Q{Buﬁ » 0

dp . & B 7. Pyd
(b.29) G+ = 8 8,6 = ¢ 9{7%




o

T

In terms of the electromagnetic fields D anmd H, QB and HB are:

- [2*'1":& , I'Q]

B
%, D
(8.30) Vi .-+2 Ji-v2

J{Ba[ﬂﬁlxn. ’I'El
1-ve Jl-’e’2

By substituting (4.28) into (h.aj)l ir the same way as done in obtaining
(4.21) and (4.22) we get

4 B *opy -
(h31) 8 ", Ha%,y %%
, *opy . Xopy & B, B0 _pF P . @
4,32) < ‘%7,6 « %Bm'r SB D" + D v g L v g 3

Only three of the four equations (%.32) are independent.
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CHAPTER V |

EIECTROMAGNETIC INTERACTIONS WITH PONDERABLE MATTER

The presence of matter in an electromsgnetic field has bLeen the
object of researches since the beginning of electrommgnetic theory.
There are several approdaches to thls problem. The one that 1s adcopted
in this chapter was originated by Lorentz [35] in order to derive the
electromagnetic field >qualions for jonderable matter. According to

this approach, the interaction between matter and the electric fields

can be deduced from a microscopic model to within the order of approxi-
mation desired. The form of the interactions so deduced can then he
taken as the starting point for the develcpment of a continuum theory.
The force on a material body can also be determined by assuming an
effective current distribution and poetulating that the body force ie
the Lorentz force on thia dist:.ibution of charge-current. By redefining
the energy-momentum tensor one can ehow that these two approaches are

equivalent. A third approach to this problem is to attempt directly

to write down an energy-momentum for the material body and the electric I

field. :‘?’uch attempts are usually guided by one of the above approaches.

There 1s still no widely accepted form of the energy-momentum tensor.
The point of view adopted in this chapter is that matter is acted

upon by forces of various types, one of whichk 1s due to the electromagnetic

interaction with the molecular and atomic structure of matter. By l




applying the arguments of Dixon and Eringen [6], it is physically
reasonable to sesume that electromagnetic interaction with matter
(neglecting electric quadrupoles and higher terms) is due to a body

torcel

VR M (s T
(5.1) £ -nﬁaoa’ﬂq-a .

ard a body couple

(5.2) Y o= - wa[" N2e

where 1,,03 is defined by

(5.3) P B 0P

o

The polarization tensor T is a skew-symmetric tensor of the form

(5.4) 1™ = [dval M+ dusl (y x B) , Bl
vhere P is the polarization vector and M i1s the magnetization vector.

This definition of 11'03 is that of loreatz. It is well krown that it

lacks a symmetry in the transformation of the magnetization vector and

ln body force T'i of [6, eq. 3.21] we drop the quadrupole moment tensor

q'9 and take £=7-3pxh)/3t where f 1s that used by Dixon and
Eringen. This rate term will appear later in the momentum, cf. eq. (5.18)

below,




The magnetic term in the electromagnetic body force (5.1) is
based on the Amperian current model. Some rorearchers prefer a
megnetic dipole model (cf. Fano, Chu and Adler [26] and Penfield
end Haus [36]). If one uses this model then insteud of (5.1) onme wculd
assums

B, a By JH a. p __uyBb aau
rh e @ F“u)oa,aﬂuuu A

vhere f? and ,,l(,a are defined by (5.8) and (5.9) respectively.
Since the existence of magnetic poles is doubted we prefer the Amperian
model, It should be nuted that both (5.1) and the form listed in this
footiuste for the magnetic dipole model lead to the same form of the
first lav of thermodypamics (5.22). Thus the comclusions of Chapter VI
remain valid for the magnetic dipole model.

Qa JH
+ ]
T %a

the polarization vector. This has no effect on electromagnetic

phencmer..

The balance equstioms (2.23) and (2.40) are now

(5.9) g s " £ .uo',p + & oua +

b

(5.6) 1Vl o g e yvia

It is uscful to decompose 'um'5 into

(5.7) 7 = ?.9 P -PB o & 7P
where

5.8) #P + Py, ™ P70

T4

e - L RS




[

One can also define

(5.9) Moz %‘-coeybkua -'%tcﬁﬂ;ﬂ"ub
(5.20) 7° = B 4 Y
The polarization tensor 11"Jﬁ reduces to
(5.11) 2 = PP PR O, BT °“'7 uy
It should b3 noted that
(5.12) ‘Pﬁuﬁ=0, Mﬁuﬁ=0, Py =0
Using (4.18) and (4.28) we see that (5.3) is equivalent to
(5.13) ©% = £%+#% , a% = B, 4°

The spatial part of the four vector P P reduces to the polari-

zation vector and the spatial part of M B to the magnetization

veotor in the local instantaneous rest frame,
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This interaction model is a physically reasonable description
of a cherged, conducting, polarizable, megnetizable material. The
following observations allow the conmstruction of various subclusses
of materials.
a) If 9% w20 , the material is charge-free in the
local instentaneous rest frame.
b) If SaB P . §% = 0, the meterfal is a non-conductor
in the local instantanecus rest frame.
c) If ;aa 50 (,M,a = 0) , the material is unmagnetized
in the local instantaneous rest frame,
) If ﬂDB s 0 , the meterial is unpolarized in tho
local instantaneous rest frams,
From (5.7) and (4.18) ope can show that
* a
.14 B 5 - -PP - +
(5.14) T % gﬁ Y 8Buu J’&u
*
o PP L. BPM L BYM
ud u M B B M
vhere (4.16), (5.12) and (A.}G)l of the appendix were used. Therefore
the right hand side of (5.2) becomes:
#* #8[ 1
(5.1%5) . _H,B[G ,u]B - ?[38 pl 8673[0 ull] + @B ‘th ua] +¢u[a8 i

From (2.25) the left hand side of (3.2) is




(5.6) el . Jlopl, o gl . lewl

Equatior (5.6), uaing (5.15) and (5.16), leads to

Gan PPl lle] o drlapl, g rlapl

-

. ?{aea] - yle bl

By taking the projection of (5.17) along u, » one obtains

* *
(5.28) % = ¢+ P, oY 4 &, 7
Applying the projector 8 to (5.17), one deduces that

(5.19) ¢kl P[a 88] . ‘M[a BB]

Ther>Z¢re a pnecessary conlition that the balance of angular momepntum
(5.2) is satisfied is that (5.18) and (5.19) are valid. It is easily
shown that (5.18) and (5.19) are also sufficient for (5.2).

To ob%ain the first law of thermodynamics, we substitute re“ +
(where :l.'e"l is given by (5.1)) into (2.31). Hence

B o 4 ap * [» CINTY a . .y
De + + -t - '] - g ¢ -
B, q B P Du, Uop T a,p up. e uu ™ uu

5.20) x B *
( - -F 6, - p“owm - J{“D@a-&’anﬂ“ms i |

a
+ ) &a-r“‘uu




Where (b.4), (4.16), and the identity
u * s *
(5.21) uune'ao ap ?“néa+ gsf’omm + .;(“naa+5anﬂ"nuﬁ

have been employed. To prove (5.21), one uses (4.15) and (5.7). With
the help of (4.16) and (5.12),the first two terms on the right hand
side fall out almost immediately; the remaining two terms are arrived
at by using (A.36) of the appendix and (4.22).

Substituting (5.18) aod (5.19) into (5.20) we obtain

B B (cB) % [ o B]
1191)6 +q:ﬁ+qm5-t d‘ﬁ-gp é ua)ﬂ

(5.22)
- e sf ugpt PIDE + WDB -8 -t

Equation (5.22) is the first law of thermodynamics for an e)ectro-

mechanical material. It is often convenient to rewrite (5.22) as:

n D+ qﬁ,ﬁ + qﬁ Dus - [t(cﬁ) - 33(“&' B) _ U‘L(a B 5)]
(5.23) + ¢° L&, -& P “a,B] + 4 &, - B ua,ﬁ]

-ch ¢ " -f"up

Au equivalent third form of (5.22) is
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3 a
6 a . M Ba
n

n Dle +
()
D °

2 -1 s Py ylag Pl prg PLrrg R

a B B
-E%0P - PPu )-8 b - M ua,ﬁ]-a"ga -ty

a,p

Eech of these forms may be found useful in various situstions. For

exsuple (5.22) is convenient if one wisnes to describe & flnid. The

form (5.23) will be used for a solid when the independent variables

are £% and B% . If the independent variables are 97 amd

M, then (5.24) 1s the appropriate form of the first law. i
According to the entropy inequality (2.51)

qﬁ ™.y
(5.25) o, D+ (35) o+ ——F

v
o

Employing (5.22), (5.25) becomes

[a B8]
g (aB) , e £ *
1 * t
no(D'Ioo - 3 D& ) - iﬁ GB + —';— dcm + —-—-—e—— w@
(5.26) ,
ul(.[a 831 * ?GD“”G JLGDBG "Qg a
4 o — ) - - -+ > O
) e g e e [*] -

*
where 95 is defined by (3.2).

Using /5.23) in (5.25), an squivalent expression to (5.26) useful

fo. solids is

PafOm




FYREN e

1 P x H
n (D1 - % De) - %5 o, + ((®) _ glag8) | ylagp)) a8

(5.27) o o L6 4
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Another form of the second law is possible if one uses (5.24).

Using (4.25) and (5.3) to eliminate ¢® from {5.1) and employing
(k.12), 1t is possible to express the body force as the divergence

of a tensor

f"l z=T up
e

e )

TN T - BN TN R 4 B _ ot 7B ULl
m 0711] oF I °7a7p 4 6 T ony"ﬁ

(5.28)

In the derivation of the jump conditions (2.23) it was implicitly

sssumed that body force 1s continmucus across the singular surface I .
This 1g not unecessarily the case for (5.1) since the electromagnetic
fields may suffer a discontinuity. The forms of the balance of asnergy
momentum ard its Jump conditions, teking into account this possibility,
a.e

=0 across :(x*) z 0

(5.29) (P o) e, (PPantPrs

sB g

The balance of i..ment of energy-momentum (5.6) becomes:
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Thug it is poasible to Jvite a "totel" energy-mcmerium tensor for the
intersction model presented in this chapter. This tensor is symmetric
as & consequence of the principle of balarce of moment of epergy-
momentum. Whether it is possible to obtain such a tensor for ary
interaction model is an open question. The impcrtant point to remember
is the jump condition (5.29)2. Whether the Maxwell stresses are "real"
stresses is & mich discussed point, It seems unlikely that they are
(see Dixon end Eringen {6] for a discussion of this point). The
introduction of the interaction energy-momentum tensor is a mathematical
convenience., The system consisting o;‘ the body forces (5.1) and the
body couple (5.2) is equipollent to a sjstem of "surface trections"

given by (5.28).




CHAPTER VI

CORSTITUTIVE TEEORY OF DEFORMABLE ELECTROMAGNETIC MATERIALS

A constitutive theory of deformable electromagnetic materials
can be formulated following the principles emunciated in Chapter IXI.
In this chapter relativistic theories of polarizable, magneatizable,
conducting solids and fluids are presented. The requirement that
the conatitutive theory be thermodynamically admissible leads to a
considerable reduction in the form of the constitutive equations.
The following theories are sufficiently general to include thermal,
elecirical, and mechanical effects with restricted spsatial and
temporal variations. Thus such effects as gyrotropic phenomena,

optical activity and heredity are excluded.

Electromagnetic Solid

For an elastic, magnetized dielectric which is also a conductor,

an appropriable set of independent variables is:
K K
61) e, ,6, &%, B

vhere & K ana 88X are derined as:
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gt ~ =, ;P
(6.2) BK - KK,& Qﬁ sgn (Xi/xx)
& - £ &

P

i
The sgn (© /XK) , which signifies the sign of the jacobian, is introduced

so that 723 P remains as an axial vector. The dependent varisbles are

(6.3) §, 0 > qﬁ ’ t((ﬁ) ’ ?CI » #G 2 Ja

with pa and 'l:[m33 determined from (5.18) and (5.19).

One can now proceed in & manner identical to that used in Chapter III
for mechanical materials: write the entropy production for this set
of constitutive equations and find the necessary and sufficient condi-
tions for it to be non-negative. To this end we use the chain rule

of differentiation in calculating Ds arnd Dﬂoo Aand

pg" - Xx’ﬁ(Dg P G;auﬁ:a)

K p a B
pB% - x° 08" - B )

Recalling the identity (1.55), the second law (5.27) becomes




no 0 1 o}
-= +71 )De -= (n
§ ‘06 oo g ‘Yo
aqu
(6.4) - ’
K 1 K
3_0 ;}%De -E(PK+!1 T:’E)ng
< .
o g5 a6
1 K K
“"(MT{+no;§K)D8 + = + g >0

vhere 991{ y My » 3y and Q are defined as

Pk - axax

Moo= MO ssu(x/i’xK)
6L e

% T Y ¥Xg

and *o is the free energy *o & § -8 noo . At any point, x , in

space~time the following quantities can be assigned arbitrarily:

K K
G,XBK,GK,g ,B,De,DxﬁK,

(6.6)
pet , n&% , pBE

Thus by the argument lsading from (3.13) to (3.14), & necessary and

sufficient condition tiat the entropy production (6.4) is non-negntive




is that the folloving idsntities hold:

aO
6.1 gy T -2

o0

oF
6.8) @ ., gEL) -+ o ® .y ulog®

K
oF,
(6.9) ¢’K = -n SE;EE
(6.10) M al?
.10 = -n
K (1) BBK
(6.11) Yo
11 = 0
ok
o
(6.12) I
axEKu
o
(6.13) g7l xB]K 2 =
817
K
K

6w 5 8%-E— 20

As in Chapter III, in order that ¥ 5 be invariant under the proper

Lorentz group, vo must be a function of the :lorm:

(6.15) ¥, * v (6,0, E", BY




8ipce
o¥ oy aC o v
o _ o] MN z (o} XB 6] xﬂ
a X a ¥ e ' T T *x
auK HH&:K XN ) .i.4

equation (6.12) and (6.13) are satisfied identically and (6.8) becomes:

(6.6) +{®) oo & P ;2_ + PB4 gh)
KL

In a similar vay J. and rust have the forms:
K .

K K
(6 X JK = JK(G:GK: g :B ’CKL)
.17}

o = le, 6, 8%, 8%, c)

We have thus arrived at the following important conclusion:

The most general form of the constitutive equations for an aniso-

tropic elastic dielectiric with heat conduction satisfying the require-

ment of Lorentz invariance, non-negative entropy production, and the

balance of moment of energy-momentuw is the following:

i. The free energy *o assumes the form

(6.18) ¥, = (e, ¢, &%, BN

o

P
ii. The entropy qoo s the stress teusor t y the

polarization yector 7°  , and the megnetizatiop
vector o q 8re determined from the free energy by

IR AT T




(6.19)

(6.20)

(6.21)

(6.22)

iii.

{(6.23)

iv.

(6.24)

(6.25)

{6.26)

(6.27)

- N,
"o 3%
oB a p % g= P, 4988
t =&OXKIL%=+ 8 + 8

oy
9% 2 xx,a g‘éz

ov i
-a, Xx,a ;é’z sgn (‘x/x'r:)

M

a

vwhere (5.19) is employed.

The nommechanical momentum p 1is determined through (5.18)

p = 1-Px 8 - & x M

The eonductich current ch and the heat flow vector

9y &re determined from ike equations

% xx,cx %

vhere

JK - JK(GPGKJ gx’ BK:CKL)

QK = QK(B:GK:gKJBK:CKL)




v. The conduction current JK and the heat flow

vector QK must satisfy the inequality

K
8
(6.28) JK&’K 0“‘—9 > 0

which in view of the contimuity of JK and Q’K

i_mylies

(6.29) g l6,0,0, B, ) - o0
{6.%0) Q,((e,o,o,ﬁx,cm‘) = 0

Further reduztion in the form of the free energy Wo , the heat flow

vector QK , 24 the conduction current can be obtaired if one

JK

knows the crystal claes of the material. In particular, for an

isotropic material with a center of syrmetry, a mipimel integrity
- 1 v_.

basis for the symmetric tensor éKL, the wvector d? & , and the

axial vector B K (see smith [33]) 1s:

-1x -1 gy =1 L -1 -1y
= = - C

I, R C T g s L C Coe O

(6.31)
K @kl oL~ K<l -Iu L
By =& 6y B = & 08 58 0O
(Eq. continued next page)

1 -1
It is convenient to consider *o as & fuzction of CKL instead of
C.,. . The form of (6.20) corresponding to (3.21) is easy to deduce.

KL

-




(Eq. 6.31) continued)

K K -1 L K -1 <ix oL
B, = B By,B =8 g 8",8,=-8 ¢, OB

: -1x ¥ L -1MR <1 8
B, = ¢ B B" ¢ Cps B

B, = (£, 89, 1 =878y (& Ty &b

=1 -1
B, - (E,8N B T e 8h

B, = emgx 'é-Ll gl 314 ) B = ey £K%Ll%lngnau

4 2 -1
9 = kM ‘]’KR‘QR an cusgssu

By - @B e, 8% L 8" 8"

-1 =1 - b
1 (&Ses) €2in 8K CLN ) !R 6R 8!

[+
]

It can be shown that the set (6.31) can also be expressed in the

from:

3

I-trg,I-trs_g,I = trg

1 2 3

(6.32) E, = £c€ , F = 5 E,
(115+215-51211) ) (112-12)
2

E '§°§ 4

2

8cg+1 %8

(Equation continued next page)




(Equation 6.32 continued)
3, -8:8,38 -8 8

(L2+2r,-31,1) (1,2.1)
B, -8 8 1 ER 21 | 11212 BeBr 1 BB

B, = |71 Ba(Bx o°®) , B, = (£2B)7, B - £2BD(BQ)

(1+21,-31,1.) (1,2-L)
B= (2% (B-& e 56 2L . ]12 2 928.*11&9.2@1

B, 19l 6@ xB 8, Bg= |7l (£°8) xB- &
By 13 (e@)x* £ -8, B, = 7] BB xF- &

. 2
B,=(€eB) (TR xB- 217
wvhere the following notation has been used

EQ& = ga ccﬁgﬂ » (Qé)ag c@gﬁ

B 8
(Bxg)y= B E7u

From the work of Wineman and Pipkin [57], for an isotropic material

with & center of symmetry, V¥, must be & function of the invariants (6.32).

N T T T 5

c= O,l,ooo,ll

-




From (6.52) after some algebraic manipulations we can shov that (6.20),

(6.21), (6.22) assuwe the following forms:

LeT8e 12£+f,£2+fh£§@£&+15[2.81822&+£260£&1

+12B0cB+ 1[c B0 P8+ BB 1ylc BB B

+ Bx'B@cB- BxeB e’ B- B0 (Bx B

-2 B0 c(Bxc®) -cBxeB BB +1cBOcL+ 208!
(6.34) +7,[°BOcE+"€0cB+:L0"B+cBa &)

- 1lc 80 (8x&) + (Bx2) @8] - ,,lBx2) @5 &

+2802(B8x 81 20 BxQ) + 2(8x8) 028] - x[(Gx c&lac’

+C6@ Bxc8) +c£@e(Bxcl) +cBxcE)OLE

-c80Bxc°e) - (BxH@cel - 1 leBe (6x8)

+(ExB@c8l -x,lcBoc{exB) +e(ExB)@c @

+E@xBlec’ B+ B0 (ExB)) +PoL+ 49 B

Penb-x08- 158 £-2%8-1¢8- K< 8- le(Bxg)
(6.35) -Bx gl - xgle (@x@) - Bx &) - 1" (Bx 2 @)
-eBx @) - 1, BxeB-x, Bx B

Mo, By 8-, 228 - ulelBx B + @ (B
- £ @Bx Bl - e~ X ek P& - X &xgeé -z x &
(63 1 €O x (8 - 1 ledxB - Ex 28l

-1 [(Ex B) - Ex B




vhere

(6.37)

(115+2I 3T 1) A o .
3 &l 2] 2] : 0
T, = -n, ¥ 3--1}, 12-—2n° 3'—11*“0(11 *12)3'1;
atc 3, avo &io
‘;'"“noag'anoﬁa'xg:‘u"z%az; » T5 = 3, 3E
o} § o o
8] (o) o]
om0 7t g, 0 st 1% 5

aI*O 3*0
Tg= B,&2 Eg-g,; » T -n°(§£§)3375-

(115+21 3L, ) ¥

0 Q

X =5 3 ar Xy = 2, - - Bl *Ia)az;
v S (1, +21 -31,1,) v

X3n &0 ar*aﬂlaggﬂu'“ — 1271 LY

o, o
X5 =20, £ ¢ Bpm h+n(§sér)35-;+n 5—11 (8 2)-(1,%1)(e22)

(I +2I -31,.1.) 3
L RARLMEE-ERPE B F

s 3l € (& 6)x83'—£

gas e rnrges o e
xs-nu__g§3§+ ~3TBE'X’{==0 J 35.{-
31' 31'0 3’#0
Xg =1, |71 33_8 Xg = 5, |J'B_’]'.Loﬂ'no B) 33‘-@.@,&
1B g (1 +213-511) Bt
X" "o, |7 8 ~&E’ul-n° 3 ag
o oy Ay o
[+] 2 0 0 0
03B " oy (1) ~Ip) 38, ’ wy = 21, 33-1'+ an,T) 3B,

a*O

Uy “ % 3E; |91
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Also using the results of Smith [33], we can show that the conduction

current and heat flow have the following forms:

2 * * *
= al§_+uagg+032 -8-+°h£+°522+°6£22+07§x£+
aas(?.xg.)+09£2(13><€)+°103xsé+ gy, Bx £+

* *
6.38) ulaﬁx_‘éi-al}.s(gx_‘é)-bolh 52(§x£)+015ﬁxg_g+
T e Bx L E 4o [eBx ) - FBx e8]+ oglelBx ” B
- PBx e )+ Br oy s B oy ¢ Groy BreB

2
+023§xs_ 2

R R Y LT AR A xsfga,x?gxfé

+ g elBx ) ¥ kg SBx 8) + kg Bx g B+ k) Bxg” §4x,BxE
(6.39) + Ky S (BxE) + s Bx g &+ K B P&+ Kyl e(@x )

- £(Bx £ D] + xgleBx £8) - F(Bx ¢ 8] + (g Bow 2 (BxE)

2 2
+K202§+ K212 Q"'Kaa@xs.g"' Kajgxﬁ §

vhere Oys ooy 618 and Kyp +ves Kig aye functions of the invariants

listed in {6.32) and the Zollowing invariants:
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8-5,828,6:°8, 6B, Ge® @D,

(Ge® (58,6 Bxob, s Bx’h, 6c(8xe’h),
(6.k0) (2B (BxeB) -5, (B-Bxg'® (8eh), €8,

£¢b,8:°5, (88 (6:8), (88 (£:8 ,

(£e® (BB, (8 (85°8), 828 (8L D,

€8 (B D - (28 (B8, 5 -8x8, 5 Bxc§,

§'Bxgh, 0 Bxg'8 ,E£ Bx b, 5u8x°Q)

+EeBxPh) , (e Be(BxE) + (£cB) Be(@x 8,

(B+Bxc?B) (Be&) + (E- Bx°B) Be b

and o have the form

19’ sssy 023

010 (B2 B oy + (€ B oy - (B28) 0y - B Doy,
Gy = (B 8) 0yg+ (B D) opg+ (G805 + (BB oy
(6.41) + B ) oy + (B §) 0yy + BB B) oy
+8¢ (BxE) oy + (& Bx o) Oxg + (& - Bx °8) 957
0p = (228) 0,5+ B2B) oyg+ (E-8) 0y +(5 - B 0y
Op = (B2 B) 0y, - (£2B) oy

0y = (Be @) oy + (Be B) oy

vhere 9, , ..., 05, core functions of the invariants (6.32) and
(€.40). By replacing the 6., W K, in (6.41) one obtains the

functional forms of Klg, seey x25 .




For an isotropic material, from (6.32), (6.33) and (6.34) to
(6.39) the set of dependent quautities ¢, 0, %, v, «£
are covariant temsor functions of ¢ , € , 8 and y under the
full Lorentz group, and Jj and g have the forms (6.38) and (6.39).
(For materials with no center of symmetry, they are covariant tensor
functions under the proper Lorentz group.) While the constitutive
equations for isotropic materials are deducible from the general
forms (6.18) to (6.27), in many cases it is more convenient to rederive
these equations from the second law of thermodynamics.

The second law (5.26) for an isotropic material becomss (using

(1.55) and (1.65)):

o
- (N, + 52 ne-%{t("a) +plag 8l yla gsl
Ny o o, »

o B 0 708 B 0 7aqt B
+2n°a-§8-c7-noal—a-u -nol‘a—a-7U£ u-no—-uﬂ u
oy o
(6.42) +(P°+53-:)8B+(#“+53—Z)65} 7(]”:5":}:1(‘("3
oV oY
1 0, & X 1 o a K
'E[Pm'”’oacaz]"KD6 "e'IMa*noaél} x P8

A necessary and sufficient condition for (6.42) is

ANy
(6.43) T * * S

ov
(6.4h) t(aﬂ) = -2n 801_ Sﬂa go__ r:f) y

¥
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O A I P SLLLY ;R I

T ¢ o c?['r 7
oV
a _ a o
(6-11'6) ? - —l‘.\o S 7 E
oV
a s 2 0
€ w8 g
(6.48) 2n3$°c u_ +1n a%ug +na*°uﬂ+n a*o:':i;"
o&ﬁmﬂ OJEBB a OEZ!BB‘G o3y @
B *
qa 6
(o4 B .
The requirement that wo is ean invariant function of 6 , CGB ’

Ea & o ©nd u, under Lorentz transformations gives:

No 8l P opl Yo gpl . Mo )
(6.50) ch 7+&E—a-£ +§q-(;5 +$[; 1 = 0

By substituting (6.46) and (6.47) intc (6.50) one sees that (6.45)
apd (6.48) are satisfied. By using (5.19) in conjunction with (6.50)

it can be established that a necessury and sufficient condition that

the constitutive equations for an isotropic material are Lorentz in-

variant and satisfy the second law of thermodynamics is:

i, The free energy *o is a scalar invariant function

of 6,¢,€&, %, uuder the full Lorentz group.

ii. The entropy noo , the stress tensor t , the

polarization vector f’ , and the magnetization

vector fﬂ are determined from the free emergy by




o
(6.51) qoo = - 9
o,
(6.52) ¢ =-n ¢ %
oV
(6.53) P = -n, sz?
M a*o
(6.54) M = - Sné

iii. The nommechanical p is determined by (6.23).

iv. The conduction current _._j_ and heat flow wvector

g have the forms (6.38) and (6.39) and satisfy

the inequality

#*
(655 3:& - 32x2 >0

It should be noted that (5.19) is satisfied identically if 1. and 1ii.

hold. If ¥  1is & scalar invariant of ¢, &, B, ¢ under the full

1,2,3
0,1,2
O’l’ see ,u

ILorentz group, it must have the form

(6.56) y = ¥(6, Ia ), bc) (

ooe
[ A |

where
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Ilstrg » Iastrg s IB-tI‘Q?

(657) e =£-8 , e =€c8 , e,=£ €

2
b =8-8 , v, =8B , bv,=8B:®

-

b =B (B x (B , v -8
by = BB , v - - DBSLY
b= £e(Bx 8) , by=£SBxE) ,u = Bx2 8P E

bo = (£-B)Belfx8) , by, - (§ B BFE@xB

The theory presented in this section provides a theoretical Justi-
fication for the nomrelativistic theories of Toupin [5] and Dixon and
Eringen [6] for moving electromagnetic materinls. The application of
the second law of thermodynamics complements the researches of Jordan
and Eringen [3], [4], Toupin [5] and Dixon and Eringen [€]. The con-
stitutive equations for a pola: .sble material (M =0, =0,

g, = o) are equivalent (under the appropriste change of variables)
to those of Toupin [5] if terms of the order v.re/c2 are neglected.
The general form of the constitutive equations of Nixon and Eringen [6]

vxH vxE 1
are valid if one replaces D by Q+—c2—- asnd B by ,‘E--;E-—.

lHe are here using mks units. In the mks system of units the ratio

|2I/|£—’§—§| is of the same order of magmitude as |E|/|y x B| . The
c

same is true for the raticns |H|/|ly x D| and lgl/lx—;—§| .
e




The specific forms of the constitutive equations of Jordan and
Eringen (3], [4] and Dixon apd Eringen (6] are ai@ificanth simpli-
fied by the second law. Fecr example, the stress tensor, polarization
and magnetization are independent of the temperature gradient. For
an isotropic material the second law does not allow a term in the

polarization similar t¢ the Hall effect in the current.

Electromagnetic Fluid -

For a viscous fluid which possesses electrical properties an
appropriate set of independent variables 1:1 :

, B

u

* *
(6.58) -] ’ no » a ) » a 2 a

(o-- SR+ o

The dependent variables in this case are:

(6.59) ¢ ,n_,d, P P, u, P
vith 3% and t'%®) getermined from (5.18) and (5.19). The consti-
tutive equations for the se: (6.59) must sstisty the principles
enunciated in Chapter III. In particular, they must satisfy the
second lav of thermodynamics; the appropriaete form of which is now

(%.26). Using (6.58) and (6.59), (5.26) reduces to:

1See footnotes p. 60 ard p. 100 on the independence of these variables.
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n_o¥
ol e + gle)m * %{t(m) +n, 587 ':Gﬁ ) 'égro "
° p

(6-60) no a*o * no a*o * 99[085] » d([a a] »

"e—Sﬁgneﬂ‘a—g;moﬁ* 5 "’oe*_eﬂ_"’ae

a‘ro Dg al*o D Jaga qcs 9o:
-[’a+n°£E]—e—'-[Ma+noQ] 2 =— - 92 > 0

At any point, x , in space-time the following quantities can be

assigned arbitrarily:

*y b 1 i *y * b
6,n , & ,L :6 :u:dJ:HJ:Deiyngs

D81 ) Dui ) Ds-id (-‘HJ z 1:2:5)

By the argument leading from (3.13) to (3.14), a necessary and suf- ‘

ficient condition that the entropy production (6.60) is non-negative

is that the following relations hold:l

N a*O
(6062) 'qOO - - e
o o o
(6.63) -a:-;87a+ra:-u780+ a:“?ga = 0
a*0
(6.64) == = 0
L)
-}
a*o
(6.65) - = 0
adﬂﬂt

Ygince not all components of the tensors in zet (6.58) are independent,
in deducing (6.62) to (6.67) one should consider ¥, @s a function of
* i b * b §
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6.70) fPa,-—=+C 20

The following general statement can be made about the form of the

constitutive equations: A necessary and sufficient condition that

the corstitutive equations satisfy the second law of thermodynamics,

the balenecz of moment of energy-momentum, and are covariant under

m orthochronous lorentz transformations is:

1. The free 2nergy assumes the form:

(6-71) ¥ '*o(e’no’Jl’J :J)

3

(o]

vt;em

-, 5 ——

n
teg
e

(6.72) g, = &€ , 3, = BB,




i1.

(6.73)‘
(6.78)
(6.75)
(6.76)

111,
(6.77)

iv.

102

ﬂ_y_rs_entropy 11@:J s the stress tensor ¢t , E

polarization vector ‘_?9 , and the magnetization

vector d‘( are related to the free energy by:

Yoo * " 90

Eeonf g2 aey

P ot € on g B
K: oo 2B 3k

The nommecharical momentum p 1s determined by:

——

3

p = a- Px B-Ex

The conduction current J , the heat flow vector

b

q , and the dissipative part of the stress tensor

Di have the form:

(6.78} 9= Kl';'+ x2§+ x5_7_3+ Khi.‘éi- xﬁi§+ K6;~7§+ xTiz_E+ Kﬂ;;:a%.,. 9&2@

+K10.5.x$.+ K113><§+ Ko &Xx B+ Kl;éXEE+ KM&‘XEE
* * ® 3 *2

+ "1#" 48+ K168 X fE + x17§x g_2§+ K18§x 48+ K

* * * * * * * 3

+K20Q£><§.2€+K21Q§xsf§+ K€ X 4 8+ K Bxd g

*a * * %* *23 8 *8+ e *O%

+ ik Bx L+ Kk X A+ el X 4B+ K Ex 4 Brryp€xdg

+* r 3
8x &

o

DT LT ST Y8 et
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e

+ o Bx 80 + 0 Bx LE+ ks x TE + kgl x L8+ K y€x B
w * *
Ex £+ kph Bx 48 + sl Bx 828+ xd 6 x €
*
B+ A Ex I8

_g_-ﬂl§+°23+03@+0@3+Uji§+06i§+075.23*'03&2_{5
: *2 * # Ex B *  ® R
+°9¢§+°10§Xé+“11£x§+“12--x-+°1)ﬁxsl-ﬁ
#* - * . *D%
+ o Exd 8+ o, Bxdgrobx et o ExiE
*a ® * *2 *

+0,48x 88+ 0, A Ex b+ 0, d Ex 1€+ 5,  Bx 1B

é' * * * #* 8 *8.‘. * *
+awxgg+023§xgg+aah~xg~ 058 X & £

* * * *O% *O%
+026_Qx%25+ozrf_’x%2§+aaafx%2g+029§ng2
+0308><Q§2:031_exg_§+ "32@"%-6*"’35 Exa®B

* * * *
+ 0yl Ex 88 + 0, d Bx I8+ 0, d Bx I

* * #*2 *% *2 * 9
+ 0,00 BxX 3G+ 05000 x 4 Bt 0, A ExLL

terng A+ e NBe b+ A8 £+ 0B+ (26 &0 1)
+2lh0 8+ 88 8) + A JE@ B+ BOE) + A [2a(bxEH(Ex LR D)
+ A, [28(exBH(ex B @ 5] + A EAEXB) HEXZBE]
6.00) *I5E8Ex EHEX D08 + 1 [FOEX EHEx B 8B
* *
+ A [BOEBx EHBx ) 0B) + Mlfale x BH(ExB) Q&)
* . R * * * * #* *
+ N [BalexgrexE) @Bl + Mglea 1 6+41£0 6
+AJE818+1£08]+  BoiB+ 180T
+ 2, (00 3%+ Phe Bl + \,l60 18 + PE0¢)
+ 0,50 %8+ PBegi + (0 ig+ 140 8
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+ 2018+ 1BAEI + N0 1B+ 38021 + 1, €01k +iEoR
+ 6863 E+3 50T + A BOIE +1E@B) + Ny [be 6+ 1°60 B
+ 3y (00 3B+ I8 9 £1 + 0, (60 £+ 608] + 1,5(€0 3% + I 0 €]
+ Ay, 18O E°E+ 608) + 0,80 18 + RO Y + Ayl £ + L6 % 2 €)
+ g ld Ba 3% + 10 @1B] + Agld TO i G + 14032

+ kjgtﬁxi- dx &l + 2 [E€xa -Ax &+ N (Bx3-3x8l

+ ?\ha[féxga- an?g] + 7\1;3[‘5 P 32 - :1_2 x€]+ N, [Bx 32 - 52 x 8]

# N8 x 8) - Bl x D] + W 3Ex P - F(ex D)

+ Ry d@Bx &) - EEx D+ 7gll@ Ex 18 + (Ex i Do 8
+hE@ (ExE B + (Ex 1D @8] + 1, (80 (Bx 1B) + (Bx 1) 9&)
+ 2, (60 (Bx 3°8) + (3 x §°8) @ 8! + \,lE®@ (€x 3%) + (§x 4%) @ &)
+ 3,188 (Bx B) + Bx B 6 8] + 1, (88 UdIdlexd) @ &)

+ hslE 8 dmdided) @ Bl + Al60 dexa+d(E xB) @ £)

+ Ayyle @ HExE1EExD) @) + 7580 D) +iexd) @B

+ hglB@ JExE1iExe) @) + Ao 5@ (Ex d B+(Ex T D) o &)

+ 0y (88 (Bx 4 DIH(Bx 3 8) @8] + A, 150 @x 1E)+Bx 1) @8

+ sl €0 Bx 18+Ex 18 08 + 1,180 (Bx dB+(Ex 38) a &)

+ s lBO (Ex LBHEx 18) @8] + Mg (0@ (g x EDIHEx L) 9 )

+ AgylE @ (Bx EB+(Bx £B) x 8 + A5l€0 Bx Le)+(8x 5 0 &)

+ hol€@ (Bx T+Ex P08 &1 + 1 B0 (x L+ x i 0@

+ 0, (B0 (Ex Pp1rg x PRI @8 + 1y ld(hx B) @£ + £0 4(E xB)]

+ hsA(Ex D) @ B+ BQAEx £)] + 1, (€0 (Bx 4 E1(Bx & ) 98
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where Kys ooy Kay 5 Oyy eoey uy'_ H )\1, soeg ?\75 are functions

of the following invariants:

Id’nd’Ind'Jl’Ja’Jj’s.;

€5 ,8-5, B-8x5 ,

8% , €48 , 848, 548 , 24m, €18,

64t , efe, By, a8, §8°8, £°D,
.o £46xD,E18xD , EiExm , 8dGxm, £iExD .

BUExB) , gaExB) , BiExY) ,

E?ﬁxm,§Qme,Egmx@,a3@xm,Q?@x@,

BLExm) , 5 (5xB) , 80D ,

EFEx3D , £2(Ex18) .Qiatﬂxiﬂ) ;
83%(Exd8 , 8P(Ex18) , ELBx 1D , B (ex@.zz),
8‘;1_ (?_Bx;LE) ,§§.(¢.‘,xs§,§) .Ei(Bxi.ﬁ)

*

!

v The heat flux q , the copduction eurrent J} , and

T — ——

the dissipative stress tensor l:rt- satisfy the

ineguality:
a6
g % a W
(6.82) ¢ Ay - 7 +38’a > 0
*
which in particular implies that when dpﬁ =0,

*
ea'o’gano’t".le_n




(6.85) a0, *a0 , a0
These jesults follow directly from equatiors (6.62) to (6.70) and

invariance requirements. In particular, (6.64) and (6.65) imply that

“ro = *o(elno’ga,?sa,ua)

apd in order that *o be en invariant under the proper orghochronous
Lorentz group, it must have the functional form (6.71). Equations
(6.73) to (6.76) follow directly from (6.62), (6.69), (6.66), (6.67)
and (6.71). Equations (6.63) and (6.58) are identically satisfied

(ef. (6.71), (6.75) and (6.76)). The lengthy expressions (6.78) to
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(6.80) are a straightforvard application of the remarks in the appendix.

The foregoing theory of viscous Iluids is 80 complicated thatv in
the generality presented in this section it has little practical use,
However, it provides a foundation for several approximate theories.
In particular, the class of perfect fluids is a special case of

this theory.

Perfecet Fluids

For a perfect fluid, the entropy production vanishes. That ia:

(6.%4) q=0, %t=0,J=0




That is, for a pe)lect fiuld, the naterials are described by:

ii.

(6.85)

1i1.

(6.85)

The theory of perfect electroragnetic flulds presented in this

The free energy has the form (6.71).

The entropy qoo » the pu Arization vector ?,9,
and the magnetization vector 'ﬂ_f- are given by
(6.73), (6.75) and (6.76) respectively and the

stress tensor is detecrminad from:

oy
2 0
E= % H

The nommechanical momentum p is determined by:

A

ten

P - -PxB .- Ex

L d

section is comparable to the theory of Penfield and Eaus {36].

the polarization and magnetization are desrived from the free energy is
a consequence of the second law of thermodynamlics in the theory of
this section.
and magnetization are deduced from a veriatioosl principle.
difference betwesn the work of thiz article and thet of Penfield

ant Haus 1s ir uge dirverence in the Amperian mmodel and the magnetic

dipole model for the magnetic term in the interaction of electro-

cagnetic fields on matter.

Iu the theory of Feufield and Hsue the polarization

The ma jor
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Concluding Remarks

The relativistic thezory of electrowagnetic materials presented in
this paper provides an iasight into the continuum behavior of
electromagnetic interactions with matter. The coupling of mechanical,
electromagnetic and thermal phenomena into one theory has resulted in
e ccmplicated system of partial differential equations. The complete
physical and mathematical nmature of these equaticus in the generality
treated in the previous sections is beyond the scope of our present
knowledge. Tne nonlinearity of the equations makes any solution to
boundary-value problems difficult.

Considerable insight into the nature of a system of partial dif-
ferential equations can be obtained from &n investigation of the propa-
gation of waves and singuler surfaces. This seems to be & fruitful
clags of problems which can be treated relativistically. Some progress
in this direction has already been made and will appear in a later
work.

Tl ugh the present theory is capable of describing many physical
phenomens, (polarization, magnetization, heat conduction, piezoelectrici
thermoelectric effecte, to name a few) such physical phenomena as
viscoelasticity, optical activity and gyrotropic effects are definitely
excluded. Simple theories of viscoelasticity (the Kelvin-Vnigt,
Maxwell and other higher order rate theories) can be formulated hy

an appropriate change in constitutive equations. The treatment of
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heredity requires the more difficult study of functional constitutive
squations. A description of optical activity and gyrotropic effects
will probably entail a reformulation of the balance equations to
inelude spin, couple siresses, and quadrupoles. Whether ferromagnets
and electrets are described by the theory presented in this article
cannot be answered until a deeper physical siudy of these phenomena

is undertaken.

Finally it must be mentioned that for accelerating frames
and curved spacss vhere the special theory fails new unified theories
are needed employing the fundamental ideas of the general theory

of relativity. Such & grandicse plan presently is out of our reach.
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AFPERDIX OR POLYNOMIAL INVARIANTS OF VECTORS
AND TERSORS FOR THE LORENTZ GROUP

N-Vectors vu(” (= 1,0.0,%)

The polynomial invariants for the Lorentz grcup can be dsduced

from the polynomial invariants of the four dimensional orthogonal
group (see Weyl (39, p.65]). If f is an even imvariant polynomial
of N-vectors Va("") (1=1,...,§) , then f 4is a polynomial in the

scalar products

2\
(1) Pyl Vam (1€3;5 9,0 mL,0e,H)
If £ 4s an 0dd imvariant polynomial of E-vectors va(” , f is
a sum of terme of the form:

(1) ) Gy (1)

(A.2) ORIy A g

a p 14
vhere g is an even polynomial and

1, <4, < 13 <1, (11, 1, 13, 1), = 10ee,X)

The following special case is often encountered in physical situations.

T

R T SR PN o0 e s ==




TR T &8, S PR S P

_IE-Vectors (2) end a T™me-Iike Unit Vector ua

o

(ua ua ™ -l)(i ‘l,---,’)

In many physical situations the worla velocity vector vy is

included in the group of vectors considered in Case 1., The vorld

velocity is time-like

(A.3) u,u = -1

Any polynomial ir Va(i) and Uy is & polynomial in the vectors

® .
Va(i) snd v, and the scalar products

by V1) . va(i) W (1 =1,...,8)

* (1)
vhere V(l is defined as

® (1) B, (1) , LB ) B . *{1) a
(A.5) ¥y & 5, Vﬂ 3 By = By tugu ;¥ u o=

This foilows from the decomposition

6y v o § O

8ince the v(i) are scalar invariants, one need only consider a

poliynomial invariam: in

iy —
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a7 v

By applying the results of Case 1 to the set (A.7) and observing

(A.8) e i\'l’(‘,lu') = 0 ; W Uy = -1
ard
agyb * (iy)  * (ip) * (ix) * (iy)
(A.9) € Vy 1 Vg v, 3 ‘A 4 L o0

*
cne obtains: An even invariant polynomiel f im the vectors Va(i) ’

Uy is a polynomial in the invariants

(A.20) ,® ?ra(i) \7‘3(3) (1€3; 1,3 =1,...,N)

and an odd invariant polynomial f is a sum of terms of the form:
* * *

(1 <i, <i «l,...H)

5 H l’ 12, 15
vhere g is an even invariant polynomial.

The identity (A.9) follows from the observation that from (A.8)
the fourth row of the determinsnt on the left haxd side of (A.9) is

& linear comvimaticn of the Ifirst three rows.

AN A




The procedure of decomposing tensors into spatial tensors apd
scalars vill be ueed in the next section. It is the key to using
the results of the three dimensional orthogonel group for the integrity

bases of the Lorentz group.

o)

(1)
) v

M-Symwetric Tensors &

» N-Vectors

and a Time-Like Unit Vector u (uaua . -1)

Any polynomial 1o 2(®) | y(1)

tensors E(R) , the vectors i(i) ’ E(R) » ¥ and the scalars

,and u is a poiynomial in the

a12) 1R » Tg) P (R=1,...,M)
a13) v e oy ()0 (4ol g
where

(A1) Eg‘) = g s;“ 'I';g) . ?"'g)

(A-15) ;a(i) 7 SaB v (1)

(.16) A (R g 5] (R °

né
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This follows from (A.6) and the identity

(R)?l u

3R 3 ®) -

* (R)
o8 - A

(A.17) Tg) u, + T

8

It should be poted that

(A.18) %g" W .0

(A.19) ia(n) .0

w2o) T a0

Thus one can consider a polynomisl in the tensors and vectors

(A.21) *T'g‘) , ?ra(k) y Uy (Bl M k= d,.,N+H)

vhere

(A,22) ;ém") " Aa(n)

with the coefficients polynomials in T(R) and v(i) .
The coefficients of an invariant pclynowmial must be isotropic
tepacors for the Lorentz group. This inpliel'that they are sums of

terms wkich are products of 7°B and GOB75 . By noting that

‘a:l L R




(A.23)

(A.24)

(a.25)

(A.26)

(a.27)
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&
(WK)QB uB = 0 R (;k)aa u, = 0

* (1) a
V& u = 0

¢ o (=h)aﬁ 59(1) (;h)ﬂo GU(J) (;h)7‘ ;1(k) (;P)bﬂ GQ(L) - O

€ pyp (TP ()77 ¥ ) G Lo

* w * 75
€ aBys ('I'L) ('ITM) = 0

an invariant polynomisl in E(R) ’ ¥ and 1 must be o polynomial in

(A.28)

(A.29)

(A.30)

;a(i) (;é)aﬂ ;b(J) , tr (;k)

* *
< By (Ih)aﬁ ;8(1) (;ﬁ)ﬁp ;D(J) (;h)71 ;T(k)

* *
ag * o8 % (1)
€ gy () (M)7" Vg

*

* * B 3 *
vhere I o, Ly, Ig ’.IP , and I ere matrix products in

*(R) »*
T apd 1 ; Il( are matrix products in

i(R) . The proof of (A.23)

* *
and (A.24) follows from the definitions of !(1) and E, . Identities

(A.25), (A.26) and {A.27) are deduced by observing that the fourth row

of the determinants is & linear combination of the first three {cf. {A,1R)

to (A.20) ). Bere «

*

By is defined by:

e L




(A-jl) € = € 1
The following identities are useful to reduce (A.28) to (A.30)

7

o7

7,

a% 0,

y ¥ y 7
Bi% BBy Bi7, BBy

(Asja) € € n =
4P 78 GPBRTR0 , , , ,
"% NP M, b
v/ y v4 vé
5% BB BT, T,
From {(A.32) one can show that
Py Py Py
5 g B b 7y
2 £ 2
By7,® Y v 4 Y
(A.33) (;"1111GB - s o1 515
% Pa72% Fa 72 2
651 &51 581
Ba 7 5
5 %
By dotting (A.32) with u ~ u © and adding ual times the fourth row
to the first row, uB times the fourth row to the second row, u7
1 1

times the fourth row to the third row, one obtains

419




3 8 8
e e, A,
+* *
(A.54) ¢ € = S S 8
G877, Pi% BB By7g
S 5 5
% P2 M7

By dotting the identity

&7,
7 7 7 y 7
Bi% BBy Byr, Bi% TBiE,

{A.35) 7, 7 y
% B mry Mm% ne

€ €
with u 1 u e and multiplying the fourth row by Uy and adding it

1
to the first row, etc.; one can deduce that

e

)




(A.36) =

From (A.34) it follows that

B, B
:B :0122.3 g - 8
e T4

B,7 7
:B 2 | 2
%P7 4

(A.3T)

If ope defines the skev-symmetric tecsor by

(38) V8w g, V)

(A.39) :ig’uﬁ .0
From (A.38) it follows that

(ano) v O L LT e

*
a opy




By substituting (A.40) into (A.28) to (A.30) it 1s seen that the
polyncmial invariants of M symetric tensor, N-vectors and a
time-like unit vector reduces to the set of invariants (A.12) and
(A.13) snd the invariants of N symmetric and M + N skev-symmetric
space-like tensors wvhich are polyncmials of degree three or less in
the skev-symmetric tensors. This is the starting point of the werk
of Rivlin, Epencer and Smith (cf. [kO], [4¥1], [k2], [33]) for three
dimepsional matrices.

From (A.36) space-lile tensors satisfy an equation which in

matrix notation is identieal to the three dimensional Clayley-Hamilton

#BBn #7175, 5,0
theorem. If one multiplies {A.36)} by 1.12 512 312 and

expands the determipant the following result is obtained:

A N TR L SR P S

(A.41) .
*
v2tr g - 3er g )tr g)1 g = O

*
vhere aﬂﬁ satisfies

. » *
(A.42) 307 SBb AT

Since it is only this thecrem and several propertiss of the trace of
products of matrices that are employed by Rivlin, Spencer and Smith
in their series of papers on the reducticn of polynomials in 3 x 3

matrices, their results (cf. [40], [41], {k2], [33]) hold for space-




liks tensors and space-liks vectors under the loreantz group. (Im
particular all relations listed by Spencer (42, 3.54] are welid for
space-liks tensors. Omnly these relations are employsd by these authors
for the reduction of pelynomial lrnvariant of 3 x 3 matrices under the
orthogonel group.)

The integrity bases listed by Spencer [42] and Smith [33] are
rinisal in the sense that no invariant listed by them is a polynomial
in the invariants in their list. The integrity bases for space-like
tensor derived from their resuits ie also minimml in the above
senge, If it were not, it wvould imply that their result was not
minimal. Smith has proven that their resuits (cf. [36]) are minimel.

The results of Wineman and Pipkin [37) for conmtinuous tensor
functiona of tensore for the orthogenal group in three dimensions hold
for a space-like tensor function of u apd four-tensors (even though
the Lorentz group is not compact). The fact that a polyncmial basis
in Uy and four tensors is & functional basis can be proven by their
method or by observing that if it were not & contradiction would
arise with their results. By transforming to a frame in vhich
u, = (0, 0, 0, -1) and cbserving that the resulting tensor must be
invariant under the three dimensional orthogonal group one can see

that the atove remark as to the form of a contirmious invariant function

pust hold for space-like tensors.
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