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ABSTRACT 

The basic laws of a special relativistic theory of continuous 

media suitable for the treatment of electromagnetic interactions 

with materials are formulated. The kinematics, dynamics and thermo- 

dynamics of a continuum are dis-ussed from a relativistic viewpoint. 

Constitutive equations are deduced for thermoeiastic solids, thermo- 

viscous fluids and electromagnetic materials. 
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Sciences. 
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INTRODUCTION 

In this article there is presented a nonlinear relativistically 

(special) invariant theory of continuous media. The object of such 

a study is a consistent treatment of the interaction of electromag- 

netic fields with the deformation of matter. In recent years several 

theoretical works have appeared concerning the simultaneous action 

of large deformations and electromagnetic fields on material bodies. 

In general these researches have either considered only static de- 

formations (cf. Toupin [i], Eringen [2], Jordan and Eringen [5], (*0) 

or developed a dynamical theory along nonrelativistic lines (cf. 

Toupin [5]> and Dixon and Eringen [6]). 

It is well known that the Invariance group of the basic equations 

of electromagnetism is the Lorentz group. The modern theories of 

continuum mechanics, however, make use of the Galilean group for the 

basic laws of motion and the invariance under the group of rigid 

motions for the constitutive theory. At the turn of the century, the 

invariance of the laws of mechanics under the Galilean group was dis- 

carded at least for the physical phenomena which fall within the scope 

of relativistic considerations. Thus we believe that a satisfactory 

and consistent, theory of electromagnetic interactions with deforming 

materials cannot be obtained until the ground rule (the invariance 

principles) for mechanics and electromagnetism is taken to be the 3ame 

Within the scope of the special theory of relativity the most natural 
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and the simplest invariance principle is the Lorentz group of trans- 

formations . 

Following the scheme of classical theories of continuum mechanics, 

Erinß3n [7]/ Truesdell and Toupin [8], we begin our study with the 

geometrical and kinematical description of deformation and motion. 

Afterwards the basic laws^ -concerning the motion and physical phenomena 

are introduced. The formulation is then completed with the consti- 
l 

tutive theories in accordance with certain methodological principles 

set forth in [9]. 

In the literature the kinematics of continuous media is seldom 

discussed from a relativistic viewpoint. Exceptions are the works of 

Bressan [10] and Toupin [11]. Bressan has formulated a relativisti- 

cally (general) invariant kinematics by noting that the motion of a 
im- 

material particle with undeformed coordinates X (K = 1, ..., 3) can 

be described by x*1 * x^ (A , F) (|i « 1, ..., k)   where t is some 

temporal parameter. Observing that such a temporal parameterization 

is highly arbitrary, he stipulates that the description of the de- 

formation is independent of the choice of t . 

Our approach to kinematics is based on an extension of the work 

of Toupin [ll]. Our strain measures are invariant under the Lorentz 

group and they coincide with those of Bressan under appropriate modifi- 

cations. The world velocity that is selected is a kinematical one. 

In several works the world velocity of a continuous body is defined as 

either the time-like eigenvector of the energy-momentum tensor (cf. 
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Synge [12] or Lichnerowic.; [15]) or as the unit vector parallel to the 

momentum density (cf. Miller [lk]  or Landau and Lifshitz [15). 

Miller actually employs also the kinematical velocity.) This velocity 

of energy propagation will coincide with our kinematical velocity only 

in special cases, for example, when the hsst conduction and electro- 

magnetic phenomena are neglected. 

For basic mechanical  and thermomechanical balance conditions 

ve select, in Chapter II, the conservation cf particle-number, the 

balance of energy-momentum, the balance of moment of energy-momentum 

and the second law cf thermodynamics. We consider the conservation of 

particle number as the appropriate generalization of the conservation 

of mass in nonrelativistic continuum mechanics« This point of -view 

is accepted by several authors (for example, Landau and Lifshitz [15], 

Van Lantzig [l6] and Eckart [IT])* An alternate viewpoint is that the 

classical conservation of mass is obtained through the equation of 

energy in the limit as the speed of light approaches infinity (for 

example, Bergmann [18], Thomas [19] or Edelen [20]). From this point 

of view it is difficult to consider thermodynamics without an additional 

axiom. In nonrelativistic theories the thermodynamical balance equations 

are deduced from tne energy equation. It would seem appropriate to 

do the same in relativistlc theories. Thus, for example, the energy 

equation should be used to derive the equation of heat conduction. 

The form of the balance of energy-momentum is well known and 

hardly needs any explanation. It should be noted that in a relativistlc 



theory part of the momentum Is due to nonmechanical sources such as 

the heat flux and stress tensor. In most of the works on relativistic 

theories of continua the energy -momentum tensor Is assumed to be 

symmetric. This is usually deduced from the balance of angular mo- 

mentum. In the classical theory of continuum mechanics the stress 

tensor is symmetric only if there are no torques acting on the body 

and the body does not possess an intrinsic spin. We generalize this 

idea to the relatlvlstic case by introducing a spin tensor and a body 

torque tensor in four dimensions. The idea of a spin tensor can be 

found in «auch works as Bcgoliubov and Shirkov [21] and Fapapetrou [22]. 

If the spin and torque tensors vanish, it follows from the balance 

of moment of energy-momentum that the energy-momentum tensor is symmetric. 

The second law of thermodynamics is formulated in a manner 

analogous to the law given by Eckart [IT] with the provision that 

it is considered as a restriction on the form of the constitutive 

equations rather than on the electromechanical process. 

In Chapter III the methodological principles for formulating 

constitutive equations are set down. They are obvious generalizations 

of those employed in nonrelativietic continuum mechanics. The major 

difference between these principles and those of modern continuum 

mechanics is the requirement that the constitutive equations are to 

be form-invariant under the Lorentz group. This is adequate for the 

theories treated in this paper. A different approach using the idea 

of non-sentient response is to be fo*iM elsewhere, Bragg [23]. 

••--•• 



Aa examples of the above formulation of constitutive equations, 

relativlstic theories of thermosollds and thermoviscous fluids are 

deduced. The second lav of thermodynamics forces the acceptance 

of the heat conduction lav of Eckart [17] as opposed to those of 

Bressan [2k]  or Fham Mau Quan [25] vho attempt to generalize Fourier's 

lav. 

In Chapter IV the Minkovski form of the equations of electro- 

magnetism are formulated in the usual four dimensional forrm. In 

Chapter V the interaction "between electromagnetic fields and matter 

is treated. An interaction term is written down using the analysis 

of Dixon and ErIngen [6]. If one wishes to treat the Interaction 

of electromagnetic fields and matter one needs a physical model 

(cf. Dixon and Eringen [6], Jordan and Eringen [3], or the appendix 

of Fano, Chu and Adler [26]). The  seemingly fond vish to use the 

Minkovski stress tensor or its symmetric part is erroneous unless 

the material has no polarization or magnetization, in vhlch case this 

tensor is symmetric. 

In Chapter VI the constitutive theory of electromagnetic materials 

is set dovn for an elastic solid and a vibcous fluid. Such effects 

as heat conduction, electrical conduction, polarisation, e*nd magneti- 

zation are Included in the theory. The consequences of the second lav 

of thermodynamics are fully investigated. 

Finally an appendix on the invariants of tensors and vectors for the 

Lorentz group is included. In special cases it is shown that the usa of 

results of the three dimensional orthogonal group is permissible. 'Ails 

facilitates greatly the construction of constitutive equations since a 

revorking of the theory of Invariants of teasors and vectors for the 

Lorentz group would be lengthy and tedious. 



Rotation 

In this paper we use the standard tensor notation and summation 

convention of repeated indices. The signature of the Lorentz metric 

<* 11  22 _ „53 kK 
(7^) is (+ + +-), i.e. r""" - 7~ - r" - 1 ,  7" - -I ,  and all 

other 7°^ « C .  It is convenient to use the» following convention: 

€aß7ö * *aß7Ö 

where e    is the permutation symbol and define 

aß7&    opTO c   • - e 

Since det (7^) - -1 

.aßTö  J**L .»1 J^l ^581 

W. lwl 
The short hand notation 

*Cß7 .. Oß7Ö 
«   s «   «5 

is often employed to define the "cross product" between two four 

vectors a , b , e.g., ^ x jg, is the vector 

7<3ß UxD" • ^S 

By the outer product notation a. & fc we will mean 

(***)<* = *a*ß 



For a second order tensor-   A^   and a four rector ve will ssan by 

the notation   fe x &   the second order tensor 

<**6)op s-  «tfr*8^ 

*ad by & x & the second order tensor 

where w© raise and lower Greek indices with the metric (7 ) ~  (7^). 

a 
If A_ is a second order tensor and a  a vector by £ & we aean 

the vector 

For two vectors a , b  the inner product a. • b_ is defined by 

a • b * a b. 

Units 

For simplicity the speed of light c is set equal to unity, 

c » 1 . In the electroemgaetic section of this article latlonalized 

natural units are ««ployed. Accordingly we take the dielectric 

constant of free «pace c = i and since c • 1 , the peraeabllity 

of free space u * 1 • 



CBaFTEB X 

RBIATIVISTIC KINEMATICS CF A CÜÜTlJPJOUö MEDIUM 

Motion 

Although some accounts on the relativistic treatment of the 

dynamics of a continuous medium may be found in various toxts on 

relativity (cf. Miller [Ik],  Tolman [27], Bergmann [18], Landau and 

Ufshits [15, 28], Synge [12]), very little discussion has been 

directed towards a relativ!stlcally invariant kinematics of a con- 

tinuous body, lb« present chapter is, therefore, devoted to a dis- 

cussion of deformation and motion (kinematlca) from the point of 

viev of the special theory of relativity. 

In classical continuum mechanics the deformation of a body is 

described by specifying the mapping of one configuration of a body, 

B , onto another configuration, E. • 

Fig. 1.  Deformstion 

The configuration B , called the reference state, (usually taken as 

the undeformed body) can be made explicit by specifying the rectangular 

coordinates X^ , (K - 1, 2, 3) of a set of material points, (B) , in 
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throughout body 1 except possibly sons singular surfaces, line« and 

points. In fact, unless otherwise stated we shall not only assune 

the validity of (1.3) throughout B but also the existence of partial 

derivatives of (l.l) and (1.2) as nany tines as ve need. 

In classical Mechanics the parameter t is identified as tins. 

Here it is considered as the fourth coordinate in space-tins 

x*1 * (xk , ct) , (set c = 1) vhich has the nstric 

(1.*) /*• 7, »v 

0 0 

0 0 

1 0 

0 -1 
-J 

(C «I) 

fhe following convention is used: the snail Latin subscripts or 

superscripts will always assuns the values l, 2, 3 . They will. 

signify the spatial coordinates of the space-tins of events. The 

snalj Orttk subscripts or superscripts will always assune the values 

1, 2, 3$ k .    They will designate the coordinates of space-tine. 

They will be raised and lowered by the netric 7^v . The large Latin 

subscripts or superscripts assune the values 1, 2, 3 And will be 

raised and lowered by the Xronecker delta Ö-. . They will signify 

the coordinates of the reference state. 

Siniliir to (1.2) the it verse notion of a continuous nsdlun .nay 

be described by three functions 

MPftt 



(1.5)   X* - xV1) (I . 1, 8, 3 ; |i « 1, 2,  3, k) 

The domain of A () is the material tube svept out by the body: 

D a (x^: x i B. , 0 < t < •) in spftce - tine. The range of 

XK() is the set to). In the following it will be implicitly assurad 

that (i D and £ c B and no further reference will be made to 

this fact. 

The three functions A {) are assumed to be invariant functions 

of x^ under the group of homogeneous Lorentz transformations, £ , 

(1.6) 
* • A»vx

V 

a   v    a  v    ..a 
A v *p  = Av A ß " 6 p 

tjiat is: 

(1.7)   xV) - A&) 

Mathematically this is all that is needed to develop a rela- 

tivistically invariant kinematics. However, for a physical theory, 

some meaning must be attached to the functions A () . Physically, 

consider an undeformed body B vhich before deformation is at rest 

in some frame. In ;hat frame the body B is described by a set (B) 

in the three dimensional space with coordinates A . The three 

11 
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functions X () describe the napping of the set D onto B . It 

will be assumed that such a reference state exists. Thus A can 

be used to describe lengths and angles in that frane. 

It is also assumed that (1.5) i> invertible in the first three 

variables x , that is 

k    kz-JC k. 
X   *  X (A , X ) 

(1.8)    det (xk K) / 0 

xk   g ox^X*. x*) 
,K   ax* 

World Lines, Velocity, Deformation Gradients 

It is now meaningful to define the world line of a particle A 

by the curve in space - time defined by 

(1.9)   AK - xV) 

The particle velocity is defined as 

(l.W)  »k • *fofc*> 
äx y* 

The world velocity vector is 



ua(xV)    «    { is*    , *        } 
Vl-v 

(l.U) uVl    f   ua(xV), xk) 

a 
VL   u. '   -1 

JT     ,    u 

Since   u (x )   is the unit tangent to the vorld line passing through 

transforms as a four vector under Lorentz transformation. 

The following notation is convenient.    Consider a tenser function 

•  • • (x*1)     ve define 

(1.12) * a   s 
*(x*) 

x»/x* 

From (1.8) the function • can also be considered as a function of 

A , x . übe same symbol * will be used for both *(* ) and 

• (xk(X*, x*5 , xk)  = • (XK,x*f) . We define * , and §L  by 
ax 

,   . a»(XL, x^) 

(1.13) 
7 

*      = *(ft«*) 
c7 ^ 

J- f X* ; x* 

Obviously the four numbers (A , )    (K fixed) are components of 

a four vector. Using (1.7), (1*8) and (1.10) one sees that 

k   _  k  _K  A k 0 = x ,. = x „ T   ,. + v A ,K" ,k 

ft*  • x*   - x*  X* 

6KL S **,!. " * ,1 » ,L 
Xs -' 



- ssflSS. 

1* 

Thus the following useful identities are derived: 

xk .   X* .    =    5k 

,K   " ,1 ' i 
jr 

(1.1*)        X1 . x1 T      
=    * L 

The laa* equation yields the identity 

(1.13) *a>?a   •-   o 

Material Surfaces and Volumes 

It is convenient to introduce the invariant derivative 

(1.16)   D • 5 u* • _ 

If • is a tensor under Lorentz transformations, D# is a tensor 

under Lorentz transformations. This is the relativistic generaliza- 

tion of the material derivative =»    >  in *me* 

The concept of a material surface is important for the formu- 

lation of the dynamical lavs of a continuous medium. 

WftillUMMHHM>n*>1'"""""''"""'' 
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De f.   A surface f (x ) s 0 is a material surface if and only if 

(1.17)  f(xV, **), *)   s 9fA 

A necessary and sufficient condition for the surface f(x ) « 0 

to be material is that 

(1.18)   Df » 0 

The proof is obvious. 

From (1.17) or (l.lB) it follows that if the surface determined 

by   f(x ) = 0   is a material surface, the surface   f(x ) = 0 , where 

x     is related to   x     by (1.6), is also a material surface.    That is, 

the concept of a material surface is invariant ruder Lorentz trans- 

formations . 

A material volume is a three dimensional volume containing 

material points. 

Decomposition of Vectors 

A four vector   f     Is called space-like if   f   f   > 0 , null if 

f~ f   * 0 , and time-like if   f   fa < 0 .    From (l.ll) the four vector 

u     is a unit tjme-like vector.    In the sequel it vill be found convenient 
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to decompose all vectors and tensors Into space-like and time-like 

components. 

An arbitrary four vector F  can be decomposed Into a time-like 

a 
component parallel to u  and a space-like component perpendicular 

to u • To this end we introduce the projectors S _ 

(1.19) OTT nO >a . a ,a 8P   *- v  % = 8p + u up • 8p 

The projectors satisfy the identities 

(1.20) 
sßsr 

Va 

,a 

up s°   *   0 

a 
In general the four vector F  can be uniquely written in the form 

(1.21) 

f    - f° + u
a 

f ua « 0 

From (1.20) and (1.21) it follows that 

(1.22)   f • - /* u a 

(1.23)   f° • Sap^ 

It can be easily seen that 



**n  > o 

That is f  is space-like or a null vector (light signal). 

From (1.15) and (1.19) it follows that 

(1.24)   aP X*  = X* a  ,u    ,a 

Therefore the vectors x* 
>» 

are space-like. 

Defomation Tensors 

The deformation of "bodies can he described by the deformation 

gradients A   . The invariant strain measure (Toupln [ll]) 

-1 
>n 

KL 

(1.25) 
=    7**„* ><*    ,0 

C1RL   =   C1DC 

is the relativistic generalization of the inverse Green deformation 

tensor.   These are six Lorentz invariant scalars.   From (l.l^)_ 

(1.26)        C^1    «    b1* X* .  X1 , - Xs .X1.   *(&iJ . v1 vJ) Xs . X1 . 

From (1.26) it is clear that   C       is the inverse Green deformation 

tensor of a local instantaneous rest frame. 



From (1.26) ve calculate 

det (CKL) 2 det (o1J - v1 v4) [det (3* J]2 

(1.27) ~      r  2 
s (1 -v2) [det (X* .)]2> 0 

The inequality follows from (1/8 )2 and the physical assumption that 
o 

no body can move faster than the speed of light (v < 1) . The 

matrix C1^1 is invertible and it is easily verified that 

(1.28)   C]CL i (6y + uiuJ)x
i
>KxJ). 

i« the inverse of C E , i.e., 

(1.29)   CKMC
1ML
 = C"4^ -   *\ 

The six quantities   C^    are scalar invariants under the Lorentz 

group since they are invariant functions of the invariants    C 

The matrix C,„ has a very simple physical meaning: it gives 

the changes in lejgth and angle due to the deformation as viewed by 

an observer in a local instantaneous rest frame.    To an observer in a 
It s 

local instantaneous rest frame    v    « 0 ,    u    • 0    and (l.26) and (1.28) 

revert   to the forms known to us from non-relat±vistic continuum 

mechanic« for which the connection of       C--       to length and angle 

changes   is   well known (cf. Eringen [   7       Art. ?])• 

I 
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The invariant strain tensor   E       is defined as 

(1.50)       Z£a   •   C^-0^ 

The strain measures which have been introduced so far are the 

relativistic generalization of the Lagrangian strain measures of 

classical continuum mechanics. To introduce the Eulerian strain 

measures, note that 

(1.31)  c^ = B^I^^ 
k CU      ,K      ,L 

This may also be expressed as 

(I-»)        CKL    '    TOßX\^L 

where 

(1.53)      xK   *   8kx,K 

With the help of (1.1*) and (1.20) it i* simple to show that 

(1.5») 

a 
a K 

^^^^^aVHpsj^sesvv^v 
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a 
Theorem:       The quantities   x R.    (K fixed)    are four Teeters 

Proof: 

?    --   A0. xP 

From (1.3*0 *• tore 

xa   X1       •   Sa 

K      ,ß ° ß 

Since    S _    is a tensor 
P 

Thus 

<*•*«*. = sa
P • AVr/^ -n 

since 

?,„ • v'., 

But from (1.3*0. 

20 

,K 
* ,ß X L ° L 

Consequently 

8 ßX L A°7 »'* ^ ^L 
.8      7 A     x'_ 

7      L 
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or in vie* of (1.3*), 

.a   ^ 
XK   "   Aß~K 

which is the proof.    Thus   r       is a tvo point tensor.  (The fact 

that   x       is a vector under change of   A  , with ß fixed, is mo. 

or less obvious). 

5toe relativistic generalizations of the Cauehy deformation 

tensors ere: 

(I-»)     .„ s a^i«   ^ 

(1.36)      7»   E   »Kl«\»P
L   s   S^sP/c" 

where 

•Jki   m   _KL   k       i c        =B      xx 

From these and (1.3*0 we can establish the identity 

4 
(1.37)   c^c7ß » S*ß 

Ike following interpretation can be given to «•  * An infinites- 

imal spatial measurement by an observer in a Lorentz frame is the 

k'     k k   k   k 
separation of two simultaneous events, (x , x ) and (x •*• dx , x ) . 

.....,.• .. mufii - 
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Since two events simultaneous in one Lorentz frame are not necessarily 

simultaneous in another Lorentz frame, the act of spatial measurement 

is not an invariant operation. The difference between two events 

xp and x   + dx  is a spatial measurement in the local Instantaneous 

rest frame at x     if and only if 

uß dar • 0   at at 

If the two pairs of events    [x   , x^ + dar ]   and    [x, x   + dar ]   are 

spatial measurements of two material lines in the local instantaneous 

rest frame at   jc , then 

1     2 
c_ (fix05 dxß 

/^diad? A^J"«? 

is the cosine "between the material lines before deformation. 

Invariants of Strain, Volume Change3 

By use of the defining equations (1.35), (l>%)  of the Cauchy 

defor«At ion tensors and (1.25) and (1.32) of Green deformation measures 

the relations of invariants cf \   And £ to those of material strain 

measures can be deduced. Thus, 

'• JWW 
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(1.38)  tr£ * trf     ,  tr £2 = tr (2)2  ,  tr £3 = tr (^)5 

(1.59)   tr £ * tr £  ,  tr / « tr (C)2  ,  tr £3 - tr (C)3 

where we used the notation 

trt   •"*"«     ,     tr£   .   caa     ,     tr*2   .   ca
& c^     ,    .  .  . 

-1 
tr£ . £K     , tr £   *   CJ 

*      •  •  • 

Suppose that the material volume   dV   is deformed into   dv   in 
a 

the Lorentz frame x . In an instantaneous rest frame coinciding 

with x  the deformed volume is dv  given by 

(l.*0) 
dvo 

where   J   is the Jaeobian def iiied hy 

&.*)      J   -   £«<*"   «^ I«    *    x"jr u, 

Alternatively 

(1.42) 
dV 
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vhere 

W)      i  - | «"*«<** «VL*7,,«6  " J 

From (lAl) and (1.1*3) ve can also deduce the Identities 

<l-*>     «*rB
uB  •  I'm****** 

(l>3)       «a«   -   J c x°K x\ «'„ u! 

The above identities are useful in the reduction of constitutive 

equations for Isotropie materials. 

Compatibility Conditions 

In classical continuum mechanics the compatibility conditions 

for the deformations tensors are deduced from the requirement that 

the opace remain Euclidean. Ibis is not the case in the relativistic 

theory presented here. Suppose the deformation tensor c^ is given 

at each event (jc) , then the system of equations for * (x.) 

&•*>  °ce - «tt^a^ß 

is over determined.    Differentiate (1.46) with respect to x7 
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fc*»  <W ' **.*„*****.*<>*,» 

Define a Christo*fei symbol of the second kind by 

(i.W)     [*.rlft « | IV.P + cs>r,a - «»,,' 

üben using (l.V?),  (1.^8) we see that 

<i.W      [<*,r]£ -  «in.'/* ^,7 

But (1.1*9) is equivalent to 

(1.50)     x*      - ^ (/,} 

where 

(1.51) (a
7p)      S   «* C0P,5]Ä 

is called Christoffel's symbol of the second kind. 

übe system (1.50) is completely integrable if and only if 

(1.52) 
**,, <aV,5 + **,* l.V <*V 

• **,, t«\\f>+ *K,7 <«V <«V 

(See Eisenhart [29], p. 1 and pp. 186-188.) 
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Thus a necestary and sufficient condition that (1.50) la completely 

integrable is that the "curvature" tensor vanish, i.e. 

(1.53)  Jppra » 0 

where 

a.*)   i°ß76. 8«t ttßv,7. ^ • (0
T
7Hßv (AH A)] 

This is the relativlstlc generalization of the compatibility condi- 

tions for c^, . 
op 

Bates of Deformation Gradients and Strain 

The following lemma is useful in the kinematics of continuous 

media 

(1.55) 

To prove this we note from the definition (l.l6) of the operator D that 

According to (1.15) the first term on the right hand side is zero and 

•• 
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we get (1.55)« 

A dual to (1.55) i» 

(1.56)   SV**« • «V°,p 

For the proof of this we use (l.j^L. 

DtX*.**) » DX*. xß +Y*  Dxß  - 0 
,p  L ,p  L    ,p    L 

Multiplying this by   xa
K   and using (1.55) and (1.5*0 we obtain (1.56) 

It is useful to introduce 

(1.57)      S°e   -   Sg   ua
u P P >H 

in terns of which (1.56) may be expressed as 

(1.58)  Sap D /K . S°p *\ 

Using (1.3*0^ we have 

a   K - x K D ua 

When this and the expression (l.l9)-,are employed in (1.58) we find 

(1.59)   D xr   - u*p 3?K + u* «PK D uß K 
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übe invariant derivative of C   may now be calculated by 

(1.60)  DC^ - ^«V^ 

where 

(1.61)  d^ • |(V + V) " *(<*) 

übe proof of (l.6o) is immediate from taking the invariant deriva - 

tive of (1.32) and using (1.59). 

The tensor & is the relativistic generalization of the deforma- 

tion rate tensor. It is clear that for locally rigid motions D Cg- * 0 ; 

consequently, we have 

Theorem:   A necessary and sufficient condition for locally rigid 

motion is 

(1.62)   S^ - 0 

This is the relativistic generalization of the Killing's theorem of 

differential geometry. 

The relativistic generalization of spin is defined by 

(1.63)  ^ • I (S^ - u^) - S(c^j 



Upon adding this to (l.6l) ve have 

(1.00    ^ - «* + 5 

The invariant derivatives of various strain Measures and other 

tensors can be calculated by use of the apparatus set above.    Here 

ve «lve 

(1.65)      D ««* + »T,p V * tt?,a erP   "   ° 

which is obtained by taking the invariant derivative of (1.55) and 

using (I.??). This expression will be found useful in the treatment 

of Isotropie Materials. 

Another useful result 1* the identity 

(1.66)   Dj - - j u 
*a 

I 

vhich can be proven by (lA3) and (1.59). 
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CHAPTER II 

REIATIVISTIC BALA3CE LAWS FOR A CORTUKJOUS MEDIUM 

General Balance Laws 

In nonrelativistic continuum mechanics the balance laws are 

written in the form 

(2.1) oT    J    * dv    '  /    i * d&+/    B dV 

V(t) S(t) V(t) 

where • is some quantity whose influx is i and whose supply is s • 

Equation (2.1) holds for an arbitrary material volume v(t) whose 

enclosing surface is £(t) . This equation can be integrated from 

t. to t9 for arbitrary tn < t_ to obtain 

t2 t2 

(2.2) J     • dv - j     • dv -  f dt j     i • da, = f dt f 8 dv 

v(t2)   ?(tx)    tx   5(t)      tx v(t) 

Under the proper smoothness conditions the left hand side of (2.2) 

can be replaced by an integral over the three dimensional circuit in 

space-time enclosing the four dimensional volume (called material 

tube) swept out by the material volume v(t) in the interval 

(tr t2) . Hence 

f****   « fu*k 

(2.3) u 
dVL  • dv dx 
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where 

•k « . ik + # v
k   (k • 1, 2, 3) 

(2.*0 

and ds_^ and dv. respectively denote the elements of three diuan- 

sional oriented surface and the volume. 

To obtain (2.3) we recall that a material volume in space-time 

is a three dimensional surface with parameti Ization 

xk = xk (X* f)     K - 1, 2, 3 

(2.5) 
x ~   T (T = constant) 

Also a three dimensional surface in space-time swept out by a material 

surface can be parametrized by 

(2.6)    x  • x (5T (ux, u2), n.)  ,  x 5 u5 

so that the oriented three-dimensional surface element da,  can be 
3u 

expressed by 

[a.     ß        y ) 

•   % • w H ^ l3 
duldu2du3 

where a bracket enclosing indices indicates skew-symmetry as defined by 

kl<#7)   s l (Aopy + A7(* + Aßra _ Aßa7 . Arßa _ ^ 
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übe quantity • will be said to be conserved if i = 0 , s = o . 

From (2.3) and (2.4) the quantity • is conserved if and only if 

(2.8) 

/'«> 

•   •  •  U 
o 

* 0 

•  • - *a u„ * • Vl - v2 
o       c 

So far all this holds for either classical continuum mechanics or 

relativlstlc continuum mechanics, übe only distinction between them 

is the group of transformations in space-time for which the integral 

(2.9)   • [•, s3)    = J*« *3a 

has a specified transformation law — l..e Galilean group for classical 

mechanics or the Lorentz group for relativlstlc mechanics. In the 

following subsections the .laws of conservation of mass, balance of 

energy-momentum, balance of angular momentum, and the second law 

of thermodynamics are formulated in a relativist!cally invariant 

manner. In general, these laws will have the form (2.3) with a 

transformation law for a set of quantities of the form (2.9) specified 

for the Lorentz group. 
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' Conservation of Particle Number 

In nonrelativistic mechanics the postulate of conservation 

of mass and the conservation of the number of particles are equivalent 

for nonreacting systems. It is will known that this is not th* case 

in relativetic mechanics. In relativity the mass is closely related 

to the energy of a particle. In general the mass, even the rest 

mass, of a particle varies. The concept of the non-creation or 

indestructability of particles still remains valid in classical 

relativistic theories of nonreacting substances (the word classical is 

used in opposition to relativistic quantum theories where the idea 

of creating or destroying particles is essential). It is assumed that 

the number of particles contained in a material volume V(t) is 

a constant of the motion. 

To formulate* the law of conservation of particle number we 

assign, to every three dimensional surfac : s, , a positive scalar 

H[s,3 of the form 
3 

Each law formulated in these subsections is deduced along the 

lines leading from (2.1) to (2.5) from the corresponding classical 

law. lhough the correspondence (2,k)  is usually listed, it should be 

noted that this is not needed for a relativistic formulation of the 

laws of mechanics. Only the form of the equations is necessary. For 

a physical feeling and interpretation of the various components of 

space-time tensors and vectors the correspondence (2A) is indispensable 

and will usually be given. 



3* 

(2.10)       H[s5l    z  J n
a ds^ 

§3 

which is postulated to be invariant under the group of Lorants 

tranoforoations.    The lav of conservation of particle-number states 

that for every material volume,    V(t) ,    H[s,]    is conserved. 

From (2.8) this is equivalent to 

/' 
n   ds^ 

(2.11)       na   *   nQu
a 

n      •    - n   u    > 0 o a 

where the integral is over an arbitrary material tube. The scalar 

n is called the rest frame particle number and is related to the 

particle number , n , by 

(2.12)   n -   D° 

The use of Green-üauss theorem in the integral equation (2.11 )„ leads, 

in the usual way, to the following differential equation and Jump 

condition: 

(2.13)       na n    «   0     ,      [na] Z across    E (J)    «   0 

where    [f ] i f    » f"   denotes the Jump of   f   at any discontinuity 

surface   l(x^) » 0 . 
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It is convenient to write (2.1?) as 

(».*>  »n0*»0S
Bp • o 

wlwre the following identity has been employed 

(2.15)   JPß «' uß 

By using (1.66) one can show that (2.1*0 has a solution of ths form 

(2.16)  n0 = n°j 

where n  is a function of X . 
o 

In the following, various scalars • will appear in the balance 

equations. It is convenient to define another scalar •  related 

to • by 

(2.17)   • « n • 

From (2.1*) 

(2.18)   <•«*)   = n0I»0 

This identity is used frequently in the formulation of the remaining 

balance laws. 
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Balance of Energy-Momentum 

In relativity theory -he law of oalance of momentum and energy 

are closely connected. They are the components of a four vector. 

For physical reasons it is expected that the time rate of change cf 

the momentum is equal to the forces applied to the body and that 

the time rate of change of the energy is equal to the work done on 

the tody. In a classical nonrelativistic theory of a continuous 

medium these lavs take the form: the time rate of change of the mo- 

mentum contained in a material volume is equal to the sum of the 

forces applied to the volume. These forces can be decomposed into 

tvo parts, one arising from surface tractions and the other from the 

body forces. The time rate of change of the energy contained in a 

material volume is equal to the heat flev through the surface plus 

a heat supply inside the volume plus the vork done by the surface 

tractions and body forces. In nonrelativistic mechanics the momentum 

is usually due to the motion (kinetic momentum) and the energy is 

the sum of the kinetic energy and the internal energy. In relativlstic 

theories it is possible to have momentum of nonkinetic origin. There 

is no advantage in decomposing, a priori, the energy momentum tensor 

into kinetic, thermodynamic, and other parts. 

The energy-momentum of a material body is determined by assigning 

to every öhree-dimensional subspace, a, , of a four-dimensional 

material tube four functions P^[e,] which are components of a four 

vector under Lorentz transformations. The functions P^[a,] have 
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the form: 

(2.19)       I^Uj]    *  J ^ dsJv 

'5 

where   Tr     is a second order tensor.    The balance of energy-momentum 

states that for every material tube we have 

(2.20)       f **V <UJV    «    f J** dv4 

vhere the four vector r1 represents the body forces and energy 

supp.iy per unit volume. 

In nonrelativistlc continuum mechanics we have the identifications 

(2.21)   4*.   p1 , ^  - -t1J + p
1 v*    ,   TW • e , 

V 

and 

(2.22)   f1 « f1  ,  f  • h • X • X 

vhere p  is the momentum density, t * is the stress tensor, e is 

the energy density (internal plus kinetic) and q  is the heat flux, 

1r    is the body force and h is the body heat supply. This Identlfl- 



cation is useful for establishing a familiarity vlth toe physical 

meaning of the components of the energy -momentum tensor j however, 

it is not essential for a treatment of relativlstic mechanic«.    The 

only assumption employed in decomposing the energy-momentum tensor 

is the existence of a world Telocity vector in the four dimensional 

material tube in space-time. 

In the usual manner (2.20) leads to 

(2.25)        #V „    »   f**      >      [T^V] Z      • 0    across    2(x^) r o 
»v -«.  «w , v 

The tensor TT^ can be decomposed into a scalar, two spatial 

vectors and a spatial tensor by applying the projection operators 

Safl . To this end define 
P 

(2.2*) 

w  5 ^uauß 

Pa i -S«^ru 

t*i -Sa7S
ß6T75 

It is easily shown that 

(2.25)   rf* » "«°u? + uV*pauP-t 
op 
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It should be noted that this decomposition is perfectly general and 

depends only on the character of the world velocity field. Ve have 

the following physical interpretations: The tensor m u u  is the 

kinetic energy -momentum tensor with the nass density given by the 
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famous formula of Einstein E = mc Thus there is a contribution 

to the mass density due to the internal energy of the body. Tbe 

four vector q  in the local instantaneous rest frame reduces to 

i i ß 
[q , 0] ,  where q  in the heat flow vector. Thus q  is called 

the heat flow four vector. The four vector p  becomes [p , 0] 

in tbe local instantaneous rest frame, where p  is the nonmechanlcal 

momentum. Thus p  is called the nonmechanlcal momentum four vector. 

06 The four tensor ~ is the relAtivistic stress tensor since it 

reduces to 

tiJ  0 

in the local instantaneous rest frame. 

From (2.2*0 and (1.20) the following identities follow: 

(2.26) 

a 
q  n 

a 
P u, 

a 

a 
.aß 

= V      u. 

The fourth component of (2.23), is the balance of energy. Conse- 

quently the first law of thermodynamics is contained in these equations; 

--»*i 



however, it is not the fourth conponent of (2.23).    To obtain the 

first law of thermodynamics one nust take the projection of (2.23) 

onto   u    .    This operation in the relativistic generalisation is 

the counterpart of taking the scalar product of Cauchy's equations 

and the velocity and subtracting the result from the energy 

equation.   We recall that this operation eliminates the kinetic 

energy.    Hence 

V'-,P   -   f*a 
or 

(*.27) (u    T&) Q  - 4* u    m    .    f05 v a       ',ß *a,ß a 

But from (2,25), using (2.26), ve have 

u_ qf®   «    - u u" - q 

(2.28) 
a 

^VP - p° *« - ** VP 

Thus equation (2.27) reduces to 

(2.29)        -(w uß)^ß - qß^ß - pa Du,, + t°* u4 •« -a,ß   *   f   ua 

Define    c   by 

(2.30)       w   •   n   € 
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From (2.1k),  (2.29) becomes 

(2.31)   no De • <^ß * p
P Duß - t* ^   . - f\ 

This is the relativistic generalization of the first lav of thermo- 

dynamics for a continuous medium (see Eckart [17])« 

The generalization of Cauchy's laws can be obtained by applying 

87
a   to (2.23). The  result is: 

(2.32)  v. *P • n0 S°r D(£) • J» u°>ß - ** , * I* ^ ua _ ^ ^3 

Only three of the four equations (2.32) are independent. 

Principle of Moment of Energy-Momentum 

In the classical theory of continuum mechanics, for nonpolar 

materials, there is a balance law of angular momentum which by the 

arguments presented at the beginning of this chapter can be written 

in the form; 

(2.33)  j  xtj Tih ds^ « J  x[j fi] dv^ , (i,J = 1, 2, 3) 

for an arbitrary material tube. (2.33) is the spatial part of the 

four tensor 

.. ...I-IMWH.IIMMIII '-  
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If it is required that the angular momentum Is balanced in every 

Lorentz frame then (2.55) implies (2.5*0.    She remaining tb«ree com- 

ponents of (?.5*0, other than (2.55), i.e., 

(2.55)        <f x[* T1^ ds        •    f x[U fi] dv^ 

are the expressions of equivalence of energy flux and momentum flow. 

If (2.55) is assumed to hold in every Lorentz frame, (2.55) and (2.3*0 

must hold. This would indicate that (2.5*0 must he a basic lav for 

nonpolar materials. 

That there should be a skew-symmetric four tensor balance lav 

to replace (2.55) is indicated also by the folloving argument: 

Consider a closed conservative system. In modern physics the con- 

servation of momentum is interpreted as the invariance under spatial 

translation, vhile the conservation of energy is implied by the 

invariance under time displacements. In classical mechanics this 

leads to one vector lav and one scalar lav because the Galilean group 

is used. In relativistic mechanics this leads to a four vector equa- 

tion since the Lorentz group is used. In classical mechanics the 

Galilean group allows spatial rotations and Invariance under these 

leads to the conservation of angular momentum. The Lorentz group, 

however, allows rotations in the four dimensional space of events and 
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thus implies three extra conservation lavs. (See Bogoliubov and 

Shirkov [21] for an excellent discussion of these points.) Con- 

tinuum mechanics treats open systems. The conservation lavs of a 

closed system are replaced by corresponding balance lavs. The 

balance of energy-momentum for a continuous medium has already been 

formulated. The following assumption formulates the principle of 

moment of energy-momentum which serves as the relativistic generali- 

zation of the balance of angular momentum. 

To every three dimensional subspace, s, , of the four dimensional 

material tube assign a skew symmetric tensor function n^  [s,] 

(2.36) 83 

The tensor M^ is usually vritten as 

rf* -.   xIa I*1* + .°* 

(8'37) J»k   -.   o 

gOPu i§ called the spin tensor (cf.Papapetrou [22]). For nonpolar 

materials a>^    i 0 . 

This tensor Includes such effects as the couple stress and the 

intrinsic spin of continuum mechanics. 
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The lav of balance of scssnt of energy-momentum is that for 

every material tube 

f if*» iB%    •-   JV« f] * I*) dv^ 

(2.38) 
L«*> = 0 

where L   is the four dimensional analogue of the body torque. 

Equation (2.38) leads to 

if*  = «to«*J*xf* 

'(2-39)    /«,. 
[rf**1] 1*0 acrosc Z(fc) * 0 

Using (2.23) and (2.37), (2.39) l«ads to 

(2.40)   s**  -TE(*] a if* 

For nonpolar materials Ii  = 0  and (2.^0) reduces to 

(2.U1)   Tt(*] « 0 

From (2.25),  (2.M) is equivalent to 

(a*)       t[<*]    .0 ,       p°   «   q« 
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Qßu Throughout this work s^^ = 0 . In the case of electromagnetic 

Ofi 
interaction with a material body, a "body torque L  of electro- 

Qßu magnetic origin will he introduced. The inclusion of s^^ is 

necessary if one wishes to formulate a relativlstic generalization 

of mechanical theories of couple stresses. A fuller investigation 

of the properties of this tensor is left for further research. 

Second Law of Thermodynamics 

In modern continuum mechanics the second law of thermodynamics 

is considered to be a restriction on the form of the constitutive 

equations. However, formulation of this law is independent of the 

character of the media under consideration. This law is expressed 

in the form of an inequality called the Clausius-Duhem inequality 

which has the form (2.1) with the equality replaced by an Inequality. 

To formulate the relativlstic extension of this inequality, 

assign to every three dimensional subspace, B, , of a material tube 

a scalar invariant H[s,] of the form: 

(2 M)       H[s3) » J   ifds 5a 

The second law of thermodynamics is the statement 

(2.M0      (   ^a<iß3a+   /   r d%   *  ° 

111   IW—II 
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for every material tube. Gere tbe acalar Invariant r la tbe supply 

of entropy from extraneoua source*. Inequality (2.bk)  leada to the 

local lav 

(a.*5) 
n«ö+r > o 

h°i 2^0 across    l(xM) s 0 

It la convenient to decompose    t|     into Ita apace-like and tine-like 

components. 

(a.W)     ,a = sa
p if5       , n0  = -ia ua 

80 that 

(2.V?)       V1   s   nQ u^ + a11 

A simple thermodynamics process ia one for which 

M h 
m*    - äl        r - -2. 

(2.U8) 
no = **%   '  e > ° 

The quantity   9   ia a acalar invariant called the temperature, and 

h     ia the heat aupply tern»     Define    «       by 

(8.*9)       \    •   n0 «»„ 

<:«* 



The second lew (2.*5) Is then 

(2.50)   a# DH^ • s
ß  + h * 0 

For a iinpl* thennodynaaic process (2.50) becomes 

(2.51)  n0 Dn^ • (£) • f * o 

«7 

This is the font of the second lav introduced by Eckhart [17] for 

fluids. Eliminating hQ   from (2.31) sad (2.51) ve get 

(2.52)    V(^.j*) -$•,„--y5  +
-T

ä£
 *° 

The inequality (2.52) is useful for the reduction of constitutive 

equations. 
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CHAPTER III 

CONSTITUTIVE THEORY OF MECHANICAL MATERIALS 

General Principles 

In general the system of balance lavs proposed in Chapter II 

is inadequate for the treatment of problems of relativlstic contlnua 

except in some special cases. The properties of the medium are 

brought into consideration through a set of constitutive equations. 

In general a constitutive theory should satisfy certain principles : 

1) Principle of Causality:  The behavior of the material at 

the event £ is determined only by events lying in the past light 

cone at £ . That is only by those events £ which satisfy the 

following inequalities. 

(x - &) • (x - %)    <   0 

where   u,   ip the world velocity at   jc , 

il)   Principle of Locality:      The behavior of the material at 

an event depends strongly on the properties of the material_in„ the 

neighborhood of the event.       __   

ill)   Lorentz Invariance:      The constitutive equations are covariant 

under the orthochronous proper lnhomogeneous Lorentz group, i.e., the 

For a discussion on non-relativlstic constitutive theory see 

Bringen (7, Ch. V] and [9]. 
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group for which det £ * +1 , A . > 0 . 

iv) Material Invariance: The constitutive equations are invariant 

under the symmetry group which characterizes the material in the 

L&grangian frame A . 

v) Consistency: The constitutive equations must be consistent 

with the balance laws of particle-number, energy-momentum, moment of 

energy-momentum, the laws of electromagnetism (to be formulated in 

the next chapter), and the second law of thermodynamics. 

vi) Equlpresence: An independent variable that appears in one 

constitutive equation should appear in all constitutive equations 

unless excluded by one of the above principles i. - v. 

A word is in order about the requirement of invariance under 

Lorentz transformations. In the modern theories of continuust 

mechanics the constitutive equations are covariant under rigid body 

motions. Although it appears that classically the invariant group of 

mechanics is the Galilean group [50], [5l]> the formulation of modern 

continuum theories decomposes the forces acting on the body into 

external forces and internal forces and assumes that the internal 

forces are objective under ri^id motions while the external forces 

are not objective [52]. In this article we make no such distinction 

between forces. The  objectivity under Lorentz transformations is 

adequate for the theories presented in the following sections. 

In the next two subsections, relativistically invariant consti- 

tutive theories for thermoelastic solids and thermoviscous fluids 



are presented* These are staple relativistic generalizations of the 

corresponding classical theories of nonpolar materials for which 

s°^ «0 , if* • 0 . Thus (2.42) is valid. 

Theraoelastic Solid 

For the construction of constitutive equations of a theraoelastic 

solid, an appropriate set of independent variables is: 

(3.1)     ej^;eß, xß 

where 

(5.2)     \ «  sß
a(e>a+eDua) 

* 
DEfce choice of 9a   as an independent variable appears to be a natural 

p 

one through the examination of the second lav of thermodynamics (2.52) 

for nonpolar Materials: 

6 flft 

(3.3)      n0 (D^, - | B.) •- £ \ • V  ^   2 
D 

vhere (2.42) has been used. 

We nov vrite constitutive equations for the dependent variables 

Oj   as 
f , 1 0 , q , t   in the general forms 
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c = c(e , x* ß , eß , xß) 

(5A) 

q » q (ö , x p , eß , xß) 

The invariance of (3 A) under space-time displacements eliminates the 

dependence on x . Thus (3.*0 beconss: 

\o    * W ' ^ß ' *> 

(3'5)   q° • q"(. , X*fß , 0
K) 

toß , .aß t*(#,i*     fi 

where we have made the variable change 

(3.6)   e* = xKae
a 

By chain rule differentiation and the use of (1.55)» the second law 

of thermodynamics (.^.3) reduces to: 

(3.7) 

•^•v-^sW-^ 

>0 

- s (t* + n. -S- x* J A me1. > o 



where 

(5.8)  t0 « « - « \o 

(3.9)  Sc ' ^"a 

quantity *  ii called the free energy. 

At any event £ the following quantities 

(5.10) 6 ; De ; X*  ; 6* ; De* ; DX* Q   (K - 1,2,3 J CB . 1,2,3» 

are independent in the sense that there always exists a aotion such 

that for an arbitrary set of mimbers 

(3.11)  T ; B ; !*a ; T* ; AK ; D*a (a « 1,8,3,* ; K - 1,2,3) 

subject to T > 0 , det {7     r  I*ft) > 0 , there exists an allowable 

motion such that 

(3.12)  • - V J M - 1 I iF a • 1*, J 0K - T* ; DeK - AK 5 Bt* Q - D
K
a 

at an arbitrary event & . The inequality (3*7) contains term« of 

the form: 

Ml UW 
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(3-13)  g( ) y + f ( ) > o 

where y is fron the set (3*10) and g( ) and f( ) do not depend 

on y . Since y is independent in the above sense, a necessary 

and sufficient condition that (3*13) holds, for arbitrary values 

of y , is that 

(3.14)   g( ) = 0   ,  f( ) * 0 

A repeated application of this argument to (3*7) leads to the follow- 

ing result: A necessary and sufficient condition that (3*7) holds 

is that: 

dt      of 

(3.15) 

00   " W 

ß 

S? 
a*. 

a lK 

The equation (5.15^ iinpli.es   *     is independent of   0^ .    By uaing 

(2.26), we have 

(3.16) 
*o up    =   0 

We al60 note that   t _ » t_^ .    Consequently we have the following 
op       pot 

results 
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(5.17)       t^    =   nQ   -^   87(aX |ß) 

(5.18)    jjr Si/.ß] s ° 

The most general form of the constitutive equations for an 

anisotroplc thermoelaatlc solid satisfying the requirements of Lorent? 

invarlance and nonnegative entropy production is the folloving; 

1. The free energy if     has the functional form: 

(3.19)     *0  • •0<e,£L)     ,     P-  «  »"*«*. 

06 ii.    Ifce entropy    TJ       and the stress tensor   1,     are determined 

from the free energy   #     by 

<'-20>    "oo • -ar 

(3.21)        t_    =    -2n   XK     XL       -2- op o     ,a     ,p    .^ 
OC 

ill.    The heat flow vector    q     has the form: 

(3.22)       ^    •   «fcX* 

where 

"XKL      JC, (3.2:,)        Qj,    •    Qf(#, C*1*!  eH 
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and satisfies the inequality 

(3.210   QK *  £ 

The Inequality (5.2*0 implies that 

(3.25)  Q^e , cF1 , 0) = 0 

Ths proof of statement (i) follows froc (3.15),» »ad Lorentz 

invaricnce. According to (3.15)2 *• have 

*o - V* • **,«> 

Now •  is an invariant function so that 

for an arbitrary Lorentz transfonaation A . . There exists 
P 

at each event & a Lorentz transformation, A, , such that 

v *, • • 
From (1.14) the matrix x    is invertible, therefore it has a 

unique polar decomposition 
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where 

v^ v\ . im 

and \i 

«Li«*1    •    ftKL        •      «Ml1^    S    6J1 

Thus 

RuA/xK
ft  . v*1 

i        >P 

Therefore at each event   jc    , there exists a Lorentz transforsation 

A a   such that 
P 

A*5 . ^A/ , ä* s a* 

and 

Thus t  can be considered as a function 

Since v^ is a function of C we have the proof of (i). The 

proof of the first part of (ii), (eq. 3.20), was already given by 

(3*15)* The second part (eq. 3*21) follows using 

3rß  £»   'ß M
  'ß M 

I 



in equation (5-17). Equations (3.16) and (3-l8) are nov satisfied 

identically. The proof of statement (iii) follows from the fact 

that ©-.(0 , A   , 6  ) is an invariant function under Lorentz 

transformations: 

V6 • V xK,e • «K> = V • xK,a . <K> 

Using the same argument that was employed above for % , Q  must 

have the form: 

-1 
^ = ^(e, c tt , 6K) 

Therefore (3.22) and (3-23) follow. 

The inequality (3.2*) implies that if *2 
s 0, = 0 , 

Q1 > 0 if  e, < 0 and Q < 0 if e > 0 .  If we assume that 

K "i-l JTT 
Q is a continuous function then Qt(e ,  C  J , 0) = 0 . A similar 

2      5 
argument being valid for Q  and Q we have the proof cf (3.25). 

The constitutive functions may also be expressed in terms of 
-IKL 

CT . For this we note that C   is invertible. Hence we may write 

(3.26)  *o = *o(e , c ) 

(3.27)   QK • V6'CKL' 6K] 

<3-28>   CKL = '<*XV°L 

Equation (3.21) for the stress tensor becomes in this case 
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(3.29)      t<*   -   2»0 x*K ,\   %L 

•Hie ergumont for material symmetry restrictions follows the 

classical lines for various crystal classes.    In particular, for an 

isotropic material with a center of symmetry   t     is a scalar 

invariant under the full orthogonal group of transformations,     {fl}  t 

*MK WKM ö K 

The free energy is thus a fu: stion cf the three invariants 

-1 
I.     =   tr £    =   tr £ 

(?.50)       T     =   tr(C)2    =   tr£
2 

-1 
I3    =   tr(£)5    =   tr£3 

For an isotropic material   #      can bf   seasidered a function of 

•   and   c^. 

*o    =   *o(* ' V 

One can also show that (3.21) 10 equivalent to 

a *. 
(5.51)  tß = -2*0   ji  c7ß 

From the reduced form of the Clayley-Hamilton theorem (A.4-1.) 

• 
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we have 

.3    . (^I2) (iftiySfr Il)   s Ix £ g     £ +  — g     £ 

lhe stress tensor t^, is finally 

*, *. *. 
(3.32)       t.    = -ri (1/ + 2IX - 3I0 Ij sr   S^ - nJ2«S -3(l/-LWi]c aß 1 * "3" ^x2 v sg öaß • v*s£ -^I -vsi^ 

*. * 

V^+6li3i;]carc7ß 

For Isotropie materials, following a similar argument to that of 

nonrelativistic continuum mechanics [33]» it can be shown that 

(5.33)   qg . (Kx S°p • K2 c
a
ß + Kj c

a
r c'p) (•  + • Dua) 

where IC. , Kp and K_ are scalar functions of the invariants 

(3.*) 

h ' h ' I3 

* *B *  aß *   Ä   *  a  ß? * 
V V V eacße *r 

The inequality (3•24) becomes in the Isotropie ea*e 

(3.35)   rl ei + ^ 85 + S 93 * ° 

The only other theory of this order of generality is that of 

3ressan [2k],    The stress-strain lav which was deduced in this section 
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fro» the second lav of thermodynamics vas arrived at by Bressan by 

assuming that a stress function exists. The heat conduction lav (3.35) 

is a generalization of the one proposed by Eckart [17]. Bressan, 

as does Pham Man Quan [253, attempts to generalize Fourier's lav of 

heat conduction without any regard for the second lav.  It seems that 

it is impossible to satisfy the second law (as stated by (2.52)) 

without eliminating the heat flux if one assumes their foisu of the 

heat conduction lav. 

Thermovlscous Fluids 

For a viscous fluid with heat conduction an appropriate set 

of independent variables is; 

(3.56)  nQ , 6 , \ ,  d^ , up 

In the classical theory one usually starts with the velocity 

gradients v. . and imploys the principle of objectivity to deduce 
i> J 

that since w . » Vr  •.    is not invariant under rigid motions of 

the spatial frame, it cannot appear in a constitutive equation. By 

* 
starting with u. it is impossible to show that the dependence 

op 
* 

of the constitutive functions on w . can be eliminated by the 
Op 

* 
requirement of Lorentz invariance, Since only d - occurs in the 

entropy production one would expect that this tensor vould be sufficient 

to describe a vide class of simple materials. Thus in the present 

Note that these are independent variables as tensors; hovever, not 

all components of these tensors are independent, cf. footnote, p. 6l. 



* 

framework the dependence of the constitutive equations on    d^ is 

a constitutive assumption defining a class of materials. 

The procedure followed here is identical to that used for 

thermoelastic solids. The second law of thermodynamics for non- 

polar materials reduces to: 

n     dt n   d* n   d*      ,       n   o> 

ß aß 
(3.37) 

<fi *      l/.aß        2^o     aßv*       w   Ä 

- 7 V ? (^+ % sr •  ' dap * ° 
0 O 

where we used (2.14) and 

•o '•   s - " "oo 

At any event x the following quantities 

(5.38)   i   ,   Dt , t. , D'. , d . , Dd       , u , Du, , (i,j '  1,2,3) 

can be varied independently in the 6ense described by (3-10). By 

repeated use of the argument employed to deduce (3.1*0 from (3.13) 

one finds that a necessary and sufficient condition that the second 

law (3.37) is satisfied is that1 

15-59)  \0   " W 

Since all the components of the tensors in the set (3-36) are not in- 

dependent, in deducing (3<U0) to (3.^2) one should consider *  as a 

function of 6  , n , dj. , 6^ ,  v^ . 
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*o s    0 

*Ä 0 
"TT =    0 
d*t 

^0 =    0 

*aß 

l *ß . t* 
* 

< 0 
0 D aß 

(5^0) 

(3.H) 

(3^2) 

(3A3) 

where 

(,.<*) Dt<*  ,  t* • no
2 £ 6* 

o 

is the dissipative stress tensor. 

By using the results given in the appendix on matrix functions 

of Lorentz invariant functions and the conclusions (3.39 to (3.^) 

for the satisfaction of the second law, one deduces that: 

Hie conetitutive equations of a thermoviscous fluid satisfy 

the second law or -cnermodynamics and the requirement of Lorentz 

invariance if and only if 

i. The  free energy if     depends only on the temperature and 

particle number. 

(3.45)  • • t0(f, n0) 
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11. The entropy and stress tensor ar»; catermined from: 

(3^6)  n oo 
O 

ill.    The energy flux    q   and the disslpatlve part of the stress 

1 tensor   -&   have the form: 

*      * ,#      * #      • 

(3.*7) +  VÄ x 4   -4 x £J + U4(i x 4 ; - 4 (i x 4)] 

+   ^ll«£ x I2 &) + (£ x £2 I) ® |] 

and 

ÜM) 

I   •   ^1fi+^2^£+M5ä   i+^£x^£+M5£x4   £ 

/* #.   .*2 *x 

where X., ..., A., and u , ..., Mg are functions of the Invariants 

(3^9) 

* #2 *^        *  * Id - tr 4 , lld - tr 4 , ind . tr g   , e1 . & • £ , 

V * 14 i # «^ • i 4 i * v • ! • (4 i)><(4 i} 

vhere _&, and q must satisfy the Inequality (3^3) 

"Hfe have not assumed that the fluid possecses a center of symmetry. In 

the latter case further reductions are possible. For this UL^ conclusions 

made in the appendix. 
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CHAPTER IV 

ELECTROMAGNETIC THEORY 

The basic laws of electromagnetic theory are the conservation 

of charge, the conservation of magnetic flux, and Ampere's and 

Guass' Laws.    The relativistic formulation of these laws is well 

known (cf. Post [&), Truesdell and Toupin [8] and Miller [I**]). 

Conservation of Charge 

To formulate the law of conservation of charge assign to every 

three dimensional subspace in space-time a scalar function   Q[s,] 

of the form: 

(*.l) Q[s5]    «     J  oa d85a 

64 

whe.-e   a     is called charge -current vector.      The law of conservation 

of charge states that   Q[s,]    vanishes for every three dimensional 

circuit. 

{k.2) £  c* ds 5a   =   ° 

By familiar arguments of the Green-Gauss theorem this leads to the 

following differential aquation and Jump conditions. 
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(*.3) ,      [<J ]    2       =   0   across l(x^) = 0 

a It is useful to resolve the vector   a     into a space-lite vector 

and a time-lite vector, i.e., 

a a    s    - ö   u a 

O«-.*)        JP    S   S^o°        ; f^    *   0 

a    =   n   a o   o 

so that 

(*.5) a     *   n   a   u   + J 

Equation (^.3). with the use of (2.l4) becomes 

(k.6) *0*0+ia
>a   • 0 

The physical interpretations of o and J  are: 

a is the charge density in the instantaneous local rest frame. 

J reduces to [j , 0] in the instantaneous local rest frame where 

J is the conduction current. 
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Conservation of Magnetic Flux 

The conservation of magnetic flux is obtained by assigning to 

every two dimensional sub&pace in space-time a scalar quantity 

$ [s_] , called the magnetic flux. 

C.7)        tt.2l   *  |/ »^ <U2*      ;      »c   s -*c 

•2 

The lav of conservation of magnetic flux is the statement that the 

scalar $[sgj vanishes for every two dimensional circuit. 

(*.8)    0 •a6'
J»2ae * ° 

Ely use of Stokes1 theorem, this leads to the well known equations: 

€<**  • «     0 
76,3 

[c0*70 U    Zft    «0       across    «x*1)    =    0 
~      70-  ,ß 

The tensor ^ is physically 
op 

I* 10'   *aß = [dual £ ' £] 

where    £   is the density of magnetic flux and   JS    is the electric field. 

The surface clement of the surface    «2    with parameterization   u ,u^ 

is defined by   dsJ^   .   2 ~ 2 " da '       c^   4uldu2    ' 
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lhat is: 

Maxwell's equations  (4.9) are often encountered in the literature in 

the form 

(4.12)        •  .      + •.        + •      Ä    =    0 

This is obtained by multiplying (4.9), by «„„_  and using equation 

(A.53). Sometimes it is convenient to use the dual of • , • 

(4.13)  «°* =-*€**• 
7& 

In terms of £ and 1 , * is 

•^ s [dual £ , f] 

The conservation ol itagnetic flux (4.9) in terms of   •    reduces to: 

(4.14)        S<*        =    0      ,      £•<*£ 2 . « 0 ,e ,ß 

It is possible to decompose •  (cf. Miller [l4]) into 



 ,  II •• •>— 

© 

<*•»>      •<*   •   Sßua-    «o^ + f<* 

where 

(^.16) 

tfa   -    OB        '    ra w   ' 

v • •«"•*••* ; vuß * ° 
* 

The spatial tensor   •_    is conveniently written as op 

•«    =    «—   « 7 u8    ,   ©" «U   S   0 
(k 17^ 

4toa        1   °£70 A 1   aß/6 * 

The magnetic flux tensor   <t>       becomes: 
up 

7    8 (k.lQ)       ^    =    £ß^-   $auß + 6Qßr5   5^u 

and the dual of   £ f •      ,  can he decomposed into: 

(4.19)       V»    =    ©<V-  ©ßua
+^

B^ru5 

One two (decomposition (k.l8) and (k.19) are useful for the formulation 

of constitutive equations for the electromagnetic quantities and for 

expressing the interaction of electromagnetic fields with matter. In 

terms of E and ]3 the four vector Q a   and <8a are 
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(4.20)    £a= [t*zxa , Li] ,  sa« n-xx* > — > 
>/TT^   N/I-V

2 Vl • v2    Jl-v2 

Upon substituting (4.19) into (4.14) and multiplying the results by 

u and 87 and using (A.26) we find the following equations which 

are equivalent to (4.14).. 

<*.»>    srpSV€    $«'W - ° 

(4.22)       ?» S7jß - **" £ß t>,r • S°ß ,«» • 8 ° u% - »P .» , •   0 

It should be observed that only three of the fair equations of (4.22) 

are independent. 

Ampere's and Gaues' Laws 

Ampere's and Gauss' laws are combined into one Invariant law by 

assigning to every two dimensional subspace   s^   a scalar invariant 

rt.a] 

. 1 (4.23)        T[s2]    *  J tf* dSj^    i      G<*    *   G**   ; ds_ = *« lab      2 -G07& ^2 
T6 

Ampere's and Gauss' laws state that for every closed two dimensional 

circuit enclosing a three dimensional subspace    s. 

- 
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(*.*)      /o^ds^    =  /** ds ** 

The differential form of (k.2k) and the Jump condition* are: 

(*.25)       tf* A * aa     ,      [tf*]    Z A »   0     across    2(xf*)    *   0 

Qß 
The tensor 0  Is the electric displacement-magnetic field Intensity 

tensor: 

(^.26)   0* = [dual % ,  -£] 

where   ß   is the electric displacement and   fi   Is the magnetic field 

intensity.    Explicitly (^.26) gives 

(M7)       ^ - e1Jk H,   ,   G*1 . <P -- D1   ,   0H 3 0 

Similar to (^.15) we decompose G  into 

(4.28)      rf*   « fcpu.  - I"**+ ,<***     v "6 

where 

(4.89)     5*   »  rf^o*.  1** Hy\ 
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In terms of the electromagnetic fields J) and g ,   £)      and ^C      are 

*•»> *'-Ir5i'H' 
#ß a [i-xxa     xvfi] 

Vl . v2     >Tl-v2 

By substituting (U.28) into (^.25), in the same way as done in obtaining 

(k.21) and (1*.22) we get 

(MD *\ Oß,r 
+ ?*r«auß,7 s no°o 

ft.«    ?*7# 7,ß - ?*7H ß % - *% °»ß * »ß »% -<ßa <ß • Ja 

Only three of the four equations (^.32) are independent. 
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CHAPTER V 

ELECTROMAGSSTIC IHTERACTIOKS WITH PONDERABLE MATTER 

The presence of matter In an electromagnetic field has been the 

object of researches since the beginning of electromagnetic theory. 

There are several approaches to this problem. The one that is adopted 

in this chapter vas originated by Lorentz [35l in order to derive the 

electromagnetic fie.i.d equations for ponderable matter. According to 

this approach, the interaction "between matter and the electric fields 

can be deduced from a microscopic model to within the order of approxi- 

mation desired. The form of the interactions so deduce: can then be 

taken as the starting point for the development of a continuum theory. 

The force on a material body can also be determined by assuming an 

effective current distribution and postulating that the body force is 

the Lorentz force on this distribution of charge-current. By redefining 

the energy-momentum tensor one can enow that these two approaches are 

equivalent. A third approach to this problem is to attempt directly 

to write down an energy-momentum for the material body and the electric 

field. Such attempts are usually guided by one of the above approaches. 

There is still no widely accepted form of the energy-momentum tensor. 

The point of view adopted in this chapter is that matter is acted 

upon by forces of various types, one of which is due to the electromagnetic 

interaction with the molecular and atomic structure of matter. By 
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applying the arguments of Dixon and Eringen [6j;, It Is physically 

reasonable to assume that electromagnetic interaction with matter 

(neglecting electric quadrupolea and higher terms) is due to a body 

1 force 

(5.1) ff     =     V** f* +   0- • a,ß a 

and a body couple 

(5.2)        L"v   *   -ir>«vla 
a 

06 where    ir^   is defined by 

(5.3)        G<*   «   •* - T« 

aß The polarization tensor    ir       is a skew-symmetric tensor of the form 

(5A) V*    =    [dual B + dual (jxj) , l) 

where   £   is the polarization vector and   J4   is the magnetization vector. 

This definition of   if®    is that of Lorentz.    It is well known that it 

lacks a symmetry in the transformation of the magnetization vector and 

In body force    f.    of [6, eq.  3.21] we drop the quadrupole moment tensor 

q"    and take    £ » J - d(p X pj/dt   where   £   is that used by Dixon and 

Eringen.    This rate term will appear later in the momentum, cf. eq.   (5.l8) 

below. 
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The magnetic term in the electromagnetic "body force (5.1) is 

based on the Amperian current model. Some researchers prefer a 

magnetic dipole model (cf. Fano, Chu and Adler [26] and Penfield 

and Haus [36]). If one uses this model then instead of (5.1) one vculd 

assums 

f." . & u° -f* »<>) ^p • ( M° uP - OL* »«jj^ • «° *\ 

where f? and JO      are defined by (5.8) and (5.9) respectively. 

Since the existence of magnetic poles is doubted we prefer the Amperian 

model. It should be noted that both (5*1) and the form listed in this 

footLcte for the magnetic dipole model lead to the same form of the 

first lav of thermodynamics (5*22). Thus the conclusions of Chapter VI 

remain valid for the magnetic dipole model. 

the polarization vector. This has no effect on electromagnetic 

phenomena. 

übe balance equations (2.23) and (2.^0) are now 

(5.5)        4*      •   -"* •%,,•* •V" 

(5.6)        T^l   =   TJ»S* a 

06 It is useful to decompose   T       into 

(5.7)        i*   .«fJ* V ua • 5* 

where 

(5.8)      fe   *   ir* ua    ,    ?*   -   S«r sf»8 /
6 



One can also define 

<W>      *a  - I«**^«'   ' IV^»' 

Thus 

! •••!•••! ««Hfl   -a 
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(5.10)       ?*   *   .** Jl     u, 

06 The polarization tensor   ir      reduces to 

(5.11)        l<*   S   r" up - ** u° • «<*76 U(y Uj 

It should be noted that 

(5.12)   9& uß « 0 , ^ß üß s 0 , 5* uß - 0 

Using (i+.l8) and (U-.28) ve see that (5.5) is equivalent to 

(5.i5)   v" » e* + r*  , 9iCi = 6a- <*« 

The spatial part of the four vector 9*       reduces to the polari- 

zation vector and the spatial part of iM>       to the magnetization 

vector in the local instantaneous rest frans. 
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This interaction model is a physically reasonable description 

of a charged, conducting, polarizable, magnetizable material.    The 

following observations allow the construction of various subclasses 

of materials. 

a) If   o   u   so, the material Is charge-free in the 

local instantaneous rest frame. 

b) If   S°0 <r m ja • 0 , the material is a non-conductor 
p 

in the local instantaneous rest frame. 

c) If ff* « 0 (Jta - 0) , the material is unmagnetized 

in the local instantaneous rest frame. 
a 

d) If fP    s o , the material is unpolarized in the 

local instantaneous rest frame. 

From (5.7) and (^.18) one can show that 

uß u       ß  ^    u 

where (k,l6),  (5.12) and (A.36).. of the appendix were used. Therefore 

the right hand side of (5*2) becomes: 

(5.15)      -  *,}*•»*  -  rla6^ - $Jrrt,V* tPKP
l»v?]+Jl[ae»] 

ß ^ ß ß 

From (2.25) the left hand side of (5.2) is 

atmrn» 
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(5.16)       T[<*]   .   u[a f] • P
[a ^1 - t1*' 

Equation (5.6), using (5.15) and (5.16), leads to 

(5.17)       pCa uPl - *ta upl - t[*J    ,    f»   J'[a UPI • &y   T »I« u^l 

- **V] - ^[aepl 

3y taking the projection of (5.17) along u , one obtains 

(5.i8)   pa - 4
a* *>,$*»• &7F* 

Applying the projector    8   to (5.17)> one deduces that 

(5.19)      t[Qpl   -     ^ g*]   +    Jila   ©el 

Therefore a necessary condition that the balance of angular momentum 

(5.2) is satisfied is that (5«l8) and (5.19) are valid.    It is easily 

shown that (5.l8) and (5.19) are also sufficient for (5.2). 

To obtain the first law of thermodynamics, we substitute    f ** + f** 

(where   f ^   is given by (5.1)) into (2.51).    Hence 

n   Dc   + qP - + pa Du„ - t°* u^    «   ir* **   Ä u    -    •/* •**_. tt    - & u o * ,ß     *      a aß <*,3   u a   u n 

•^S.-^ 
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Where (k.k), 0*.l6), and the identity 

(5.21)      %/"^   -   fP**a+ft'i„'****Ba*Sa9'top 

have been employed. To prove (5.21), one uses (^.15) and (5.7)= With 

the help of (*t.l6) and (5,12),the first tvo terms on the right hand 

side fall out almost immediatelyj the remaining tvo terms are arrived 

at by using (A.36) of the appendix and Ot.22). 

Substituting (5.18) and (5.19) into (5.20) ve obtain 

q'Duß-t^'d^- P^£"*aA 9 ""   u ,ß  * ~p      -aß  r  v  ~a,p 

(5,22)    -^ta8e]ua,p^
a^0^

ar»ea-J
a<Sa  -<f*u 

Equation (5.22) is the first lav of thermodynamics for an electro- 

mechanical material.    It is often convenient to revrite (5.22) as: 

(5.25)      • #>a [D £ a - 3 ß »ajß) + ^° [BÖ a -  95a ua>ß] 

- J°£  „   •   -? u •^   C u 

An equivalent third form of (5.22) is 
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» D[c +^£ • JOE]****». 
o       no       nQ      ,p      ß 

(5.24)   - [t^ • *P(a 5 ß) + ^<
a« *>  • rr5 „ B*+f^B% 

Each of these forms may be found useful in various situations. For 

example (5*22) is convenient if one wishes to describe a fluid. The 

form (5*23) vill be used for a solid vhen the independent variables 

are Q      and #3  . If the independent variables are 9°      and 

cJl     , then (2.2b) is the appropriate form of the first law. 

According to the entropy inequality (2.5l) 

(5.25) 
0       00 + <&* >  ° 

Employing (5.22), (5.25) becomes 

0        00 -i*> 
t(<*) 

3        aß 
9>laS •—j_ 

ß] * 
aß 

(5.26) 

6            aß 
9>%8a 

e 9 .*, > 0 

vhere 0p is defined by (5.2). 

Using (5.25) in (5.25), an equivalent expression to (5*26) useful 

fo. solids Is 



9o 

/ 

i(Dnoo. i»). £\ • [t«*> - **V « - «*<aep)] % 

(5.27) a ia& a 

-*L- IBSö. 5p
%ß) -4*>*0. «%„]• —r-   * ° 

Another form of the second lav is possible if one uses (5.21*-). 

Using (^.25) and (5.3) to eliminate 0  from (5.1) and employing 

(1*.12), it is possible to express the body force as the divergence 

of a tensor 

(5.28) 

In the derivation of the Jump conditions (2.23) it was implicitly 

assumed that body force is continuous across the singular surface  Z . 

This is not necessarily the case for (5-1) since the electromagnetic 

fields may suffer a discontinuity. The forms of the balance of energy 

momentum and its Jump conditions, taking into account this possibility, 

a:e 

(5.29)   (^ß• *•*>« " ^ * [**+ TJ*-iz*• °acroasz^y = ° e  ,p — e — ,p 

The balance of L ment of energy-momentum (5*6) becomes: 

(5.30)  T1^1 + Te
[,iel = 0 
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*ftus it Is possible to /vite a "total" energy-momentum tensor for the 

interaction model presented in this chapter.    Ms tensor is symmetric 

as a consequence of the principle of balance of moment of energy- 

momentum.    Whether it is possible to obtain such a tensor for any 

interaction model is an open question.    The important point to remember 

is the Jump condition (5«29)?.    Whether the Maxwell stresses are "real" 

stresses is a much discussed point.    It seems unlikely tha* they are 

(see Dixon and Eringen [6] for a discussion of this point).    The 

Introduction of the interaction energy-momentum tensor is a mathematical 

convenience.    The system consisting of the body forces  (5.1) and the 

body couple (5.2) is equipollent to a system of "surface tractions" 

given by (5.28). 



CHAPTER VI 

CONSTITUTIVE THEORY OF DEFORMABLE ELECTROMAGNETIC MATERIALS 

A constitutive theory of deformable electromagnetic materials 

can be formulated following the principles enunciated in Chapter III. 

In this chapter relatlvistic theories of polarizable, magnetizable, 

conducting solids and fluids are presented. The requirement that 

the constitutive theory be thermodynamically admissible leads to a 

considerable reduction in the form of the constitutive equations. 

The following theories are sufficiently general to include thermal, 

electrical, and mechanical effects with restricted spatial and 

temporal variations. Thus such effects as gyrotropic phenomena, 

optical activity and heredity are excluded. 

Electromagnetic Solid 

For an elastic, magnetized dielectric which is also a conductor, 

an appropriable set of independent variables is: 

(6.1)       e , xß
K, **,  £K ,  23K 

K        ,      cnK where    (r   ,    Q       and    Q      *» defined as 
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(6.2) 

8*   '   «*p£
P 

ßK  -   x*    ©P.»»'//^) 
,3 

The    sgn (    /.JC), vhich signifies the sign of the JacoMan, is introduced 

so that    $3       remains as an axial vector.    The dependent variables are 

(€.3) «,   •      ,   *ß   s   t*1   ,    ^°   ,".*•   , 00 " ' 

with pa and V0^ determined from (5.18) and (5.19). 

One can now proceed in a manner identical to that used in Chapter III 

for mechanical materials: write the entropy production for this set 

of constitutive equations and find the necessary and sufficient condi- 

tions for it to he non-negative. To this end we use the chain rule 

of differentiation in calculating Dt  and Dn  and 

D<gK    -    X%(Dgß-   gau%) 

D«K    .    X*(D«ß -   6auß J 

Recalling the identity (1.55)* toe second law (5.27) becomes 



 Ulf 

8* 

r l3T + V 

(6.«0 
O^i       ,p Ä. 

3   i?       e    K    °öjK 
K 

1 ^o «K Jlf^ 9* eK 

>  o 

vhere 0°  , Jl K , JR  and (^ are defined as 

(6.5) 

f K OK 

•*, =•*« *°K •*<*/,« 
.  a 
joxK 

«a^K 

and *  is the free energy * «  c - 0 n  • At any point, £ , in 

space-time the following quantities can be assigned arbitrarily: 

, **    >   *K > 5K i ÖK i D* , BA , 
(6.6) 

.K K or , Dg& , D8 K 

Thus by the argument lsading from (5.15) to (5.1*0, a necessary and 

sufficient condition that the entropy production (6.k)  is non-negative 



it that the following identities bold: 

(6.7)   1 oo 
*o 
5T 

(6.8)   »*»> - n0 •** fj \*   fl»8*Kjp9« 
ox v 

(6.9)     n s - »o gr 

(6.10)  My 

*t. 

s -n. *o 

(6.11) 

*«        A 
(6.12) -°-uß  = o 

(6.13) 

(6.1*) 

As in Chapter III, in order that t  he invariant under the proper 

Lorentz group, •  must be a function of the :ronn: 

K  ^ K> 
(6.15)  K   • •> »C»r.i5\8) KL 
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8ince 

equation (6.12) and (6.13) are satisfied identically and (6.8) becomes: 

(6.i6)   t(oe) . ano xa
K /t Js_ + r

{asß)* *(a ep) 

KL 

In a similar way J  and Q^ must have the forms 

Jp    s    Jv'® f  &   *   &     » 

(6.17) 
'K UK >CXLJ 

K      fi> K (X QK • QRU , •*, g * , er, c^) 

We have thus arrived at the following important conclusion: 

Bit most general form of the constitutive equations for an anlso- 

tropic elastic dielectric vith heat conduction satisfying the require- 

ment of Lorentz invariance, non-negative entropy production, and the 

balance of moment of energy-momentum is the following: 

i.    The free energy   if     assumes the form 

(6.18)     *0  » +0(e,cKL, 8K , 6K) 

aß ii.    2Jie_ entropy    H        ,    the stress tensor   t        ,    the 

polarization vector   $°      ,    and the magnetization 

vector   M a   are determined from the free energy by 



<«•»>      "oo   •• - ST 
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a*. 
(6.20) t*    »   2n0 x°K x\ i^L +  V* & P + J£a e 

XL 

(6.21) ^a   »   -n0^a-° 

(6.22)      „#„   =    -n a ~o " ,a 

ötf 

yK O _    _      /X 

off 
•g* (7xK) 

where (5.19) i» employed. 

ill.    The nonmechanical momentum   £   is determined through (?.l8) 

(6.23)       J..I   J.fx   Q     -     §    x   *£ 

iv. The conduction current j  and the^ heat flov vector 

(6.2*)  Ja - xKaJK 

(6.25)   ^ - ^^ 

vhere 

(6.26)  jK - JK(e , eK , g K , #K , V 

K  «a K 
(6.27)  OR - Ve ' *" ' S ' ' 6 ' Ctt) 
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v. The conduction current J„ and the heat flow 

vector Q^. must satisfy the inequality 

(6.28)   «£ K . -£_ > 0 

which in view of the continuity of J„ and Q„ 

implies 

(6.29)  JK(e ,o,o, &K  , c^) 

(6.30)  ^(e , o , o , #K , c^) « o 

Further reduction in the form of the free enei-gy * > f'b&  a«at' flow 

vector Qj. , end the conduction current j  can be obtained if one 

knows the crystal class of the material. In particular, for an 

isotropic material with a center of symmetry, a minimal integrity 

••4cL 1 ¥ basis for the symmetric tensor C ,  the vector Q  4 , and the 

K 
axial vector 23  (8e* Smith [33J) is: 

"h T    "} KM -1    T   "il^M -1 iff 

(6.31) 

i, . fl* , i2 . c-cM , i3 . c-c^c^ 

(Eg., continued next page) 

i -1 
It is convenient to consider \jr. as a function of (!„- instead of 

C.- . The form of (6.20) corresponding to (3.21) is easy to deduce• 
KL 
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(Eq. 6.31) continued) 

K 4    <]L x 4    -in *?L B0 - v*ex.\-e* ^h>h-6 c
m 

cV* 

\ - {£K8
Kf , B . (gR©R) (#* "^ gl) 

B6 - (gHö
R)((6

K 4» tgL) 

*7    •    ^<gK^^«M^-«KU,5KWR«1 

B
9    *    €KLM   C R^       CICsß     ^ 

Bio«   «**»>   •m.«K *l,*10" 

Bn- (6
8
©8)*I«S

,C
*

L
I *"««"»" 

It can be ahovn that the set (6.31) can also be expressed in the 

from: 

tr& , I2 « tr£
2 , I3 « trfc5 

(6.32)  E, 

E, - i• I 
(1^+21.-31^)  (Ij2-^) 

* £ S + Ix ^£
2 « 

(Equation continued next page) 
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(Equation 6.52 continued) 

B0-§£«, \*QlQ 

M        (I5+2I--3LL)      (I,2-!,)   _ 9 

B5 - |J| §a(fx ea«) , B^ - (5ft?)2 , B, - (£a«)(2?a2*) 

(I 3+2I -51 I )       (I2-I  ) - 
B6-(gfte) ISA——V"^ —-«a«*!^!2«] 

B7 - |J| (ft&) x § • g   ,   Bg - |J| (ft2&) x»-€ 

B9 - IJ| (£8) x ft2 5 • £, B10 - |J| {& C»)(ft«) x $ •« 

Bu-^ftg) (£2©XS'S|J| 

where the following notation has been used 

€ftS - Sa^s ß , (ft€)a - c^g ß 

From the work of Vlneman and Flpkln [37), for an Isotropie material 

with fa center of symmetry,   if     must be a function of the Invariants (6.32). 

(6.33)      *0   -   t0(e , Ia , ^ , BC) / a « 1,2,3 \ 
lb -0,1,2 ) 
\c • o,l,»..,11   / 



91 

From (6.52) after some algebraic manipulations ve can show that (6.20), 

(6.21), (6.22) assure the following forms: 

t « *j»* tgfc • ^ + f^£ S6 £& + T5[££«£24 + £2 £& £&j 

+ *$£ g® £3 +  T?[£ §0 £2 g+ £2 £0 £ © ]+ Tg[£ S®(SX £2© 

+   («X £2g) ® £« -   (SX £®) © £2 3 " i §®   (©X £3) 

-£S^£(«X£Ö   -£(gX£Ö)3£g]   +  T9[£Ö®£g + Ä5^£«3 

(6.54)        + T10[£2 £® £g + £2 £® ££ + £ §0 £2 g + £ £3 £2 £] 

- ^«»«xfi) + (SxC)®£gj - ^[(0x€)*£26 

+ £€«£(Sx€)+£2<g® (gx£) +£(5x*)®£ig]  - XQ[(Sx£€)fite2^ 

+ £2£<2 (?X£g)  +£50£(Sx£ß)  +£(@X£^)®£fi 

-££«(Sx£2e) - (5x£2€)^£«] - x10[£-g<9 (£xg) 

+  (£ X ©) 0 £ §]   -   Xnt£ S® £tg X S)  + £(|X§)«£« 

+ (€x«)®£2s+£2ee(5xs)] +^05 + ^? 

f-xx€- x2£g-x5£
2«-^S-x5c©-}(6£

2S- ^[£(8x4) 

(6.35)     -§x £§] - Xß[£2(Sx5) - öx £2€] - Ic^Sx £*) 

-£(Sx£2g)]  -  Xin£x£§- Xn SX£25 10 ui 

4«  ^5- U2 £S- U5 £
2S - li^fitfix £2$)  +   (£2S)X   (£8) 

(6.56) 
-£(SX£g]  - 3^<g- X5££-^£   €-X7<gx£^-X8^X£2^ 

- x9 Ufi) x (£2£) - x10[£(|x6) - £x £fi] 

-Xuf£2(^x§) -j?X£2£] 
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vhere 

(6.57) 

(L.5+2I,-3T I )   &<- d* 3* 

^o ^o ^o ^o 
T3 " -^o 3^ * ^o h 3^ ' % • ""»o 3B^  ' T? - "*V> 38^ 

a*, a*. a* 
af '  T7 • -""o a£ > Te ' - |j|no ag T6" -^o aj '  T7 

 r " m^'h'^ow--n0
(Ii-Vaj 

2n 
a*. 

o 
0 + 2Vi aj • ** " no -j 3E^ + **oh a" 

* £ 5g^ • no(3£2£) g^ + no ^ llJS £ V-11&&0) 

at 

Xj - 2no i a 5g^ • n0ÜJ4-4Ü «J + °o 3sf ^»«TCM 

(In
3+2I.-3I0I.) 3t 

:        •     X     g3     21   g-gl>no|jig-  U-§)xg^ 

+ n0lJ||    (£2§)xg-2_ o o^ 

L (I  5+2I,-*T   T   ^     i 
- .  ti    - n    —x 

3 »*l-no 

- o 
K2 o dB o o 

\ 
"i> - no 3IJ 

*o        ,T2T>*o 
,- - co(Ii -I2) S£ ' "S " too a- 

T 35 

a*. 
+ ^o1! 3S£ 

o 

no5ir lJl 
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Also using th« results of Smith [33], we can show that the conduction 

current and heat flev have the following forms: 

1 "   ai S + <J2 £ S + ^5 £
2 € + ^ £ + cr5 £ I + o6 £

2 1 + 0? §x £ + 

OA£(5XS) + *Q£2(«X£) + a_n fix £#+<*.. ?X£2| + 

(6.38) 
•M 2 x 1 + a15 £(jgx 1) + o^ £2(fx 1) + al5 gx £ 1 + 

°l6« x £2 1 + a17[£(gx £*&) - c2(gx £&)] • al8[£(5x £2 1) 

- £2(Sx £ 1)] + a1Q # + a_ £ g+ aa. £2 §+ a_ £x £ © 19 -      20**     a*  *     88 

23 • ^«fX£2g 

q -    ra £ + K2 £ £ + K5 £   jg + *k g + x5 £^ + Kg £  5 + ^ «x £ 

+  «3 &(£x I)  *  K9 £
2(5X 1) +  K10 §X £ £ +  *u ? X £2 J+IC^fiX* 

+ ^k £2(SX«) • K  fiX £«+ K 6 ®X £
2<g + K17[£©X £

2 J) 
(6.39) P 

- £2(«X ££)] + Kl8[£(^X £
2S) - £2(SX £g)] • K19S^l5£(§xg) 

+ K20 £ S+ K21 £ 8 + K22 ®X £ - + K23^ X £ Ö 

where  a., ..., a« and /c, ..., K.« aye functions of the invariants 

listed in (6.32) and the following invariants: 



*        »   .  #        #        »     9 * ,*        _-2 .*       ~«    ,r>    2  *> 
£•£,£££,jea£>lfi£®   , Ut® (?£ i) . 
(2 £ S) (2 • §),2 • Sx 4 £ , 1 • »x £a 1 , jg t(gx £2 1), 

(6."M3)      (fit© (£x £fi) v! , (S • gx £2«) (ßa£) , g • \ , 

£&£.*£* 2, (*•« (2 a© » (*•!) (^£® . 
(£a© (S&b > da® <£a2tf) . (Jag) <£a22) . 
(i • a (®&2 !)-(!• © t9s.2€), 2 • §x g, 2 • *x fc«, 

<£ • €x £ 2 , 2 • £x a2 g , £ • gx £8 2 , 2 &(fix a2«.) 

+ *a(9x t2 2) » (2a© ga(Sx€ ) • da«) Sa(fix 2) , 
(2 • * x a2 © («£€) • (£ • gx £2«) ^£ 2 

and   O-Q,  •.., or     nave the form 

*19 - (IlB) •* • (€ A« °25 - <*£2«) °26 * «** ^)ff27 

*on -(*•«) «OR + (£• 1) So + Mfi® **n + (*&© *i 20     w   X' u28     *~     ä;    29     vse *v/    30      VJe * ~'    31 

(6#^) + (B £24) °52 
+ ^ ÄJ a33 + Sfi©x fi) a^ 

+ §& (Öx€) °55 • (£ • 5x £2§) a^ + (2 • Sx £2»*5T 

*21 - (1 &S) °38 + t€ £8) *59 +(§•€) *26 + (£ • © °2? 

o25 - (Sfift ^ + &*£> a37 

vhere a^ , ... , ö,_ are functions of the invariants (6.32) and 

(6.*K)).By replacing the o  by K   in (6.4l) one obtains the 
rs     rs 

functional forms of K.Q, ..., K.. . 
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For an Isotropie material, from (0.52), (6.37) and (6.3*0 to 

(6.39) the set of dependent quantities c , 1 >%.»¥>     ^f 
00 

are covariant tensor functions of £ , £ , <0 and u. under the 

full Lorentz group, and J and q have the forms (6.38) and (6.39)* 

(For materials with no center of symmetry, they are covariant tensor 

functions under the proper Lorentz group.) While the constitutive 

equations for Isotropie materials are deducible from the general 

forms (6.18) to (6.27), in many cases it is more convenient to rederive 

these equations from the second lav of thermodynamics. 

The second lav (3*26) for an Isotropie material becomes (using 

(1.55) and (1.65)); 

.B(,     +^)De-i(ttoUaP[a£e] + ^[aöß] 
o    00      06 6 

-     ^o     a *o   ß ^o     7J><*   ß        ^o   7*?«   ß 

«•*>    + (ra+ ^ + ^^0*1^4^ 

A    ft«    n 

A necessary and sufficient condition for (6A2) is 

<6^> "00 z -w 

Ml 
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(6.49)      sQ
T s\ (2»o JL. C"   -  FI* tf "1 - ^T e "1}   .  0 

(6.46) {P<*   .   +,*,%£      • 

(6.47) ^°   •   -n0«
a
r^ 

:yß   TO   ß      oä^   p"a      o^   ßva      o ^ 

ß * 
(6,49)      Ja£ a - -yi  >  o 

The requirement that    i|r      is an invariant function of    6 ,    c^    , 

£a    ,    0a     and   u     under Lorentz transformations gives: 

(6.50)      t2«r^,*i.*«*äL««*jLj»l   -   o 
«SCa ^{a d3a ^[a 

By substituting (6.46) and (6.47) into (6.50) one sees that (6.45) 

and (6.48) are satisfied. By using (5.19) in conjunction with (6.50) 

it can be established that a necessary and sufficient condition that 

the constitutive equations for an isotropic material are Lorentz in- 

variant and satisfy the second law of thermodynamics is: 

i.  The free energy *  is_ a scalar invariant function 

of 6 t  c, , § ,  5, Ji under the full Lorentz group. 

Ifoe entropy *1    the stress tensor t . the 
i..i. i. ——~ —i_^-  00    i •    . .— , .       "*• ' v» 

polarization vector jr* , and the magnetization 

vector *g* are determined from the free energy by 



.——.»,., .ju—i-m 

sn 

(6.51) ^00 

(6.52) t.   • : -^o £ 3T 

(6.53) ¥ •- ••noäf 

(6.5*0 JC 
0 dg 

ill. The nonmechanical £ is determined .by (6.23). 

iv. The conduction current j and heat flov vector 

q have the forms (6.38) and (6.39) and satisfy 

the inequality 

(6.55)        J  • I   - &'   & 
>   0 

It should he noted that (5.19) 1« satisfied identically if 1. and ii, 

hold. If t  is a scalar invariant of £ , § , § t  u, under the full 

Lorentz group, it must have the form 

(6.56) i   = t(e , ia , «^ , bc) 
a - 1,2,3 \ 
b * 0,1,2 J 
c • 0,1,...,11 / 

where 
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*! - ** S. I2 - tr £< 

(6.57) «„-£ • i   ,     «. -«&€ 

I, - to- £' 

«2-f£  € 

b3-S- (£S)x(s.ae)   ,  ^-(£•«)* 

b, - (€ •*)(?£€)   ,   t6 « (^ • §)(§£2£) 

b7-l&(>8x£)   ,   bg.Ä£
2(*x€)   ,I9-(«XJS)£2£ 

\Q - l£ • © «£(g x 6)  , bn - (f • © §£
2(S X g) 

The theory presented in this section provides a theoretical justi- 

fication for the nonrelativistic theories of Toupin [5] and Dixon and 

Eringen [6] for moving electromagnetic materials. The application of 

the second lav of thermodynamics complements the researches of Jordan 

and Eringen [3], [k],  Toupin [5] and Dixon and Eringen [6]. Tb»  con- 

stitutive equations for a polai able material (iftO, J » 0 , 

a   m o)   are equivalent (under the appropriate change of variables) 

to those of Toupin [5] if terms of the order v /c  are neglected. 

The general form of the constitutive equations of Dixon and Eringen [6] 

are valid if one replaces ß by £ + v % H  and £ by £ - -H .1 

we are here using mks units. In the mks system of units the ratio 
Y X B 

|])|/l • I is of the same order of magnitude as  |E|/|v X £| . Toe 
c 

Y X E 
same is true for the rations    |fi|/|i X ß|    and    lfil/1    g    I   • 
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übe specific forms of the constitutive equations of Jordan and 

Eringen [3], [k]  and Dixon and Eringen [6] are significantly simpli- 

fied by the second lav. For example, the stress tensor, polarization 

and magnetization are independent of the temperature gradient. For 

an Isotropie material the second lav does not allow a term in the 

polarization similar to the lall effect in the current. 

Electromagnetic Fluid 

For a viscous fluid which possesses electrical properties an 

appropriate set of independent variables is: 

(6.58)  e, no , d^ , ea, £a, Ba,  ua 

The dependent variables in this case are; 

(6.59)  « , »00 , *ß , *<*> ,ra,Ma,ia 

with p° and tt0^ determined from (5.18) and (5.19). B» consti- 

tutive equations for the set (6.59) must satisfy the principles 

enunciated in Chapter III. In particular, they must satisfy the 

second lav of thermodynamics, the appropriate form of which is now 

(5.26). Using (6.58) and (6.59), (5.26) reduces to: 

See footnotes p. 60 and p. 100 on the independence of these variables. 
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At any point, x , in space-time the following quantities can be 

assigned arbitrarily: 

(6*6l)      i    i   *n 
D6* , Du , Dd1J     (i,J = 1,2,3) 

By the argument leading from (3*13) to (3.1^), a necessary and suf- 

ficient condition that the entropy production (6.6o) is non-negative 

is that the following relations hold: 

<6-*>   ^oo = -W 

(6'63)  |?BV^«7««*^7«« " 0 

<*o 

(6.65)  -r *   0 

Since not all components of the tensors in s*t (6*58) are independent, 

in deducing (6.62) to (6.67) one should consider   *     as a function of 

6 , *0 ,V- ,  g1 , G1 ,    diJ , u1. 



(6.66)   *P    = n -2.S7 

a        o d&7    a 

(6.68) p[a g*] + Alaß*]   -   o 

o 

(«•70) f*^-^+ia&a *  o 

The following general statement can he made about the form of the 

constitutive equations: A necessary and sufficient condition that 

the constitutive equations satisfy the second lav of thermodynamics, 

the balance of moment of energy»momentum, and are covariant under 

proper orthochronous Lorentz transformations is: 

i.  The free energy assumes the form: 

(6.71)   *0    * *0(e , nQ , Jx , J2 , J3) 

vheivs 

(6.72) JX   - e -s   ,   J2   - jg- & ,   j =   *• # 



I 

11.      The entropy    1      , the itress tensor   t , the 

polarization vector   z> and the magnetization 

rector   *J* are related to the free energy "by: 

<«•«     "oo  *  -3T 

(«.*)       t    =    -no
2   ji  £+Dfc 

o 

1 -• 

(6.76)     4 :   .^   *J  0 - .,      -   I 

111.      Ifce nonmechacical momentum   p    is determined by; 

(6.77)  £ = q - t?x ?- Sx^ 
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IT. The conduction current j , the heat flow vector 

q , and the dissipative part of the stress tensor 

_A have the form: 

• * *   * «   * -*        *2*   *2 Ä   *2 .»» 
(6.78) q - Kj. + Kgg + K5«+ ^a+*^S+ *6&^ + *-£ * + K8?- * + 9* S 

+ K10£ X g + Kl2£ X »+ ^ g X S+ K15£ X4£+ K^jgx i S 
— * *      *2* ^     *2~ ^    *9*, * *      *2* + *^g x &g + fcl6g x 4 £ + K^jgx & § + KI8€X 4S+K19i£xU 
* „       *2*. * —     *2 n      * * «-** 

+ K2(^g x Cf +K21ä?xig^22JxU+ «25gx 4 fi 

— * **« **— «*^» «    *2* 
+ K24$xiä+ ^25fix^+ ^2^x4$+ K^xäg+K^x^ 

MM 
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•2» *2 *2, *2, ?2 
• *2S£

X ** + Ky&* 4 * + K3i^ x 4fe + ^ x 4 £ + «3j£x 4 £ 

+ ^4 ?x 4^ + *554 5x 4 jß • «364 £x 4 £* *374 £ x 4 £ 
* *       «2 •   „     *2^- 

• *384£x4#+ «394^x4« 

(6.79) 

* ^ ** **~ * -, *2* t2 „ j - ffljg + Cgi + 0^+ a^4 £ + 0^ £ + a^ 6 + a^. £ * ag4 § 

+ a^ß+ a10| x £ + aul x £+ a^x ©+ «^ x 4 1 
_     » _    * *      »2* ^     *2 

+ a^£ x 4 6 + *15?x 46 + <*!$£ x 4 ä + *17£x 4 € 
*o * *      *2* * „      *2« *«•     t2 — 

+ al8«x4§+ ^4x«+ y?xf|+ a21£6x4:£ 

+ ^x 4 £ + a25^x 4 4* a2U~ x 46 + a
2£ x 4 $ 

* * * *2* **    *2* 
+ a26^x 4S+ *27^x ^£ + ff28^x Ä£+ a29^x 4£ 

+ a50gx 4TI +yxd£+ a52ß x 4 J?+ a53-   g x 4 » 
* »2* * *2* * M + cu.4 £x 4 £ + °«4 ©x 4 £ + ^4 5x 
* *      *2^ **      *2_ *   o     *2-o 

+ *574 £ x 4 S + «^ x 4 #+ °594 £x 4 ^ 

nfe» \&+ ^+ *jP + V®1+ ^31+ *gg*S* \[jß0S+£0 Jß] 

+ Ag[J« § + g0 J] + X^g* 6 + g0 £] + \0Ijß«(jg x £Wi X £.)& %) 

+ *uti *(J x 8K(5 x ® © J] + ^[jgtfc x $) +(§ x g)2> £] 

(6.80)     + ?l3ts *&x ^Mg * 5) •€! • \fet»3(#x £MS x i) 0«] 

• \«[fi6(ffxt)H0xC)#0 + Al6[€«(£xgMixS)0g] 
* *    » * 

+ \?[C0(i x S.Me x £) 0 S + \0CJ0 4 £ + 4 £ 0 £J 

+ A19[^®4€ + 4S««] • ^20t6®4e+ 4 80« 

+ Wil® 4*£ + 4*£® £] + V€® 42€ + 4*£ 0€) 21' 
•2. *2. + ^I***«* 4 88© + AgtU+Aft + Ktil 



K* 

+ A25[lö4§ + 4?®£3 + ^26(£ö4S + 4€®€3 + \>7E<?04£ • lleV 

• ^8[§<84£ + 4£0?33 * ^[gtfiS + Äfafi] + ^joll«?^+Kwil 

• ty&B 42ö+ 42gS £3 • *52[£®420+ &**] * *35E€0 I2! • 4*1 •£] 

• ^^ß042€+FJI®»3 + x35[»<9 i2! + Ha a + AglS i^^l * V\ * 4#J 

+ *57E4 §0 4 £ + 4"£ 0 4 S3 + ^[4 §« 4 £ * 44 0 4 & 

+ *59t£ x 4 - 4 x £3 + \0E£x 4 - 4 x €3 + \£3* 4 - 4 x 63 
,* 2 2     *. , *? *? . r *2 *2 

• \2E£x4 -4%£] + \5tfe x ST - ? xCJ • ^E»x 4   -6«) 
* »      *2v      *2/*      *%, r*/^>     *2v      *2/-     *\, 

+ \5I4(« x 4 ) - 4 (£ x 4) 3 + \6E4(£ x 4 > - 4 (£ x 4) 3 

+ \7t4CPx 42) - 42(«x 4) 3 + \QI\& (£ x 4 £) + (£ x 4 £) <3 £3 

+ \ql£0 (£X 4 8) + (£x 4 £) ®£\ + X^tStf (£x 4$) + («x 4€) »S3 
•2, 

• AJJÄ« (£ x 42£) + (1 x 4^) ® ll + *52E£# (€x IIO + ÜFx JIÖ 0fl 

+ ^JSä (»x S%) + (g x 1%) ® £] + >^E1® 4(Sx£)4(ftx£) 3 £3 

+ ^55C£ 0 4(ßx£)4fex£) * £3 + ^£0 4(5xß>4(£ xg) 0 £3 

+ *57tt0 4(€x£)4fex£) &£\ + >^8[?® 4(Sxl)4fex£) 0£! 

+ ^9E§Ä 4(€x£)4(«xi) 0 S3 + \0il 0 (£ x 4 £)+(£ x 4 1) 0 £3 

+ X6lt£Ö (Sx4£)+(Sx4fi)^ll + W*Ä ©x4i)+(5x4C)®€3 

+ \5Ejg0 (£ x 4 £)+(! x a £) 0 £] + ^tS 0 (£ x 4S)+(£ x 4£) 0 $3 
*2*. «2*. + \^£® (£x 4S)+(£x 4?) «S3 + \6i&® texa)+(|x 4£.) 0 

+ *g7U* (§x 4^)+(5x 4 £) x ä) + *68[£0 (fix «)+(*x 4 4) 0£J 

+ V^® (1 x 42€H£ x l2&) 0 gl + ^©0 (I x 4^)+(£ x 2ft}) 0 S3 

+ \}£Q (g x 4^W£ x 42fi) <8 23 + ^72E4(£ x fi) 0 £. + f 0 4(£ x 5) 3 

+ \3C4(£x 1)0 §+§0 4(4x£)] + X7J€0(9X41)+(JBX 4£)<0€J 

+ ^5E£0 (Öx 42£)+(S x 42€) ®£3 
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of the following invariants: 

3*    ''    \' '•'' \j art functions 

II. III. 
»     • 

J5   ,    0 • * 

* * 

*d    '    **d   '    ***d   '    Ml   '     2    • 

£•1 # 9*2 * ö-«xl , 
111 , als i sie i 11s i £4# # ü 
in , *?«, s^e, IF«.ir*,*?», 

(6.81)     * Ätf x 1) , £ ä(4 x I) , 11(| x S) , »1(1 x •), £ 4(£ x 8) v 

eitfx© i<i(£x0 , f4(|xft) , 
SPdxl) ,gl2«xl), J?(£x© ,a?(ix« ,&?(ix» , 
g^(€xs) , €?<2x® ,€ä2llx8) , 
£ r<£ x 4 1) , £ &2(£ x 44) , ©4 t*?x 4 ® , 
£rtfx4£), tarux4ft) * &ri»x4ä) > Adx4«), 
§42(SxU) ,S42(£x43) >«2?(»xjl) 

v  ühe heat flux q , the conduction current J , and 

the dlssipatlve stress tensor -£, satisfy the 

inequality: 

(6,82) A-^^^ 
which in particular implies that when cL« * 0 $ P0 
ea - 0 , §a = 0 , then 
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(6.85)  /^«O , q°«0 , ja-0 

These J «suits follow directly from equations (6.62) to (6.70) and 

invarlance requirements. In particular, {6.6k)  and (6.65) Imply that 

+0 * *o(e'no'£a,?3a,u0) 

and in order that *  be an invariant under the proper orghochronous 

Lorentz group, it must have the functional form (6.71). Equations 

(6.73) to (6.76) follow directly from (6.62), (6.69), (6.66), (6.67) 

and (6.71). Equations (6.63)  and (6.68) are identically satisfied 

(cf. (6.71), (6.75) and (6.76)). The lengthy expressions (6.78) to 

(6.60) are a straightforward application of the remarks in the appendix. 

The foregoing theory of viscous fluids is so complicated thai: in 

the generality presented in this section it has little practical use. 

However, it provides a foundation for several approximate theories. 

In particular, the class of perfect fluids is a special case of 

this theory. 

Perfect Fluids 

For a perfect fluid, the entropy production vanishes. üfcat is: 

(6.810  4-0,^-0,^-0 

IM 
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That is, for a perfect fluid, the materials are described by: 

i.  The free energy has the form (6.71). 

ii.  The entropy n t  the po. Arization vector £ > f. 
and the magnetization vector ^ are given by 

(6.73), (6.75) and (6.76) respectively and the 

stress tensor is determined from: 

2 ^o 
(6.85)  t.-Crl o   ST" 

o 

Hi.  The nonmechanlcal oomentum p is determined by: 

(6.86)  p - -fxÖ.Sx^ 

The theory of perfect electromagnetic fluids presented in this 

section ia comparable to the theory of Penfield and Baus [56]. That 

the polarization and magnetization are derived from the free energy is 

a consequence of the second law of tfceiToodynamics in the theory of 

this section. In the theory of reafield and Haus the polarization 

and magnetization are deduced from a variatioaal principle. The major 

difference between the work of this article and that of Penfield 

and Haue is ir „ae  dits'erenee in the Amperian model and the magnetic 

dlpole model for the magnetic term in the interaction of electro- 

EÄgnetic fields on matter. 
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Concluding Remarks 

The relativistic theory of electromagnetic materials presented in 

this paper provides an insight into the continuum behavior of 

electromagnetic interactions with matter. The coupling of mechanical, 

electromagnetic and thermal phenomena into one ;heory has resulted in 

e  complicated system of partial differential equations. The complete 

physical and mathematical nature of these equations in the generality 

treated in the previous sections is beyond the scope of our present 

knowledge, de nonlinear!ty of the equations makes any solution to 

boundary-value problems difficult. 

Considerable insight into the nature of a system of partial dif- 

ferential equations can be obtained from an investigation of the propa- 

gation of waves and singular surfaces. This seems to be a fruitful 

class of problems which can be treated relativistically. Some progress 

in this direction has already been made and will appear in a later 

work. 

Tl ough the present theory is capable of describing many physical 

phenomena (polarization, magnetization, heat conduction, piezoelectricity, 

thermoelectric effects, to name a few) such physical phenomena as 

viscoelaaticity, optical activity and gyrotropic effects are definitely 

excluded. Simple theories of viscoelasticity (the Kelvin-Voigt, 

Maxwell and other higher order rate theories) can be formulated by 

an appropriate change in constitutive equations. The treatment of 
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heredity requires the more difficult study of functional constitutive 

equations. A description of optical activity and gyrotropic effects 

will probably entail a reformulation of the balance equations to 

Include spin, couple stresses, and qu&drupoles. Whether ferromagnets 

and electrets are described by the theory presented in this article 

cannot be answered until a deeper physical study of these phenomena 

is undertaken. 

Finally it must be mentioned that for   accelerating frames 

and curved spaces where the special theory fails new unified theories 

are needed employing the fundamental ideas of the general theory 

of relativity. Such a grandiose plan presently is out of our reach. 
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APPENDIX OK POLYNOMIAL INVARIANTS OF VECTORS 

AND TENSORS FOR THE LQREBTZ GROUP 

•«•Vectors V^1' (i - 1,«»«,I) 

The polynomial invariants for the Lorents group can be deduced 

from the polynomial invariants of the four dimensional orthogonal, 

group (see Weyl (39, p.63]). If f is an even invariant polynomial 

of H-vectors V *  (i • 1,...,H) , then f is a polynomial in the 

scalar products 

(A.1)    7°* Va
(i) Vß

(j)  (i < j ; i,J - !,...,«) 

If f is an odd invariant polynomial of K-vectors Va  # * *• 

a sum of terms of the form: 

^.  (1 )  (ij   (i,)   (ij 

(A.2)     t^V1 Vß    V7    V6 6 

vhere g is an even polynomial and 

ix < i2 < i5 < i^ (i^ i2> i5> i^ - !,...,!) 

übe following special case is often encountered in physical situations. 
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„(i) N-Vectors   Y w   fend a Time-Like Unit Vector uq 

(u^u0» -l)(i -!,...,») 

In many physical situations the vorla velocity vector u  is 

Included in the group of vectors considered in Case 1. The vorld 

velocity is time-like 

(A.3)   uau  - -1 

Any polynomial in V    and u  is a polynomial in the vectors 

* (l) V * ' and u_ and the scalar products 
a       a 

(A» .(i) (i « !,...,!) 

* (i) vhere   V v  '    is defined as 

(A.5)  i(l) • s/ v•   , a 3 ^•»«^ i i(1)ua-o a   a   'a 

This follow from the decomposition 

(A.6)   vM   .  laW - v<*> ua 

Since the v* ' are scalar invariants, one need only consider a 

polynomial invariant in 
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(A.7)   IW  , UQ 

By applying the results of Case 1 to the set (A.7) and observing 

(A.8)    uaVa
(i) = 0  ,  uaua . -1 

aid 

(A.9)   .*>*JL<*1>  5(i2)^(i3) 8<**> . o 
a     ß    7     o 

one obtains: An even invariant polynomial f in the vectors V    , 

u  is a polynomial in the invariants 

(A.10)   7QPVa
(i)V',)       ttiJji.J-1»...,") 

and an odd invariant polynomial f is a sum of terms of the form: 

(A.ll)     .Wtlii) S(i2) $<t,) u6 g 
a    ß     7 

(i1< i2 < i3 ; ir i2, i5 « !,...!) 

where g is an even invariant polynomial. 

The identity (A.9) follows from the observation that fron (A.8) 

the fourth row of the determinant on the left hand side of (A.9) is 

a linear CvEbi^ation of the first three rows. 

^•"» 



116 

The procedure of decomposing tensors into spatial tensors and 

scalars vill be used in the next section. It is the key to using 

the results of the three diaensional orthogonal group for the integrity 

bases of the Lorentz group. 

M-Symnetric Tensors T*f' , »»Vectors V **' 

and a Tine-Like Unit Vector u (uua « -l) 

Any polynomial in 1       t 1       >  *&d VL   ia a polynomial in the 
*(R) *(i)  *(R) tensors  Jv ' , the vectors f      >  4   ,  J£ and the scalars 

(A.12)        T(R)    >    T^} uauß (R.1,...,M) 

U-13)        v(i)    I    Vo
(i)ua (i.l,...JÜ- 

vhere 

(A.1M        #>    -   tf Sß» ,<»>    -   3g> 

(A.X5)      taW -   8/ T,<* 

(A. 16)       Aa
(R> .   s/ ig) u6 

"•**mmm 
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U7 

This follows fro« (A.6) and the identity 

U.X7)      #   -  $> -10<« up - \« Ua + ,(«) na 

It should he noted that 

(A.18)       T{*]   uß . 0 op 

(A.l9)      XJB> u« - 0 

(A.20)        Va
U) u° ' ° 

Thus one can consider a polynomial in the tensors and vectors 

(A.21)        ?M    ,    Va
(k)    ,    ua        (R. 1,...,M ; k- !,...,* • I) 

where 

(A.22)        v**10 (R) 
a 

vith the coefficients polynomials in rR' and v*1' . 

The coefficients of an invariant polynomial must he Isotropie 

tensors for the Lorentz group. This implies that they are SUBS of 

aß      ofiro 
tens which are products of j^   and c      By noting that 
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(A.83)       <y*up   -   0       ,        (\)^na   .   0 

(A.*)        Va
(l)»a   *   ° 

<A^   ««* &J« \M < V VJ) <*,>n Vk) «V* Kw - o 

<*•*>      • aw < V < V V* <V V'}   *   ° 

<*•*>       «o»e<V*<*>*   *   ° 

an invariant polynomial ii f ', X   •»* 31 •*•* *• * polynomial in 

(A.28) 

(A.29) 

i.w «y» vj) < * <*> 

c  (» )«> v (1) <; )pp v M A 57T v (k) 

(A.30)   e ^ Cy» fy* i w 

*    *   *    #        » 
where IL > 3^ » % ; 2« ; «^ Jk  *re matrix products in 

%s  '   and x * % •*• matrix products in f ; . Hie proof of (A.23) 

i       i * *(ii      * 
and (A.24) follows from the definitions of X   »a* 1*  • Identities 

(A.25), (A.26) and (A.27) are deduced by observing that the fourth row 

of the determinants is a linear combination of the first three (cf. (A.lS) 
* 

to (A.20)  ).    Here    c ,_    is defined by: 
«P7 



.- •»— 

m 

(A-Ä)     «0P7 *  '*76U 

The following identities are useful to reduce (A.28} to (A.30) 

(*•*>  «WA  «WA 

'"ft    V2    V2    Va 

V*   V2   Vt   Va 

V2    V2    7V2    Va 

Va    Va    Va    Va 

From (A.32) one can show that 

(A.33) €1111   € 
alß27262 

ßl     ßl     ßl 
ß2     72     &2 

71     71     71 
ß2     72     62 

ß2     72     &2 

61 52 
By dotting (A.32) vith u  u  and adding u  tines the fourth rov 

to the first rov, uA  times the fourth rov to the cecond rov, u 
pl 71 

times the fourth rov to the third rov, one obtains 

\ 
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(A.5*)   « 
Wl     Wa 

S°W>     Va     "Va 

Va     Va     Va 

Va    Va    Va 

By dotting the identity 

Vfe Va Va Va Va 

Vfe  Va  Va  Va  Va 

1°2    7lß2    7172    71&2    71€2 

Vfe  Va  Va  Va  V; 

Vfe   Va   Va   Vfe   V 
Cl  €2 

with u  u  and multiplying the fourth row by u  and adding it 

to the first row, etc., one can deduce that 

• I HIM II 
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(A.36) 

s s s s 
«ft     "A     Va     Va 

Va     Va     Va     Va 

S S    « S 8    - 
•ft      Va      Va      Ti6a 

V     Va     Va     V 

From (A.54) It follow» that 

«Wt -    ß2 „    72 -    ß2 p    72 
VA ' ^   'i 

(A.57) 

V A6 AVi 28 

If one defines the skew-synsetric tensor by 

(A.58) aß        fcoßr -w,(1) 
ßa 

(A.39) aß 

Fro« (A.58) it follows that 

<*.»>  V1} • IW(1)pr 

MM 



By substituting (A.40) into (A.28) to (A.50) it it seen that the 

polynomial invariante of M i]n»trlc tensor, H-vector* and a 

tine-lite unit vector reduces to the set of invariants (A.12) and 

(A .15) and the invariants of II symmetric and M -r I skew-symmetric 

space-like tensors which are polynomials of degree three or less in 

the skew-symmetric tensors. This is the starting point of the work 

of Rivlin, Spencer and Smith (cf. [»K>3, [U], [k2],  [553) for three 

dimensional matrices. 

From (A. 56) space-like tensors satisfy *n equation vhich in 

matrix notation is identical to the three dimensional Clayley-Hamilton 

•fcft J,7 &.&. 
theorem.    If one multiplies (A.56) by   a1       a12   a12   and 

expands the determinant the following result is obtained: 

UAL) 
k   - (tr »J a* + I [(tr mj» - tr f/l * - 5 [tr s/ 

+ 2tr ft5 - 5(tr j^Ktr jfc)] g   -   0 

•OS where   a^   satisfies 

(A.«)   3ar8
p

&^
6. :<* 

Since it is only this theorem and several properties of the trace of 

products of matrices that are employed by Rivlin, Spencer and Smith 

in their series of papers on the reduction of polynomials in 5 x 5 

matrices, their results (cf. [ko],  [kl], [k2],  [55]) hold for space- 



1*3 

lila tensors and space-like vector« under the Lorentz group. (In 

particular all relations listed by Spencer [k2,  p. 5*0 are valid for 

space-Ilk» tensers. Only these relations are employed by these authors 

for the reduction of polynomial invariant of 3 x 3 matrices under the 

orthogonal group.) 

The integrity bases listed by Spencer [^2] and Smith [33] are 

minimal in the sense that no invariant listed by them is a polynomial 

in the invariants in their list, the integrity bases for space-like 

tensor derived from their results is also minimal in the above 

sense. If it «ere not, it would imply that their result was not 

minimal. Smith has proven that their results (cf. [36]) are minimal. 

The results of Wineman and Pipkin [37] for continuous tensor 

functions of tensors for the orthogonal group in three dimensions hold 

for a space-like tensor function of u  and four-tensors (even though 

the Lorentz group is not compact). The fact that a polynomial basis 

in u  and four tensors is a functional basis can be proven by their 

method or by observing that if it were not a contradiction would 

arise with their results. By transforming to a frame in which 

u * (0, 0, 0, -1) and observing that the resulting tensor must be 

Invariant under the three dimensional orthogonal group one can see 

that the abjve remaik as to the form of a continuous invariant function 

must hold for space-like tensors. 
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