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ABSTRACT

Nonlinear forced oscillations of slender beams are
studied. The analysis takes into account both the nonlinear
effects arising from large deflections of the beam and those
arising from nonlinear material behavior. A hysteretic
stress-strain law of the Davidenkov type is used in the
analysis. Detailed results are given for large amplitude
oscillations of beams with hinged ends. Theoretical results
for a simply-supported beam are compared with experimental
results.
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SECTION 1
INTRODUCTION

The study of nonlinear vibration of elastic beams and plates
has had a long history. The most widely known large deflection
theory of plates was established by von Karman in 1910 [l]*. An
account of the derivation of the von Karman's equations is given
by Timoshenko et al., [2] . Biot [3a, 3b] formulated the theory of
large deflection of plates directly from the nonlinear theory of
elasticity. Novozhilov [4] used a similar approach. He made the
distinction between the case of strong bending and the case of inter-
mediate bending. In the former case, no restriction is placed on
the magnitude of the rotation of the cross section; while in the
latter case, which is the same as von Karman's theory, the angle
of rotation is restricted to be small as compared with unity.
Based upon von Karman's theory, a number of problems of rec-
tangular plate were solved by Levy -5a, Sb] and Way [6a] , and
problems of circular plates by Way h6b] and Stippes and Hausrath

[7]. The dynamical equations corresponding to von Karman's

theory were studied by Herrmann [8- and more recently by
Tadjbakhsh and Saibel [9] . Eringen [IOa, 10b] , on the other hand,
formulated the dynamical equations for bealms and later also for
membranes which correspond to Novozhilov's strong bending case.
The nonlinear free vibrations of string has been studied by Carrier
[lla, llb] and using methods similar to that of Carrier, the non-

linear free vibration u. beams having immovable hinged ends has

%
Numbers in brackets refer to listed references begin-
ning on page 87.



been treated by Eringen [lOa] . Both Carrier and Eringen use

a perturbation method. The same perturbation technique was
extended in the study of free vibration of rectangular plates with
hinged immovable edges by Chu and Herrmann [l Z] . As for the
forced vibration cases, approximate solutions for the nonlinear
response of rectangular plates were obtained by Kirchman and
Greenspon [1 3] with the use of the static load-deflection relation-
ship. The nonlinear response of a beam with immovable hinged
ends due to an excitation sinusoidally distributed in the space
variable was treated by Mettler [1 4a] . By assuming the resultant
axial force to be independent of the spatial coordinate, he was able
to obtain a Duffing type response showing a hard spring effect. A
similar treatment was also given by Kauderer [15]. The bending
equation used by Mettler and Kauderer were the same one as
originated by Kirchhoff [l 6] which are essentially the same as
the one of the von Karman's theory. By assuming a first order
approximation solution, Yamaki [1 ?] also obtained a hard spring
Duffing type response for rectangular and circular plates. The
response for circular plates was also studied by Nowinski [18] .
In considering the effect on bending due to axial force, an approxi-
mate solution in terms of elliptic functions was obtained by
Woinowsky-Krieger [19]. McDonald [zo] has obtained results in
terms of elliptic functions for the case of immovable hinged bars
with small motion. Experimentally, the nonlinear hard spring
Duffing type response were shown to exist by Lee [2 l] , Tobias [22] .
Lassiter etal., [23] and Smith etal., [24] :



In all the above work the nonlinear effects arise from
large deformations. Another source of nonlinearity arises
from the nonlinear behavior of the material of the beam.

Resonant structural vibrations can be controlled by the
effective use of material damping. The problems of practical
interest are those connected with the vibration of metallic
structures. As has been shown by Lazan [2.5] , Lazan and
Goodman [26] , and also others, most metallic materials under
cyclic loading exhibit a relationship between stress and strain
that is not elastic even at stresses well below the yield point.
The stress-strain relationship during loading and unloading are
different. The area enclosed by the loading and unloading
branches of the stress-strain curve (hysteresis loop) serves as
the indication of amount of energy dissipated. This area of the
loop is independent of the frequency of cyclic strain. Due to the
above reasons, the classical viscoelastic Voight models cannot
adequately describe the behavior of metallic materials. In view
of this, Mindlin etal., [27] proposed a semi-empirical method.
In this work the viscous coefficients are taken inversely pro-
portional to the frequency of the excitation, so as to compensate
the frequency effect when the time derivative of strain is taken.
Recently Sethna [28] , in dealing with transient vibrations of a
beam, also adopted the same concept but to a nonlinear visco-
elastic stress-strain law. A completely empirical hysteretic
stress-strain law has been proposed by Davidenkov [29] . A pair
of equations, one for loading, and one for unloading are used.
Pisarenko [30] , as well as Panovko [31] » used Davidenkov's

stress-strain law to study the small vibrations of cantilever



beams with results that compare very well with experimental
results,

It thus appears that there is a large amount of literature
concerned with nonlinear effects on beam vibrations where the
nonlinear effects arise from large deflections of the beam. In
the works concerned with these problems the material is always
assumed to be elastic. Then there is a smaller body of literature
concerned with nonlinear effects that arise from nonlinear
behavior of the material of the beam and in these works the
deflections of the beams are assumed small.

The present work is concerned primarily with those
problems where the nonlinear effects of large deformations
occur along with the nonlinear effects due to nonlinear material
behavior.

In surveying the literature on large deflection problems
for elastic beams it appears that most of the investigations are
concerned with slender pinned beams with immovable ends and
a hard spring Duffing type response under sinusoidal excitation
is predicted. Relatively little attention is given to problems with
other end conditions and in particular nothing is known about the
large oscillation of an elastic beam that is truly simply supported,
i.e., with one end free to move in the direction of the axis of the
undeflected beam. A secondary objective of this work is to
investigate this problem.

With these two objectives in mind and for simplicity of
presentation this dissertation is divided into two parts. Part

one deals with the elastic problem involving large deformations



and part two deals with the large deformation problem with
nonlinear material behavior. In this latter part Davidenkov's
law is used. In both parts, two particular cases are treated.
One is the immovable hinged ends case, and the other is the
simply supported case. In both cases, steady state solutions
are sought. The motions treated belong to Novozhilov's

strong bending type, and the equations of motion are similar
to those of Eringen's. Both rotatory inertia and shear de-
formation effects are included in the analysis. The excitations
are either in the form of a periodic force uniformly distributed
or in the form of a periodic motion exerted at the supports and
the nonlinear response of the beam is studied.

The mathematical problems are nonlinear boundary value
problems. The method of analysis used here is the perturbation
method.

The stability of the nonlinear steady state solutions are
also investigated in an appendix*and here an adaptation of the
asymptotic method of Krylov, Bogoliubov, and Mitropolsky
is used [32, 33].

The appendix referred to here is the one in a
doctoral thesis by the first author at the University
of Minnesota, with the same title as that of this
report.



SECTION 2
STATEMENT OF THE PROBLEM

Consider a homogeneous rod of uniform cross section,
with a longitudinal plane of symmetry. Let the right-handed
Cartesian coordinate system Oxyz be chosen as shown in
figure 1 with Oxz as the plane of symmetry and Ox passing

along the median line. The length of the rod is ¢

Fig. 1 - Beam in the undeformed state

2.1 DEFORMATION

The following three assumptions will be made:

(a) The rod is free of load in the y-direction and we will
consider all quantities independent of y, and that there
is no displacement in the y-direction.

(b) Plane cross sections remain plane, though they are
not necessarily perpendicular to the median line

during the deformation.

(c) Relative elongation in the z-direction is neglected.

*Prescott in deriving Timoshenko beam equation, made use of
the same assumption. See [34].



Now examine a segment of a length Ax taken from the beam
as shown in figure 2. During the deformation, if the cross section
which was originally at x and perpendicular to the median line
makes an angle 6 with Oz, and if the shear angle is denoted by

y, then a, the angle which the median line makes with x-axis, is:

a = 0+y (1)

x, %!, M

Fig. 2 - Displacement of the beam element

Let a material point with coordinates (x, z) in the u;ldeformed state
have new coordinates (x', z') in the deformed state. Then with

u(x, y) and w(x, y) as displacements of the median line in the x and
z directions respectively, we have

x' = x+u-2zsino

z' = w+2zcos 0 (2)

The length of a line element (dx, o) in the deformed state is given by

(dx'z + dz'z)%
2 _ 213
[w, + (z cos 0), ] + [l +u, -(z sin 0), ] dx
x X x X
(

which is obtained by using (2) and by taking limit as Ax approaches

ds

3)

zero. A subscript after a comma will mean differentiation.



The relative elongation in the x-direction is defined as

ds
= 5 =0 (4)

Equations (3) and (4) yield

€= € -2 (5)
X
with g
o= 22
€=[w.2+(l+u.)] -1 (6)
X >

where € is the relative elongation of the median line.

Fig. 3 - Geometry of the deflection curve

From the geometry of the deflection curve as shown in figure 3,

we have,
W,
x
tan a =
1l 4+,
Wy
- X
sina = —
1+ €
1+,
cos a = ———-__—x (7)
1+ €

where € is as defined in (6)



2.2 STRESS-STRAIN RELATIONS
If o is the normal stress, and o is the shear stress,
XX XZ

then by Hooke's law

¢ = BE=EBE-~Ezb

XX B

crxz B GY (8)

Now let

N =jcr dA = EAE
b o 4

M :fu' zdA = -Ele,
XX xX

0 =j(r dA = k'GAy (9)
XZ

In (9), A is the cross-sectional area, I is the area moment of
inertia of cross section, k' is the shear-deflection coefficient
which is a modifying factor as used by Timoshenko[35] and
others, the value of which depends on the shape of the cross

section. For instance, for a rectangular cross section, ''= 0.833.

2.3 EQUATIONS OF MOTION

M(s + ds)
H" N (s + ds)
Q(s + ds)

Fig. 4 - Loading diagram

A free body diagram of an element of the beam is shown in

figure 4. The element is bounded by the top and bottom surfaces

9



of the beam and on the two sides is bounded by cross sections
of beam that are plane and which were normal to the center line
before deformation. The shear forces (Q) are parallel to these
plane elements but the normal forces (N) are along the center
line and are not necessarily normal to these planes. It will be

assumed that the Cartesian axis system, Oxyz (reference frame)

2
d t
can have an acceleration f(t) in the z direction. Then from
dt
figure 4 the equations of motion are:
(N cos a), -(QsinB), = p Au, (10)
b < X tt
(N sina), + (Q cos 0), + K(x,t) =pA (w+1(t)), (11)
x X tt
M, -Q(l +€) cos (a - ) = -J0, (12)
% tt

where K (x, t) is the vertical load during vibration, p is the mass
density, J is the mass moment of inertia per unit length.

There are eight unknowns occurring in equations (10), (11),
and (12), namely N, Q, M, a, 0, u, w, and E: But in addition to
(10), (11), and (12), we have one equation, (6), another one from
(7), three more from (9). Thus, there are enough equations to
take care of the unknowns.

We will proceed to reduce the above eight equations to three
equations and express them in terms of u, w, and 6. Using

equations (7), (6), and (9), equation (12) gives

Jo, =-EI®@,
Q = tt XX (13)

[w, sin@® + (1 + u, ) cos 0]
X X

From equations (1) and (9), we have

(14)

10



From equations (7) and (9), we have

1+u,x

= _= _— 5
N EA€ = EA pp— 1 (15)

Substituting equations (7), (13), (15), into (10) and (11), we obtain

14-1.1,}c
-pAu,tt-l-EA{(l‘l'u,x)- > 2%}:}:
W, +(1 +ul )
X X

Je, -EI®g,
tt XX

w, + (1 +u, )cot® Y ¢ (16)
x x
W,
x
-pAw,tt+EA W, - 1
® [w, +(1 +u, ) ]z
x
Je’tt - EI B'x.x
+ + K(x, t) - pA f(t),tt =0 (17)

w, tan © + (1 + u, )
X P

L]

x
Substituting equations (14) and (13) into the first of equation (7),
we obtain

J e’tt - EI e'xx W,

x
+ —
hetayi B k' AG [w, sin ® + (1 + u, ) cos 1 +u, (18)
X X x

Thus, we have three equations, (16), (17), and (18) in terms
of three unknowns, w, u, and 6. Up to now, we have not put any
restriction on the magnitude of displacement (u, w) and rotation (0).
As long as the strains are within the elastic limit, these three
equations can give results for values of u, w, and 6 of any magnitude.
2.4 COMPARISON OF THE EQUATIONS WITH

OTHER KNOWN THEORIES

Either equations (19), (11), and (12) or equations (16), I(l?),

and (18) can be reduced to equations corresponding to more

simplified theories.

11



2.4.1 Eringen's Equations of Motion

By neglecting the shear deformation, i.e., by letting
® = a, and by dropping the external loads, equations (10), (11), and

(12) can be reduced to Eringen's equations [l Oa] .

2.4.2 Equations Accordin_g to von Karman's Finite
Deformation Theory

If we drop shear deformation, i.e., put 8 = a, omit
rotary inertia term, i.e., put J = 0, omit the term f(t), and consider
€ as very small compared with unity, i.e., put 1 +€"" 1, from
equations (10), (11), (12), and (15), we obtain
—pAu,tt+EA [(1 +u,x)-cos B], - (Q sin 9),x:0 (19)

X

-pAw,tt-!-EA [(l+u, ) tan 6 - sin 9] + (Q cos 0), + K(x, t) =0 (20)
X I, x
X

-EI®, -Q=0 (21)
XX

The second equation of (7) becomes

sin 0 = w, (22)
x

We further assume that 0 is sufficiently small so that we
can neglect all quantities which have the same order of magnitude
as 6.

Accordingly, (22) becomes

6 = w, (23)
X

Substituting (23) into (21)
Q = - EI w, (24)
XXX

Substituting (24), (23) into (19) and (20), and retaining only first

e /
and second order terms’, we obtain

*In deriving (25), the term (Q sin 0), is dropped and in derivating
(26), tan 6 is approximated by (B+93/3.))sin 6 by (6 -63/3) and
(Q cos 0),y by Q,x.

12



pA U, " EA (u,x +3 w, ), =0 (25)

pA w, - EA (u, w, + % w,. )i *Elw, =K (x, t) (26)
tt X X X KKK

Equations (25) and (26) are equations which correspond to
von Karman's theory of platesand are also the equations used by

Kauderer [15].

2.4.3 Linear Theory and the Timoshenko's
Beam Equations

First linearizing the second of equation (7), we
obtain
a = w,
Using equation (14 ), it becomes

Q S
k' AG "x

6 +
or

Q = k' (w,.x - 0) AG (27)

Now linearizing equation (15),

N = EA u, (28)
xX

Finally by using equations (27) and (28), and by

linearizing equations (10), (11), and (12), we obtain

-pAu, + EAu, =0 (29)
-PAw, + Q=0 (30)
plo, -ELO, -Q=0 (31)

We have dropped the external load term and the term £(t) in
equation (30), and we have let J = pl in equation (31). Equation

(29) is the wave equation for the longitudinal waves.

13



Substituting equation (27) in equations (31) and (30),

we obtain
-plo, +EIB, +k'(w, -06)AG = 0 (32)
tt XX x
A = ) ’ - ) A =
PA w, k (wx 9)x G 0 (33)
Now eliminating 6 in equation (32) by using equation (33), we obtain

E
pA Wi + EI w, - (pI +-£

p 1
34
k'G ) W extt i 0 (34)

K'G tett

Equation (34), or equations (32) and (33) are called Timoshenko's

. %
beam equations.

*See Reference[35] p- 331, equations (£) (m) or equation (129).

14



SECTION 3
SOLUTION OF THE PROBLEM

3.1 EQUATIONS OF MOTION IN DIMENSIONLESS FORM
Equations (16), (17), and (18) will be put into dimensionless

form. First the following notation is introduced

4
B
Al
wg PEI 5 VBB e (35)
n

where w_ is the natural frequency of flexural vibration of the nth
normal mode, and P, i8 the corresponding tharacteristic number,
both for the linear case™.

We shall be interested in the steady state solutions of the
problem under conditions of sinusoidal excitation. It is not difficult
to show that the interesting results occur when the excitation
frequency is in the neighborhood of one of the linear natural
frequencies of flexural vibrations of the system. It will there~
fore be assumed that the frequency of excitation 2, is in the
neighborhood of the nth linear frequency w - The symbol Q

will be used to make the time dimensionless, thus:

=0 t (36)
n

Instead of excitation by an external load, the periodic
motions of the system can also be caused by a sinusoidal
motion of the support. Thus we let

w cos 2 ¢t
n

f(t)
£(t)

or

6% ool 4 (37)
n n

s!zSee reference [33, p. 325 (116).

15



Now let us introduce the following dimensionless quantities
- u - W X - w
u = — R g = =l WS —1:

N 2 2 o L)

where £ is the length of the beam.

Substituting (35), (36), (37), and (38) into (16) and (17), and
multiplying both equations by £/AE, we obtain the equations in
dimensionless form:

4 2 =

1 #Fa,
M. B TR A
- 2 2 ‘rr g3 15 2 - 213
Al w w,, +(1+u, % 4
n l ¢ ¢! ‘
2
J2 2
e ) -0,
1 El nn i TT EE
=N s & L G 0 e (39)
Al 3 £ g
4 2 -
I ﬁn Qn ;;? + - w,_g_
=Y ? Wi i B
2 A T El- 2 - 3
Al W + (1 + u, G
“n [’5 ) ] ;
Jee 2 4 2
I ElI “n Ver” 9'§,§ K¢ i Py Wy
+ 2w, tan0+ (1 +u,) YAE T 2 W, soam =0
Al & & |'E Al w
n
(40)
Similarly, equation (18) becomes
r‘ -1
2 EI
’ T 9!
L 2z et
(1 +ﬁ,g}tan 0 + =W (41)

£

k'GA[\-:v,g sin®+( +u,,)cos 0

—
-
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3.2 PERTURBATION SERIES
To solve equations (39), (40), and (41), we shall develop a

perturbation procedure. First we assume the following series:

w = + 2 % % &

W= own w, M wan

4 = + u 2+ 4 +
= wn 5 M u, M v

2 2 2

Qn = + Aln ] * Aznn L T

§ =B ot 4895 (42)

= l'r] o N 3 M

where m is a small dimensionless parameter, 0 < n << 1 depending
on the slenderness of the beam as discussed below. The third of
equations (42) is written in a manner such that Qn stays in the
neighborhood of the nth linear natural frequency of flexural vibration.
In equations (39) and (40), there appears a quantity I/A!z. If we
let I = Arz, where r is the radius of gyration of the cross section,
then I/ﬁk.l’.2 = rz,"fz, which is the inverse of the square of the
slenderness ratio. In the following, we shall consider only slender

beams. Thus we let

— = &N (43)

where c is a dimensionless constant of zero order in n. We also let

E 1
o g R e (44)
kf
G MZ
To express 0 in terms of w and u, equation (41) can be used.
By using series expansions and by using equations (42), (43), and (44),

both sides of equation (41) are expressed in power series in n, and

then by equating coefficients of like powers of n, we obtain
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6. = w

1 1, &
92 = w2.§ -ul’g wl,g+ew1’g§§ ,
w
i} ) 3 __LE
O = M et T e M M) “ 3 e e
4 J 2
- ec ﬁn %) Ett p_I+ew2,§§§-e(ul,§wl.§),§§+ e MWL (45)
From equation (6) and first of equation (9):
N = |- 2 - 2|3
EA =€ = w,g +(1+u,§)] -1 (46)
Using approximations, we have
. I 1 2] 2
Tl “1.g"+(“2,g+ 2 Vit )n
P L A s o ol (47)
"6V LE V2,6 T TLe e |0 T
From equation (13),
4 2
- . o ) 1 J fsn nn 0
" AIZ 33 A.!Z pl |wnZ TT
EA (1 +w, )cos 0+ Ww,, 8in©
€ 13
Using series expansions and equations (42), (43), and (45), we have
Q 2 3
Ea = beomy et ARG 8)e e T Voene POY 00 Fie
J Z2 -4
-c ewl,ggggg + = c ﬂn wl,g"r*r) , SR (48)
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N

Finally, using the series expansions of sine, cosine and (1 +x)-

and substituting equations (42), (43), (44), and (45) into equations
(39) and (40), we obtain

4
P 2
n
-cn > (mn + Aln'n+ iie) (ul ) +uz Y] + i)
“n
2 2 2 2
+(1 + + 3
[( +u1'gq uz,gn + )(+u1’§n uz’gn +zw1'§ n
2 2 J 2
-u + ..., + on(w w * wwsdiz, = 0 (49)
WIS AT T A T :
4
ﬂn 2 2 -
- cn > (mn +A1nq+...)(wl TTr|+w2 . +...-wo cos T)
“n
2 2 2 2 2 2
+[(wl.§q+ wz,gn +...)(ul’§n+ uZ’gn +2W1.§ n -ul’g n
2 4 J 2
+...)j, + cnl(em w = o W n-w n
: "[ P Vg oI T Vneee" T Vagee ,
w
2 2 2 l,§ 2
+u Wi Mt w N we n +...)(1- n
1L,EEE T L.E LE 1,668 V1,6¢88E 2!
2. 2 2 2 2 Ke
F wey (A 'ul,gn' uz’gn - 3wl,§ n +ul,§ n + ...)J’g + EA - 0
Equating coefficients of like powers of7, we get
1 *
i =0 51
i g * = -0 (52)
n lsrT 1,EEEE

*By using the boundary conditions, we will show later that u; - 0.
Consequently, for brevity, we will drop all u, terms henceforth.
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. 1 o
n: {uz’g & 2wl,g )!g O (53)

: + — -= u
N E B Woen ™ o paee > Wy

3
+ 3w ), Cﬁ —

e et eV eeeeee T S Pn Vgt ol T TEI

4 -
+ w B cosT (54)

n -cﬁn 1.12’-'__r+('|.:.3,§+W1’g wz'g),gi-c(w]’g wl'ggg).§=0 (55)

: +a
W ﬁn Y3, 17 * w3,§§§§ * 2 (Aln “a,rT 2n wl,:--r)

1 4 + u )
R W T T S

3 u -iZecB4
1,6 " V18 2,& " pl 7

+ (ew

-5 Wy, g 2,688

2

1
te W seeee "3 Y

¥1err) eet

4
4 - Pa S1n " T
b F31’1 WZ,g'r'r pl . Z 1L,€rT pl

A
+ %w 2)] ¢ = l; [.’)n4 W cos T (56)

2

*where K = Kon‘ﬂ, and \Tvo =w n"are substituted
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K {
o
—-—Eljand the term due to the sinusoidal

The external load term

motion of the supports [woﬁn cos T)Jare made to appear in equation
(54). In this way, we are starting the perturbation with the solution
of equation (52) as the generating solution. Thus, the generating
solution is a solution of the free vibration problem.

The above equations are applicable for all types of con-
ventional boundary conditions.* Note that since the axial
displacement u is also considered in the present theory, a
distinction must be made between the conventional simply supported
case and the both ends hinged case. In the former case, one end
of the beam is allowed to move axially; while in the latter
case, both ends are immovable. These two cases will be worked

out in detail. The technique used for these two cases can also

be applied to other cases, although the analysis for other cases
is much more complicated.

3.3 BOTH ENDS HINGED CASE

The boundary conditions are

At £ = 0;1, w=0, u=0 and M =0 (57)
SinceM=-EI10 wehaveatf=0;1, 6 _=0
» X X

If the series expansions for w, u and 0 of equation (42) are used,

then conditions (57) will be satisfied if

at£=0,1 w = 0
u =0 i=1;2;3 (58)
i
= 0
Bi’g

*For instance, fixed ends, free ends, etc.
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From (51) and (52)

“l,gg £ 0 (59)

4
g w +

5 Yage t Preese &0 (60)

Equation (59), together with the boundary conditions that at £=0,1,
u, = 0, gives the following solution

1
u1 = 0 (61)

Solving equation (60) under the boundary conditions (58), we have

B = nmw
n
o mz
w, = Z am sin mwf cos > T (62)
n
m=1
where n is any positive integer.
Since
91 = wl’g
oo}
2
P a_m wcos mnf cos = T (63)
i | m 2
n
m=1

Using the solution (62) for w), and taking into consideration of the
boundary conditions that at £ = o,1, u, = o, equation (53) yields the
following solution:

® 2
u +-1—w Bl a 2mz 1T2 osz = e (64)
24672k T 4 m e 2

m =1 B
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Equations (61) and (62) give the solution in the first approxi-
mation. This solution is the same as that for the free vibration
of the linearized problem. In order to proceed to the next

approximation, it is advisable to take

w, = a sin nw§ cosT,n =1, 2, 3, ... (65)
T = t
n

i.e., in equation (62) we let

a = 0,m # n

and consequently equation (64) becomes

2
u + w =

1 1 2 2
2.t > 1,e 2 {ann-rr) cos T (66)

A justification for taking W, in the above form is given in

*
Appendix A. We turn to equation (54)

(n1'r)4A
(nm) w + w -I'——'-L.l w - l (u W l 3
2rrt Vzgeee’ T 2 VhLrre zgLg *Z2 Ve g
n
J Ko!3 4
Ve pepsey < SR o r X T Y T coeT G

Express the loading as a Fourier's sine series

KIB 4 4 —
K = g bwn W cos-r=( B sin mnf |cosQ t (68)
o E m n
fa =1

El

*
Refer to note on page 5.
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Using equations (65), (66) and (68), equation (67) becomes

fo)
=+
(nm) wz,'r-r+ wz’gggg- B | sin mnf cos T
mi=1
4 A'11:'1 : 1 3 4 4
-(nm) a — sin nw€ cos T + T sin nm§
w

1

(3 cosTt+cos3T1)-(e+c :—I)(nn) a_ sin nm€ cos T = 0 (69)

In the right side of (69), the terms with the factor sin nnf
cos T are the secular terms, so called because they would produce
the solution for ”wz" of the form -rAn sinT sin nw§, which then
would destroy the periodicity of the solution. Just as in the theory
of oscillation for nonlinear systems [30],in the process of
eliminating these secular terms, we will be able to find the
response relation of the system. Following Pisarenko [30] we let
equation (69) be multiplied through by sin nwé cos T, and then
integrate the resulting equation throughout the whole length of the
beam (§ from 0 to 1) and over one cycle (T from 0 to 2w).

Note that by using integration by parts and by applying the

boundary condition of (58), we have™

2w 1 4
f f [(n ) WZ,T“I‘ + w2'§§§€] sinnwf costd £ dTr =0 (70)
0 0 '

Taking into the consideration equation (70), we have

*See Reference [30] Chapter II, Section 10, p. 54.
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(o o]

2 1 A
: 4 In
B sinmnfcosT+ (nw) a sin nw§ cos T
m n 2
0

W
m=1 n

1 4
- = a 3(1-111-) sin nm§ (3 cos T + cos 3 1)
l6c n

+ (e+c;,'I]-:-)(n-rr)6 an sin nw§ cos 7| sin nm cos T = 0 (71)

Carrying out the integration, we obtain

A
1 3 3 4
B +(n11')4a 2 a (mn) + (e +ci—)(n1r}6a = 0
n n 2 l6c n pl n
n
or
A B
1 3 2 2
- e a - (e+ci)(n1r) . . (72)
2 l6c n pl ' -
w (nw) a
n n

The response equation can thus be written as

2
. 1+A1n ol JE E)(M)z
B Mgk L B
2 1)
- 2 N e
n
2
2 ; B_n
¥l er @M g (13)

(nw) ma
n

As might be expected, the linear correction terms are due to the

%
rotatory inertia and the shear deformation, while the nonlinear

*1t agrees with equation (140) of reference [35] i Pe: 335
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2

2
term 61 (nan) is due to the axial force, the magnitude
2
of which is proportional to the slenderness constant —% = -41-14—- =
12 1

> . When the term containing the external force (Bn) is omitted
T

in equation (73), the resulting response equation represents the

stem of the response curve. Since the term 61 (.':Ln'n)2 is
proportional to the square of the amplitude and is always
positive, the stem of the response curve bends toward the
right (figure 10). This is so called hard spring effect. In fact,
the pattern of equation (73) is similar to that of the Duffing's
equation of nonlinear oscillation theory.*

Another physical phenomenon associated with nonlinear
spring effect is the jump phenomenon.** Here jump refers to the
phenomenon of a sudden and abrupt increase or decrease of the
amplitude when the excitation frequency changes only slightly.

In the present case, it happens in the region of dfbc of

figure 12. In figure 12, as excitation frequency increases, the
amplitude increases from point a up to point b. Further increase
of the frequency will cause a drop in the amplitude to point c. On
the other hand, if the frequencyis gradually reduced from point c
toward the left, the amplitude will go along the right branch of the
response curve up to point f. Further decrease of the frequency
will cause a sudden jump of the amplitude from point f to point d.
The portion f e b of the right branch of the response curve can be

shown to be unstable. (See Appendix B).***

s
Reference [36] p. 85 equation (25) and p. 88 figure 23

Aok
Reference [32] p. 245 and figure 80.

*kk
Refer to note on page 5.
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Let us examine the case when there is no external load and

the beam is excited by the sinusoidal motion of the supports only, i.e.,

4
= f(t), = w (nw) cosQ t
tt o n

ats

Expressing Wes in terms of a sine series, we have
o
- 4 3 - E i
K =4n w _ cos Qnt Em—mm (74)

Using equation (74), the response equation (73) becomes

92 2 4w"F
By el (n-rr)—-+—+—-'( 2- > |(75)
2 2 k'G " nmna
w Al n
n
for odd n, and
QZ
I 21 J y
—E'é-=l-—'""z" (nm) l—l_+ﬁ+2_?(na) (76)
w Al P 4h

for even n,

The difference of the response for odd n or even n in the linear
case will be discussed in Appendix C‘?*To solve for u,, using
equations (65) and (66), and the boundary condition that at £ =

u2 = 0, thus we have

1 2 2 2 2 2
uz,g— T 2 n 1w cos T(l -2 cos nmwt)

*Use is_ made of the Fourier sine series formula, valid for
(&) —-w , -1< £ <0, and f(§) = wo, 0 < £ < 1 (here only the right
half, 0 < g < 1 is needed). For reference, see Churchill "Fourier
Series and Boundary Value Problems," McGraw-Hill, 1st ed.
p. 64 Prob. 3.

*k
Refer to note on page 5.
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By integration

W iE = e anzn-rr sin 2nw§ (1 + cos 271) (77)

In view of equation (72), equation (69) becomes

(0 0]

4 4
+ = E i
n w2,1--r w2,§§§§ Bm sin mn§ cos T

m=1,m#n

4 4
-——a n w sinnwf cos 37
n

l6c
Solution of which is
= Bm sin mw§ cos T a ?
w, = (m4 n4) 2 + 780 Sin nmf cos 3T
m=1,m#n L
(78)
Thus u and w can be written as
a = u + 2 (79
=u, n+u,m )
gt (a )2 in 2 ( 2Q t+ 1
=1 (2,n) n wsin nm§ (cos 3 )
w = w.n+ o = (na ) si Qt
o= Wntw,n =Ma )sin nwf cos »
= 2
i (M” Bm) sin mnt aE
( 4 4 4 n
m=1,m#n m. ~a)w
(nan)3 A%
e e 80
+ 1281 sin nmf cos SQnt (80)
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Once Qn is known, the amplitude (nan) can bc determined by
equation (73), and the solution of u and w can be obtained by
equations (79) and (80). Equation (79) shows that period of
ﬁ(%ﬂ- is only half of that of the external excitation or of w.
It also indicates that when (1 + cos Zﬂnt) =0, u=0, and thus
u =0, when w = 0, and an examination of equation (79) shows
that the nodal points (u ;10) are at § = % which is the middle
2
of the beam and at £ = >0’ %.l
2

symmetrical about the point £ =
stretching out or compressing in a symmetric way about the

Since sin 2nn§ is anti-

,» the beam thus is always

middle section.

3.4 SIMPLY SUPPORTED CASE
Assuming that the left end is hinged and the right end is

roller-supported, the boundary conditions are

at

urr
1]

=
e
"

hd
g
]

0, M=0 (i.e.,E},g =0)

andat £ =1, w=0, M = 0), and

0 ,
(ag

0 (i.e., no resultant axial force at

I

Z‘.Fx=Ncosu—Qsin9

€ = 1). If series expansions are used, we have

£ =0, L = Wy . =0, =0 81

a £ u, 0 w. Bi,& (81)
Y 14253

and at £ =1, w, = 0, Bi = 0 (82)
1= 15283 e
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Substituting for N, Q from equations (47) and (48), we have

lW 2)

: - 2
z Fx = (N cos a - Q sin 8) = EA [m,,l’g +n (uz’g +2 18

4

3 2
+n (“3,g+“'1,g“’2.g+°“’1,g“’1,.§§g"“1,§“’1,g JFN e

Thus we have, at £ = 1,

uI,E, =0
1 2
+ = =
etz Ve =0
2
u +w. W =0 (83)

3.6 7 V1eV2.6 T S Me e T M6

Equations (81), (82) and (83) are the boundary conditions for the
simple supported case.

To obtain the solution, we start with equations (51), (52), and

(53)

Considering also the boundary conditions (81), (82), and (83), we
obtain

u, = 0

€
y

a sinnmf cos T
n

[a»]
]

a nwcos nnf cos T
n

=
1l

nw, T = Qnt, n = any fixed integer (84)
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Here again instead of a series, we choose wl to be a one
term solution. The reason of this choice is exactly the same as
that in the case of immovable hinged ends.

Solution of equation (53) together with the boundary condition

that at £ = 1, uz’g + -;— Wl,gz = 0 (equation (83)) is
+lw Z—O(forall'randg) (85)
“2ET 2 Yig R
Thus
I
e 2 TIé
el (nra cos nn cos 1’)2
ol nwa
and
e (a :'111')z (€ + sin 2nn€) (1 + cos 27) (86)
Y2778 “n 2wn
Aln
To obtain — we again use equation (54). But this time
“n
we have

(u2,§ wl'g + %‘ w1,§3) = 0 (equation (85) )

Thus instead of (73), we now have the response equation up to the

1
order n as

2 2
: T A (L, E)l22 B —
2 2 |p1 kG| T 4 4
w Al nwom

For excitation by support motion only, and for ﬂn = wp

(87) becomes
2 2
w i 2z |3 . E =
z 2 \pl  k'G
1

[y

o (88)"

wnax

€

ES : 2 X
If the nonlinear (a_¢) term is dropped and for n = 1, equation
(75) is reduced to equation (88).
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As is remarked in Appendix d‘,. this formula is no different
from the response relation of the linear case, and thus we conclude

that the effect of large amplitude on the frequency will be at most

of the order qz.

We now proceed to find the quantities W,y Ug, and AZn from

equations (54), (55), and (56).

For the sake of simplicity, let us consider the case whenn = 1

and the loading:

00
- - 2 )
K=m w cosTt=4r w cos T — sinmm§ (89)
o o m=1.3 m

Equation (54) becomes

2 ; " 3 - Z sin mm
T W W = m™w W [od
2,TT 2,EEE¢E o m=1,3,...

A
-4
+ —rl—z]: a1 sin m§ cos T + ‘I'T6(E+ t:)a1 sin w§ cos T
|
(90)
But equation (87) gives
4 ? + 4 -fll + (e + c) =0
T w twoa > m (etc)a, =
“1
Thus equation (90) becomes
Qo
4 3 Z sin mw§
+ = 4 L 1
T WZ,TT WZ,§§§§ T w_cosT = (91)

m=3,5,...

*
Refer to note on page 5.
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The solution of (91) is

a0
4wo sin mm
W, = cos T Z 2 (92)
T m=3,5,...m(m -1)

To find u, we use equation (55)

u = cP u - (w w + cw

3e¢ n 2T Mo Wi YOV Yy eee)e

Thus

4
U570 [ U prdEs (e g rowy vy ek (1) (93)

After substitution, it becomes

0o
6 4w cosmmf cos nf
u3§ - —;—-c-al2 (%— -%)cos Z-r—alw Z : 2
’ 4n m=3,5,... m -1

cos T + calz 11-4 coszwg cosz"r + kl (t)

By further integration, we have

6 3 = 4 %

. W cos T
T e i LT D N et
8w m=3,5,... 2r(m " -1)

m - 1 m+ 1

. - \ . .
[sm (m - 1)nE , Sin (m + l)ng] i ca121'r4 coaz-r (%_ " 81;‘1 erg)
m

+ gkl () + kz(T)
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Sinceat§=0,u3;03ndat§=l.

u + w W +cw w =0,
3,8 2,€ 1, 1,E "1,EE€
it yields
kZ (r) = 0
and
6
b 21 1
kl(T)— - 5 ca, (2 - 2)(:08 2T
41
Thus:
6 2 3 2 2
w cos T
1. z
T ORI L TPL SR | o
3 2 1 2 6 3 1 4
47 8w m -1

m=3,5,...

[sin(m-l)'rrg M sin(m+1)wE T 2 114c082-r(-§- % sinng) (94)

m-1 m+1 1 2 4

A w
1 1
To obtain —22 , we multiply equation (56) by ey déd T and integrate
1
w
1

as before: 3

| w
4 2 1.8
fz L{" Y3t Vaeeee” (“’ Treeeee” T3 U2eVLe" V2t

4 4
— 114w ), + £ EE A +—---—.lT A W
pl 1,Evrl EEE WZ 21 1,rT wZ 11 " 2,7r
1

-2cCce

3 2
“T VaeYe "™ e%a"d M "l s

_Allﬂ4w J— Jic 4w A11+cJ 4
2 o pl = 1,€rr 2 p 2 W2.&,-r'r
w w
1 1
+ w (w £ + . .) sinw§ cos T d€d 0 (95)
nw T T =
LEEE " 1,6~ 2,67],§
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A
Carrying out the integration, and substituting the values =3 from

w

1
equation (88), and cnand enfrom equations (43) and (44), we obtain

2 2
2A21_ % |s L 3JE [ ¢ 15 L m? w22
" 72 T llk'G pI| " pik'G||AL2 32 TITM g M M
“)
2
4w w T
o J E I o
+ +4— +

anm (pI kK'G| Age a;m L

Thus in the second approximation, the response equation takes the

following form:

2
o ,y A11+2A21
2 =z "N 2
b | “1 |
2
- q Fr (__.I_+ E)+(I1r) (i)2+(E)Z+ 3EJ
= = X' 1 ' 1
A!Z pl  k'G A.!Z p k'G k'Gpl
(811'2—45)112 (a n)2+(_J_ + E)4I T ) 4wo . (4wo)2
1
96 1 pl k'G A!2 a,l'q 1ra.1r| 'rraln
(97)

J
In equation (97), terms with the factor E are due to rotatory inertia

J J
— =1, the factor — is retained solely for identification

E
purposes); while with G are due to shear deformation. All these

A!Z

Since beams associated with large deflection are usually of the

1
terms are with the slenderness ratio(—-— as their coefficients.

slender type, for all practical purposes, the shear deformation and
rotatory inertia terms can be neglected, and thus equation (97) can be

reduced to
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1 (81‘r2 - 45)1r2

_—_ =1

2 96

2
(an) = |1 -
naln 1Tal'|]

Equation (98) indicates that the nonlinear effect on frequency due to
large amplitude is of the soft spring type (i.e., the response curve
bends towards the left). As is seen in figure 16, it also demonstrates
the jump phenomena. By increasing the frequency it jumps up from
point f (on left branch) to point d (on right branch), and by decreasing
the frequency it jumps down from point b to c. The portion b e f of

the left branch of the response curve is unstable. (Appendix B)

The solution for w and u up to the second approximation can be

written as 5 &
4Wo11 sin mmw
w=ansintf cos Qt+ ——— cos Q. t Elpmwl
1 1 ™ 1 4
m=3,5,... m(m - 1)
(99)
= 1 2 .
u=- = (man) (&£ + sin2nwg)( 1+ cos2Q.t) (100)
8 1 2m 1

For a given frequency Ql, the amplitude (nal) is determined by
equation (98), and the solution of u and w can be obtained by equation

(99) and (100). Equation (100) shows that period of u (-zz?ﬂ) is only half
1

of that of the external excitation or of w. It also indicates that when

(1 + cos ZQlt) =10, &/'=0, and this a = 0 when w is zero. The maximum
ma_ mn

_ ( !
max 2
equation (99), it is seen that the second term, i.e., the term with the

2
of'f:' occurs at £ =1 and Qlt =0, or 'al ) . Examining

summation sign, is very small and converges rapidly. Therefore,

it can be neglected.
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SECTION 4

MODIFICATION OF THE PROBLEM
DUE TO MATERIAL DAMPING

4.1 STRESS-STRAIN LAW WITH HYSTERESIS

Under alternating loads, the deformation of materials do not
follow Hooke's law. Part of the deformation energy is converted into
the internal friction loss. Due to this process of dissipation of
energy, the stress-strain curve forms a loop, which is commonly
known as the hysteresis loop. The area of the loop determines the
amount of energy dissipated per unit volume of the material during
one cycle of oscillation. This property of energy dissipation is called
the internal damping, or material damping, and is a characteristic of
the material. Material damping serves as an effective agent to
reduce the amplitude of vibration.

One relationship that is commonly used for material damping
is in the form of viscous damping, i.e., the damping is proportional
to the rate of deformation during oscillation. This is the same as
saying that damping is proportional to the frequency of the oscillation.
According to this assumption, the equations of oscillations are linear,
and can be solved often by rigorous mathematical methods. However,
experimental work shows that damping in general is only dependent on
the amplitude of the oscillation and is independent of the frequency.
The use of viscous damping for the vibration analysis, therefore, is

not justified.
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Based on the fact that the material damping is dependent on
the amplitude and is independent of frequency, Davidenkov proposed
an empirical stress-strain law. Davidenkov's law was adopted by
Pisarenko for cantilever beams (both Euler-Bernoulli and
Timoshenko beams), and the analysis agrees quite well with the

experimental results.

Davidenkov's stress-strain law consists of two expressions,
One expression is for the ascending branch of the hysteresis loop
(loading); the other for the descending branch of the hysteresis loop

(unloading). In functional form, it is expressed by
v| n n-1¢ n]

E{E - =€ +€)" 2" ¢ }
n| o o |

E{E + VL(GO _E)n ) 2n-l eoni‘}

or taking the derivatives, we obtain

-
a

I

(101)

-
o

aF

de

E[l - V(€ +(:_)“'1]
(102)

d&

e = efi-ve -0

"

where arrows towards the right indicate the ascending branch, i.e.,
loading or d€/dt > 0 (t:time), while arrows towards the left indicate

the descending branch, i.e., unloading or d€/dt < 0, and

E is the Young's modulus
€0 is the amplitude of the strain (absolute value)
€ is the strain at any instant

o is the corresponding stress

v, n are parameters for the hysteresis loop.
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A sketch of the hysteresis loop of equation (101) is shown in figure 5.

Fig. 5 - Hysteresis Loop -- Davidenkov's Stress-Strain Law

The following are the properties of the Davidenkov's stress-

strain law:

(a) The damping energy, i.e., the area of the loop, is
independent of the frequency but is dependent on
the strain amplitude € ”

(b) For the same amplitude of strain, different
materials have different loop areas. The loop
area then depends on the two parameters v and n.
These two parameters also determine the shape
of the hysteresis loop. However, as shown by
Pisarenko [30], the shape of the hysteresis loop
has little effect on the damping properties and
therefore if we take n to be the number 2
or 3 and vary v accordingly, the hysteresis loop
thus obtained usually gives satisfactory results
for damped vibration problems.

(c) The following conditions of symmetry are satisfied:

& B
€ | € = _Eo_d€€=+€o
do _ dv

d€ E = +€O dE EZ_EO




(d) The starting points of loading and unloading are
always with a slope equal to E, the Young's

modulus. Thus

-
do

d€ € =+€

1
=

Davidenkov's law, as expressed by equation (101) is only for
the case when the strain is symmetric about the origin. For the

case in which the hysteresis loop is not symmetrical about the origin,

i.e., the extreme values are aot equal, IEI l # €2 - I L # o |
(see figure 6),we can adopt o
%
loading
€
e unloading

Fig. 6 - Unsymmetrical Hysteresis Loop

the same functional relationship of Davidenkov's law and make the
assumption that the loop is symmetrical about the point(((.1 +(..2)/2’
(D"l + crz)/z)_ The stress-strain law then takes the following modified

form:

-
o

e{e- 2 [€-€)"- 3 €, -€)]

-
o

v n 1 5 ol
E{c + =&, -6V - 3 €, =€) ]} (103)
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This modified form of equation (103) also possesses the properties
(a) - (d) of Davidenkov's law, but now the amplitude of the strain is
defined as the average of the extreme values, i.e., Eo = €2 - 61/2.
For most metals, the parameter n can be taken as 2 [.30].11 n =2,

equations (103) become

F-e{e- e -€€r + €-€5H € €]}
Feeler g[-#,6- 3 € -€H4€€])

(104)

In the following development, the Davidenkov's stress-strain
law in its modified form expressed by equations (103) or (104) will

be used.

4.2 NATURE OF STRAIN CYCLES IN BEAMS AND STRESS
IN TERMS OF BEAM DISPLACEMENTS

Before deriving the equations for the motion of beams with
hysteretic material properties, it is necessary first to get a physical

understanding of the strain cycle occurring at any point in the beam.

For the sake of simplicity, the excitation frequency will be
assumed to be near the lowest linear flexural mode frequency, and
just as in the undamped case, only two cases, one with both ends

hinged and the other with simply supported ends, will be considered.

4.2.1 Both Ends Hinged Case

Since the hysteretic damping effects are very small in
comparison with the elastic effects (for metallic materials) it will be
assumed that the basic strain cycle is similar to the one for an elastic

beam.
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Section 3.3 gives the results in the first approximation

for an elastic beam with hinged immovable ends as follows:

w = fw X fw_n = fa nsinnwfcos T

1

1 ]
] 2.6 2 Vi,k | * T (105

The axial strain of the middle plane is expressed by equation (47):

€ Mg W e 3 % wl.éz)"z e (47)
The axial strain at any point is obtained from equation (5):
€=€-z0_ (5)
Substituting equation (105) into (47) and (5), we have
€= % (alnw cos -r)z + !E aln 1r2 sin w§ cos T (106)

where the first term is due to axial tension, while the second term

is due to bending.

Differentiating € with respect to T,

E—E—— a 281!‘!1"!'3. cos T+ = sin £)
ar i (Z 2m T K (107)

Positive values of d€/dt corresponds to the loading branch of the
hysteresis loop (figure 6); while negative values of d€/dT corresponds
to the unloading branch. The number of strain cycles that occur at

any point during one cycle of beamm motion is determined by the number
of changes in sign that occurs in the strain rate during that interval

of time at that point. The hysteretic stress-strain law for each strain
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cycle is also dependent on the maximum and minimum value of €
of that cycle (El, EZ of equation (104)). For these two reasons, the
stationary values of equation (106) will now be examined. The
stationary values of € is determined by the zeros of equation (107),

fe.;at T=0, % 2% 0 s o .

and when

-;—al ncos T + f— sinwg = 0 (108)

i.e., when

T ;’? = cos-l (Mﬁ (109)

for

m o 3w
z>0, — <17 <w;and w<T_ < —
2 o o] 2

Since | cos -r| < 1, no solution of equation (109) is possible if
| 2z sin ngl > aln!

There are two types of cyclic variations of strain and they depend
on the solution of equation (109). These two types are described below.
(a) Case when |2z sinwé| < ant

For this case, for the interval 0 < v < 2w, there are

two roots of equation (109). These roots shall be called To and '—r-o'
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= 3
< 7 &, andwgr <& —2'— Based on the

o = o
knowledge of all the zeros of equation (107) and the signs of d€ /dr, it

For z > 0, we have:

A

is possible to determine the time dependence of the strain from

equation (106), and the maximum and minimum values of strain. Thus,

- d
at T =0, 51_€__ = 0, and since for T = 0 , —€ = +; 1@, € is increasing, and
4 dr dr
i ) ;ﬁ = «,i.e.,€ is decreasing,Emust be a maximum at T = 0.
T
d d
On the other hand, at T = v, again -—€— =0, but for D +T< 1 4 L:-
o dr d o dr
and hence € is decreasing, and for To< T<m, = = and hence € is

increasing, € must be a minimum at T = T . By the similar reasoning
& R

€ also must be a maximum at T = m; and a minimum at T =7 . In

[0}
summary, for z > 0, we have
T 0 T i ; 2w
e G .. N o

d
d—E 0 - 0 + 0 - 0 + 0

T (decreases) (increases) (decreases) (increases)
state of € | max. min. max. min. max.

For a given set of values of z and € » the strain cyclic variation is shown
in figure 7(a). It is seen that there are two cyclic variations of €

during one cycle of excitation (U <7 < 2 ).

(b) Case when |2z sin w¢| > a €l

In this case there are no solutions for equation (109),

It is observed from equation (107) that the following is true. For
z >0

T 0 m 2w

d

_E 0 = + 0

dr (decreases) (increases)

state of € max. min. max.

Therefore, there will be only one cycle of variation of € during the
interval of 0 < 7 < 2mw. The time variation of € for this casec is

shown in figure 7(b).
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At a given instant (i.e., T = a constant ) equation (108)
represents a curve in the z - £ plane. Sketches of the curve are
shown in figures 8(a) and (b). A series of curves at different instants
of time for the case when aln!>h are shown in figure 8(a). Starting
from outside (at T = 0), the curve moves toward the center of the beam,

and coincides with the center line of the beam (§ axis) at 7 = w/2.

/2 to T = 7w the curve moves outward in the other direction.

From T

From T = w to T = 2w, the motion of the curve is reversed. Figure 8(b)

shows the curves for the case aln!< h. The curve again moves with
time inward at the side for z < 0 during the interval 0 < 7 < w/2,
coincides with the & axis at T = w/2, moves outward at the side for

z > 0 during the interval /2 < 7 < m, and then reverses the motion
during the interval m < 7 < 2w. The difference between the cases
represented by figure 8(b) and figure 8(a) is that in figure 8(b). the
curve starts inside some part of the beam at either T= 0 or T = m,
and there is a portion of the beam (two shaded areas) that is always
outside the curve; while in figure 8(a), at either T = 0, or T = m, the
curve is completely outside of the beam. This difference is signifi-
cant in that the portion of the beam which is always outside the
curve (the two shaded areas) is the area for which |Zz sin ﬂE,l > aln!,
and thus, for which no solutions ('ro. ;0) of equation (109) exist.
Consequently the strain cycle for this portion of the beam can be
represented by figure 7(b). For the other portion of the beam (area
which is not shaded in figure 8(b), and the entire beam of the case
shown in figure 8(a), the strain has two cycles which is represented

by figure 7(a).
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(a) Two loop case -~ |2z sinw&| < a, nf, corresponding
to Figure 8(a) and unshaded area of Figure 8(b).

0; Ziap=e

-
I

Z/ 3 ,L// €
z>0 z < 0

(b) Single loop case -- |22 sinnE,l > a, nf, corresponding
to shaded area of Figure 8(b).

Figure 9 - Hysteresis Loop of Beam Stresses
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Based on the observations on figure 7 and 8, and the
above discussions on the two types of cyclic variation of strain,
stress-strain curves of the hysteretic type can be formed as shown
in figure 9(a) and (b).

The functional form of the stress-strain law can be
formulated by using equation (104). For the two cycle case, for
z > o and the part of the cycle o-ro. figure 9(a) as compared with

figure 6, we have,

€1 = €(-ro), (min.) and 62 =€ (0), (max.)

while for z > o, and part of the cycle 11?0

El =€ (7 ), (min.), and € =€ (w), (max.)
o) 2
Note that E(TO) = £ (?o). From equation (5), we have
€ () =€) - 26, (0)
€(m =€) -z0, (m)

from (84), (105) and (47), it can be shown that
€(0) = €(n), and 6, _(m) = - 8, (0).

For brevity, let us denote E(O) by é , and 6, (0) by 0, , then we have
m xX Xm

€lo) =€ mZ0

I
mj

€(m) mtZ0 (110)

Xm

To obtain the minimum value€ {To), substituting equation

(109) into equation (106), thus we have

E(TO)=-(f-ns'mwg)z (111)
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This indicates thatE(-ro) is proportional to (z/£)2, and if (z/f) is small,

€(7,) can be neglected.

Using equations ('104). (110), and neglecting the € ('ro) = El
terms, we have, in terms of é-and B‘x' the following stress-strain law

with two loops

—>
o
'OTo v - 2 1
- = B (E—zﬂ.)+z[~(€ 'EE ) + z(2€6,
T 2. 2 K% .2
[e] -
+€m e.xm) -z (e.x £ % e.xmﬂ} (112)
‘_
crOT
o = v =2 1= 2 = =
.y =E{(€-z9.x)+3[(€ +E€m -zEEm)
G-TI'T i :
© -z(2€6, +¢€_ 0, -2 6, 7+ €6, )
X - m XxXm m X Xxm
+z2(9.‘2+l 9.2 +206, 0, )]} (113)
X 2 Xxm X Xm

Now we turn our attention to the single loop case (figure 9(b)). As

figure 9(b) is compared with figure 6, we have

For z > 0: El B E(n), min.

EZ = €(0), max.

and for z < 0: El = € (0), min.

€

2 = €(rr), max.

However, due to symmetry, we have

€z) , __oZ€(-2)

at T=w
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Thus, for the part of the cycle om, we have

€I'.’. B Em ) |z| 9':ur.z‘n
for all z
€ €.+l e (114)
Substituting equation (114) into equation (104), the stress-strain law

of the single loop type is obtained:

-
7 - E{(-E—- 29, ) +-;_—'[l('€'- € ) +2:(€-€ 0.,

+ 2]zl e, (€-

my
-+
@
1
&
3
N
]
[y¥]
-
"
2
%
3
N
N
e J
-
[
<

4.2.2 Simply Supported Case

The first approximate solution for the simply supported

case, as given in Section 3.4, shows that

w=Iw = !wl‘n= !alﬂ sin m§ cos T

1
u =0 u,, +3 wig =0 (116)

Substituting equation (116) into equations (47); (5), we have,

2
€=IE1T alnsinﬂgcosf

d€ Z 2 ) ;
& =g oR fiwi wt sinT (117)

Equation (117) indicates that the strain varies linearly

across the depth of the beam and the neutral axis is at the center. It
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also forms a single loop from 0 to ™ and back from w to 2m, and the
loop is similar to the one shown in figure 9(b). The functional form
also must be the same. In other words, for the simply supported case
with one end axially free to move, the stress-strain law is ex-

pressed by equation (115).

Note that the main parts (elastic part) of the stress-
strain law of equation (112), (113), and (115) are all the same as
expressed by the term E (E- zB.x). The only difference is the second
order effect of hysteresis which is represented by the terms with the

coefficient v.

4.3 AXIAL FORCE AND BENDING MOMENT TAKING MATERIAL
DAMPING INTO ACCOUNT

The axial tension and bending moment are defined respectively:

[u'dA
A
(118)
[U‘ZdA

A

N

M

The integration is over the entire cross section of the beam. Again
the immovable hinged ends case and simply supported case shall be

considered separately.

4.3.1 Both Ends Hinged Case

In Section 4.2.1, it is shown that the addition of the axial
tension causes the beam to have at some points two cycles of strain
and some points one cycle of strain during one cycle of beam motion.
The criterion of determining which part of the beam has two cycles

and which part has one cycle is, as explained before, obtained by
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examining the roots of equation (109); while the criterion of deciding
which branch of the hysteresis loop is applicable is to examine the
signs of the loading rate (d€/dr) of equation (107). In both equations,
(109) and (107), there are three variables -- 1, and z, and thus at

any given instant v, but at different locations of beam (different £ and
z), stress-strain relationships may be different. Consequently, the
integration of equation (118) will not only give complicated expressions
for N and M but also take different forms at different part (£) of the
beam. In general, therefore, the analytical expressions for the damped
motion of the two hinged ends case are very complicated. For the sake
of simplicity, only two limiting cases will be considered. One limiting
case will be for beam amplitude of vibration large in comparison with
beam depth; while the other limiting case is the one for beam amblitude
small in comparison with beam depth but still large enough to produce
nonlinear effects (figure 7(b) ). It may be expected that the general
case (intermediate case) will have a behavior intermediate between
these two limiting cases.

4.3.1.1 When Amplitude is Large Compared with Depth
of the Beam ™

If the amplitude is sufficiently large so that in equation (109)

cos T = il sin mE = 0 (i.e.1a1n>> 2z sin w§)
an

P 3
then -ro = % ' T = E" (figure 7(a) ).

%
In the following, for brevity, this case will be referred to simply as the
very large amplitude case
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T - 3w
If the approximations T and Te =5 Bre used, the unloading and

the loading cycles of the beam can be written as

" T -
< < o =0
T2 0T
o
T
SEST SN a'=_-u."
7 T
o
3w -
T < € = o =0
mTT
o
s <T<2r o=¢ (119)
2 ©ooT
o

Using the appropriate formula of equations (112) and

(113) and substituting (119) into equation (118), we obtain the following

results.
N = )
2 = v 2 13z2 v 2 1.72
3 ~ By BAIC s G E ) ep BUIE, ep )
N(-—Z-—--ZTI')
N(O--—) _ _ _ __
=EA€+3EA(€2+l€2-z€€)+3E1
3w 2 2 m m' = 2
N("'z_) 2 1.2
(6, +=6," +208, 6 ) (120)
X 2 xm X Xm
Mz -m _ _
= - EI6, +-ZEEI(ZEO, +€ 6, )
M(_—ZTT) X X = m Xxm
M(O-—) - _
=-EI®, -—EI(ZEB +€ e, -2€ 6, +E€o, )
- m Xxm m xX XxXm
M(rr-—)
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where

4.3.1.2 When Amplitude Is Small Compared with
Depth of the Beam

If the amplitude is small so that we make the

approximation 2z sinm§ > fa_m, then there is no solution for equation

1
(109), and the stress-strain law takes the simpler form of equation
(115). Strictly speaking, however, the relationship of 2z sinnf >tanq
can not hold for the whole span of the beam, since sinn approaches
zero toward the end of the beam (at £ = 0 and 1), while !alq is never
zero, no matter how small it may be. The approximation is taken in
the sense that ¢ am is sufficiently small so that at any instant only a
very small portion of the entire beam behaves with the hysteretic
behavior of equations (112) and (113) rather than with the hysteretic
behavior of equation (115), and the substitution of equation (115) for
equations (112) and (113) for this small portion of the beam does not
alter the damping behavior too much. Physically speaking, this is the

case when the shaded areas of the beam shown in figure 8(b) become

predominant; while the unshaded area becomes negligibly small.

*In the following, for brevity, this case will be referred to simply
as the small amplitude case.
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Based on this approximation, and the loading
cycle as shown in figure 9(b), the substitution of equation (115) into
equation (118) gives

‘-_

— - = e

N = EA€E+ EI v (E-€ ) (6, + 0, )
1 m Xxm

—> E = 2
- v -
M= -EIf8, -EI v8 B8, e |I -
I x 3v X ’ l(E €

Xxm 2 m
2 2
+ 8. = 9;
13( s xm)] (122)
where upper signs refer to m <t < 2m, lower signs refer to 0 <7t < m,
and
o
2 -
Il = ZJ bzdz = th
o
=
2 3 1 4
= 2 & = bh 2
I J' bz dz =5 b (123)
¢}

4.3.2 Simply Supported Case

As stated in Section 4.2.2, for the simply supported case
the stress-strain law follows the same form of equation (115), which
in turn gives the axial tension N and bending moment M the same

expressions as shown by equation (122).

4.4 EQUATIONS OF MOTION WITH MATERIAL DAMPING

As observed in the analysis of Part I, for the type of slender
beams considered, the influence of the shear deformation and rotatory
inertia is small. In the following analysis the shear deformation and

rotatory inertia will be neglected for simplicity.
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Since shear deformation is neglected, we have
Yy =0, and 6 = a (124)

and equation (7) becomes

wl
tan 0 = i
1 + u,
W,
sin 9:—)5-..
1 +€
cosg=1_21-:>s_ (125)
1+ €

When both shear deformation and rotatory inertia are neglected,
equation (12) is reduced to Q = M, /1 + @. By using this expression
and equation (125), Q and (‘ are eliminated from equations (10) and (11),

and thus we have

1 'x sin 26
L o = pAu,
(N cos B).x 3 P w, pAu, (126)

2 =
(N sin 0), + + K(x,t) = pA(w, -2 wcos Q t) (127)
% tt 1 1

1 + u, ;
x X

Since there will be a phase difference between the external
excitation and the beam motion, a phase angle q;l is introduced as

follows

T=Qlt+¢1,0r Qlt=1'—¢l (128)

and we let Lpl be expressed by a perturbation series:

2
U= g Yty (129)
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Then

cos 2t

cos (T - Lpl)

con (v = duq) Py, s@ir - Y1)

. El—l ( + i )| + 130
-n >— o8 (¥ - llJm) qJZl sin (1 - L'Jol] waie & )

Now values of N and M are substituted in equations (126) and (127) and
the resulting equations are transformed into dimensionless form.
Perturbation equations are obtained by techniques similar to those used
in Part I for the undamped case. Among the difference in the resulting
equations are those due to the introduction of the phase angle Yy and
those due to the fact that the expressions for N and M at different
intervals of time () are different now. Consequently the equations of
motion take different forms during different time (1) intervals. After

some computation, we have

4 o= 0 (131)
4. i = i (132)
R T N
o S . 133
Mo VeV g JrEs Sy
4
By Wy =My R Wy W FEW, Vel B

where the notation is the same as in Part I.

Equations (131) (132), (133) and (134) are valid for all intervals
of time (0 <7 < 2m), and for all boundary conditions. In fact, they are
identical to the corresponding equations for undamped motion,

(equations (51) (52), (53) and (55)). The second order and third order
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equations for w (i.e., W, and ws). however, are all different and are
listed below.

(a) For both ends hinged case with very large amplitude
4 4 A

B, w, _+w teg, U Litw, 2
e B T F e T TR

1 2 1 2 )
(u2,§+ Ewl.ﬁ - u2.§m ~ = wl.&m)] £ " 0 (135)

where the upper sign is for 0 <r< % » and the lower sign is for

T<T< EZE and
4 4 A
1 2, TT 2-&&5& 1 ;_7 Wl'-r-r - ; (2 wl,g ¥ w1,§ uzag)!g
1
4 o 1 2
- o = J 2
By B, sam{Ta )~ g [ 2WLee2 et 27, )
: N 1 2 =0 136
— wlrggm (uz'g 2 wl’g )m .gg i | )

where the upper sign is for 1—21 < T < m and the lower sign is

for 2%< TEZW.

(b) For both ends hinged case with small amplitude and

also for a simply supported case
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14
By Mo ¥ Mg ¥ By m_é'wl,w'E‘Ewl.g Y1.eY2,e) e
]
+ 2K (w w ) ¥ K (w % w 2 )
1,6€ "1,66m £t LEE ~ T1,6ém’'gg
4
- Bl cos (1t = lpOI) =0 (137)
A A
4 4 211 4 221
B Taee T Yt P S VP T
| “)
—(w ZW + u w )., + (W w & )
T c 1,€ 2, 38 1,6 E 1,E "16E"E
PARAY ke Vate T ke s bem) g T 2K Wy g ) BEm

A
+ w w ) -;lﬁ‘lw cos (7 - ¢_.)
1,EE 2,66m 'E¢ we b 0 01
1

4 .
= [31 W q;ll sin (1 = ¢01) =0 (138)
L.y
where K = i--: ALy and the upper signs are for 0 < T < w, and the
T2 T 16t PP g =72

lower signs for m < v < 2.
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SECTION 5
SOLUTION OF THE PROBLEM

5.1 BOTH ENDS HINGED CASE

5.1.1 Large Amplitude Case

Up to the first three equations (131, 132 and 133), the

solution is the same as that of the undamped motion, and thus we have

u, =0 (61)
W, = a, sin 7€ cos T (65)
B, =

u2.§ +%wl,§2 :_}ialz 11'2 cosz'r (66)
uz =_~é a.l2 m sin 2w§ t:c:s2 T (77)

To obtain the periodic solution of v, from equations (135)
and (136), first we must eliminate the secular terms in equations (135)
and (136). With phase shift added, these terms consist of both cos T
sin m£ and sin T sin m§. These terms can be eliminated by first
multiplying equations (135) and (136) with cos T sin n, and secondly by
sin T sin mf, and then integrating the resulting two equations throughout
the whole beam length (0 < § < 1), and over the period of one cycle

(0 LWL 2m), which gives:
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A

1 2w 4 4 1
! sin ngdgf [ﬂl WZ.TT+w2,§§€§+ﬁI ;—TZ-WI.TT
1

[—

g, 8, 4
B 2'“'1.5 wl'guz’g) g— 51 w_ cos (v - q;ol) cos T dT
™ 3w
v 1 5 ™ = err
+_é_[ sin ngdﬁ{ -l "'[ - p, ] [Zwl’gg [UZ.E_,
0 o — ™ -
2 2
1 -
2
Fridl) ] ooner)- 3 [ men{ |
+ - w cos T dt ) - — sin wEd§
2 1,¢ ) £t 2 3 )
}_‘rr
fz L2
+ . [wl,ﬁf. luz ¢ + E ‘”1,.5 l ] e cos T d-r}
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sin w£d§ [ [B w + w
J ) 1 2 2,EEE 1 wlz LT
i1(1 &

=15 wI,E, BZ,E, 1Lt -ﬁl w cos (1t - ¢ l) sin T dT



where, for the sake of brevity, integrations with same integrand
but different integration limits are grouped together. Using the

relationships that

1 am
. 4 COSs T -
fo sin ngdgl ( [31 B + WZ.Eggﬁ) i dr = 0,

and substituting all the known quantities into equations (139) and

(140), and carrying out the integration, we obtain

3 5
a ™ A 3a rr
: “+ L ZTr4w cos a3rr6 B o8 0
= = oY) _— =
2 32¢ o ol ~ "M% 48
2w
. 3 6
m
4 ¥
= 2 i & _ =0
™ wo sin q;ol v 24
Solving these two equations for All and o We obtain
o
3“2
) -1 vna,
Gy = R 48 w
o
and i
A 2 Tr2 3\2 7
v
1194 2 (3n-8)m _2- 4 2 ( nw a, )
— ="—a_ 7m- vna, + — |w -
2 21 24 1 Ta o 48
w 4h 1
1
The response equation is
& 2 5 ”2 33
a
1, W 22 Guln 2 2 4 2 4 (V7 %)
z - z %1 g M By YRR Y T a8
ml 4h 1

(141)

(142)

(143)

(144)

Note that if v = 0, equation (145) is reduced to the response equation

for the undamped case, i.e., equation (76), and that because of the

damping, the response curves are closed at the top now. To solve
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for w, we observe that equations (135) and (136) both can be put into

the following form:

4
T W

2,vr T Yo, eeee = F(TE) (146)

By expressing F(7,£) into a double Fouries's series for the intervals
(0<E<1)and 0 < 7 <2m these two equations can be combined into

one equation. Thus

4 _ 3 sin mn§
™ wZ.TT + w2.§§§§ = 4m w_ cos (t - 4}01) Z —_—

m= ’5|

o0}
m
3

oo
- _l—f:cal3 174 sin w§ cos 3T+?al3 175 sin w§ |2 Z
=3

m B s

m+ 1 (o0

2 m -3 Z ('rn2 + 1)(m4 - 7rn2 + 18) sin m~

(-1) ——— CoE TiT
. m (m” - 4)(m° - 1)(m® -9)

m £ 5 T v
+ — sin 37 (147)
0<t<2m 0<E<1

where the secular terms are being removed by the use of equations

(141) and (142). Solution of equation (147) is

65



_ 4 sin mw§ 3 sin w§ cos 3t
Wy By, waE(T 2% ) z e 1)+a1 128c
m = 3;'9, T, =
(0 0]
3 (m2-3)cosmr
+¥0 5 7 grginwE|2
4 2 2
m = 3, 5, m(m = #} (1 = m)
(0 0]
Z (mz+1) (m4-7m2+18) sinmt 22 . .
B 2 2 2, 2 " 120 T
e m(m® - 4) (m” - )7 (m” - 9)
A (148)

If all the terms higher than m = 3 are neglected, equation (148) becomes

. 3 cos 37
W, e W €08 (7 - 4’01) sin 37§ + a,” T2gc ¢in wk
vn 3 11 ..
“"20% T sin wf (cos 37 +—36 in 37) (149)

Equations (148) or (149) satisfies the boundary conditions of (58).
The solutions of W and 4, up to the second approximation

can be written as

= ) 1 2. ; ‘
w=am sin mE cos (7 - ) +EE)-1-T- w n sin 3ng cos (T-¢)

a 33 2
Az
_ll_ZBTA__ sin 7§ cos 371 - %a13n3 sin wf (cos 3+ +% sin 37)
(150)
= s 7
Q= - E(al“’ sin 27§ (1 + cos 27T) (151)
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Compared with the undamped solution, i.e., (79) and
(80), it is seen that the expression of u remains the same while the
expression of w is changed. The change is in the form of the phase

angle ¥ and some additional terms with the damping parameter V.

5.1.2 Small Amplitude Case

Again we can use the undamped solutions for u_, u_, and

1" 2
Wl.
u. =0 (61)
1
wl = al sin 7§ cos T (65)
= m
31
1 2 1 2 2 2
+ = = — 66
u, e ¥ W, ¢ 223 " cos T (66)
— 2 2
= = 1 77
u, g2 T"sin 27 cos T (77)

To eliminate secular terms in equation (137), and at the
same time to seek the solution of A llimlz and 4)01' the same technique
used in Section 5.1.1 will be applied again. First equation (137) is
multiplied by sin m§ cos T and sin 7€ sin T and then the two resulting

equations are integrated over T (0 - 27) and £ (0 - 1). Thus we have

1 2m
. 4 4 4
id X5 {[‘31 Ya.orr T V26686 TP wZ%TT
(o]
X 3 3

TR TV e el HERAW, e W, g )

£ 33
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b1 2

W [514 cos (-r—llJol)] cos tdt - K -[ (Wl,ﬁgz
o “m

2
- Wl,ggm ),éé cos TdT} =0 (152)
and
1 2m A
i : * 4 _11 It 3
slnﬂgdg{[ [31 WZ.TT+WZ,§§§E_,+E)I 2 wl,r'r -C(Zwl.g
o o 1

4 .
+w1'§ uZ.&,),g + 2 K (wl,gg wl.ﬁém).ﬁﬁ - wo {31 cos (t - tpo )Isin vd+

™ 2m
2 2 . B
- K f—[(wl-gg "wl,ggm ).§§ B1n'rd-r} =0 (153)
o ™

The evaluation of the integrals gives the following two equations

5
5
i A“+3"a3 BK o % o e el = (154)
) 2 321 3" o % %1 "
2w
1
2 2 4
-'?’;Ka1 1T5—2TT wo SinLIJo =0 (155)
2
Solving for A“fwl and sin 4101. and letting
7
_ 3hv - I _ h
n— -
1 2 Z
S, 7 m® e
We have 2
1 vrha
4’01 = sin - ————3 wof (156)
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A 2 ;
11 _ 94 2 h - 4 [ 24 wh_22.2] 3
N = g M =2 ya T i =g m) (157)
1 n n
i 2 4h2 1 1 ﬂaln o 321
1
The response equation takes the following form
2
Q 2
1 91 2 h - 4 24 vh 222| %
s /R 8 - — - (— 158
— 1+4h2 (@ -Fvanmt man [Wo n -3, ™, n) ] (158)

1

Again we see that if there is no damping, i.e., v = 0, equation (158) is
reduced to the response equation of the undamped case, i.e., (76). The
addition of the damping, however, makes the response curves closed at
top (figure 12).

To solve equation (137) for wz, first all the known

quantities of equation (137) are expressed in a double Fourier's

series for the intervals 0 < 7<1, 0< <2

Thus
fs)
4 16K m 2.5 3
+ = - =SR2 ;
™ Yo g w2,§§§§ Z 5— a, 7 sin mnf cos T + 4 wom
m -4
m = 3, 5,
©
i L 1 3 4
cos (T - q’ol) z Bm;n : - Toe 21 T sin T§ cos 3T
m = 3, 5 v
[0 0]
K 8
+ Z 16 K sin mT " 2w5 cos 2nt
rn(m2 4) i
m = .3; 5 e
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a0

64 2 4 i
8 a i sing Z menmrb o <o o0<i<1 (159)
m -4
m=3,5, ...

where the secular terms are being removed by the use of (154) and

(155).

Solution of (159) is

(o s)
5 2 16 m sin mmw§ cos T
wz-— - al mK 4
3

A B (m—l)(m2-4)

ol

oo
4 E _sinmmwg
Y. sinmm e (= . 3
T o <4

m=3’5'.”m(m =1

1 5
+128c al sin ¢ cos 3T
Q0
) Bka 21T sin mT cos ZTr_g
: ( ‘- 4)(m4 16)
m = 3; 5, ... R =
@
28 wa. ? wine B AR ang (160)
3 1 ( 2 4) ( 4 1
= B B e BB =R = K

In equation (160) if all terms higher than m = 3 are neglected, the

equation can be reduced to:

w
3w 2 o .
so o 00 : - m .
Wi g Ka,  sin 37 cos T 4 Gow Sin 37E cos (7 Lpol)
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sin W 3 16m 2

| gt in 3 ™
+ 128c 21 ©°8 3T, 975Kal sin 37 cos 2T¢
4 2 . :
- 35 Ka, sinTsin 3ng (161)

Now the solution of w and u, up to the second approximation, can be

written as

2 8in 3w

w = a n sin ¢ cos (7 - $) + won —o— cos (r-¢)
A!Z 33 h 22
. v m =
+ 1281 2 N sin wE cos 3T - 72" ( 325 ©O08 2w€ sin 3T
b 5 S 3 . .
- 200 5iP 3 cos T+ Too %P 3n§ sin 71) (162)
= 22
u = - T%al n sin 2n€ (1 + cos 27) (163)

Compared with the undamped solution (79) and (80), it is
seen that the expression of u remains the same, while w is changed.
The change is in the form of the phase angle ¢ and some additional

terms with the damping parameter v.
5.2 SIMPLY SUPPORTED CASE

The solution of U W, u,,are the same as that for the undamped

case, i.e.,

ity = 0

W, = 1 sin w§ cos (84)
1 2
P =0

Yok T2 Vi =
I 232 |

R L (¢ + >y 8in 2mE) (1 + cos 27) (86)
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) %l and W again equation (137)

2

To obtain A ll/w

2 2
will be used. In fact, all the results for All/wl y P

, and w_ of
ol

2
Section 5.1.2 can be directly applied here. But this time, we have

+ 4 - 0
u = =
Z,E lgg
Thus instead of equation (157), we have
211 h T & | 24 [vyh 22 V2|z 1)
e TR e [Te® T3 T (
w 1
1
The solution for the phase angle, however, is the same as (156),
2
-1 vnhal
= 1 - —_— 1
q’ol sin 3 1 (165)
o
Similarly solution ofwz (161) becomes:
2% 2. % i 37 vow v in 3n ( ) (166)
= = — m A—— -
W, 55 2; T sin g cos T Gor T TR g cos (T ¢ol
lem 2

- ﬁ Kal cos 27§ sin 37T - % alz sin 37§ sin T

To obtain the second order approximate solution of
response relationship (A

u3. Thus

21 \pll), first equation (134) is solved for

c 26 1 3 . c 2 2 4
u;,=sa w (gn- —%—331n2ﬂ§)c052~r—8(2ﬂ —l)alwﬁcosz-r
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sin Z'IT§+ sin 4wg

3 2 2 p—
+[2K-a T COS T-a W COSTcos (T—l-llol)] (

50 1 1 o 40 2 4
+% al31T2 cos Tcos 37 (cos 1T§+£038—%r- -%K al3cos Tsin T
26;;;5 5113112 sin 3T cos T - % Ka13 cos T sinT( COBZ 211.§+ co: 4“E)
+ r:za.lzTT4 cosZT (—g- + ;I; sin 2T¢) (167)

In solving Uy the boundary conditions (81) and (83) are used.

After all the known quantities are substituted into equation
2
(138), and the same technique as used in obtaining Al 1 /wl and
\.pol is applied to the resulting equation, we get two secular equations

2
for Azl/w -and Y

1 11°
I
8n% -45 3 7+I3" (m —" +32(997w2-936) 3" .38
i A — |{=—.q 1
192 al” If 75 “1 6 ol 9 x%x 13000 10 1
_21T5 a, w
TR
cos ¢ ) 15?_5 2t 4“+24 i =0
ol 27 m g kW CON “’om > ™ woup“ s1n¢01 = (168)
1 1
and
I 7
gF Py a6 e 4 Yo 5
11 ( 1251 21 - 135 2,7 cos tpol - 253" smq;ol)
I W sin A—l- 2 A =0 16
2 ol o 2 -rrwotbllcos 5. (169)
1
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Solving (168) and (169) for AZl and lIJ“. we obtain

A 4 A
21= 817%45\1r2a 2 Ve 11+9_97n‘3-936 (hva -
o B 96 ) 1 ma cos § . 2 13000 ‘
1 1
3V -Swo . Zwo Zwo
81 | 6757 °'™ %1 7 25 cos 4, 25 €98 ¥sa
+54hv 2*rr , 170
T e Bl (Aee)
A
O 3yh (4“’0
11 2 Yo1 “ Bw £ cos ¢ 135 21 °°% ¥,
wl o ol
w
o , 81 32,vh 2
—— + —
e Tl 4’01) 2000 w_cos §_ g 1l (L)

Terms inside the parentheses of equations (170) and (171) are small when

compared with other terms, and hence for simplicity they shall be

2
neglected. Also the term A“/ml is substituted forthe use of

equation (164). Thus equations (170) and (171) become

2. 2
2 2
Q21 ffin -45)° 2 2 ("o 8 o dvhim A,
© 2- 96 i 1'ral -
1 J 2 2.2
(3 wo“ - (ur'rrhal )
2
997r -~ 936 |hva B (172)
13000 1
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and

2
3vhw al

b = e (i ) (173)
J{3w0!) 9 (vn'halzj

Thus the response equation, up to terms of second order, becomes

2
A A
Ql = §. 11 4 21 2
~Zz z 1 g M
1 “1 “1
2 2 4
(B =4B)n" 22 VN = 1 4w M
= l-'—96—al'r| —Tra 1+
i - ,/3w 2, % o . BE 2
M (0“)'(" a5 M )
22 2
vh (alnTl') v'rrha n ) ]
w 3w !n
o
,.997n°-936 936 i
11' -
T 13000 ) (174)
The phase angle is
= +
el ALY
mh o 4vh
) Sin‘l (— v al mn v alT]
o 1]ZJ! 31
(o]
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I_?ﬂ h 22y 2
% zoog ("™ 7] (175)
1 \/lBWOnzjlz - lvnhalznzl ¢

Again we see that if v = 0, equation (174) is reduced to
equation (98), i.e., the response equation of the undamped case,
but due to the addition of damping, the response curves are closed

at top now (figures 14, 15, 16).

Up to the second approximation, the solutions of w and u are !

- 2 si
w=al-r|sin1rr§ cos (7 - ) +w0q %ﬁ’cos (+- )

3vhnr Z 2 . 3k (2 v & g 7
= 1001 a.l n s1n om 4 cOs 51n
vhr 22
E e ™ i 7
32513 N cos 27§ sin 37 (176)
and
u = l( )2(§,+—1 in 27E) (1 + 2 177)
u=-glanmm > Sin cos 271) (

Again it is seen that due to the effect of damping, the expression
of wis changed. The change is in the form of the phase angle } and
some additional terms with the damping parameter y. The expression

for u, however, remains the same.
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SECTION 6

NUMERICAL RESULTS AND
EXPERIMENTAL VERIFICATION,

Calculations for two sample beams are made. One is of the

g =
) 5

A!z :
very slender type (I_] = 1110] , the other is of the

2

moderately slender type —f—* = (—!;J— ’ = 69.3] . Response curves
are shown in figure 10 through figure 17.

Steel beams are used. The physical constants for steel are:
E =30x 106 psi, G = 12 x 106 psi, density I'= 0.283 lb/in.3 For
a rectangular beam, the shear distortion constant k' = 0.833, the
damping parameter v = 18.6 [30]. Except the case of figure 17,
all the other cases are calculated for the external excitation in the
form of support accelerations.

The dimensions are:

Beam (a) -- very slender type
length £ = 10 inch
depth h = 32 inch
width b = > inch
1—2 . 0813 %107
Al

The first natural linear frequency is

1

) 2

2—1 = % —gEIT = 28.5 cps
" r AL
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Note: Although the dimensions indicate a strip type plate
rather than a beam, tests show that the natural
frequency is equal to the value (28.5 cps) calculated

from the beam formula.

Beam (b) -- moderately slender type
£ = 10 inch
h = > inch
b = % inch
-4
LZ" = 2.085x 10
Al
3
— = 458.5
S cps

Note that the values of for both beams are small. The

Al
correction due to shear deformation and rotatory inertia can be

neglected.

Figure 10 shows response curves of Beam (a) for the
immovable hinged ends case. The hard spring effect is very
strong (equation (75) ).

Figure 11 shows the response curve of Beam (b) with
immovable hinged ends. The peak amplitude is twice as high as
the depth of the beam. The hard spring effect due to large amplitude
is so overwhelmingly strong that the influence of damping is
relatively insignificant. However, the damping does make the top
closed. In calculating the response curves, equation (75) (undamped)
and equations (145) and (158) (damped) are used.

Figure 12 shows the response of Beam (b) with immovable

hinged ends. But this time the peak amplitude is limited to 1/8 inch
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(depth of beam = 1/2 inch). Equation (75) (undamped) and
equation (158) (damped) are used.

Figure 13 shows the response of Beam (b) while simply
supported. The soft spring effect can be seen (on the stem curve)
but not significant.

For the response curves of figures 13, 14, 15 and 16,
equations (98) (undamped) and (174) (damped) are used.

If instead of the support acceleration, the beam is excited by
a periodic uniform loading, the right side of equation (56) is zero,
and consequently the last term of the response equation (98) is
dropped. The difference is shown up in figure 17, where by
equivalent uniform loading means that if only the linear theory is
considered, both loadings would give exactly the same response
relationship.

Tests have been conducted on the simply supported very
slender beam. Both the soft spring effect and jump phenomena
are demonstrated. Some of the test results are plotted in
figures 14, 15, and 16.

The specific damping of a material can be expressed by

D = Jo™ (in-1b per cubic inch per cycle)

where o is the amplitude of the stress. But D is equal to the area

of the hysteresis loop, i.e.,

2
D =f€ (¢ -F)d€ (Figure 6)

1
By the use of equation (104), the integration gives
4 3
D = — = E
3 vEE 0 (€0 o/E)

For any value of €0, v is determined by equating these two expressions
* -12
of D. For example, for Sandvik steel we have: m=23 and J=8.9 x 10

1f €0 = 3,08 x 10-3, v=2.03. For comparison, response curves for

v = 2.03 and v = 18.6 are both shown in Figure 16.

*See [26] , equation 36.9, page 36-7 and Table 36.5, page 36-35.
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SECTION 7
CONCLUSIONS

(a) The nonlinear effects due to large amplitude on the response
depends on support conditions. With immovable hinged ends
the response is of hard spring type; and for the case of

simply-supported ends the response is of the soft spring type.

(b) Nonlinear material damping in addition to limiting the amplitude
at resonance to a finite value, modifies the shape of the
response curve. It makes those response curves of the soft
spring type more soft; and those of the hard spring type less

hard.

(c) The effect of shear distortion and rotatory inertia on the
linear or nonlinear response curves is related to the slenderness

I ; I
parameter —— . For beams with small =g values, the
Al Al
correction due to shear distortion and rotatory inertia is

usually negligible.
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40 Loading: Hw =1.5x 10-3 inch
4"| solid Line: damped a
40 Dashed Line:
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o
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_‘: / 1 A A
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Figure 12 - Response Curve -- Moderately Slender Beam
with Immovable Hinged Ends, with Amplitude Comparable
to the Depth of the Beam
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Figure 13 - Response Curve -- Moderately Slender
Simply Supported Beam
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—
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+ : experimental results

) P B 1!!

Loading w = —100

f = oM
l n

b & 32
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N . Nt

T jump path\

44 | | 1
0.95 1 1.05
Figure 14 - Response Curve ~-- Very Slender Simply
Supported Beam (with Experimental Results)
__ sundamped
4 + : experimental results
-~ l "
Loadi T,
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Lﬂ_ | 1 |
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Figure 15 - Response Curve -- Very Slender Simply
Supported Beam (with Experimental Results)
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