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ABSTRACT

A direct shear device capable of applying maximum shear
stresses to soil specimens in a period of time ranging from 1 milli-
second to 20 minutes has been utilized to test a wide varicty of soils,

The cohesionless materials, an Ottawa sand in the loosc and
dense condition, a powdered Nevada silt and a dry powder clay, did
not exhibit any increase in maximum shear resistance due to a . ‘ripact
type dynamic shear force application as compared to a static force
application., An increase of apparent friction angle from 45 degrees
to approximately 60 degrees due to inertial confinement was observed
in a dense Ottawa sand,

Cohesive materials, which included undisturbed and remolded
clays and combined soils (mixtures of sand and clay), demonstrated an
increase in maximum shear resistance under impact loads described
solely by the apparent cohesion intercept of the failure envelope, The
friction angle was essentially insensitive to test duration, The ratio
of the apparent cohesion for a failure envelope involving failure times
of 5 milliseconds to the corresponding intercept for failure times of
nearly 1 minute was approximately 2. This ratio appeared to be
relatively insensitive to moisture content, dry density, grain size and

soil structure (flocculated or dispersed) for degrecs of saturation in

111




excess of 85%. The apparent cohesion ratio appeared to decrease on the

dry sidc of optimum for compacted soils.

Investigation of different pore fluids indicated that pore fluid vis-
cosity was not primarily responsible for the increases in strength.

The simultaneous dynamic application of normal and shear forces
did not alter the apparent cohesion ratio of the clays studied.

A preliminary discussion of repetitive force results on clays is

included in the report.
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SECTION 1. INTRODUCTION

On March 1, 1962, the Civil Engineering Department of the
University of Notre Dame was awarded United States Air Force Contract
AF 29(601)-5174 to develop a direct shear apparatus for testing soils
under both static and dynamic loads. Two previous reports concerning
- contract progress have been published by the Air Force. RTD-TDR-
63-30501' contained preliminary design criteria and an annotated soil
dynamics bibliography, RTD-TDR-63-30551' 2 described the completed
testing device. The purpose of this terminal report is to present the
results of a rather extensive soil testing program utilizing the completed
device,

The dominant theme of the testing program has been to attempt

to relate, in terms of conventional soil mechanics parameters, the

controlled-stress static strength to the maximum dynamic resistance
for a wide variety of soils,

The basic feature of a direct shear device is maximurn shear
resistance determination, not strain measurements; thus, no partic-
ular attempt was made to examine stress strain behavior,

The range of application of the results of this study must be
carefully understood to avoid misinterpretation., The effect of soil

. strength on the formation of a crater produced by the pressures

developed from an underground explosion which forces failure to occur




very rapidly is a potentially valid application., Utilization of dynamic
strength properties for shock wave calculations such as the SOC code
as reported by Butkovich!+ 3 is another possible application. However,
the ability of a svil to withstand a single dynamic pulse involving both
rapid rise and decay times where the specimen is not necessarily
forced to fail remains to be investigated as well as the effect of the
passage of such a pulse on the subsequent static strength. The dwell
period of a pulse is also pertinent. If for example, a specimen is
subjected to a stress pulse with an amplitude slightly in excess of the
static strength and a rise time of a few milliseconds which is then
allowed to dwell, failure will occur as the strain rate effect is lost.

In addition, the effect of vibratory loads on maximum shear
resistance should not be confused with the single-pass impact-type
failure test.

With these interpretations as a guide, the following study is

presented for review,
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SECTION 2. DESCRIFTION AND OPERATION OF DACHSHUND 1

a, DACHSHUND I - Testing Device,

() General,

The initial objective of this research project was to
develop a direct shear device on which the shearing resistance of the
entire range of soil types could be measured under both static and dy=-
namic testing conditions. The device, Figure 2,1, became operational
in July 1963 and was given the name DACHSHUND I (Dynamically Applied

Controlled Horizontal SHear - University of Notre Dame ).

Figure 2.1 DACHSHUND I Direct Shear Device

4




Prior to discussion of the apparatus it is necessary to define
a few terms which are used throughout this report.

Shear displacement: A measured displacement of the lower

shear Lox relative to the upper shear box.
Shear force: The force imparting a shear displacement to the
shear box and soil sample.
Normal displacement: An expansion or contraction of the soil
sample in a direction perpendicular to the shear plune,
Normal force: The force applied to the soil sample on a plane
paralle) to the shear plane.
Reference to a shear or normal stress implies division of the respective
forces by the initial cross=-sectional area of the soil samnple.
The following brief description of DACHSHUND I, schemat-
ically represented in Figure 2.2, summarizes its characteristics and
1.2

capabilities, For a more detail description see Saxe, et al.

(2) Shearing Mechanism.

(a) Shear Box.

The focal point of the shear device is the shear
box in which a soil sample 3/4-inch-thick and 4 inches in diameter is
placed. The shear box consists ol a lower unit which moves relative to
a restrained upper unit and produces a shearing deformation in the test

sample. The moving portion of the shear box is cast of aluminum to
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reduce inertial effects during dynamic tests. This lower unit contains
seven 1/8-inch-high gripper blades to aid in the distribution of the shear-
ing force throughout the sample. Porous bronze plates are located
between the gripper blades and drainage paths are provided. A l-inch-
thick aluminum plate with a 4-inch-diameter hole to accommodate the
soil sample, represents the upper unit. It is mounted on four flexible
vertical cantilevers and restrained from lateral movement by the re-
actic shear force transducer, Ball bearings and an air bearing beneath
the moving tray create a relatively frictionless surface between the
lower shear box and its support.

An upper gripper spacer and a loading head permit application
of the normal load to the sample. The upper gripper spacer is a 1/2-
inch-thick, 4-inch-diameter aluminum plate with gripper blades positioned
opposite those on the lower unit, The loading head, placed above the
upper gripper spacer, is fitted with a socket which allows rotation in
order to maintain a uniform pressure distribution on the sample during
shear,

(b) Force and Displacement Transducers,

Force and displacement transducers were re-
quired to record the desired response as a function of time. The force
transducers are thin-=walled, spool-shaped steel cylinders. Four wire-

resistance strain gages are cemented to the walls of the spool and connected

P
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in a wheatstone bridge circuit which permits an electronic readout of

the applied force, The action shear force transducer is connected axially
between the piston rod and the lower shear box, The reaction shear force
transducer is designed for connection with an independent support which
restrains the movement of the upper half of the shear box, The normal
force transducer is located above the center of the sample. Linear
potentiometers are used as displacement transducers and are connected
indirectly to the piston rods,

{3) Recording System.

It was necessary to incorporate essentially two separate
electronic recording systems in order to accommodate the range of test
durations involved. Oscilloscopes with the appropriate Polaroid cameras
and attachments are used to permanently record the test information for
test durations ranging from milliseconds to 50 seconds, A Bristol "Dyna-
master Four Pen Strip Chart Recorder' is used for test durations greater
than 50 seconds.

(4) Pneumatic System,

DACHSHUND I, basically a stress=control direct shear
apparatus, is also capable of controlled displacement tests when the
desired rates of displacement are comparable to those available on
standard laboratory direct shear devices. To accomplish this flexibility

it was necessary to develop a pneumatic system which would permit




various methods of shear and normal force application,

An air compressor, three accumulator tanks and two air
cylinders represent the core of the pneumatic system, These com-
ponents are supplemented by the necessary valving, piping, pressure
regulators and gages required to transmit and control the air as desired.
The two cylinders are made of cast iron with aluminum pistons designed
to transmit maximum horizontal and vertical forces of 1000 pounds or
the equivalent of 79, 6 psi to the 4~inch-diameter sample.

{a) Conventional '"Dynamic' and '"Rapid Static'' Tests,

The two accumaulator tanks indicated in Figure
2,2 are used to provide a relatively large volume of air such that the
volume change during the stroke of the piston does not appreciably affect
the pressure on the soil sample.

Each air cylinder has a solenoid-actuated triggering device to
hold the piston in position such that a preset pressure can be established
behind the piston for dynamic force application. The basic difference
between the ""dynamic'' test and the conventional ''rapid static" test is that
the piston in the latter case is unrestrained and the load is accumulated
at the desired rate by manual control of the pressure regulators.

(b) Automatic Control Tests,

To perform either automatic controlled shear

force or shear displacement tests which involve durations greater than

10




50 seconds, it is necessary to introduce the '"Automatic Control Pneumatic
System, ' Figure 2.2, and eliminate the conventional system accumulator
tanks., As in the case of the conventional '""rapid static' shear test the
pistons are unrestrained from movement with a zero initial pressure in
the cylinder. The entire system is automatically controlled on either a
programmed rate of shear displacement or shear force application, The
controlling signal is retransmitted from the four-pen strip chart recorder
to the automatic shear force or displacement programmer, a Bristol
""Dynamaster Air-Operated Controller,'" This controller pneumatically
controls the opening and closing of the gate valve allowing air pressure

to enter the air cylinder, The autornatic normal force programmer, a
Bristol '""Pneumatic Free Vane Controller,' is used to regulate the normal
force on the soil sample by controlling the gate valve opening and flow
into the air cylinder. An air pressure supply to the programmaing units

is required to pneumatically control the gate valves. The accumulator
tank in this system serves as a pressure stabilizer when a small volume
of air is used by the controllers to operate the gate valves.

b, Test Description and Procedure,

(1) General.
The results of three basically different types of tests
represent the bulk of all the data. They are referred to as the

1) Conventional ""Dynamic'' Test

11




2) Conventional '"Rapid Static' Test

3) Automatic Control Tests.
In addition, a series of special tests have been run and are discussed in
Section 5 of this report, In this subsection the testing procedures for
the above three basic tests are outlined generally., All soils are tested
in the manner described with variations arising only in sample prep-
aration as detailed with the test results for each soil type in Appendix
111 of this report.

(2) Conventional '""Dynamic'’ Test.

The term ''conventional test'' applies to the use of the
conventional pneumatic system and the oscilloscopes as the recording
system. In a conventional '"dynamic'’ test the maximum shear force
in the specimen is attained within a period of 1 to 5 milliseconds after
imposition of the initial shear force. As was previously mentioned
the basic difference between ""dynamic'' and ''rapid static' tests is the
method by which the shear force is applied, In the '"dynamic' test the
restrained piston is released by actuating the solenoid trigger mecha-
nism. As a result of this release, an impact force is imposed on the
soil resulting in very rapid rise times.

To perform a ''dynamic'' test, the recording system is prepared,
the sample placed in the shear box, the normal force applied and the

trigger mechanism cocked, An air pressure of sufficient magnitude

12
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to fail the sample is accumulated in the shear force cylinder. One
switch simultaneously triggers the oscilloscope traces and the release
mechanism to impose the shear force on the sample,

(3) Conventional '"Rapid Static'' Test,

""Rapid static' tests involve times to failure ranging
from 30 seconds to nearly 50 seconds. A 50-second period is the upper
lirnit because it is the maximum sweep time of the oscilloscope,

The general test procedure is to prepare the recording system,
place the soil sample in the shear box, apply the normal force, trigger
the oscilloscope traces and manually increase the shear force with the
pressure regulator at the desired rate to achieve failure of the sample.

(4) Automatic Control Tests,

To perform tests with shear displacement rates or
rates of shear force application comparable to those on the standard
laboratory direct shear device a pneumaticaliy controlled servomech-
anism was introduced. Test durations with the current arrangement
can be varied from 1 to 20 minutes merely by using different -ams,

A change of cam motors would considerably increase the maximum
time du-ation of tests,

Whether a controlled displacement or controlled force test is
desired the general test procedure is essentially identical, The record-

ing system is prepared, the sample is placed in the shear box, an air

13




pressure is supplied to the servomechanism and the phenomenon to

be controlled is selected on the programmer, Sufficient air pressures
are established behind the closed gate valves to allow desired normal
force application and failure of the soil in shear. The test is put on
automatic control merely by starting the servomechanisim and the
strip chart recorder,

A more detailed description of the test procedures is given in
Appendix I of this report,

Completion of the automatic control displacement apparatus late
in the experimental phase of the project, the inherent ease with which
"rapid static'' tests were performed and the correlation of a ''rapid
static' test result with a controlled displacement test of comparable
duration (Appendix II} dictated that the bulk of the static tests be con-
ducted utilizing the '"'rapid static'' technique.

c. Interpretation of Results,

(1) General,
The purpose of this section is to schematically indi-
cate the maximum shear stress level (Tm) and normal stress (o)
interpretations of the various characteristic soil response traces. A
detailed discussion of the reasoning involved and interpretation of test

results is presented in Appendix II of this report,
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(2) Conventional "Dynamic' Tests,

Vo

sl 2

Figure 2,3 illustrates typical reaction shear force

and normal force response for a '"dynamic'' test on a dense sand, It

R L I

is noted that the applied normal force is evaluated at the time coincident

g

with the maximum she.r resistance offered by the soil. The initial

PN

peak in the reaction shear force response is attributed to inertial effects

as described in Appendix II of this report.

Reaction
Shear Force

Normal Force M__

Shear
Displacement

= time

g

110-30 ms

Figure 2,3 Characteristic Responses for ""Dynamic'' Test
on Dense Sand




In the reaction shear force response for a '"dynamic' test on

a loose sand, Figure 2,4, it is seen that virtually no initial peak exists,

The normal force is observed to be maintained at a constant level and

is evaluated at the same time that the maximum shear resistance of

the soil is offered.

Reaction
Shear Force

y
Normal Force i

Shear
Displacement i

! 10-36 ms

+ time

Figure 2,4 Characieristic Responses for '"Dynamic" Test

on Loose Sand
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The response of a clay to ''dynamic' loading, Figure 2.5, is
similar to the loose sand response with a more gradual rise in shear
force, Very little, if any, normal force variation is observed in

""dynamic'' tests on clay.

Reaction §
Shear Force

Normal Forcé

Shear
Displacement

o time

10-30 rriu'

Figure 2,5 Characteristic Responses for '""Dynamic' Test
on Clay
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(3) Conventional ""Rapid Static'' Tests,

Figure 2.6 shows the increase in applied shear force
on a dense sand due to manual contrel of the pressure regulator, The
shear resistance attains a maximum value, suddenly decays and
approaches zero at exhaust to the atmosphere, An increase in normal
force due to dilatation (Appendix II) is also observed during the ''rapid

static'' shearing process,

Reaction
Shear Force

Normal Force

Shear
Displacement

|
time
| 30-50 3¢cc

Figure 2.6 Characteristic Responses for '"Rapid Static'' Test
on Dense Sand




A '"rapid static' test on loose sand yields a reaction shear force

response similar to that in Figure 2. 6. Very little normal force vari-

ation has been observed in ''rapid static' tests on locse sands,

'

RUETHIIRT K

The shear force response of a ''rapid static'' test on a clay soil
is typified by a gradual increase in shear force and peak at failure as
indicated in Figure 2,7, The maximum shear resistance offered by
the soil, the peak force, apparently occurs as a result of the incrcased

rate of displacement at '"failure,' Once again, for the clay soil, the

B L I TP IO T (YN

normal force remains constant,

Wl Bl (G

Reaction J
. Shear Force ___T
Tm :
ﬁ\
Neormal Force L
| Tf
I {
| |
Shear
Displacement

>~ time

'l__so-so sec

Figure &,7 Characteristic Responses for '""Rapid Static" Test
on Clay
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(4) Automatic Control Tests,

When performing an ""automatic control test'" by con-

trolling the rate of shear force application, responses similar to those — B
| previously discussed for ''rapid static'' tests are observed.

| ""Automatic controlled displacement tests' on clay yield a re-
action shear force curve similar to that illustrated in Figure 2, 8., The

normal force is automatically regulated at a preset level,

Reaction
Shear Foeorce

Normal Force ‘

I
Shear I

Displacement
—® time
1-16 min, _J

Figure 2,8 Characteristic Responses for '"Automatic Controlled
Displacement'' Test on Clay
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SECTION 3. HISTORICAL REVIEW

The following is a chronological review of the status of knowl~

edge concerning the time-dependent shear strength of soils,
3.1 , . .

In 1776, Coulomb suggested that the criteria for failure of
a soil could be given by a relationship of the form, T = c + p tan &,
where T is the shearing stress on the failure plane, p is the normal
stress on the failure plane, ¢ is an angle of internal friction and c is
the cohesion or intrinsic strength of the soil. The introduction by

Teraghi3‘ 2

of the effective stress principle resulted in the modifi-
cation of the Coulomb expression to include cifective rather than total
stress, One of the most comprehensive discussions of the cohesive
and frictional components of soil resistance was given by Hvorslev™'
in 1960, In terms of total stresses, the Coulomb strength concept (in
various forms) is, at the present time, one of the most commonly
accepted and widely employed principles in soil mechanics,
Alexandre Collin3' 4, a French engineer, first recognized the
time dependent nature of soil strength in 1846, Reference was made
to '"instantaneous' and '""permanent' soil strengths. These implied,
respectively, the resistance to temporary forces with a duration
less than 30 seconds and permanent forces not significantly altered

after a considerable lapse of time. Collin used a double=-cshear device

and observed that the permanent strength of clay may be in the range

21
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of 24 to 34 percent of the instantaneous strength, As a result of this
work Collin emphasized the importance of accurately evaluating the
ioad duration as well as its magnitude. Collin alsa said, '""Knowledge
of the absolute instantaneous resistance is of no use in construction
practice." For many years, only the '""permanent" strength (long-term
stability and creep problems) of soils received the attention of investi-
gators,

Studies to determine the causes of sudden slope failures after
long periods of apprarent stakility were conducted by Casagrande and
Albert3-? in 1930. According to JurgensonB' ® this investigation by
Casagrande and Albert definitely established the importance which rate
of load application has upon the results of si‘ear tests,

Casagrande3' 7

, in the early 1940's, conducted triaxial tests
on Atlantic muck at rates of loading which caused failure in periods
of time ranging from 95 seconds to 1 hour, In these tests it was
established that the more rapidly loaded samples yielded a strength
about 40 percent greater than the slowly loaded samples.

In 1944, Taylor>-3

reported on the results of investigations
conducted for the Waterways Experiment Station and observed that

undrained triaxial tests of 4-minute duration offered a 15-percent

greater deviator stress on Boston blue clay than did 8-day tests,

22




Tay10r3' 9, in 1947, reported the effect of strain rate on sands
for rise times from 15 seconds to 5 minutes, These tests revealed no
significant differences in the maximuwm compressive strengths,

The development of the atomic bomb near the end of World War
II accelerated the need for the first real soil dynamics investigation,
A law enacted by Congress in 1945 provided for a study of the security
of the Panama Canal and for increasing its capacity. Concern for the
security of the canal due partly to the possible instability of some
of the deep-cut slopes if bomb blasts caused shock-type loadings, The
basic characteristics of such a 'transient impulsive' or "dynamic"
load are rapid rise times and short duration, Soil dynamics as used
herein is defined as the study of the engineering properties of soils as
they are affected by one '"dynamic'' impulse load as opposed to a

vibratory loading condition.

Casagrande and Shannon3+ 10 initiated soil dynamics investi-
gations in 1948 with research efforts directed at finding the effects of
rate of loading upon soils cemmon to the Panama Canal zoné, i.e.
clays, muck, shales, and dense dry sand. Consultation with Westergaard
and Leet at Harvard University led to the decision of using minimum load-
ing times of 10 milliseconds, Unconfined and triaxial compresscion tests -
on clay were performed with rise times varying from 0,01 second to

3000 seconds, The triaxial compression tests on clay were performed
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with lateral pressures of 3 kg/cm2 or b kg/-::m2 while those on dry sand
were confined in a vacuum with lateral pressures of 0,3 kg/cmz or

0.9 kg/cmz. A "strain-rate'' effect, defincd as the ratio of maximum
dynamic strength to the maximum static strength, was observed in all
soils tested except the dry sand.

Four clays were tested with rise times varying from 0,02 second
to 1000 seconds., The strain-rate effect upon the compressive strength
exhibited by this group of clays ranged from 1,5 to 2.0 where the mini=
mum shear strength considered was for the l0-minute test, The weakest
and wettest clays exhibited the greatest strain-rate effect, and the strong-
est and dryest indicated the least strain-rate effect, The strain-rate
effect from Atlantic muck unconfined tests was about 2, 0 on the basis of
the maximum shear strengths for the fastest test and a 10-minute test.

On this same basis, Cucaracha shale, confined at 6 kg/cmz, indicated

a strain-rate effect of 1.6, It was observed that the compressive strengths
of Manchester sand under transient and static loading conditions exhibited
a possible strain-rate effect of 1. 1.

Casagrande and Shannon also established the modulus of defor-
mation as the slope of a line through the origin to a point on the stress-
st;ain curve at which the stress is one-half the average static strength,

This modulus of deformation for the clays, muck and shale showed a

24
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strain-rate effect of approximately 2, whereas this parameter appeared

to be independent of the rate of loading for tests on sand,

3.11

In 1951, Casagrande and Wilson extended the previous work

to determine the effect of rate of loading on permanent soil strengths.

The unconfined tests exhibited a soil resistance in the slowest tests

(3C days) as low as 25 percent of the soil resistance offered in a test

with a loading time of 1 minute, It is interesting to note how closely

this compares with the 24 to 34 percent Collin had reported in 1846,

Seed and Lundgren tested a coarse and fine~grained satu-

‘rated sand in triaxial compression in 1954, All confining pressures

were 2 kg/«:m‘2 and the rates of testing were such that the maximum
loads were reached in 10-15 minutes, 4 seconds or 0,02 second. Both
sands were tested in loose and dense states and in drained and undrained
conditions, It was established that only undrained shear strengths could
be used in determining the strain-rate effect, This conclusion resulted
from the observation that no drainage took place during the 0.02-second
test due to the inability of pore water to drain so rapidly,

Basically the same results were found in the coarse sand investi-
gations as in thc fine sand tests, The pertinent conclusions from these
tests on saturated sands are that the strain-rate effect on saturated
sands in the undrained condition is 1, 15 to 1,20 due to development of
a negative pore pressure and to the fact that the strain-rate effect

decreases with increasing void ratios., It was also observed that the
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modulus of deformation strain-rate effect is 1. 30 for equal void ratics,

3,13 1, 3. 14

Whitman and Taylor and Whitman, eta performed a
number of unconfined and triaxial compression tests on a wide variety
of soils under contract with the Office of the Chief of Engineers and
with the sponsorship of the Armed Forces Special Weapons Project.

Vacuum triaxial tests were conducted on three sands, soils
having no strength when dry and unconfined, under confining pressures
of 1/3 atmosphere and 1 atmos}ahere. The sands varied from coarse
subrounded sand particles uniformly graded to a well-graded gravel-~to-
silt grain size distribution with irregular particles, The tested materials
also had a complete distribution of interlocking capabilities. Strain
rates were varied from 0, 03 to 3000 percent strain p:r second and at
no time did the strain-rate effect, considering loading times from 0.005
second to 5 minutes, exceed 1.1, Tests were also performed on these
sands with the particle surfaces moistened, These results, once again,
indicated no strain-raie effects exceeding 1.1, It therefore seemed
reasonable for Whitman to conclude that at least for low confining
pressures the compressive strength of sands was independent of strain
rate,

A uniform coarse dense sand and a well-graded loose fine sand

were tested under saturated undrained conditions at a lateral confining

pressure of 60 psi and an initial pore water pressure of 30 psi, The
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coarse Ottawa sand exhibited a strain-rate effect of 1, 1 while in the
loose well-graded sand it was about 2, 0, Whitman explained the
large strain-rate effect of the well-graded fine sand by considering
its low permeability And the inability of the pore water to migrate as
would be necessary to establish a uniform pore pressure distribution
following application of the force. It was also mentioned that a possible
contribution to the effect was that the fine particles did give this material
some unconfined strength,

A total of 5 different cohesive soils, defined as any soil which can
be formed into an unconfined compression test specimen, were tested
at M.I. T. and the results summarized along with results of tests pre-
viously performed at Harvard (Casagrande and Shannon3' 10) on 6
cohesive soils. One soil, Bostor blue clay, was common to bo?h studies.
The clays tested ranged from a remolded plastic clay loam to a stiff dry
undisturbed clay. All tests were performed in either an unconfined state
of stress or with a lateral pressure of 30, 42 or 85 psi, Only three of
the ten soils were tested both unconfined and under one of the above con-
fining pressures, Some variation in moisture content was attempted with
apparent difficulties in reproducing soil samples on the dry side of the
optimum moisture content,

Whitman observed that all cohesive soils displayed an increase

in compressive strength with an increase in the applied strain rate. A
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variation in strain-rate effect from 1.3 to 2.0 was observed respectively
for the strongest clay and the weakest clay once again applying loading
times of 0,005 second and 5 minutes to determine these effects.
Examination of all test results led Whitman to the hypothesis that
during failure two time effects establish the shear resistance of the soil.

One is a continuous plastic deformation due to the highly viscous adsorbed

W

water layer resisting rapid deformation and the other is the time interval

required for the formation of discontinuities such as shear planes or

Lt

cracks, Whitman observed that the soil can be affected by either one or
both of these time effects and that the formation of discontinuities was
reduced by confinement of the soil sample. It was also noted that the
strain-rate effect for confined tests was apparently less than for unconfined
tests, For quite plastic soils the stress-strain curves from unconfined
tests show the strain-rate effect to be independent of the strain magnitude
as is the case for all confined test results, This '""true' strain-rate effect
corresponds to the viscous component of resistance to continuous defor-
mation, Whitman concluded, from the comparison of confined and uncon-
fined tests, that the strain-rate effect should be evaluated from triaxial
tests with confining pressures to prevent splitting or shear plane develop-
ment before the maximum stress has been attained.

In attempting to unify the test results on cohesive soils Whitman
commented that soil mechanicians do not know how the basic soil para-

meters effect cohesion, let alone strain rate and that the best current
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approach would be to relate the strain-rate effect to some simple standard
classification. Initial attempts were madec at rclating this effect to the
liquidity index (L, 1, )* and the net conclusion was that there "appeared' to
be a moderate increase in strain-rate effect with increasing plas ‘city

(higher value within the liquidity index).

In 1962, Whitman and Hea1y3' 15

reviewed all previous work on
sands at MIT and expanded the studv to include results of tests on satu-
»ated loose Ottawa sand, This sand exhibited a strain-rate ecffect of 1,4
between failure times of 5 seconds and 0.025 second. The investigators
net conclusion was: ''since friction angle was essencially independent

of failure time, the undrained compressive strength of sand varied with
time-to-failure when the excess pore pressures were time dependent, "
Compressive strength time dependency was only observed with saturated
loose sands.

3.16

Whitman, Richardson and Nasim reported a strain-rate eifect

of 1, 6 for triaxial compression tests on saturated fat clay with loading

times varying from 0. 0025 second to 300 se -ds. It is stated, as pre-

. . 4 . .
viously observed by Whitman, that the maximum deviaztor stress as
a functiocn of the log of strain rate has a pesitive curvature with increasing

slope toward high rates of strain,

.1, = Moisture Content - Plastic Limit
Plasticity Index
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3,17

Healy , also in 1962, summarized a series of undrained satu-

rated triaxial tests on a silty sand by saying that a strain-rate effect of

from 1, 1to 1, 2 could be expected going from the low to high rate of strain

due to the ''dilative tendency'' of this material.

LRI T |

Kane, et al, 5. 18 presented results of triaxial compression tests

on a partly saturated clay in 1964, The soil had 34 percent by weight

clay~size particles and a 70-percent degree of saturation, A strain-rate

effect of 1.5 was noted when the time to failure was reduced from 1C0

seconds to 0, 003 second and the lateral confining pressure was varied

trom 114 psi to 1010 psi. -
In 1957, Whitrran3- 19 comraented: ''there is relatively little under-

standing of the factors affecting the shear strength of cohesive soils' and

"It is not surprising that the cox:. s, nding strain-rate effects ave so

poorly understood.'" In an atteinpt to clarify this effect a number of

investigators including Crawford>" ‘20, Perloff3" 2 1, Olson3* 2‘?‘, Healy3" 23,

and Richardson and Whitman®* 24 pave examined the pore pressure effect

as a function of strain rate, IFore pressure variations with strain rate

were observed in all but Olson's work., These studies, however, invclved

times to :; .lure ot one minute or longer (with the exception of the work by

Healy, time to tailure = 0,6 sec.) due to the fact that existing transducer

technology does not allow pore pressure measurements involving a failure

time of a few milliseconds.,




Whitman3+ 13 has related that the considerable range of strain-
rate effects is undoubtedly dependent on the moisture content, grain size
distribution, particle origin and chemical composition and the degree of

3.19 were ""efforts must be

consolidation. Other statements by Whitman
directed to understanding fundamental principals'' and "The greatest use
of rapid tests will be as a part of this effort to unearth these funda-
mentals, "

A summary of previous soil dynamics test results is presented
in Tables 3. 1 and 3.2 at the end of this chapter.

Despite all aforementioned investigations few individuals have
attempted to postulate the inclusion of strain-rate effects in a modified
failure envelope criterion,

in 1949, Taylor>+ 2>

reported that data had been obtained indi-
cating that the plastic resistance at any given speed of shear in a given
clay at various densities is approximately proportional to the inter-
granular pressure, On the basis of this relationship and assuming that
the plastic resistance depends only on the intergranular pressure and

speed of she. ., it was conjectured that the shearing strength, s, of a

specimen would be represented by the following expression:

s» (% +p;) {tan¢'+ f(a_e_s>}
if i 3t
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in which p; is the intrinsic pressure and ¢ is the shearing strain. The
strain rate function which appears in this relationship may be obtained .
from a series of compreésive strength tests at various strain rates.
I—Ivorslev3‘ 3, in 1960, presented a thorough discussion of para-
meters which possibly effect the shear strength of a cohesive soil. As
suggested, the measured shear strength ('rf) could be represented by
the following relationship:

= -+ + .
Tf Td T Ce

¢

The surface energy (dilatatic.l) component, T , has an effect of 1 to 2

d
degrees on the friction angle and decreases with increasing test duration
approaching zero for very long tests. It is also zero for all undrained

or constant volume tests, The effective friction component,

T 2(T;~u)tan ¢'e , will only be affected by various strain rates if, u,
the pore water pressure is a time-dependent variablec. Hvorslev then
proceeds to consider the effective cohesion component, C, ™ Cy + ¢, as
two independent quantities, The rheologic component, c,,, is the transient
part of the effective cohesion component and decreases to zero with
increasing test duration or reduced rate of deformation. If the test is
performed at a rate such that ¢, approaches zero the effective cohesion

component approaches the ultimate cohesion component, c, The ultimate

cohesion component is therefore a result of intrinsic pressures, This

3.13

may or may not be in accord with Whitman

who states, ''as yet no




lower limiting strength has been observed and certainly there is no
observable tendency for there to be an upper limit to the shearing
strength, "

Hvorslev closes by saying: ''further research into the physico-
chemical and rheologic properties of clays may suggest modifications
of the definitions and/or introduction of other components, "

A recent article by Mitchell3: 26 describing the shearing
resistance of a soil as a rate process provides a wealth of fresh ideas
regarding strain-rate effects. Of particular interest is the expression

developed for shearing resistance which can be stated as follows:

(o) - 0‘3) = - shearing resistance
A'S'AE - interparticle bond strength
term
+ AS'T In ¢ - strain rate term
- ABS'T - temperature term
+ (o' + 20'3) &' =~ frictional resistance term
3

As mentioned by Mitchell this relationship shows that variations in
strain rate influence only the envelope intercept and not the frictional
component of resistance for conditions of constant effective stress and

frictional characteristics of particles,
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On the basis of the previous discussion it becomes apparent that
a considerable amount of research is required to evaluate the effect of
strain rate on the conventional failure envelope parameters, especially
in the dynamic range., The interdependence of time to failure, confine-
ment and soil parameters such as moisture content, grain size, degree

of saturation and stress history remains to be determined,
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SECTION 4, CONVENTIONAL DIRECT SHEAR TEST RESUILTS

a. Background.

|
1
The principal effort of this researcix program, as previously )
described, has been directed at the comparison of the '""dynamic" and
"rapid static'' shear resistances of a representative group of soils,
Specifically, an attempt has beenn made to formulate this coaiparison in
terms of the well-cstablished failure envelope parameters, cohesion and
friction, as a function of soil properties,

Conventional direct shear test results reported herein were ob-
tained by systematically following the '"dynamic'" and '‘rapid static' test
procedures described in Appendix I of this report,

The spectrum of soils studied ranges from pure ideal clays to an
Ottawa sand. In order to further discuss the test results the following

4.

definitions (Committee on Glossary of Terms and Definitions 1) are
presented:

Cohesionless Soil: A "'soil' that when unconfined has little or
no strength when air-dried, and that has little or no 'co-
hesion' when submerged,

Cohesive Soil: A ''scil” that when unconfined has considerable
strength when air-dried, and that has significant '"cohesion'
when submerged.

These definitions have been interpreted to imply that the soil classification

prior to stress application is appropriate.
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Tlie cohesive soils discussed in this report will include both '"caohesive
soils (& = 0)'" and '"combined soils (¢ > 0). "

In excess of 575 tests have been conducted during the study
indicating a recurrent behavioral pattern over a wide range of soil
properties, This consistency has permitted a rather concise state=
ment of results as shown in the following subsection. Subsection ¢
further discusscs the significance of the indicated test results,

b. Characteristic Failure Envelopes.

(1) General,

The commonly accepted total stress failure envelopes
are presented in Figure 4. 1. As shown, soils can offer frictional re-
sistance alone (cohesionless soil), pure cohesive resistance (cohesive
soil), or a combination of both frictional and cohesive resistance {com-
bined soil), Whether cohesion is in reality a frictional phenomenon will
not be discussed here, FEesentially all soils can be categorized by one
of the aforementioned envelopes. Thus, if the effect of time to failure
can be related to the ""apparent cohesion (Ca)" and '"friction angle (&))"
there exists the potential to postulate a unified descripticn of the effect
of test duration on maximum shear resistance for all soils,

(2) Cohesionless Soil.

As previously indicated, a cohesionless soil has little

or no strength when air-dried and unconfined. The ''rapid static"
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Cohesionless Soil
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Figure 4,1 Total Stress Failure Envelopes

failure envelope for such a material is characteristically a straight
line passing through or near the origin, Figure 4.2, The concise,
conclusive statement, ''dynamic effects are minimal,' is applicable
to all cohesionless soils studied during this investigation. This con-
clusion for sands is in good agreement with other investigators,

Table 3,1,
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. ”
Maximum P
P
-~ N,

Shear Stress P
”

b i ""Dynamic'' Failure Envelope —

"Rapid Static! Failure Envelope

Normal Stress

Figure 4.2 Characteristic Failure Envelope: Cohesionless
Soil

A summary of the cohesionless soils tested is presented in
Table 4. 1. The actual test results and soil conditions are graphically
illustrated and tabulated in Appendix III of this report., Tests on fine

3. 14

loose saturated sands, which Whitman™* observed to have a con-

siderable strain-rate effect, have not been included in this investi-

gation,
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{c) Cohesive Soil,

Cohesive soil, as discussed in this section is character-
ized exclusivcly by apparent cohesion as indicated by the ''rapid static''
failure envelope in Figure 4.3, The outstanding ''dynamic'' responsc
trend for these soils was merely a parallel shift of the failure envelope
to a level at which the intercept exhibited an apparent cohesion approxi-

mately twice as large as that for the ''rapid static'' test conditions,

Maximum ]
Shear Stress

T ,‘C"""""““"‘"" ($)g = O
(Co)q= 2(CQ)ps “"Dynamic' Failure Envelope

T /C {0)rs =
""Rapid Static' Failure Envelope

(Ca),4
b3

0

Normal Stress

(¢)rs = ""rapid static' friction angle
{(d)g = "dynamic' friction angle

{Cadrs ™ ""rapid static'' apparent cohesion
(Cal)dg = ""dynamic' apparent cohesion

Figure 4.3 Characteristic Failure Envelopes: Cohesive Soil




The cohesive soils tested are sunimarized in Table 4. 2. The
referenced figures of Appendix III presen’ the actual test results and
soil conditions,

(4) Combined Soils,

The '""rapid static'! failure envelope for a combined soil,
Figure 4,4, exhibits both a friction angle and an apparent cohesion,
respectively the individual characteristics of a cohesionless soil and a
cohesive soil. Once again the ""dynamic' failure envelope indicated the

significantly consistent response of a doubling of the apparent cohesive

intercept while the friction angle remained unchanged.

AR
Maximum ’,-”’ § (d))d
Shear Stress . A:_"Dynamic” Failure Envelope

| — =
| g ”Z_’: (®)rs

(Ca)g=2(Calrs
/ '"Rapid Static'' Failure Envelope
—
c))
a'rs

{

i -

Normal Force

Figure 4. 4 Characteristic Failure Envelopes: Combined Soil
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Failure response of this type was observed {or those soils listed
in Table 4,3, Once again, the specific test results are reported in the
indicated appendix.

(5) Summary of Envelope Response,

The regularity of the previously described failure
envelope trends allows a very concise, comprehensive, presentation
of the results in terms of the friction angles and the following ratio,

= (Ca) dynamic

"apparent cohesion' ratio _—
(Ca) rapid static

This information is indicative of the dynamic effect on the apparent
cohesion and the friction angle, Frequent reference is made to the
apparent cohesion ratio as either a '""dynamic~static strength' ratio or
merely a "strength' ratio,

Tables 4, 4a, b, and ¢ present a summary of this investigation
for the previously described, cohesionless, cohesive, and combined
soils together with an abbreviated summary of the average soil proper-
ties.

c. Discussion of Results,

(1) General,
The following discussion presents the results of this
investigation in an orderly manner for the purpose of discussing the

correlations that have been observed,
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Commercially available soils or 'ideal soils'' were utilized

=

throughout the duration of this investigation. Natural soils were tested
periodically, as oblained, groviding verification of ''ideal soil't response.

(2) Cohesionless Soils,

The ideal cohesionless soil used for all tests was the

B

ASTM C-190 Standard 20-30 Ottawa sand, Tests were performed on

this sand in both loosc and densc states,

Qe

The '"dynamic'" and '"rapid static'' loose dry sand test results
offered no interpretation problems and showed excellent agreement
with each other (Appendix III - Figures 4 and 5) exhibiting a unique
failure envelope passing through the origin.

The dense dry sand '"dynamic' and '"rapid static'' failure envelope -
(Appendix III - Figures 1 and 2) were also characteristic of cohesionless
soils, The "dynamic'" failure envelope, however indicated a slightly
lower friction angle than that of the '"'rapid static'' response, This could
well be the result of interpretation difficulties for ""dynamic' dense sand
tests, As indicated by the shear force versus shear displacement response
the maximum shear resistance in ''rapid static' tests was offercd at shear
displacements of approximately 0,06 in., The interpretation procedure
used for '"dynamic' dense sand test results yielded a maximum shear
resistance value at shear displacements of approximately 0,08 in, If in
fact, the shear displacement at maximum dynamic resistance is comparable

to that for a '"rapid static'' test, 0.06 in., the true '"dynamic' maximum
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shear resistance is masked by the previously mentioned initial inertial
peak.
The '"'rapid static'' failure envelopes, Table 4.5, agree favorably

with those reported by Burmister for this sand at the indicated rela-

tive densities,

Table 4,5

Comparison with Burmister Ottawa Sand Results

Sand Relative Density Burmister ND
Dense Sand 87% 43° 46°
Loose Sand 37% 37° 359

"Dynamic'" saturated dense sand test results (Appendix III -
Figure 3) indicate good agreement with the ''rapid static" dry dense sand
failure envelope, These maximum shear resistances are slightly greater
than those indicated for the '""dynamic' dry dense sand tests in which
similar interpretation procedures were used. This slight increase in
shear resistance is probably due to incomplete drainage, although un-
restricted, and the effect of dilatation in developing some negative pore

pressure,

wn
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On the basis of this discussion the net conclusion regarding a
'""cohesionless' coarse clean sand is that no ''test-duration effect' is
observed with the exception of 2 small effect for a saturatec .ondition.

(3) Cohesive Soils,

Two cohesive soils were used throughout this investi-
gation to determine the dynamic-static strength ratio.

Jordan Buff clay, basically a kaolinite, was used as the principal
cchesive material, '""Dynamic' and ''rapid static'' failure envelopes were
formed with this soil using various moisture contents, preparation pro-
cesses and pore fluids, It was obtained in dry powdered form from the
United Clay Mines Corporation, Trenton, New Jersey. The Atterberg
limits are as indicated below, Other specific soil properties are record-

ed in Appendix III of this report.

Liquid Limit = 54%
Plastic Limit = 26%
Plasticity Index = 28%
Shrinkage Limit = 22%

Western Bentonite clay, a montmorillonite, was used to amplify
and determine the grain size effect on failure envelope criterion. It is
available in dry powdered form from Baroid Chemicals, Incorporated,
Houston, Texas., The Atterberg limits
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Liquid Limit ~ 5439,
Plastic Limit = 51%
Plasticity Index = 492 %

are in good agreement with those obtained by Seed, et al, 4.3 These
values, much greater than those for Jordan Buff clay, are indicative of
the predominant presence of montmorillonite clay minerals. Other
specific information regarding this soil is reported in Appendix III.

To facilitate sample preparation and production a modified
standard proctor procedure was adopted and used extensively. Detailed
sample preparation and placement techniques are described with the
tabulated summaries of all test results in Appendix III.

(a) Moisture Content,

"Dynarnic' and "'rapid static' failure envelopes
were developed for the Jordan Buff clay at moisture contents of approxi-
mately 0, 10, 20, 25, 30 and 34 percent, respectively Figures 7, 8, 9,

10, 11 and 12 in Appendix 1IIl. The apparent cohesion ratio was evaluated
for this entire range of soil consistencies,

As inferred from Table 4, 4 thc highly saturated (S= 90%) clays
(w= 20, 30, 34%) exhibit a strength ratio very nearly equal to 2 with the
exception of the series at a moisture content of 25%. This variation is
partially a result of utilizing "automatically conirolled shear displacement"

tests as well as "rapid static'' tests to form the indicated static failure
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envelope, Appendix III - Figure 10, The 'automatically controlled
shear displacement'' tests with a duration of approximately 8 minutes
appeared to yield slightly lower shear strengths than under ""rapid static"
conditions, This slight reduction in strength tends to lower the static
envelope and hence increase the apparent cohesion ratio, However,
even if the "rapid static'' tests were the sole criterion [or forming the
static envelope, the apparent cohesion ratio, for this particular soil,
would still be in excess of 2.

Scott4' 4 discusses nonsaturated £oils and indicates rhat the
total stress failure envelopes will not be a straight line but will have a
varying slope becoming horizontal at high pressures, which according
to Means and Parcher4‘ > implies that the remaining air is then dissolved
in the pore fluid. This type of response is characteristic of that obtained
from the Jordan Buff clay, It is particularly evident at a moisturc con-
tent of 20% (Appendix III - Figure 9) at which the horizontal level is not
approached due to tne fact that the normal force is never sufficie ntly
high to dissolve the existing air., Instead of attempting to establish
apparent cohesion intercepts for the 20% moisture content the dynamic-
static strength ratic was determined t» range from 1,8 to 2,0 for various
values of normal stress.

It is interesting to note that as the moisture content is decreased

a friction angle is introduced subsequently attaining a value of 309 when
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the dry powder is investigated. This increase in friction angle with
reduction in moisture content is likely the result of the limited amount

of pore water permitting more direct interparticle action and effective

stress variation as a function of confining pressure. At moisturc con-

tents above the plastic limit the friction angle is virtually nonexistent,

i i" N

Figure 4.5 graphically illustrates the interdependence between

apparent cohesion and degree of saturation, Apparently on the wet

side of the optimum moisture content, relatively high degrees of
structural dispersion, the apparent cohesion ratio is very consistent
at 2 dropping ofi to 1 at zero moisture content, The decrease in .
strength ratio appears to start at moisture contents less than the
optimum, below which there is a greater tendency toward flocculation
. 4,6 o
in compacted sarmnples, Leonards . The indicated range of dry
densities (83 pci to 105 pcf) at similar degrees of saturation (Sx 87%
to 91%) varies substantially the number of interparticle contacts per
unit area, It is readily observed that on the wet side of the optimum
moisture content the apparent cohesion ratio is independent of the
aforementioned number of interparticle contacts, This is in accord-
. ; i 3.26 .
ance with the hypothesis advanced by Mitchell from which the
particle contact term would be cancelled if placed in ratio form for
two different rates of strain.

Although both Taylor and Whitman3' 13 and Schimming and Saxe
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reported an 'apparent' correlation between the strength ratio and the
position of the soil in the plastic range as indicated by the liquidity index,

it must be kept in mind that both investigators based their tentative con-
clusions on a limited number of confined tests, not the apparent cohesion
intercepts as developed from the great number of tests reported herein.
For the Jordan Buff clay within a liquidity index range from -0,21 to + 0,29
no marked strength ratio variation was observed,

(b) Structural Effects,

Fresh water deposits can provide dispersed struc-
tures although flocculated clays are more predominant in nature. Due to
structural differences the flocculated clays would not necessarily yield
the same response trends that the aforementioned dispersed structures
have under '"dynamic' shear force application.

As previously indicated the dispersed soil structure yields a

strength ratio in terms of apparent cohesion of 2. Foxr compacted scoils
having a tendency toward flocculation, those below the optimum moisture
content and partially saturated, the strength ratio varied frcm 1 to 2,
To observe the strength ratio for saturated soils with flocculated struc-
tures a number of tests were perforimed on samples consolidated under
various conditions. The test results are presented in Figure 4. 6, with
an exaggerated vertical scale, as well as in Figure 13 of Appendix III

which also contains a tabulated summary of soil conditions. The indicated
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Figure 4,6 Shear Tests on Consolidated Samples - Jordan
Buff Clay
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""rapid static'* stress envelopes take the form of those suggested by
Hvorslev3+ 3,

It is interesting to note that the flocculated structure appears to
exhibit a greater ''rapid static' resistance (7.2 psi) than that of a more
dispersed structure (6.7 psi, Appendix IIl - Figure 11), although the
latter has a slightly greater dry density (88 pcf as compared to 86, 5 pef),

Under the given normal consolidation pressures of 13,1 psi and
29,9 psi, Figure 4. 6a, the strength ratio was 1.735. Had ncrmally con-
solidated direct shear tests been performed at pressures of 60 psi the
indicated (+) values of shear resistance would have been expected. With
reference to Figure 4, 6b it can be seen that samples normally consoli-
dated to 60 psi and rebounded to 6 psi indicated a dynamic=-static strength
ratio of 1.9, which is slightly higher than that {or the normally consoli-
dated samples. This value tends to approach the time-to-failure effect
for dispersed soils indicating that perhaps an overconsolidated sample
is more dispersed than a normally consolidated sample.

The general conclusion from these observations on a variely of
consolidated samples can once again be stated very concisely ia that the
preparation process and type of structures cause only a slight deviation
from the st_ength ratio observed for the previou. .y discussed compacted

soils.
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(c) Grain Size Effect.

Western Bentonite clay, a montmorillinite, was
used to observe whether or not grain size variation in the cohesive range
affected the apparent cohesion ratio,

"Dynamic' and ''rapid static' failure envelopes were developed
at two moisture contents (w = 53% and 95%) within the plasticity index,
All failure envelopes (Appendix III - Figures 19 and 20) were readily
interpreted to be purely cohesive in nature indicating an apparent
cohesion ratio of 1. 85 for both the low and high moisture contents. As
for the Jordan Buff clay no variation in the strength ratio is observed for
a considerable change in moisture content at these high degrees of satu-
ration (S = 91% and 94%). The apparent cohesion ratic is also, once
again, constant for a considerables variation in dry density (66 pcf to
46 pcf). This merely confirms the observation for Jordan Buif clay
that the strength ratio is independent of the number of interparticle con-
tacts,

Since the Western Bentonite and Jordan Buff exhibited similar
responses it appears that the strength ratio is relatively insensitive to
grain size in the cohesive range.

Figure 4.7 presents an all encompassing view of the consistency
established in apparent cohesion ratios for the soil-water combinations

tested within the indicated moisture contenl range,
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(4) Pore Fluid Variation,

With respect to the previous discussions for
cohesive soils the time-to-failure effect has been studied as a fuaction
of moisture content, dry density (number of interparticle contacts), degree
of saturation, history in the form of preparation process (basic particle
to particle structure) and effective grain size. A very consistent set of :
response characteristics has been observed. Deviation from the strength
ratio of approximately 2, was only particularly noted at extremely low
degrees of saturation (S = 0% and 34%), where there would be a marked
- deficiency of pore water, This seemed to implicate the pore water as
being an influencing factor in creating the unique response trends. Inan
effort to gain some insight into the pore water cffect it was decided to
test Jordan Buff and Western Bentonite clays mixed with various fluids
having electrical and viscous properties unlike those of water. Table 4,6
is a summary of the average soil properties and test results from the
"dynamic' and "'rapid static'' failure envelopes of the indicated soil
mixtures.
Prior to discussion of the significance of these results in terms
of fluid propertics it is necessary to be aware of the nature of diffuse
double layers and the electrical nature of colloidal particles. Scottd 4
presents a discussion of clay-water relationships an- the tendency to

formation of the diffuse double layer. It is mentioned that the valence,
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concentration and size of the counterions in the dissolved electrolyte
as well as the surface charge of the particle, the dielectric constant of

the fluid and the temperature affect the degree of diffusi a of ions from

IR NI

the surfaces of the charged particles, At some distance from the particle

surface the ions have a minimal tendency for diffusion. The double layer

S BT

"thickness'" can be defined as a distance at which the potential for diffusion
has fallen to a given level,
Salt water was used as a pore fluid to determine the effect an

electrolytic solution would have on the strength ratio. The apparent

. cohesion intercepts (Appendix IIl - Figure 14) indicated a slightly larger
dynamic=-static strength ratio for the salt water mix than for the fresh
water mix, respectively 2,2 and 2.1. It must be kept in mind that these
ratios are quite sensitive to interpretation of the ''apparent cohesion'
values,

Van Olphen4' 8

indicates that a suspension of kaolinite clay in
salt water would offer a lower shear resistance than a similar fresh
water kaolinite mixture., A weaker structure was actually observed, as
the salt water mix (vy ® 90 pcf, w = 30%) indicated a '""rapid static"
apparent cohesion of 4.5 psi while a fresh water mix of Jordan Buff clay
(Yd ~ 88 pci, w=x 30%) yielded an apparent cohesion of &,7 psi. As

described, this response is apparently due to a compression of the

particle edge and face double layers permitting the dominance of face

67




to face attractive forces and essentially reducing the number of inter-

particle edge to face contacts which contribute significantly to a soils
yield stress, -
Glycerin was used to magnify the pore fluid viscosity as related
to the strength ratio, On the basis of the overall electrical similarities
between glycerin and water, respective dielectric constants of 42, 5 and
78, 5, similar diffuse double layers should be anticipated. Two moisture
contents (40% and 60%) were investigated indicating characteristic ''purely
cohesive' failure envelopes, Appendix IlI - Figures 15 and 16, The dry
density and degree of saturation for the glycerin-soil mix (yd =~ 84 pcf,
S = 85%) compared favorably with another Jordan Buff clay=-water mix .
(yd ~ 83 pef, S = 87%). A six-fold increase in ''rapid static' shear re-
sistance was observed for the glycerin samples, This may be partially
attributed to the difference in pore fluid viscosities (glycerin viscosity =
939 centipoises, water viscosity = 1 centipoise at 20°C)., The desired
strength ratios were evaluated as 4.0 and 3, 6 respectively for the 40%
and 60% moisture contents, These values imply an incremental increase
in "dynamic' shear resistance of 3, 0 and 2. 6 times the ''rapid static"
shear resistance, The corresponding increase for a water=-soil mix
would be approximalely 1, This incremental increase in strength is
certainly not proportional to the increase in viscosity thus indicating
that "dynamic'' strength increases cannot be explained exclusively by

the pore {luid viscosity,
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Kerosene, a nonpolar long chain hydrocarbon was used in an
attempt to see if the strong dielectric nature of water affected the
apparent cohesion ratio, In comparison to a water-soil mix,a nonpolar

fluid (dielectric constant = 0) would have a significantly decreased tend-

T

ency to form a diffuse double layer adjacent to the charged soil particle.
The 'dynamic'' and "rapid static' failure envelopes were, surprisingly,
similar to those for combined soils in that a constant friction angle and

cohesion were indicated, Appendix III - Figure 17. A strength ratio

RPN

of 1,8 was established on the basis of considerable apparent "dynamic"!
and ''rapid static' cohesions, These intercepts were unexpected as the
soil-kerosene mix had no adhesion for physical objects,

""Dynamic' and "'rapid static' failure envelopes were also formed
{or the Western Bentonite clay and benzene, another nonpolar pore fluid.
As for kerosene the weak dielectric nature of benzene should inhibit the
formation of any diffused double layers. Similar to the kerosene=soil
mix, failure envelopes characteristic of combined soils were obtained
(Appendix LI - Figure 21) and an apparent cohesion ratio of 2.0 was
observed.

For the viscous and electrically similar pore fluids, kerosene
and benzene, the strength ratio is again indicated to be independent of

grain size.

69




When attempting to correlate the '"rapid static'' apparent cohesions
of the bentonite-benzene mix and ordinary bentonite-water mixes, coms=-
parable dry densities were never obtained. However, the bentonite-
benzene mix (yd = 77 pcf) had a lower '"rapid stacic'' apparent cohesion
(3.7 psi) than did a bentonite-water mix (8,7 psi) at a lower dry density
(yd = 67 pcf) indicating that if comparable densities were obtained a
greater difference would have been observed. This reduction in apparent
cohesion for the special mix is probably due to a greater number of inter-
particle contacts having been established in the fresh water-bentonite mix
than in the benzene-bentonite mix,

For the particular cohesive soils investigated this last study has
indicated that the high dielectric constant of water has a significant effect
on the formation of the horizontal (¢ = 0) total stress envelopes,

(4) Combined Soils.

To extend this investigation to the inclusion of com-
bined ideal soils Jordan Buff clay was mixed with the Standard 20-30

Ottawa sand and water in the following proportions by weight,

Jordan Buff Clay : 4,8/10
Standard Ottawa Sand : 3,6/10
Water : 1.6/10

This provides a moisture content of 16% for the entire mix and approxi-

mately 3u% for the clay part of the structure.




"Dynamic" and '""rapid static'' failure envelopes were formed
(Appendix III - Figure 18) indicating a parallel shift of the envelopes and
an apparent cohesion ratio of 2,0. As previously mentioned, Mitchell3’ 26

concurs with this type of response.

(5) Natural Soils.

A variety of natural soils were obtained and tested in
an attempt to determine whether or not the response trends for the ideal
soils would be applicable to natural soils.

Nevada Test Site desert alluvium, a silt, was obtained in an une
disturbed form but was extremely dry and brittle and had to be remolded
in the shear box., No differentiation was observable between '""dynamic'
and '"'rapid static' response (Appendix 11l - Figure 22) indicating that
this soil applied to the cohesionless category despite the relatively dry
"apparent cohesion {5 psi)." A considerable friction angle (28°) was
present,

A natural purely cohesive soil utilized in this test program was
an undisturbed Chicago Blue clay from which parallel horizontal "dy-
namic' and '"'rapid static'' failure envelopes were obtained, Appendix III -
Figure 24, A strength ratio of 1.7 was observed which was slightly less
than but otherwise in good agreement with the ideal consolidated (floccu-

lated} Jordan Buff clay test results.
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The combined soil effect was observed on two undisturbed natural
soils, The first, a sandy silt (Appendix III - Figure 26), exhibited a
streungth ratio of 2. 15 with a lower angle of friction (35, 5°) for the
""dyrnamic'! failure envelope than for the ''rapid static' failure envelope
(38. 59), This slight reduction in "dynamic!' friction angle was also
observed for the tests on dense Ottawa sand, The non-homogeneity of
this natural soil cannot be overlooked as a possible contributor to the
observed response,

Undisturbed Notre Dame Lake Marl (Appendix III - Figure 238)
was also investigated indicating a parallel shift of the failure envelops=
and a strength ratio of 1, 4. The apparent friction angle was 20. 3°,

As described by Fitz Hugh, Miller and Terzaghi4' 9, a marl has clay
and fine silt particles firmly united in hard clusters which behave
similar to sand grains during undisturbed shear testing of the soil,

They also state that after the flocks are destroyed the character of the
marl changes from that of a sand to that of a clay, If this '"cementation"
represents part of the initial ""rapid static" apﬁarent cohesion it would
probably remain constant for the '"dynamic'' apparent cohesion as indi-
cated previously for the intercepts of Nevada Test Site Desert Alluvium
and dry Jordan Buff clay. Such a small reduction from both ""dynamic"
and '"'rapid static' apparent cohesions would effectively increase the

apparent ratio,




(6) Shear Stress versus Shear Displacement Response.,

The basic feature of a direct shear device is maximum
shear resistance determination and not strain measurement. A limited
number of shear force versus shear displacerment responses were re=
corded however, to further reveal any significant soil characteristics,

Typical "dynamic' and ''rapid static' shear force versus shear
displacement responses for dense dry sands and cc... soils are
presented and discussed in Appendix II of this report. The salient
features of these responses are the excellent agreement between '"dynamic"
and "rapid static'' dense sand test results and the maximum shear resist-
ance occurring at larger displacements for ''dynamic' tests than '"rapid

static' tests on cohesive soils,
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SECTION 5, SPECIAL TESTS

a, General,

During the course of this investigation some of the unique N

characteristics of DACHSHUND I were utilized to perform various types
of exploratory tests. All of these tests were performed on either the
ASEVM C=~190 Standard Ottawa sand or the Jordan Buff clay. -

b. Inertial Confinement,

Whitman®* ! has referred to a '"'lateral inertis effect' under
triaxial conditions associated with dynamic impact loads. He describes
it as follows: ''Lateral strains must occur before failure can take place,
and in \'C];'y rapid tests inertia delays the development of lateral strains.,
Thus, it is possible to develop, during very short periods of time,
stresses far in excess of the peak resistance,"

DACHSHUND I permitted the examination of this effect under
boundary conditions quite different from those of the triaxial test,

It has been well established for static tests on dense sand, that
if the specimen is not 1llowed to expand completely, failure cann~t be
achieved without shearing individual sand grains, In the direct shear
device expansion can only take place in a direction normal to the plane
of failure and must cause a displacement of the normal force loading
system in dynaimic as well as static tests, This condition allowed the

"lateral inertia' to be treated as a variable., To accentuate this

-]
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dilatational inertial effect, failure envelopes were formed by applying
the normal force with a large mass (lead weights) as well as with the
pneumatic system (virtually no mass), As shown in Figure 5.1, the

dynamic friction angle {60°) for the lead weight confinement is con-

siderably greater than that (43°) for pneumatic normal force application,
Thus, when considering a material with a tendency toward dilatation
it is indicated that the inertial forces normal to the failure plane may

alter the apparent dynamic strength of the soil,
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Figure 5.1 Tecst Results: Inertial Confinement of Dense
Ottawa Sand




¢, Simultaneous "Dynamic'' Shear and Normal Force Application.

The characteristics of this particular pneumatic system per-
mit simultaneous '"dynamic'’ application of both the shear and normal
forces.

In an effort to observe the effect of simultaneously applying both
the confining force and the shear force a series of conventional "dynamic"
and ''rapid static' tests were conducted on the Jordan Buff clay for refer-
ence purposes. The photographic records of particular simultaneous
test responses indicated that in general the shear and normal forces
commenced within 1 ms of each other, Virtually all simultaneous tests
exhibited a slower rate of increase in normal force than shear force,
The limited simultaneous loading results of Figure 5,2 mercly indicate
duplicaticn of the conventional ""dynamic'' test results,

This excellent agreement between simultaneous and conventional
test results and the consistency of the conventional test response leads
to no anticipation of variation in soil responsc duc to this unique loading
technique for a soil characterized by a horizontal failure envelope,

For materials characterized by a friction angle, which have been
shown to be insensitive to dynamic effects, it could be anticipated that
failure will occur whenever the shear versus normal force stress path
contacts the static failure envelope. Whether or not the stress path
remains beneath the envelope is related to the relative moduli (shear

and compression) involved,
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Figure 5.2 Test Results: Simultanecus ""Dynamic' Shear and
Normal Force Application - Jordan Buff Clay

d. Repetitive Shear Force Application,

An electrically controlled poppet-type pilot-operated valve
inserted in the air supply line ahead of the shear force cylinder per-
mitted the application of shear force pulses at frequencies up to 4 cps,

The shear force input pulses, Figure 5,3, had rise times of
approximately 30 ms and decay (to atmospheric pressure) times approach-
ing 8 ms, It is interesting to note the consistent linearity (k) of the net
shear displacement per pulsc as a function of time for the plastic {(w = 28%)
Even after considerable displacements have taken place

Jordan Buff clay.

this phenomenon is observed. The plastic displacements per pulse for
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Figure 5.4 Test Results: Repetitive Shear Force Application -
Jordan Buff Clay
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various shear force magnitudes are given in Figure 5.4, It is readily
observed that the maximum shear stress amplitud: of this ""stress-
displacement'' plot lies between the conventional '"dynamic' and
‘'rapid static' test results,

A tabular summary of all special tests is presented in

Appendix IV of this report,
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SECTION 6. CONCLUSIONS

Based on the results of this investigation the following con-

clusions may be drawn:

a. Coarse cohesionless materials do not exhibit an increase
in maximum shear resistance due to '"dynamic' shear
force application, This is true in both the dry and satu-
rated states for the drainage conditions present in the
direct shear box,

b. Cohesive and combined soils exhibit an increase in maxi-
mum shear resistance as indicated by an increase in
apparent cohesion for the following conditions,

(1) The apparent cohesion ratio ic independent of
moisture content, dry density and grain size for
degrees of saturation in excess of approximately
85%,

(2) Low degrees of saturation, the dry side of optimum
for compacted soils, tend to reduce the apparent
cohesion ratio,

(3) Soil structure, whether flocculated or dispersed,
does not appear to have a significant effect on the

apparent cohesion ratio.
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(4) The effect of an investigated electrolytic solution

is to reduce the maximum shear resistance of the

A T

soil; however, the apparent cohesion ratio is not

significantly altered,

(5) Examination of pore fluid viscosity indicates that
- for viscosities near that of water the apparent
cohesion ratio remains unchanged, However, if -

the pore fluid viscosity is radically different than

that of water the apparent cohesion ratio is altered

. but not in proportion to the respective fluid visco-

NI

sities,

c. The consistent failure envelope trends provide a basis for
estimating the dynamic shear resistance if the static failure
envelope is available, thus minimizing the need for special-
ized laboratory tests in an applied situation.

d. Corroboration of Mitchell's™* 26 |,

rate process theory'' on
the basis of failure envelope parameters has been observed
for the distinct times to failure involved in the '""dynamic"
and ''rapid static' tests.

e. The relatively uniform apparent cohesion ratic for the wide

variety of soils investigated certainly questions the explana-

tion that variations in pore pressure development are
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entirely responsible for strength variations as a function
of strain rate.

f. Inertial confinement effects can alter the maximum shear
resistance ot soils which tend to dilate.

g. The '""dynamic' application of normal force simultaneous
with shear force did not a}ter the apparent cohesion ratio
for the clays studied.

h, The previous conclusions indicate that with respect to
application to a dynamic phenomenon such as cratering

For soils whose strengths are dependent on body
forces, such as sand, the descriptive dimensionless
term,

Explesive Energy
(Soil Density) x (Characteristic Length)4

Sedové’ l, will not assume different dynamic and static
values, However, for materials whose strengths are
independent of body forces, such as pure cohesive
soils, the descriptive dimensionless term,

Explosive Energy
(Characteristic Soil Strength) x (Characteristic Length)3

will assume different static and dynamic values,
i. The effect of duration of a stress controlled pulse on maxi-

mum shear resistance and subsequent static strength
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remains to be investigated, The residual strain as related
to maximum shear resistance in the presence of a dynamic
loading history would be of interest,

The consistent performance of DACHSHUND I has demon-

strated it to be an eilicient dynamic direct shear device.
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APPENDIX I, DETAILED TEST PROCEDURE

a, General.
The following are standard test procedures used throughout

the DACHSHUND I experimental program. Variations of these techniques
are used to perform the '"special' tests indicated in Section 5 of this report,

Prior to testing, it is necessary to turn the equipment on for a
minimum of one-half hour to obtain a stabilized condition of all elcctrical
components, Calibrated input voltages to the force transducers must be
checked as well as the recorder response for each of the test variables.

b. Conventional "Dynamic' Test Procedure,

1, General preparation of oscilloscopes
a) Trigger mode on auto sweep

1}  Set the appropriate sweep time (normally 50
nis) and voltage scale for transducer calibration.

2) Focus ihe traces and set the prop«:s polarity,

3) Set the scale illumination just above f 2,8 and
the trace intensity such that there is an illumi-
nation band 2 ¢cm wide centered on each of the
traces, (This is for a time exposure of
approximately 1 minute.)

4) Check for {ilm in cameras with lens setting of

f 2.8 and the shutter speed at B (bulb).
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Cock the trigger rnechanism oun the horizontal air
cylinder to restrain the piston during cylinder
pressurization,

Place the prepared soil sample in the shear box seat=-

ing the upper gripper spacer on top with the gripper

teeth perpendicular to the direction of shear displace-
ment,

Place the loading head on the upper gripper spacer and

pivot the vertical loading assembly into a testing position,

beiﬁg careful to center the loading head and assembly

on the upper gripper spacer.

With the horizontal piston restrained and the vertical

piston free to move prepare the pneumatic system as

follows:

a) Open to atmosphere the stop cocks controlling the
exhaust side of the air cylinders,

b) Open the quick-opening gate valves ahead of the
pressure side of the cylinder to allow pressure
accumulation within the air cylinder.

c) Close the stop cocks at the quick-opening gate

valves,

88

[ R TR

e




7.
8.
90
10,
11,
12,
TR Wy ty N T = 3' '7!;'.
oy - [ - ) ¥
!‘ .t ¢ ".-!'-, “M x~“ e o b !
‘ € A}

Set the trace base lines at their chosen zero location
on the oscilloscope,
Set the desired vertical pressure with the pressure

regulator, Note: The time length of vertical pressure

e
Id

application prior to shearing varies with the
preparation technique for the soil being tested,
Set the trigger sweep mode on the oscilloscope to the
""arm'' position and arm the oscilluscope.
Close the viewing ports and lock the camera shutters
in the open position,
Set the air bearing at a pressure of 60 psi and accumulate
a shear force cylinder pressure of sufficient magnitude
to fail the sample,
With the sample now prepared for testing the load is
applied by depressing the '""Fire Both' or "Fire Hori-
zontal'' switch which simmultaneously activates the
traces on the oscilloscope and the solenoid actuated
trigger thus freeing the piston.
Immediately after failure of the soil sample release
the camera shutters and develop the Polaroid pictures
which are to be attached to prepared data sheets as a

permanent record of the test,
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¢, Conventional '"Rapid Static'' Test Proceedure,

1, General preparation of oscilloscope -
a) Trigger mode on auto sweep
1) Set the appropriate sweep time (normally

50 sec.) and voltage scales for transducer

calibration.
2) Focus the traces and set the proper polarity,
3) Set the scale illumination just above f 2, 8 and

the trace intensity such that the traces are just -
visible, (This is for a time exposure of approx-
imately 1 minute.)

4) Check for {ilm in cameras with lens setting cf

f 2.8 and the shutter speed at B (bulb).

2, Set the horizontal pressure regulator with the release of
air impending.

3, DPlace the prepared soil sample in the shear box seating
the upper gripper spacer on top with _;he gripper teeth =
perpendicular to the direction of shear displacement. -

4, Place the loading head on the upper gripper spacer and
pivot the vertical loading assembly into a testing position,
being careful to center the loading head and assembly

on the upper gripper spacer,
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‘With both the horizontal and vertical pistons free to

move prepare the pneumatic system as follows:

a) Open to atmosphere the stop cocks controlling
the exhaust side of the air cylinders,

b} Open the quick-opening gate valves ahead of the
pressure side of the cylinder to allow pressure
accumulation within the air cylinder,

c) Close the stop cocks at the quick opening gate
valves,

Set the trace base lines at their chosen zero location

on the oscilloscope.

Set the desired vertical pressure with the pressure

regulator, Note: The time length of vertical pressure
application prior to shearing varies with the
preparation technique for the soil being tested.

Set the trigger sweep mode on the oscilloscope to the

"Yarm'' position and arm the oscilloscope.

Close the viewing ports and lock the camera shutters

in the open position.

Set the air bearing at a pressure of 60 psi,

Trigger the traces by depressing the '"Fire Both"

switch,
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12,

13,

Build up ihe shear force at the desired rate with the
pressure regulator,

Immediately after failure of the soil sample, release
the camera shutters and develop the Polaroid pictures
which are to be attached to prepared d::a sheets as a

permanent record of the test,

Automatic Control Test Procedure,

1.

General preparation of recording system

a) Set the appropriate voltage scales for displacee-
ment calibration,

b) Check the pens for recording purposes on the
4-pen strip chart recorder,

Accumulate an air supply pressure of 25 psi to the

servomechanism controls,

Select the phenomenon to be controlled on the '""Hori-

zontal Programming Force or Displacement Pressure

Regulator,"

Eliminate the conventional test accumulator tanks from

the system by closing the gate valves (""P'" in Figure

2.2).

Set the appropriate values of RESET and PROPORTIONAL

BAND on the programming unit for the consistency of
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‘ the particular soil being tested, Note: There is an

! optimum operating condition for either displace=
; - . ment rate or rate of force application for each

’ soil type which can only be established by trial

and error tests at various settings of the pro-

grammers RESET and PROPORTIONAL BAND,

¢, 7, and 8, Same as 3, 4, and 5 of the Conventional ""Rapid

Static'' Test,

9. Accumulate the desired vertical and horizoxutal pressure

behind the pneumatically controlled gate valves, The

i i horizontal {shear force) pressure should »e slightly

greater than that requirec to fail the sample,

10, Set the air bearing pressuvvre at 60 psi.

11, Start the tes: by switching on the controlling cam clock
and the chart drive on the recorder.

12, After the test is over r:zmove the chart with the desired
information such that it can be retzined as a permanent '

record of the test, =
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APPENDIX II, INTERPRETATION OF TEST RESULTS

a, Response Interpretation.

(1) General,
The purpose of this section is to clarify some details
regardii.g the interpreta“ion of typical soil response traces.

(2) Conventional '""Dvnamic'' Tests.,

With '""dynamic' test time durations (from zero to total
displacement) varying from 10 to 30 milliseconds it is easy to conceive
of acceleration and deceleration forces entering the response. To allow
for this possibility the moving components of the shear box mechanism
were shaped and constructed of materials to minimize their mass,

(a) Shear Force,

Preliminary tests on a dense Ottawa sand indi-
cated a large spike in the action cell tracc upon application of the shear
force, This spike was concluded to be an inertial force becausc the
magnitude was considerably larger than that available when considering
the pressure within the air cylinder anad the area of the piston. The
dynamic cquilibrium immediately a’ter release of the restrained piston

is indicated in Figure II, 1 below,

P e

.‘Q";‘-, {tr <r \ ”’b \._.

- —

. ] e
. 1 S % .“, - . ' ' ' \ [EaR 3% ‘\\I \ 3 ‘_Lv"' ~

A . N p - \s Sy ey *

ol u,m.‘ IR KW A ; ¥ ,.z::.-.. Ih Wi }i)\u .‘\;.B‘_k,. <3 ’?Mﬁ;&- il



Action Shear
) Force Transducer

m-a

pC. AC

sl

i

Figure II. 1 Inertial Effect on Action Shear Force Transducer

S bl el

To clarify this situation the reaction shear force transducer

was added to the systern. With such an arrangement it is possible to

el

record the actual force transmitted through the soil specimen,

|

[

The shear force response of the dense Ottawa sand exhibited a

TR

large peak in the reaction shear force transducer as well as in the action

b

shear force transducer. A test on this dense Ottawa sand with zero
normal force yielded the traces in Figure II. 2. As can be seen, both :

traces exhibit the high initial peak, This peak is likely a combined

400 1lb,

Action

Reaction ' WA -

L_ISms-.l

Figure ll, 2 Action and Reaction Shear Force Transducer Response
- Unconfined Dense Ottawa Sand
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effect of the excess air pressure in the cylinder which induces '"over-

shoot!" in the reaction transducer and ''dilatational inertia' which is a
phenomenon similar to the "lateral inertia effect'" referred to by
Whitman ~° l. In the test results of cohesive soils and loose sands the
fir st spike is almost eliminated from the reaction shear force transducer
response but still remcins in the action shear force transducer.

The inertial effects were eliminated from the interpretation of i

the results by reading the reaction shear force trace as an average of

the small amplitude oscillations immediately following the first peak.

(b) Normal Force.

Variation in normal force is principally due to
the dilatation tendency of some materials which as a result changes the
direction of the friction force component on the piston as indicated in
Figure II,3. 1In addition to the friction force direction change "dynamic"

tests on dense sand exhibit an initial inertial force (A), Figure II. 4,

P A 1

K !

P Ac - 1 Pe AT o

Before Dilatation After Dilatation

Figure II, 3 Effect of Sample Dilatation on Normal Force -
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- ) Normal Force T
Response
(Lense Sand) l

v kil

Normal Force { .
Response __L\/' B
(Loose Sand) I :

—e— time

Figure i[. 4 "Dynamic' Test Effect on Normal Force

acting in the same direction of the friction force '"after dilatation,"
Figure II. 3, effectively increasing the normal force applied to the
specimen, Tuis peak is due to the vertical acceleration resulting
from dilatation and has dissipated sv~h that the dilatation friction
force component (B) is the only remaining effect on the normal {irce
by the time the maximum shear resistance has been attained, '"Dyuvinraic”
tests on loose sand also exhibit an apparent inertial force (C), Figure
1I. 4, which reduces the normal forces as a result cf an instantaneous
contraction. The dynamic equilibrium of this situation is indicated

in Figure II, 5. If the initial contraction creates a void ratio less than
the critical void ratio, dilatation will have to occur for further shear

displacement to take place., This dilatation will reverse the direction




e TR

RN E |

P AL - o PoA -f-m:a

Beiore Contraction During Contraction

Figure II,5 Normal Dynamic Equilibrium Before and During
Contraction

of the friction force and effectively increase the value of the normal
force (D), Figure II, 4, The inertial normal force effect for loose
sands has also dissipated by the time the maximum shear resistance
is attained.

Very little normal force fluctuation is observed in '""dynamic"
tests on cohesive soils,

The appropriate normal force to use in interpretation of the
results is that which exists at the time the peak shear resistance is
recorded.

(3) Conventional ""Rapid Static'' Tests,

(a) Shear Force. -

A number of tests on clay yiclded a shear

force and shear displacement response as indicated in Figure 1I, 6,




Reaction
Shear
Force J Pt time

Shear
Displacement

—»- time

Figure I1. 6 Characteristic Conventional "Rapid Static' Test
Shear Response for Cohesive Materials

It is note- that the rate of shear displacement increases slowly until

a simultaneous marked increase in siiear force and shear displacement
rate accur., The characteristic shear force versus shear displacement
response, Figure II,7, for a “'rapida static'' test on clay indicates that

the maximum shear resistance offcred by the soil is the pe~k recorded

""Pecak'' Effect on Shear Force

S

Reaction
Shear
Force

Linear Shear Force Increase

Y .
Shear Displacement

Figure I1.7 Characteristic Conventional '"Rapid Static'' Test Shear
Force versus Shear Dieplacement Response for
Cohesive Materials
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T

shear force. This resistance is offered at displacements during the
increased rate of shear deformation. The analagous situation exists
in "automatically controlled tests'" in which the rate of shear force
application is programmed,

Figure I, 8, a plot of shear force versus shear displacement

IR

for two tests of 4 minutes duration shows the agreeable comparison of
maximum shear resistance provided by Chicago Blue clay specimens
under both controlled displacement and controlled force test conditions,
The relative agreement of the above test results and the ease of per-
forming conventiovnal ‘'rapid static' tests seems to justify the use of
maximum values of shear resistance for tests with a 30-50 second

duration.

4# ~ 1 _ for Cor.. uiled Displacement Test
Ve m
e
S~ for Controlled
x X T or Controlle
Shear ot - e F Test
Force . Shear Force Te -
(ib)  solf’
i
. Controlled Shear Force Test
OL L. L L Shear Displacement (in)
0 0.2 0.4 0,6

Figur: 1.8 Effect of '4 minute'" Test Procedure on Maximum
Shear Resistance
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(b) Normal Force,

Variation in normal force is observed in '"rapid

static'' tests as well as in "dynamic' tests, This is particularly true of

tests on dense sand in which dilatation does occur and the direction of the

[LISRIRITY

friction force component is reversed as indic~ted in Figure II, 3. Once
again, the interpreted value of normal force is that which is on the
specimen at the time the soil vffers its maximum shear resistance,

b. Typical Test Results.

(1) General,

For the proper interpretation of the test results it is
necessary to present typical value§ of the measured variables, In order
that these values quantitatively represent the forces and displacements,
the respective transducers must be calibrated periodically as described
by Saxe, et al.Z' ! The calibrated input voltages to the force transducers
must be recorded to facilitate a daily calibration merely by setting the
same voltage input as that established in the calibration process. The
standard transducer calibrations are as indicated in Table ILI-1.

(2) Dense Cohesionless Material,

All t-sts used to represent cohesionless material test

results have been perinrmed on the 20-30 Ottawa sand with ASTM desig-

nation C-190,
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Table II.1

Transducer Calibrations

P gL

1 bl At s

Iy

Recording Voltage Readout
System Transducer Scale Calibration
Normal Force 10 mv 100 1b/cm
Shear Force 10 mv: - 100 1b/cm
Oscilloscope  yormal pisp. 10 mv . 0.01 in/cm
Shear Disp. 20 mv 10.20 in/cm
4-Pen Normal Force - 10 1b/division
Strip Shear Force - 5 lb/division
Chart Normal Disp. 4 mv 0.002 in/division
Recorder Shear Disp. 2 mv Oor 4 mv variable

The preparation process, Appendix I, used for the following
tests on dense sand yielded a consistent void ratio of 0, 535, the equiva-

lent of an 87% relative density.

(a) Conventional ""Dynamic' Test,

The "Dynamic' test results of Figure II, 9 show
that upon application of the normal force (A = 235 lb.}, prior to testing,a
compression (B = 0,006 in, ) of the specimen takes place, The imposed
impact shear force develops the inertial peaks (C and D) due to the com-

bined effect of overshoot and dilatation prior to the time the soil has
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Normal Force

"Zero"
;_._'____ .

Normal Diesplacementl ‘ |
"Datum" i B

I
Interpretation

Reaction Shear .

Force '"Zero"

Shear Displacement

i
|Izer°ll |
I
!

-
Figure 11,9 Typical Conventional '"Dynamic'' Dense Sand Test
Results
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developed its maximum shear resistance (E = 250 lb.). This shear
resistance occurs as dilatation is reversing the direction of the normal

friction force, effectively increasing the normal force (F 2 25 1b,,

A+ F = 260 ib, ) on the sample., A constant dilatation (G = 0.04 in.) is

SIS

maintained at the critical void ratio and the shear force required to con-

tinue shearing is substantially reduced (H = 180 1b.). At exhaust and

total shear displacement (I = 1. 05 in. ) the sample is compressed

(J = 0,004 in, ) to a densitly greater than that at the critical void ratio,
The shear force versus shear displacement response, Figure II, 10,
of another test with a cornparable normal force merely exemplifies
the characteristic similarities of "dynamic' shear tests on dense sand

and ''static' controlled displacement tests performed by other investi-

I1. 1

gators .
A
T T 7

— Response -
Shear \ ‘ By
Force 300 oy s

(1b) //" Interpretation -

Shear Displacement
0.5 in
Figure L. 10 Conventional '"Dynamic ' Dense Sand Shear Force -

versus Shear Displacement Response
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) (b) Conventional '""Rapid Static' Test,

In the direct shear test the most important
response is the shear resistance afforded by the soil. This, however,
cannot be associated with a failure criteria unless the applied normal

= force at the time of maximum shear resistance is known, Figure II, 11

is a tracing of the typical normal force, normal displacement, action
shear force, reaction shear force and shear displacement response as
a function of time for a ''rapid static' test on dens:= sand.

! Analysis of the normal transducer components yields a com-
pression (A = 0, 006 in, ) upon application of the (B = 240 lb) initial
normal force, During the process of developing the shear force at the
desired rate, a dilatation (C = 0,005 in, ) increases the normal force
(D = 30 1b. ) to its maximum value (E = 270 lb,) as described in Section
a(3) of this appendix., This instantaneous dilatation (F= .024 in,) occurs
at the peak normal force allowing the sand to attain its critical void ratio,
Once this void ratio has been established there i3 no longer a tendency
toward dilatation and the normal force frictional component reverses
its direction and reduces the norraal force (G = 25 1b,), Upon release
of air pressure in the cylinder the soil expands (H = 0,004 in.) to regain

) the greatest portion of its initial compression.

- The action and reaction shear force responses are seen to be
similar throughout. The shear displacement transducer indicates a

displacement (I = 0. 04 in.) taking place during the shear force application.
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Figure II. 11 Typical Conventional "Rapid Static'' Dense Sand Test Results
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When the maximum shear force (J = J' = 280 lb.) has been reached

1
O

the sample shears (K =,935 in.) almost instantaneously and the air

T R

pressure exhausts to the atmosphere reducing the shear force by a

substantial amount (L = L’ = 230 1b.). After the test is completed the

air supply is shut off and all air pressure in the cylinder is dissipated

[ HUN TG

(M = M! = 20 1b,)., The shear force remaining in the system (N = N' = 20 1b,)

Lo

is created by the friction force, between the piston ring and cylinder walls,
transmitted through the action shear force transducer and the confined

soil specimen to the reaction shear force transducer as indicated in

Figure II. 12. _

— Reaction Snear Force Transducer

Action Shear Force Transducer B

— f

Figure [I. 12 Recorded '"Shear' Cylinder-Pliston Friction Force

The shear force versus shear displacement response indicated in Z
Figure I, 13 was recorded in a test with a normal load comparable to

that reported in Figure II, 11, This tracing shows the dense sand's peak
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Shear
Force
(1b) A

l ‘ . - Shear Displacement
1.0 in,

Figure II. 13 Conventiona ''Rapid Static'' Dense Sand Shear
Force vers .. Shear Displacement Response

shear strength (A = 305 1lb.), shear displacemnent at peak shear strength
(B = 0,05 in.) and its shear strength (C = 190 1b,) at the critical void
ratio, This characteristic trace is to be expected for controlled dis-
placement tests as indicated by Hough L. 1. Electronic instrumentation

permits the observation of this response for controlled shear force tests.

(3) Loose Cohesionless Material.

Void ratios of 0.69 - 0. 70, relative densities of approxi-
mately 37%, were reproduceable by using the process described in
Appendix III of this report, The fcllowing loose sand results were obtained
from tests under these conditions,

(a) Conventional '""Dynamic'' Test,

The typical test results in Figure 11, 14 show a
variation in the initially applied normal force (A = 355 1lb,) upon imposition
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_
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”Zel‘o"

|

Figure 1I. 14 Typical Conventional '"Dynamic'' Loose Sand Test Results
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of the shear force and throughout the shearing process, The decrease

in normal force (B = 30 1lb,) apparently occurs as a result of the instan=-
taneous contraction as discussed in Section a(2) of this appendix,

Dilatation subsequently increases the normal force to its value (C = 390 1lb,)
at the soils peak shear resistance (D = 250 1b,, D' = 26C 1b.). It is also
necessary to note that the inertial peak (E') in the action force response

is virtually eliminated in the reaction force response. After shear dis-
placement ceased (F = 0,96 in.) a shear force (G = G' = 120 1b. ) remained
on the specimen due to a pressure gradient across the piston created by

the flow of air through the cylinder exhausting to the atmospherc,

(b} Conventional '"Rapid Static'' Test.

The loose sand test results in Figure II, 15 indicate
that the initially applied norrmal force (A = 425 lb, ) was maintanined
virtually constant throughout the entire shearing process. The only devi-
ation (B = 20 1b, ) from the constant normal force apparently occurred after
a gradual shear displacement (C = 0, 138 in.) abruptly changed (D = 0,035 in.)
allowing some dilatation of the soil and a reversal of the friction force
component in the normal force air cylinder as described in Section a of
this appendix. The maximum shear resistance (E = 300 1b,, E' = 310 1b.)
afforded by the soil under the increased normal force (F = 445 1b, ) took
place during a sudden shearing (G = 0,90 in,) of the sample, After approxi-

mately O, 8 inch displacement the pressure ia the air cylinder exhausted
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Figure II. 15 Typical Conventional '"Rapid Static'' Loose Sand Test




to the atmosphere (II = 120 1b,, H' = 120 lb,), The flow of air into the
cylinder was shut off (I = 160 1b,, I' = 160 1b.) and the air cylinder
{rictional force (J = 20 1b,, J' = 30 1lb,) remained,

:

(4) Cohesive Material,

Test results of all cohesive, fine grained materials
indicated similar response characteristics therefore confining the
necessary interpretation procedure to a typical soil,

The naturally deposited Chicago Blue clay discussed herein
was obtaincd from Soil Testing Services, Incorporated,of Northbrook,
Illinois. Its properties and sample preparation process are described
in Appendix III,

(a) Conventional '""Dynamic'' Test,

The test results in Figure II, 16 show a very slight
consolidation (A = 0,001 in,) under the applied normal force (B 3 150 lb, )
which was established aftcr ilie rample was seated at its preconsolidation
pressure, Upon imposition of the shear force and shear displacement
some apparent dilatation, equal to the previous consolidation, took place
resulting in 2 zero net normal displacement throughout the test duration,
As previously mentioned, "dynamic' tests on clay give virtually no indi-
cation of inertial forces in recording the soils maximum shear resistance
{C = 110 1b. ),

Figure 11, 17 is a tracing of the shear force versus shear displace-
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Figure II, 16 Typical Conventional ""Dynamic'' Test Results on
Cohesive Soils
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Figure II. 17 Conventional '""Dynamic' Shear Force versus

Shear Displacement Response for Chicago Blue
Clay

ment for the test being discussed, An apparent '"threshold" strength

(D = 80 1b,) is noted at an extremely small shear displacement, The
maximum shear resistance {E = 110 lb.) occurs at a shear displacement
(F = 0.24 in.) which is less than the total displacement attained in the
""automatic controlled displacement tests, '

(b) Conventional '""Rapid Static' Test.

A normal force (A = 300 1lb,) equal to the pre-
consolidation pressure of the Chicago Blue clay was applied to all
specimens, including the ''rapid static' test indicated in Figure II. 18,
This seating force further consolidated the sample (B = 0. 003 in.) be-

tween measurement of the normal displacement datum, preparation of
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Figure 1I. 18 Typical Conventional '"Rapid Static'' Test Results
on Cohesive Soils
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the recording device and rclease of the traces, The normal force was
increased (C = 370 1b,) to the desired value (D = 670 1lb.) and an addi-
tional consolidation (E = 0,006 in,) took place. During shear force appli~
cation a gradual shear displacement (F = 0,04 in.) developed whereuyon
there was a sudden increase in the rate of displacement causing the shear
resistance of the soil to asswme its ultimate value (G 2 65 1b,). The
total displacement {H = 0, 84 in. ) was sufficient to cause a decrease
(I = 40 1b.) in applied shear force due to the air supply exhausting to the
atmosphere, A further decrease in available shear force (J = 15 lb.)
occurs when the flow of air is eliminated. The only remaining force
(K= 10 1b,) is a result of friction between the piston and cylinder wall,
Figure II. 19 is a tracing of the shear force versus shear dis-
placement response for the test recorded in Figure II, 18. A 'threshold"
strength is apparent at incipient ''failure' (L), just prior to the increased

rate of displacement as indicated by the lower intensity portion of the trace.

‘.o-P‘-’ "Dynamic' Test (Figure 11, 17)
AR
Force ~ N - ! T
(1B) L jf*""\:'._. | Q
M l i n |
1 f ' ' +-  Shear Displacement
1,0 in

Figure II. 19 Conventional '"Rapid Static'' Shear Force versus Shear
Displacement Response for Chicago Blue Clay
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The maximum shear resistance (M 8 65 1b, ) of the soil is provided at
a shear displacement (N ® 0, 16 in,) which is less than the total Qisplace~-

ment produced in the "automatically controlled displacement test."

il 1M

A comparison of the '"dynamic'' and ''rapid static' shear displace-

Lo

ments (respectively P = 0,24 in,, N = 0, 16 in,) at maximum shear resis-
tance indicates this displacement to be greatest for '"dynamic' tests,
although the location of maximum resistance is open to interpretation,

{c) Automatically Controlled Displacement Test.

Figure II. 20 is a drawing of the recorded Chicago
Blue clay response. There is no difficulty in interpretation of these
test results as all traces are continuous with no marked irregularities
entering the record. The slight steps in the normal and shear displace-
ment traces are a claracteristic of the recording device, Undulations
in the shear force trace are a result of variations required to maintain
he constant rate of sl > disp’~nement, Under the given normal force
(A = 340 1b,.) contraction (B = 0,012 in,) takes place' throughout the
duration of the test and requires a slightly increasing shear force (C = 90 1b,)
to continue the shearing process at the desired rate (D s 0,04 in, /min. ).
Since the shear displacement varies linearly with time a shear force
versus shear displacement plot would yield a trace identical in configur-

ation to the shear force response as a function of time,
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Figure I1, 20 Typical "Automatic Controlled Displacement'' Test
Results on Cohesive Soils
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Prior to performing "automatic controlled displacement tests"
it is necessary to establish a displacement range to guarantee that the
maximumn shear resistance of the soil has been attained. On the basis
of the shear displacement at maximum shear resistance for both
"dynamic' and '""rapid static" tests, Figure II. 19, a maximum shear
displacement of 0,3 in. would seem to be quite sufficient provided no
contraction or consolidation takes place, The net displacement
(E = 0,34 in,) of the reported test is apparently sutficiently large to

satisfy the desired conditions.
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APPENDIX 1I, REFERENCE

11,1 Hough, B.K., Basic Soils Engincering, The Ronald Press
Company, New York, 1957, p., 141,
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APPENDIX 1II, GRAPHICAL ILLUSTRATION AND SUMMARY OF
CONVENTIONAL DIRECT SHEAR TEST RESULTS

a., General,

Specific soil properties are presented in this appendix along
with graphical illustrations of test results, tabular summariecs of indivi=-
dual tests and sample preparation procedures,

Virtually all of the following test results were plotted on the same
scale to exemplify the differences in apparent cohesive intercepts and
friction angles for the va-iety of soils tested., In accordance with the
previously described test procedures, the following notation has been
consistently adopted throughout the test plots,

° "Dynamic' Tests (Time to maximum shear resistance = 5 mas)
O  '"Rapid Static' Tests (Time to maximum shear resistance ® 40 scc)

x Automatic "Controlled Shear Displacement' Tests (Timc to maximum
shear resistance ® 8 min)

The tabular summarics (referenced to {igures of the samc¢ number)
of individual test results include the sample moisturc content {w), dry
density (yd), void ratio (e) and degree of saturation (S), The interpreted
values of normal stress (o-ff) and maximum shear stress (’rm) arc prescented

along with an indication of the direction of normal displacement, a, (no

displacement = 0, expansion =+, contraction = -, and no record = NR),
Sample preparation and placement procedures are described

following the individual test resuits,
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ASTM C-190 Standard Ottawa Sand,

Mincral

Specific Gravity
Grain Size

Particle Shape
Uniformity Coefficicnt
Maximun Vold Ratio

Minlrniun Void Ratie

pure quartz
2,65

0.84 to 0. 59 mm
suberounded

1.1

0, 80

0,49
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¢. Jordan Buff Clay,

Soil Characteristics:

Liquid Limit 54,0 %
Plastic Limit 25.9 %
Plasticity Index 28.1 %
Shrinkage Limit 22,2 9
Specific Gravity 2,74

L w1

Chemical Analysis:

J -

1l
i

Silica (S;0;) 67.19 % =
Alumina (A1,03) 20.23 % o
Iron (Fe03) 1.73 9% <
Titania (T;0;) 1,18 % 2
Lime (C_0) 0.16 %
Magnesia (M _0) 0,52 %

Soda (Na,0) ® 0.23 %
Potash (K,0) 2,00 % =
Ignition 6.89 % =
Total 100,13 9 ¥
pH (Hydrogen Ion) 4,0
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d, Westcrn Bentonite Clay,

Soil Characteristics:

Liquid Limit 543 %
Plastic Limit 51 %
Plasticity Index 492 %o
Specific Gravity 2,79

X-Ray Analysis;

PR3 L L Y T O |‘;|}|' (Rt} Lol

Montmorillonite 85 %
Quartz 5 %
Feldspars 5 %
Cristobalite 2 %
lite 2 %
Calcite and Gypsum 1 i)
Total 100 To -
Chemical Analysis;
Silica ($;02) 56.44 %
Alumina (A1;03) 20,14 %
Iron (FeZO ) 3.67 %
Lime (C;0 0.49 %
Magnesia (MgO) 2.49 %
Soda (Na,0) 2,76 %
Potash (K,0) 0.60 %
Bound Water 5,50 %
Moisture at 220 OF 8,00 %
Total 99.09 %
pH (6% water suspension) 8.8
Screen Analysis (Ground Material:
passing 100 mesh 99.6 %
passing 200 mesh 91.4 %
passing 325 mesh 76.2 %
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e, Nevada Test Site Desert Alluvium.

Soil Characteristics:

Specific Gravity 2.76

)b b

Grain Size 70% Finer than 0, 05 mm

2% Finer than 0, 005 mm

a
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f.  Chicago Blue Clay,

Soil Characteristics:

Liquid Limit 38,6 %
Plastic Limit 15.9 7
Plasticity Index 22,7 %o

Specific Gravity 2,83
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g. Rochester Sandy Silt,
Soil Characteristic:
Specific Gravity
174

X
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h. Notre Dame Lake Marl.

Soil Characteristics:

Liquid Limit
Plastic Limit
Plasticity Index
Shrinkage Limit
Specific Gravity
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APPENDIX 1IV.

SPECIAL TEST RESULTS
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