UNCLASSIFIED

AD NUMBER

AD469503

LIMITATION CHANGES

TO:

Approved for public release; distribution is
unlimted.

FROM:

Distribution authorized to U S. Gov't. agencies
and their contractors:

Adm ni strative/ Qperational Use; MAY 1963. O her
requests shall be referred to Ofice of Naval
Resear ch, Washi ngton, DC 20360.

AUTHORITY

onr nmeno 7 Jan 1966

THISPAGE ISUNCLASSIFIED

SECURITY
MARKING

The classified or limited status of this repert applies
to each page, unless otherwise marked.
Separate page printouts MUST be marked accordingly.

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF
THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18,
U.S.C., SECTIONS 793 AND 794. THE TRANSMISSION OR THE REVELATION OF

ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY
LAW. 3

*

NOTICE: When government or other drawings, specifications or other
data are used for any purpose other than in connection with a defi-
nitely related government procurement operation, the U. S. Government
thereby incurs no responsibility, nor any obligation whatsoever; and
the fact that the Government may have formulated, furnished, or in any
way supplied the said drawings, specifications, or other data is not
to be regarded by implication or otherwise as in any manner licensing
the holder or any other person or corporation, or conveying any rights
or permission to manufacture, use or sell any patented invention that
may in any way be related thereto.

- Best
Available
Copy

Unclassified /

-Defense Documentation Center
o . Defense Supply Agency

Cameron Station « Alexanaria, Virginia

Unclassified

UNCLASSIFIED

DEFENSE DOCUFv?ENTATiQN CENTER

FOR
SCIENTIFIC AND TECHNICAL iNFORMATION

CAMERON STATION ALEXANDRIA. VIRGINIA

! Y §
| lk\,/*-OL/" .

R d
TITA

el
o ,
= !
5T s 2 FLE . ' ;
;/ ! ; E/Z»‘:i @) ‘?9‘“‘\‘\ { H 0 ::iz '
= S T § 2
- _Q '\}: y Q “2},” ,Fl \L\,r" Q“‘éﬂi"
Carnegie Institute of Technology
Pittsburgh 13, Pennsylvania
.J';'I

e A

William Larimar Mollon, Founder

wJ

——

O:Ntngjkesearch‘ﬁemorandum*No; 113
— 7

ll.

o)))
@mﬁt P

é\\?HE SCHEDULING OF LARGE PROJECTS
" WITH LIMITED RESOURCES -

|

' Jerome D Wiest .

Cldtby

@ Ny

@ R oyt fol!

{ /7 May 15,.1962

Graduate School of Industrial Administration
‘\ Carnegie Instttute of Technology

% Pittsburgh 13, Pennsylvania. . ’
\ ' S Y e

This paper was written as part of the contract, "Planning
and Control of Industrial Operations," with the Office of
Naval Research, at the Graduate School of Industrial Admin-
istration, Carnegle Institute of Technology. Reproduction
of this paper in whole or in part is permitted for any pur-
pose of the United States Government. Contract ONR-23

Vursd

THE SCHEDULING OF LARGE PROJECTS

WITH LIMITED RESOURCES

A Thesis
Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

at the Carnegie Institute of Technology

by

Jerome Douglas Wiest

May, 1963

Vad

~t

ASKNO 'LEDSINT 3

The work reported here was accomplished with the gener-
ous support of the Ford Foundation, which provided Predoctoral
Fellowships in 19%0-42 and a Doctoral Dissertation Fellowship
in 1952-53, and the Office of Naval Rescarch, whose grants to
the Graduate 3chool of Industrial Administration supported
{amcng several projects) my research duriny two summers and
arsisted in other ways. I am very grateful to both organiza-
tions.

The faculty committee under whom the thesis was writ-
ten was a continual source of helpful sugcestions. Professor
G. L. Thompson, Chairman, fostered my interest in the topic;
his steady guidance and stimulation were invaluable. Pro-
fessors G. L. Bach, M. é. Nicholson, and F. M. Tonge provided
a diversity of talents and viewpoints that I much appreciated.
Their thoughtful comments are reflected in many ways through-
out the thesis.

Several others could be mentioned who influenced my
work at various stages. In particular, I would like to thank
Ferdinand K. Levy, a fellow student. My research had its ori-
gin in some ideas we jointly developed during the summer of
1961; and in many discussions of my work we have had since
then, he has been an interested and stimulating critic.

On my wife, Yvonne, fell the concurrént responsikilitics
of typing the thesls through its several drafts and final copy,
managing a household and a husband, and caring for our new

daughter, Merrilee, born in March of this year. (Moreover,

|

she successfully completed the nuacrous, nertinlly-ordered
jobs of thesc lar+ge projects without the aid of a computer,
which speaks well of her own heuristic scheduling methods!)
Throughout the yecars we have spent at Carnegie Tech, she has
been a constant source of encouragement and inspiration, for
which I am most ¢rateful. That my work moved steadily to
its completion is due in no small part to her sympathetic

support.

~ -

Rod

CONTENTS

Chapter 1

LARGE PROJECT 3CHEDULING: THE PROBLEM 1
Introduction 1
Definition of Large Projects 2
The Large Project Problem vs. the Job Shop Problem 4
The Large Project Problem vs. the Line Balancing

Problem
Combinatorial Problems 6
Structure of the Large Project Problem 8
Criterion Function 10
The Problem: A Definition 11
Chapter 2

CURRENT PRACTICES AND PROPOSALS

IN LARGE PROJECT SCHEDULING 13
Traditional Literature 13
Recent Developments in Large Project Scheduling 16
PERT, CPM and Related Techniques 17
A Linear Programming Approach to Project Scheduling 23
Heuristic Programs ' 28

Chapter 3

SOME PROPERTIES OF SCHEDULES FOR LARGE PROJECTS

WITH LIMITED RESOURCES 30
The 3Schedule and the Schedule Chart 32
Slack 37
Schedule Generating Rules 42
Critical Sequence 48
Implications of the Critical Sequence Concept

for Project Scheduling 56
Variable Resource Limits 57

Relationship of Job Shop and Large Prcject Problems 59

APPENDIX: Glossary of Symbols

BIBLIOGRAPHY

Zh-nter 4

COMPUTZIR [MODWL3 FOR LF 3% PROJECT 3CHEDULING

The MSQ “odels

Ms©_1

MS2—2

The 5PAR NModels

Modifying Heuristics

SPAR-1

SPAR-2

A Comparison of RAMP3 and SPAR

Some Comments on the Certainty Assumption

Chapter 5

OPERATING RESULTS FROM THE PROJECT SCHEDULING MODELS

Computer Requirements of the Scheduling Models
Project Scheduling Experience

Projects A and B

Evaluation of Results: Projects A and B
Project C

Evaluation of Results: Project C

Project D

Fvaluation of Results: Project D

Problem: What Is a "Good" Schedule?

Summary of Results

Chapter 6

CONCLUSION

Economic Feasibility of the Models
Heuristics for Scheduling Problems
Future Work
Sumnary

A Final Comment

62

63
64
56
67
68
77
79
80
86

g8

88
83
20
98
99
104
109
110
111
112

114

114

Fioure
Figare
Fijure
Figqure
Figure

Fiqure

Figure

Figure

Figure

Figure

Figure

)}

10

11

LIST O F FIGURES?:
Simple éroject Sraoh 3
3imple Job-3hop Graph 4
Example of a 3chedule Graph 33
Flow Diajram - 3PAR-1 78
Flow Diagram - 3PAR-2 81

Project A - Unsmoothed 3chedule vs. M32~l
3chedule 91

Project & - Mse-l 3chedule vs. 35PAR-1
Schedule (Fixed Crew 3Size) a2

Project A - MS?-l Schedule vs. SPAR-1
Schedule (Variable Crew Size) 93

Freguency Distribution of Lengths of M52-2
Schedules 96

Project C - Unsmoothed 3chedule vs, Msg-l
Schedule . 100

Project C - Msg-l Schedule vs. SPAR-1
schedule 105

s

Table

Table

Table

Table

(98]

3PAR-1 Npplied to Project A: 55 Jobs

{3earch Routine l: Increasing 3hop Limits)

SPAR-1 Applied to Project A: 55 Jobs
(Search Routine 2: Decreasing Shop Limits)

3PAR-1 Apnlied to Project B: 100 Jobs, One
(3earch Routine l: Increasing 3hop Limits)
(search Routine 2: Decreasing Shop Limits)

5PaR-1 hpplied to Project B: 100 Jobs, Two

(3earch Routine 2: Decreasing Shop Limits)

SPAR-1 Applied to Project C: 181 Jobs

(3earch Routine 2: Decreasing Shop Limits)

94

95

Pro ject

97

2rojects
98

Chapter 1

LARGE PROJECT 3CHEDULING: THE PROBLEM

Introduction

Large projects, as a c¢lass of human endeavor, have tested
men's organizing abilities at lecast since the time of the Tower of
Babel and Noah's Ark. Modern logistics problems have an ancient
predecessor in the formidable project Moses undertook of planning
the delivery of the Israelites from Egypt. One 1is impressed, in
reading the history of civilization, that some of the most impor-
tant periods of history are associated with the completion of
large proilects-~from the bullding of the Egyptian pyramids to the
explosion of the first atom bomb. The rapid advances of science
and technology in our own age have led to & great acceleration in
large project activities--evidenced, for example, by the construc-
tion of numerous dams, bridges, highway systems, and (more spec-
tacularly) by the development and launching of space satelites.

Given such a long history of human involvement in large
projects, it seems somewhat remarkable that, until quite recently,
comparatively little has been written on the subject of large pro-
ject scheduling. Perhaps the growing size and complexity of space-
age projects has intensified the need for better methods of plan~
ning and scheduling such activities, which might explain the
greatly increased attention devoted to this subject during the past
three or four years. And computer'technology has made easier the
handling of large amounts of data associatz2d with large projects.
But one still wonders why researchers--at least in this century--
have not earlier found the problems of large project scheduling an
interesting area for study. Whatever the reason, the importance
of the problem is presently evidenced by the widespread interest

in 1t; and the modest amount of progress made thus far leaves it

[

still a fruitful area for rescarch.

In the present volume, we have chosen to study, within the
complex (and largely unstructured) field of large project manage-
ment, the problem of project scheduling. We will not be concerned,
for example, with questions of project design or technology, nor
will we discuss implementation of a scheduling system or (in an
explicit manner) the problems of project control. Further, we
will deal with the case of certainty--that is, we will work with
single job times rather than probability distributions or PERT-
type estimates.

The specific goals of this volume are two-fold:

1) To develop a conceptual framework for the problem of large
project scheduling, and to extend the concepts of critical path
analysis to the general case of iimited resources; and

2) To develop and test some computer models for scheiuling
large projects with limited resources, drawing on the concepts

developed in 1),

Definition of Large Proiject

The nature of large projects is evident, in part, from the
examples we have cited, to which we might add the construction of
buildings and plants, large maintenance projects (e.g., a turn-
around in an oil refinery, in which the refinery is shut down for
a few day fcr numerous repairs and alterations), research and
engineering design projects, production of large, special-order
equipment (e.g., power generating eguipment), and so forth.
Usually such projects are one-of-a kind, which means that sched-
ules must be tailor-made for each project. Large projects typi-
cally consist of several hundred (or thousand) separate but tech-

nologically related jobs or activities. That is, the jobs are

partially ordered by predeccssor-successor rclationships; some
jobs must be performed in a given sequence while others may be
performed in parallel. Consider, for example, the following

"project graph" of a simple project:

Figure 1

Fach arrow fepresents & job or activity that reguires certain
resources and a given time to be completed. The connections of
arrows and nodes indicate predecessor-successor relations. -“For
example, job 1 is an immediate predecessor of job 3 and must be
completed before 3 can begin. Jobs 4 and 5 are immediate suc-
cessors of 2 and immediate predecessors of 6 and 7, respectively,
and so forth. The completion of 10 marks the end of the projecct.
A single due~date is of interest--the finish date of the entire
project,

Structurally, the size of a project is not its dominant
characteristic, of course. By defining a project simply as a
collection of independent, partially-ordered jobs, we extend the
application of our present analysis to projects of any size. In-
deed, most of our illustrative examples throughout (as in Figure 1
above) involve trivially small projects. But it is the size of
large projects that makes them interesting and worthy of our
analysis. When we speak of the "large project problem," we mean
to emphasize not only the structural aspects of a project but

also the complexities that result from its size.

We should also note that our categorization of "project"
and " job" is relative to one's point of view. Consider the Navy's
task of scheduling ship repairs. From a top-level viewpoint, each
ship to be repaired comprises a job, and rli. project consists of
scheduling all the ship (jobs) that need repair in a given period
of time. At the shipyard level, each ship which arrives 1is a pro-
ject, and each major item to be repaired on the ship is a job.

At an even lower level, such a job (e.g., overhauling the ship's
engine) hecomes a project with many separate, smaller jobs that
must be scheduled. At each of these "levels of indenture," the
essential structure of a project exists as we have defined it and
our analysis is equally applicable. Thus the "size" of a project
refers essentially to the number of jobs it contains, rather than

to some physical or monetary measure of the project's importance.

The Large Project Problem vs., the Job-Shop Problem

The large project problem differs in several respects from
the job-shop scheduling problem, in which the jobs, each of which
may comprise one or more activities, are technologically independ-
ent (or are assumed to be), and the due-date of each job ig of
concern. A simple "job-shop graph" (comparable to the above pro-

ject graph) might appear as follows:

Fiqure 2
O—1—0

02— (O—2—(O-2()
O——0

Of thc four jobs, 1 and 3 have a single activity, while 2 and 4
have several activities which must be performed in the sequence
shown., 2 typical job-shop problem, of course, would involve
hundreds or thousands of such jobs and activities. We will later
have more to say about the relationship of the large-project and
job-shop problems; suffice it now to observe that the former dif-
fers [rom the latter by virtue of the partial ordering of project

jobs and the single due-date characteristic.

The Lirge Project Problem vs. the Line Balancing Problem

rrom a managerial viewpoint, the large project problem
differs considerably from the line balancing problem. The latter
is concerned with repetitive operations and large numbers of identi-
cal products, with the possibility of production for inventory, as
one would find in mass-production type indus‘’ries. On the other
hand, a large project is, by definition, a one-of-a kind, single
"product" effort. No attempt is made to group jobs or tasks into
work stations, since the sequence of such jobs would be performed
only once. Such efforcs at sequencing in a mass production indus-
try would likely be worth while because of large production runs.
Thus line balancing is concerned with rate of production (units
per time period). As an additional difference, each job in a pro-
ject may require a different resource (skilled opérator, machine,
etc.), while the line balancing problem as ordinarily formulated
implicitly assumes all operators are capable of performing any

task at any work station.

Combinatorial Problems

In certain respects, however, the line balancing problem
resembles both the large prolect problem and the job-shop problem.
A similar directed graph representation may be made of the former,
in which the arrows represent elemental tasks making up the assem-
bly operations, and the nnde connections display precedence rela-
tionships among the elemental tasks (see Tonge [45]).l Thus Fig-
ure 1 might illustrate an assemply problem in which arrow 2 rep-
resents an elemental task requiring a given operations time per
unit of product, which must be completed before elemental tasks
4 and 5 are performed on the same unit, and so forth. The problem
is to assign tasks to work stations in such a way as to minimize
the number of such work stations given the constraints of task
times, ordering, and production rate. As Tonge notes, the line
balancing and job-shop problems (and we might add, the large prc-
ject problem) are representative of a class of combinatorial pro-
blems in which elements of a set are to be ordered or grouped
according to some criterion. In job shop scheduling, groups of
jobs are assigned to machines in such a way to observe sequencing
and to minimize time pest due-dates. In the large project problem,
jobé are ordered in time in such a way that resources required do
not exceed those available in any time period; the object is to
minimize the project length given lirited resources and the order-

ing constraints among the jobs.

1 The directed graph reprecsentation employed by Tonge is actually
the reverse of that described above--i.e., nodes are elemental
tasks and arrows represent precedence relationships. A project
graph could also be drawn in this manner, of course (see Levy,
Thompson, and Wiest [26]). While such a method of drawing a
project graph avoids the necessity for "dummy jobs" (as described,
for example, by Kelley [21]), the method used throughout this
volume was chosen because it has certain advantages for purposes
of 1llustration and because it has become so firmly established
and widely accepted since the advent of PERT (Project Evaluation
and Review Technique) and CPM (Critical Path Method).

Onc may conceive of the line balancing problem as one of
ordering the elemental tasks along a time scale marked off into
locks determined by the desired production rate (e.g., a block
would be two minutes if the production rate is 30 items/hour).
Tasks may not be split between time blocks, and ordering con-
straints must be observed. The object is to minimize the nunber
of time blocks (work stations), which amounts to assigning tasks
in such a way as to maximize the proportion cf time used for tasks
in all of the blocks.l

An attempt to structure the large project problem in 2
similar manner points out the differences in the two problems.
Since the project is performed just once, the concept of time
blocks established by a production rate has no meaning. But we
might conceive of rescurce blocks consisting of the amount of
a resource available during one day (or whatever the smallest
scheduling period may be). If jobs were all just one day long,
they could be ordered along the resource scale in such a way that
precedence relations were observgd and rescurce requirements of
jobs grouped into a resource block would never exceed the amount
available in the block. The object would be to minimize the
number of such blocks.

The difficulty with this formulation, of course, is that
jobs are usually more than one day long. Additional complica-
tions arise from the fact that projects usually involve many
resource types, jobs may require several resources, resources
may vary over the schedule period (the resource "blocks" would

be of different sizes), and resource requirements on many Jjobs

1 The formulation is due to Bowman [4].

are variable., Thus, as cramdles of combinatorial nroblems, line
balancing and large project scheduling resemble each other only

superficially.

Structure of the Large Project Problem

We turn now to examining the structure of large projects
and the important constraints assoclated with them. The project
scheduler; in assigning a start time to each job in a project,
must consider

1) The partial ordering of jobs (i.e., no job may be started
until all of its predecessors have been completed);

2) The resourcg requirements of each job (e.g., crew size,
machine type, etc.):

3) The time regquired to complete the job (which often is a
function of the resource requirement--i.e., the more resources
assigned to a job, the less time it takes);

4) Resource limitations during any time perlod (which may
be varied by hiring, lay-offs, overtime, etc.):

5) A due-Date or projected completion time for the entire
project (sometimes with penalties attached for failure to meet it):

6) Other projects which may overlap the time period of the

project being scheduled and thus compete for resources.

We could make our list much longer and more detailed, of
course, but these are among the major constraints facing the
project scheduler. Their relative importance may vary according
to the nature of the project and the organizations involved, For
example, general contractors scheduling & construction project
typically are less concerned about resource limitations than with

meeting the contract due-date. Construction workers--carpenters,

brick layers, ctc,--are oiten obhkincd in anv oenired naapar
through union hiriny halls, and the contreoctor does not have to
worry rmuch about costs of hiring, firing and training. Resource
limitg, in other words, can be varied quite incxpensively. At

the opposite cxtreme, Naval shipyards find it expensive, because
of Ciwvil Service requlations and labor contract requirements, to
vary thelr shop crews to any great extent. Once a man is hired,

it is difficult to release him. Thus shop crews tend to be rela-
tively stable in size-~-usually large enough to handle peak manpower
loads. The Navy, therefore, is concz2rned with smoothing out mar-
power requirements--lowering the neaks and £illing the valleys--

so as to obtain more efficient utilization of shop crews. The

same 1s usually true of manufacturing enterprises engaged in the
production of large items (e.qg., hydro-electric generators). Costs
of hiring, training, and layoffs (including "bumping, " unemployment
insurance, supplementary unemployment benefits) make many firms
reluctant to vary work force levels to any great extent; although
the possibility of overtime and (in some cases) subcontracting

give a measure of flexibility to resource limits, Other examples

may be cited where the limits on resources are even more inflexible--
as, for example, where resources are already used extensively and
overtime or subcontracting cannot be employed; where certain skilled
workers are scarce and firms can hire no more (nor do they desire

to lose the ones thcy have): where projects are intermittent and,

by themselves, do not justify varying the existing work force (as

in the month-end project of closing the accounting records in large

firms).

10

Criterion Function

Because of the above differences in project types, the
same criteria for a "4uod" schedule would not necessarily apoly
in évery situation. Consider these three cases:

l). A contractor building a missile "site" for launching
ICBM's works under a strict deadline and is quite willing to hire
enough men to assure meeting the due date. Thus his goal is a
schedule which optimizes resource levels--c.g., minimizes man-
power costs (wages, idle time, overtime,, etc.), given a fixed
due date.

2) At the other extreme is a project manager who cannot vary
his resource levels:; he wishes to find the schedule that minimizes
the project length given fixed resources.

3) Other projects may fall in between these extremes; the
manager desires to find some combination of resource levels and
due date that will minimize rescurce costs, overhead costs, and
penalties for exceeding the due date. The latter problem is the
most difficult, of course, because it has the fewest cons.traints.
The multi-dimensional space of possible schedules which must be
searched is much larger due to the greater number of variables.

It is possible, of course, to write a criterion function
that would apply to all three cases. If it includes all relevant
costs, then the first case could be represented by assigning an
extremely high penalty to extending.the project pasc the due date.
Variations in resource levels would thus be less expensive to ex-
plore than changes in duée date. Likewise, in the second case,
high costs attached to increases in resources would lead to the

.consideration, instead, of changes in due date. And in the third

case, cost parameters would be such as to permit variations in

11

both due date and resource levels. Thus by altering the cost
parameters in our criterion function, we can nake it applicable
to varlous project types cr situaticnc and reduce a2 peossidkle
multiplicity of functionals to the simple criterion, "minimize

costs.”" This enables us to give a concise and general statement

to the scheduling problem with which we are concerned.

The Problem: A Definition

Given a) a project consisting of a known, partially-ordercd
set of jobs, and b) limited resources with which to complete the
jobs, f£ind the schedule of job start times and crew assignments
that minimizes all costs associated with the project.

We should immediately state that our goals are more modest
than the above paragraph implies. We do not seek for a scheduling
procedure that guarantees an optimum solution; we will be content
with good solutions. In a later chapter we deal with the question,
'What is a good schedule?" Suffice it now to state that we seek
an improvement over present scheduling procedures. The problem
with which we are dealing is immense. Even modest sized projects
have an enormcus number of possible solutions, and therz are no
analytical techniques which can feasibly be applied. At times we
may find it advisable, if not necessary, to simplify the problem
by imposing constraints that narrow the range of possible solu-~
tions. Yet we intend to preserve as many of the essential char-
acteristics of the project scheduling problem as possible, so thét
we end up with a procedure that can deal with a "real world" problem

rather than an overly simplified and abstracted version of it. With

pr——

the use of mathematical tools and the computational power of a modern
digital computer, our goal is to develop scheduling procedures or

models that are:

-

12

1) sSufficiently rich to take account of important job date
(manpower requirements, time spans--with possible adjustments by
varying the ménpower, shop or skill regquirements, and technological
ordering) and shop characteristics (resource limits, regqular and
overtime labor costs, overhead costs):

2) sSufficiently general to be applicable to projects of Aif-
ferent types or characteristics (and their associated criterion
functions), and to multi-project situations in which each project
has a unique due date (thus including, conceptually, the job-shop
scheduling problem) ;

3) Computationally feasible for projects of reasonable size:

4) Superior, in an economic sense, to present methods of

gcheduling.

Chavpter 2

CURRENT PRACTICE3 AND PROPO3AL3 IN LARGE PROJECT 3CHEDULING

In this chapter we will explore and comment on the litera-

ture--traditional and current--decaling with topics related to

large project scheduling. We will then oxamine an analytic formu-
lation of the large project problem and finally present our arqgu-

ment for a heuristic approach to its solution.

Traditional Literature

Many large projects are carried on by manufacturing enter-
prises {(e.g., makers of large turbo-electric generators, steel
work prefabrications for bridges and buildings, large units of
mining equipment, ships, etc.). Yet one looks with iittle success
through books on manufacturing and production management for some
explicit exposition of large project planning and scheduling.

They generally deal inrstead with a related problem: intermittent
manufacturing, the essential characteristic of which is "the
quantity of any product made on any one order" {(Moore [34],p. 21).

The dividing line between "large project" and "intermittent
manufacturing,” however, is a hazy one (Moore describes "special
projects of gilgantic size" as "intermittent manufacturing carried
to its extreme"); hence the literature dealing with 1ntermitteﬁt
production scheduling is of interest to us. The traditional
approach found in almost every book on production scheduvling is
to decentralize the assigning of specific start times of jobs in
a project (or order). Moore, after describing the advantages of
centralized ~heduling (namely, better coordination and control),
notes that t... numerous, detailed directives necessary in inter-
mittent manufacturing lead to decentralization of some production

contzr® work ([34], p. 54; see also [1,24, 456]). The production

14

and sales departments deternine what is to be produced at some
aggrejate level, and detailed planning and scheduling is often

left to the foremen and in some cases, to the workers. Daily

0. weekly prcgre~ns reports are made out by the foremen for the
central office, which often finds it necessary to employ "stock '
chasers" or "expediters" to push delinquent jobs which threaten

to delay completion of the project. "Order scheduling is con-

cerned more with the setting of deadline dates than with setting
exact time assignments for operations," the latter being estab-
lished by foremen or local dispatchers essentially on the basis

of urgency of need for items and availabllity of resources. Graphic
tools, such as Gantt charts, are often used to keep track of resource
assignments over a period of time and for measuring actual against
planned progress (see Alford and Bangs [1, p.110]).

Thus only a preliminary or rough schedule of the project
\nrder) is made centrally, while the more refined and detailed
schedulc; are worked out by those nearer the operating level.

The more decentralized the scheduling, the more cushion or slack
time must be allowed at the operating level for jurgling start
dates within precedence requirements. This niethod of absorbing
uncertainty has its costs in uneven shop loading, higher in-pro-
cess inventories, and more distant completion dates. Decentralized
scheduling also makes more difficult the prediction of manpoweyr
requirements. The decentralized scheduler has little means of
determining the effects of his decisions on manpower lovads of
subsequent shops. Larger than necessary work forces and exces-
sive idle time are often the result.

These disadvantages of decentralized scheduling have long

been recognized, of course; but the problems associated with

centralized schedulingy of larje projects have, until recently,
seemed intractable. The data-handling problem alone is immense.
Projects typically contain 200 to 2,000 or more jobs. (Many job
shops engaged in intermittent manufacturing have more than 5,000
jobs in process at one time.) Resource groups (shops) usually
number between 8 and 20 or more, and the scheduling horizon ex-
tends in most cases beyond 150 days or time periods. A central
scheduler faces a tremendously complex task if he attempts to
establish a1 start date for each job in such a way as to observe
job requirements (shop, number of men, machines, time, etc.), job
sequeﬁce relationships, resource limitations (which may be changed
by hiring, overtime, etc.), due date, and some criterion function
such as minimal manpower requirements.

Manpower loads on various shops (or skill groups) typically
are quite uneven. Producticn for inventory is, of course, unavail-
able as a method of smoothing peaks and valleys. Hence the schedu-
ler must use the more difficult device of juggling jobs backwards
or forwards, within the constraints of technological ordering,
resource avallability, and due date. The number of possible sched-
ules he can devise is astronomicall and of course beyond his_ability
to explore. Hence the dilemma: over-all smoothing of manpower

(and other resource requireﬁents)can best be done, conceptually,

1l For example, assume a modest project of 200 jobs, consisting
of 10 independent chains of 20 jobs linearly ordered, with
one critical chain 100 days long and the other chains having
10 per cent slack. We can calculate the number of possible
schedules by first counting for each chain the number of ways

10 "units" of .slack can be distributed among 20 "units" of
jobs. The answer is

30 }_ 30 B 8
(10, 20l = 157 or = 1-48 x 10
Thus, the total number of schedules for the whole project is
(1.48 x 10%)% = 3.4 x 1073.

by a central scheduler:; but the mass of data and the complex
relationships of jobs in large projects are usually beyond his
human capabilities to handle. Most often the result is a sub-
optimum compromice: rough scheduling, with lots of cushion be-
tween jobs, is done centrally, while detailed schedules are

generated at the operating level.l

Recent Developments in Large Project Scheduling

More recent efforts to solve various scheduling problems
have drawn on new (or newly applied) mathematical techniques,
the computational power of large digital computers, and various
heuristic devices. Analytical solutions to the line balancing
problem, for example, have been published by Jackson [19], who

devised an enumerative algorithm, and Bowman [4], who developed

1 Admittedly, there are other valid reasons for decentralized
scheduling apart from the problems of data processing. Job
times are often rough estimates; actual work time may be more
or less than expected. Resources availakle may also change
unaxpectedly, when men become sick, machines break down,
material shortages develop, and so on. Decentralized schedul-
ing,it is argued, is more flexible; a foreman can respond to
unusual circumstances faster than can a production control
man at head office (even if he has a computer at his finger
tips) by juggling the start times and crews assigned to jobs
onn hand. But the ability to juggle jobs at the operating
level is not inconsistent, necessarily, with centralized
scheduling., In fact, if a central scheduler can adequately
process the job data (e.g., by means of a computer model),
he can do better than provide the foreman with large amounts
of cushion in the schedule: he can tell the foreman the
likely effects of delaying each of the jobs--which jobs have
the most "slack" and can be delayed the longest without inter-
rupting due dates, and which are critical and must be expe-
dited. Much of the cushion built into schedules at present
is not just to allow the foreman more flexibility in meeting
unforseen contingencies, but rather it reflects the uncer-
tainties of a scheduling system that cannot accurately predict
daily (or hourly) resource needs for the number of jobs that

have to bz scheduled, and match them against resource avail-
abilities.

a linecar programming model. The comnutational requirements of
both would strain the capacity of the largest computers on even
moderate-sized problems. A heuristic approach--more flexible
and practical than the riesent analytical methods--is described
by Tonge [44].

In the job-shop scheduling problem (more closely related
to large project scheduling than is the line balancing problem),
the same situation exists. Analytic solutions--mainly linear
progranming models--have been devised by Bowman [5], Manne [31],
Wagner [47] and others, but at present they are computationally
impractical and mainly of academic interest. Giffler and Thomp-
son [16] describe an algorithm which generates from the set of
all possible scliedules a subset containing the optimal schedules.
Computational effort is thus reduced, and in problems of small
size the optimal schedule can be found. A heuristic approach to
job-shop scheduling has been explored recently by Gere [15].

Programmed for a computer, it can handle reasonably large pro-

blems.

PERT, CPM, and Related Techniques

There has been a great deal written on the subject of
large project scheduling since the fairly recent development of
PERT (Project Evaluation and Review Technique) [30, 33, 50, 51],
CPM (Critical Path Method) [21, 22, 23], and the flood of similar
techniques which have followed. All are based on arrow diagrams,
which show the jobs or activities of a project and their techno-
logical relationships, It will be useful for us to briefly
review a number of these techniques, noting the approaches they

take and thelr unique characteristics.

L%

Origjinclly designod for use on the Hevy's Polaris missile
research and development program, PERT was more of a planning

- A Y SR, |
and control technigue than a sche

i

ling tooul, and it was essen-
tially "time-oriented,", i.e., it paid little explicit attention
to factors of cost and resource availability. Its most recent
version--PERT/COST [51, 54)--is the result of government efforts
to unify the many variations of PERT developed by the armed ser-
vices and various Musinesscs for use on weapon systems develop-
ment projects contracted by the government (e.g., PERT II, PERT
III, PEP, PEPCO, Super PERT, ctc.). Essentially, PERT/COST adds
the consideration of resource costs to the schedule produced by
the PERT/Time procedure (as the earlier version is now called}.
There is no attempt to use cost data in such a way as to optimize
total project costs, except by "manual" job shifting: where pro-
ject costs indicate the necessity for excessive overtime or
hiring, "manpower smoothing is accomplished by rescheduling slack
activities to periods when the skills are not required by criti-
cal activities" [51, p.4]. PZRT/COST is an example of an "enumer-
ative" cost model.l All costs are merely enumerated, to facili-
tate comparison of projected and actual costs as the project pro-
gresses, rather than being used as parameters in an énalytical
cost-minimizing model. 1In this and other respects, the systems
of PERTCO {11, 49] and scCaNs [18] are quite similar, although the
latter program has a routine for distributinz slack in order to
balance manning levels.,

A "time~cost ontion" and a "resource allocation supplement"
to PERT/CO3T are described in the DOD/NASA Guide [51]). A similar

approach is recorded by Alpert and Orkand of ORI [2]. Alternative

1 The classification used here was proposed by Operations
Research Inc. [20]: sce also Clarke ts].

time-cost trade offs are estimated for each activity, and the
schedule is shortened by "crashing" jobs on the critical path

. - A —_— A o =Y Taomdt cmmaa Aaer =~
Lilaue wudb L Llle dlcdao o el wua o

)

R | - AN -~ N P T [y
naved OLrL e s5CneQuae, without

regard to resource availability. When the desired due date is
achieved, then resource leveling may be required. Slack jobs

are shifted off peak days, or additional resources are applied

to such jobs in an attempt to move them off the peak days. Smooth-
ing is performed, after the computer program has produced a sched-
ule, at management's option. Thus the computer program seeks to
mininize required resources; it does not schedule by allocating

given, limited resources. The methods proposed apparently have

not yet reached the stage of a working model. The USAF PERT COST

svstem Description Manual [March 1953] states, "Development and

implementation of the Time Cost Options and the Resource Allo-
cations Supplement have been considered a subject for future
stuay" [54, p. 1i].

The Critical Path Method, developed by Kelley and others
[21, 22, 23], represents a second major approach to the large
project scheduling problem developed in recent years. Similar
in many respects to PERT, which also uses a network graph to
detect the "critical path" of jobs in a project, CPM differs meinly
in that (a) it is a deterministic system {job times are assumed
to take place without variations in planned time) as opposed to
PERT's probabilistic approach (in which three times are estiﬁated
for each job--pessimistic, most likely, and optimistic, with
associated probabilities); (b) it focuses explicitly on job costs,
and presents an algorithm for minimizing project costs given a

fixed due date.

20

Thus CP' rernresents & "sinrle »naramcter ontimization model”
[am 507, Kelley describes the matheoratical model upon which CPI
is based as a2 parametric linear proaram [22]. Its solution de-
pends on the Ford-Fulkerson algoritim for finding maximal network
flows [13]. Basic to CPl is the assumption that a time-cost trade
off exists fcr every job, and that the time-~cost function is mono-
tonic decreasing and concave between a job's normal and "crash"
durations. (& linear relationship is usually assumed.} Although
the model yields a minimum cost scheduls for a project of fixed
length, it assumes (as does PERT-Time) that resources are un-
limited. The resulting schedule may ke quite impractical in
terms of available manpower or machines, and costs not included
in the nodel (overtime, idle time, etc.) may be prohibitive.

Other related techniques are numerous. LESS [40] deveIOpéd
by IBM, uses essentially the Kelley approach. AMPERE [50] (an
ORI system) calculates a schedule and cost data similar to PERT/
COST, and then provides alternative courses of action management
might take, utilizing normal, minimum and maximum loading for each
skill group. PECOS [43], a more recent IBM program, combines
some features of PERT and CPM: it still utilizes the probabil-
istic job times to calculate expected job times, and then seeks
for the most efficient method of decreasing project duration by
crashing critical jobs. Time-cost trade-off curves are assumed
to be linear between normal and crash times. Based on an algo-
rithm derived by Fulkerson [14], the program plots for a project
an optimum time-cost curve, which is always piecewlse liinear
under the assumption noted. As in CPM, the program assumes that

resources are available as required.

MeZee and Harkarian [32] describe an "analytic technique"
which they claim achieves an optimum 2allocatiuin of manpower in
a research/engiaeering project. It utilizes minimum and maximum
manning levels for each job (activity) and assumes a linear rela-
tionship between the two in a time/manning rlot. The method
starts by assigning the minimum manning level to each job ana
calculating a critical path network. If the scheduled alloca-
tion of manpower exceeds given limits on any day, an attempt is
first made to delay slack jobs on peak days. This failing, addi-
tional men are added as indicated. If the projected completion
time 1s greater than the required due date, additional men are
added to the jobs which compress the work at minimum cost. As
with CFl, however, costs of varying resources are not considered.
Essentially, the procedure smooths only by shifting slack johs:
beyond that it adds men as needed on peak days, without regard
to costs of increased resource levels, idle time, etc. It does
not consider the possibility of extending the due date (at some
penalty).

A similar approach is taken by IMPACT, a model developed
by Lockheed [48). Activities are first scheduled at minimum ‘
loadings, and then the resulting schedule is compressed by in-
creasing the manpower loading of activities which produce the
maximum shortening per increment of added cost. Manpower limits
are never exceeded, however; the model stops loading an activity
when its shop limit is reached, and looks tc the next cheapest
activity to crash. The model does not consider the pessibility

of adding more manpower through hiring or overtime.

21

22

The main shortcoming that we scee in many of the above
scheduling models is that they do not take into account limited
resources, Cost optimization, where attempted, is based on a
single cost parameter: the premium for "crashing" jobs. 1In
the models where limited resources are recognized explicitly,
there is generally no attempt to consider alternatives of in-
creasing resources or using overtime along with their associated
costs; nor do they allow for comparison of penalty costs for ex-
tending the due date vs, the premium costs of adjusting resource
levelg,

While there are interesting features in many of the models,
none of them have all of the "essential characteristics" we estab-
lished earlier for an operationally useful scheduling model. Such
2 model, we believe, should deal more adequately with the ma jor
constraints generally associated with large projects.

A recent and ambitious computer model for project scheduling
that does explicitly consider the restraints described earlier is
RAMPS (Resource Allocation and Multi Project Scheduling), developed
by duPont ar;d CEIR, Inc. [52, 53]. As RAMPS is the proprietary
program of CEIR, its details are carefully gquarded, but the general
approach it takes to scheduling is described in literature avail-
able from CEIR. RAMPS uses the basic network notions of PERT
and CPM, though job times are deterministic rather than proba-
bilistic. The program is designed to handle several projects
with different due dates, taking into account (a) three different
resource utilization rates for each job, with corresporndinc i{ob
times and work efficiences, (b) rescurce teaming on jobs, (c)

penalties for splitting jobs, (d) resource limits for all shops

23

by periods, (e) costs of normal time, idlc time, overtime and
subcontracting in each shop, (f) project delay penalties, end
(g) various management objectives (which can be ordered in im-
portance), such as "minimize idle resources," "give priority
to critical jobs," "work on as many jobs simultaneously as
possible," and several others. We shall have more to say
about RAMPS after we describe out own scheduling models in
Chapter 4, when we will be in a better position tc compare the

two apprcaches to project scheduling.

A Linear Programming Approach to Project Scheduling

We have yet to investigate another avenue tc the problem:
the use of analytic techniques. The mathematical tool which seems
best suited to minimizing some cost criteria given the coastraints
of a project setting is linear programming. Not only are com-
puter programs readily available for the simplex algorittm, but
an L.?., formulation has the advantage of providing the rich mana-
gerial interpretations that are available from the duality and
sensitivity analysis features of the method. Its application
to the large project scheduling problem is worth our investigation.

Charnes and Cooper have described a network interpretation
and a directed dubdual algorithm for critical path scheduling
[6]. The arrow diagram is viewed as a flow network, in which
the initial node has unit input and the final node unit output.
Flow variables, xij (which are restricted to the integers O and
1), are assigned to each link (job). Constraints reflect Kirchoff
node conditionc for conservation of flows over the system, i.e.,
the flow into each node equals the flow out of it. The function

to be maximized is the sum of all xij’ each welghted by a

24

cocfficicnt cqual to the time span of the associated link. In

the dual problem, the variables v, can be interpreted as the

Pommmnt-doreY A
wanlatavi, O

gned tc each node, The dif-

ference between the w, values for the first and last nodes is

-

minimized, subject to the constraints that the difference be-
tween the Wy values of two connected nodes must be equal to or
greater than the time required for the link (job} connecting
the nodes. The value of the functional, then, is the total
project time (and hence the length of the critical path), and
the critical jcbs are identified in the direct problem by pos-
itive xij values.

Unfortunately, this formulatioun of the problem does not:
include such data as resources required by each job and limits
on shop resources. Implicit in the network flow interpreta-
tion is the assumption that all jobs along the critical path
start at their early start times. As we will see in Chapter
3, when resources are limited, there may not be a critical path
as crdinarily defined (a path of zero-slack, technologically
related jobs from start to finish). 1In effect, the coeffi-
clents in the functional of the direct problem (and thus the
stipulation constants in the constraints of the dual) lose
their meaning.

It is possible, however, to write an L.P. formulation
of the project problem which takes account of resource con-
straints. Using an approach similar to Bowman's for the jcb

shop problem [54)], we may develop a model as follows:

Subscripts:

s shop (resource group) s =1, 2,..., m
a day {cr other time period) d =1, 2,..., 2z
job =1, 2,..., n

Pj = [all immediate

predecessors of j]

3
o) immediate predecessor of j; p

[y}

Variables:

xJd activity of job j on day d; constrained to the
integer values 1 (if job j is active) or O (4if
job j is inactive).

Constants:
agq men available in shop s on day 4
csj crew size; men of shop s required on job j

t time length of job j, in days

3

Constraints:

1) o< xJd < 1 (and by integer programming techniques,
X is constrained to equal either O or
1 [see Gomory, 17])
2) Jobs will be performed:
z
X =t ” =l,uol, n
d=1 ijdl 3]

3) Capacity of shops will not be exceeded:

d

s =1,.e., m

n
ng CS'J xjd - an ' b ol KA

4) No job will be started before its predecessors
are completed:

all p € Pj
d=l,-¢c,z

%il
t X < bd
p "jd {=1 'pi

Ly es, I

3

5} No jobs will be split:

Ob jective Function:

n n n
Minimize 1 5, x, + 4 2. X, ..y + 16 20 x
{5 Tk 51 J(k+1) j=1 j(k+2)
n
+ .. .+R_ 2 x, , where k is some number such
z {01 Iz

that 0 ¢ k < 2z, and Rz = 4 R(z-l) 5

Thus, the model seeks to f£ind the shortest schedule given
fixed resource constraints. For simplicity, no allowance is
made for premium cost resources, such as overtime, hiring,
subcontracting, etc. Nor is "crashing" or "stretching" a job
allowed,

Not shown above are the additional constraints necessary
to assure integer solutions (either O or 1) for the xjd' Even
without these constraints, however, the problem is a formidable
one in terms of sheer size. If we assume the simplest version,
consisting of constraints 1 through 4 only, even a small pro-
ject is beyond the capacity of any present computer to handle.
As an example, a project with 55 jobs in 4 shops with a time
span of 30 days has some 5275 equations and 1650 variables
{(not counting slack variables or the additional equations and
variables necessary to assure an integer solution). If job
splits are not allowed, the numlker of equations increases to

about 6870, Many of these equations, or course, are ra2dundant;

26

v}

27

and many of the variables could be eliminated from the start

by calculating the early start times for all jobs assuming un-
limited resources. Then all de =0, 1 <dc< Esj‘ Nevertheless,
even a trimmed-down formulation would exceed the capacity of
most computers. A large machine--such as the IBM 7090 with

32 X storage--can handle a maximum of about 1000 variables in

an L.P. program, thus limiting the application of this model

to rather simple, small projects. The use of L.P. and a 7090
for such problems would be somewhat akin to using a bulldozer

tc move a pebble.

Linear programming formulations other than the ones
above could be devised, of course, but the same difficulty
would be faced: the scheduling of even medium sized projects
(200 to 500 jobs) is an enormous problem, especially if re-
source limitations and other commonly encountered constraints
are considered,

As for enumerative techniques, which exhaustively search
the space of all possible schedules, none have been proposed--
né doubt for the same reason that makes the L.P. approach
impractical. We thus come to the same conclusion reached by
Tonge after his examination of analytical and exhaustive methods
for solving the line balancing problem [45, p. 15], and his
wcrds are appropriate in our own case:

An approach that concentrates effort on those parts

of the problem which seem to regquire it, rather than

indiscriminately spinning out and eliminating possi-

bilities at all stages of the solution process,

would seem to be, a priori, a more feasible problem-
solving procedure.

‘lcuristic Programs

Many of the scheduling models discussed earlier in this
éhapter use so-called heuristic techniques for problem solving,
and it is upon this general approach to the large project sched-
uling problem that we will focus our efforts in the remainder
of this volume. We use the term "heuristic" to mean, as sug-
gested by Newell and Simon [37], a device or "rule of thumb"
+hat reduces search in problem solving activity (e.g., "sched-
ule all jobs at early start and move slack jobs off peak days").
In a more formal way [38], they define a heuristic program as
a program for some relevant problem domain that "has some pro-
blem-solving efficiency for that domain--is capable of solving
at. least some problems,d in contrast to an algorithm which
they define as a program that "will produce a solution of any
problem in D [the problem domain] in a finite number of steps.”
They further note that "the terms 'algorithm' and 'heuristic’
prcecgram! are not antonyms, but designate different properties
a program may possess." Often we may be primarily concerned

with a program's heuristic power--"its capacity to find solu-

tions rapidly," (relative to other programs applied to the
same proklem domain), which is quite independent of the pro-
gram's algorithmic properties. Thus the simplex method of
linear programming is an algorithmic program we could use
(theoretically) for solving the large project problem, but it
has little heuristic power in this appilication.

Our desire, however, 1is to develop a program which pos-
Sesses the latter property--i.e., the ability to rapidly gen-
erate solutions--rather than algorithmic characteristics. 1In

essence, we are sacrificing a guaranteed optimum solution for

reduced nroblem-solvingy effort. Rather than trying to ex-
haustively search the space of poscible schedules for the!
best one, we will use cues in the problem environment to
narrow our search to a sub-space rich in good schedules--
though we risk the chance of missing the optimum solution
altogether.l

Before discussing the heuristic devices employed in
our scheduling model, we turn first to a consideration of
some of the properties of large project schedules in the

case of limited resources.

1 For more extended discussions of the use of heuristics
in problem solving, and resumes of heuristic programs
in use, see Simon and Newell [41], Simon [42], Newell,
Shaw, and Simon [36), Gere [15], and Tonge [45].

29

Chanter 3
50015 PROPIERTIRS OF SCHEDULES FOR LARZE PROJECTS

VITH LIMITED RESOURCES

Most of the recent methods proposed for scheduling
large projects make use of a project graph (e.g., the arfow
diagram basic to PERT and the Critical Path Method; see [22,
26, 51, 52]). The project graph is useful both for keeping
track of the technological ordering of jobs in a project and
for determining the degree of flexibility (i.e., the job slack
values) available to the scheduler of the jobs. Given a pro-
ject graph, which displays the predecessor-successor relation-
ship of jobs in a project, and the times necessary to complete
each of the jobs, one can then calculate the "critical path"
or the longest ordered sequence of jobs through the project
graph. Each of the iobs on thé path is said to be "critical"
or slackless; to delay any one of them would delay the com-
pletion date of the project. Other jobs with positive slack
can be delayed up to the amount of their slack without sgch
an effect, thus giving the scheduler some freedom in assign-
ing start dates for each of the jobs.

This notion of criticality assumes, however, that un-
limited resources are available for assignment to the project
jobs (or-at least that sufficient resources are available for
each job to be scheduled some time between its earliest and

latest start datesl). In the more usual (and general) case

1 Earliest start is defined as the earliest date a job can
begin, given a project start date and the technological and
time constraints cf its predecessors. Latest start is the
latest date a job can begin, given the same constraints of
its successors, without delaying the project completion
date. The difference between these two is the job's total
slack. '

where resources are limited, the above concept of criticality
loses its meaning. Some jobs on a critical path may have to
be delayed because of insufficient resources. If this occurs,
then there no longer exists a start-to-finish path of techno-
logically connected, slackless jobs. Under certain circum-
stances, however, one can identify a "critical sequence" of
jobs in a project. As in a critical path, jobs in a critical
sequence have zero slack,1 and the length of the sequence de-
termines the minimum length of the project. Unlike a critical
path, a critical sequence is determined not by just the tech-
nological ordering and the set of job times, but also by re-
source constraints; furthermore, it is also a function of a
given feasible schedule.2

As we proceed in this chapter, we will develop in detail
the concept of a critical sequence and discuss some of its
implications for project scheduling. It will first be neces-
sary for us to explore the structure and properties of a pro-
ject schedule, classifying several kinds of schedules and
defining some operations we will perform on schedules. We will
then extend the concept of slack to the case of limited resources
and discuss the relationship of slack to schedule-generating
rules. With this necessary groundwork laid, we will be able
to define rigorously the concept of a critical sequence and to

set forth the conditions which must be met in a project schedule

1 By a new procedure for calculating slack, which we will
develop later.

2 The concept of "critical sequence" is a generalization of the
Thompson-Giffler [16] concept of an "active chain" of opera-
tions in the job-shop scheduling problem. Other similarities
will be evident as we proceed. We will later consider more

carefully the relationship of the job shop and multi-project
scheduling problems.

for a critical seguence to exist. We will complete the chapter
by explaining how these concepts enable us to relate the job-

shop and large project problems.

The Schedule and the Schedule Chart

We start with a project X characterized in the following

manner:

1) The project consists of n separate, clearly-identifiable
Jobs or activities.

2) Associated with each job j is a time t required to com-
plete the job,l a crew size c¢s, and a shop (or skill group, or
machine group) s. If job j requires y different resources,
then c¢s and s become y-dimensional vectors associated with J.

3) Also agsociated with each job j is a set P, of jobs

3
which are immediate predecessors of j, or jobs that must be
completed before j begins. (PJ may be empty, in which case j
is a starter job.) From the predecessor sets of all j's, we
can infer for each J a set SJ of immediate successors. (SJ
may be empty, in which case j is a final jeb.) A list of all
Pj's (or of all Sj's) defines an ordering or technological
relationship on the set of all jobs in X. We will use the
symbol << to represent the relation "is an immediate prede-
cegsor of."

4) The jobs in X will be performed in m resource groups
(shops, skill groups, machines, etc.), each containing a

limited amount, a, of homogenous resources. Resource limits

may vary from day to day, as men or machines are added or

1 We earlier noted our certainty assumption regarding job times.
If PERT-type, three-point estimates are available (or any
other distribution of job times), then E(t), the expected value
for ¢, may be substituted for t in this analysis. See p. 86.

removed. We will henceforth refer to resources as men and a

resource group as shop s. Thus th2 number of men available in

1l
sd’

Since '"critical sequence" is a function of a project

shop s on day d is a

schedule, we must define more precisely what we mean by a sched-
ule.
Definition: A schedule is a set of start times (AS) assigned
to the jobs in X (one start time for each job). The length
of a schedule z is the difference between the earliest of the
start times of all jobs and the latest of the finish times of
all jobs.2 We will hereafter assume that the project start
date S = O; then the finish date F = =z,
For purposec of clarity and simplicity in illustrating

a project schedule, we will throughout this chapter make use

. of what we will call a Schedule Chart. It is in reality a com-
bination of a traditional Gantt chart, which displays jobs
scheduled along a horizontal time scale, and a project graph,
which shows the technological ordering of jobs. The following

1s an example of a Schedule Chart,

Figure 3
Day: 0 1 2 3 4 5 6
6
4 2 Jd 7
> = y >
_3 S
\s X
—————— PO o G S S S S S — 8

1 If probabllity distributions for resource limits are avail-
able, then E(asd) may be used in place of 2g4q°

2 Jobs, once started, are completed without interruption. Split
jobs are considered as separate jobs, each with its own AS.

34

The time scale begins with day O on the left; ecach vertical
line marks the end of one day and the beginning of the next.
Jobs are shown by solid lines with an arrow marking the com-
pletion of the job. The horizontal span of a job represents
its time length in days. Above each job is a number which
represents 1its resource requirements, i.e., the crew size
(cs) needed for the job. For convenience we will sometimes
refer to the job by this number, e.g., "the 6-job." (In other
cases where this would be ambiguous, we will further identify
the jobs. If the jobs are performed in a number of shops, we
could alsc label each job arrow with a shop number, or with
several shop numbers if the job requires multiple resources.)
Technological orderings are shown by connecting the jobs,
either directly or by dotted lines. Thus the abocve chart

summarizes the following information:

Job Number Length Predecessors Start Finish
(same as Crew Size) (days) Date Date
6 2 - o 2
4 2 - o 2
2 1 4 2 3
3 1 4 2 3
5 1 4 2 3
8 1 - 3 4
1 3 5 3 6
7 2 2, 13 4 6

Associated with a given Schedule Chart we could draw,
for each resource grcup employed, a Resource Requirements
vector Q_ = (q1 Dy + - qz), showing the total resources of
shop s required on each day d of the schedule. Fo; example,
if all jobs in the above project occur in the same shop s, the
resource requirements vector for the schedule would be QS =
(10 10 10 9 8 8). In a similar manner, we could draw a Re-

source Availability vector AS = (a ay ¢ o az), showling the

35

resources available in shop s on each day d. Note that AS may
be considered a row vector in an m x z matrix A whose entries
are a_g4 as defined earlier. Similarly, Qs is a row vector in
a resource requirements matrix Q having the same shape, with
deq analogously defined.

For the present we will be concerned with the special
case where shop limits are constant over time (i.e., agq =
a;(d+1), 1< d < z). Later we will relax this restriction and
discuss the more general case where shop resources may Vary
over the schedule period.

The Schedule Chart now assists us in classifying dif-
ferent types of schedules, and in defining the operation of
"job shifting.,"

Definition: A feasible schedule is a schedule for which a
Schedule Chart can be drawn and for which Q < A. That is,
1) the technological ordering and job times are observed

(1.e., no job ie scheduled until all of its predecessors have
been completed) .

2) the resource constrainté are not violated (i.e., the
number of men scheduled never exceeds the number available:
and

3) the length of the schedule is finite.

Definition: An optimum schedule is a feasible schedule whose
length is at least as short as the length of any other feasible
schedule.

Definition: Consider the Schedule Chart of a feasible schedule
and a set of shop limits A. Pick any job j starting on day 4
and reschedule it to begin on day d-1 (keeping within the bounds
of the original start and stop dates of the project). If j
occurs in shop s, cilculate the new manpower loading for shop s
on day d-1. If this is <dgq3- then the schedule is still feasible

and we say that we have left shifted job j by one day.l Like-
wise if] can be delayed to begin on d+1 without delaying the
project finish date and without g being exceeded on day d+t
where ¢ is the length of jcb j), then j can be right shifted
one day. A left shift of i days (i >1) is a local left shift
if 1t can be accomplished by a series of one-day left shifts,
each of which maintains the feasibility of the schedule. A
local right shift of 1 days is defined analogously. A global
left shift is a left shift of any job j that results in a
feasible schedule which could not be obtained by local left
shifting of j. (Thus a global left shift is always a shift
of more than one day.) A global right shift is defined analo-
gously.

Consider the following example:

The 6-~job can be locally left shifted one day. If it were
left shifted 3 days, the resulting schedule would be feasible,

but the left shifting would be global rather than local.

Definition: A left-justified schedule is a feasible schedule
in which, because of technological orderings and/or resource
constraints, no job can be started at an earlier date by local
left shifting of that job alone. (Figure 3 above is left jus=-
tified if the shop has a resource limit of 10.) A right-
Justified schedule is analogously defined.

Definition: An associc':ed right-justified schedule is a right-
justified schedule that can be derived from a given left-justi-

fied schedule by a series of local right shifts. An associated

left-justified schedule is similarly derived from a right-jus-
tified schedule by local left shifting.

1 If j is a multi-resource job, the new manpower loading for
each relevant shop must be calculated and compared with
g4 of that shop.

36

Ul
| ol
w
0
=

In the case where resources are not limiting, the notion
of slack is simple and unambiguous: there is a single slack
value associated with each job. This derives from the defini-
tion of slack.l and from the fact that there is a unique left-
Jjustified schedule and a unigque right-justified schedule for a
given project. Thus the early start (E3) and late start (LS)
values for each job are independent of the order in which jobs
are scheduled {(technological restraints being observed, of
course) .

Such 1is not always the case when resourccs are limited.
There may be several right and left-justified schedules for
every project. In general, for each project and set of shop
limits theres is a uon-empty set Jl of left-justified schedules
and a non-empty set Jr ot right-justified schedules. And for
each schedule x in Jl’ there are cone or more associated right-
Justified schedules which comprise a proper subset of Jr.

Consider, for example, the simple project that follows,

in which all jobs are performed in the same shop:

Job Number Predecessors Length
(same as Crew Size) (days)

NOd W
]
H e

With unlimited resources, the project would have the follow-

ing schedules:

1 We are here talking about total slack, which is defined as
the difference between the late start and early start of a
job. Other types of slack have also been defined, e.qg.,
free slack, the difference between a job's early finish
and the earliest start of any of its successors. See
Kelley [27].

37

Left-justified: 3__ 3
2 . 10) -

a_
Right-justified: |[______|______ 3 S
2 51 19 o 5
______ |4

Jobs 3 and 4 would each have slack of
jobs, being critical, would have zero
a resource limit of 10, however, then

ent cschedules:

two days and the other

slack. If the shop has

J

1

contains six differ-

38

1. 3
2 10 o
4
! >
2. | T 3
|2 | 10 | 5
4 >
3. 3
2 | 1o s
Abal
______ fommeme
4. |l 3
2 4 10 % 5 o
_______ SRR AR N S
5. (SR i SN
2 | 10 5 .
[, P 4 >
6. [el
2 J 1o . 5
r__ ______ S 4 >

If we allow local shifting only, schedules 1, 2 and 3 are also
right justified, since no jobs caﬁ be right shifted; then all
jcbs in these three schedules are "critical"--i.e., they have
zero slack. {(Note that in schedule 1, a global right shift of
job 2 past job 10 would result in a feasibie right and left-

justified schedule--i.e., schedule 2.) Schedules 4, 5 and 6

39

o~

40

cach have two associated right-justified schedules. For ex-
ample, schedule 6 has the following asscciated right-justified

achedules:

iy S S G — Y e W D P VS Gy S ahe S Wb fae Gae 3 T3>
2 | 1w J o 5
___________ 4 .
~ [
— — 3
2 | 10 f 5 .
e fres s e T. ______ 4 >

Thus the traditional notion of slack is ambiguous. For three
of the jobs (3, 4, 5) ES and LS depend on the particular sched-
ules we choose, and thus no single values for slack (in the
usual sense) exist for these jobs.

Obviously, then, the ordinary methods of calculating
slack do not suffice in the limited resource case. If we re-
tain the idea that slack répresents the amount of time a job
can be delayed from its early start without delaying the pro-
ject completion date, then we must recognize the conditional
nature of slack when resources are limited. Slack values are
related to a given pair or right and left-active schedules and
are thus conditional upon the rules or procedures for generat-
ing these schedules. While this notion adds some complexity
to the simple slack calculation of the unlimited resource case,
it still preserves much of the operational utility of the slack
concept. And by a judicious choice of schedule-generating rules,
one may retain, if he desires, some of the useful characteristics

that slack has in the unlimited resource case. For example, in

41

the latter case:
1) 535lack is easily and unambiguously calculated: a unique

o~
[

sC £

of slack valueg arc zssociated with a given project; and
2) Slack is continuous {convex) over its range--i.e., a

job with k days of slack may be delayed anywhere from O to

k days without delaying non-successor jobs of the project

finish date (thus giving the scheduler or shop foreman some

flexibility in assigning job start times).

We could easily preserve characteristic 1) above, in
the liwnited resource case, by devising a set of rules or pro-
cedures for generating a single left-justified schedule and a
single right-justified schedule. Then a unique set of slack
values could easily and unambiguously be calculated from the
two schedules. Fuarther, if we chose our rules in such a way
that the right-active schedule was associated with the left-
active schedule--i.e., derived frcm the latter by local right
shifts only--then characteristic 2) would also be maintained.

It ig obvious, however, that we could devise many dif-
ferent scheduling rules or procedures that would result in
quite different schedules, and there is no a priori way of
deciding which rules are best. One set of rules may result
in a "fortunate" assignment of slack values for one project
(e.g., slack values that enhance the possibility of smoo*hing
the schedule through juggling the slack jobs) but may work less
satisfactorily than another set of rules when applied to a sec-
ond project. (We will later see an example of this.) And
situations can easily be imagined where global shifts, if per-
mitted, might be operationally preferable to local shifts only,

even though the convex property of slack might be lost. For

42

example, a foreman might find his wcrk scheduling easier if he
were tcld that job j could be delayed either exactly 7 days or
between 1 and 3 days. If convex slack only were allowed, the
possibility of a 7-day delay would not be discovered.

For large and complex projects, one would have difficulty
even enumerating all the elements of Jr and Jl with their associ-
ated conditional slack values. However, one could fairly easily
devise several sets of rules that represent reasonable alter-
native approaches for generating schedules, apply each of them
to the project, and compare the resulting slack values, using
some measure or criteria of suitability of results (e.g., do
the slack valucs obtained permit juggling which results in more
efficient use of resources?). Another approach would be to apply
the rules probabilistically. One could keep track of slack values
thus generated to obtain the bounds on slack given certain re-
gource limitations. The slack (TS) for any job j satisfies

TSJ < max LSJ (y) - min ES; (x)

. 3
yeJr erl

where x and y are feasible schedules of the project. The upper
bound ©n TSJ is the slack value for j given unlimited resources.
Whatever the metnod used to calculate slack, it should
be clear that any set of slack values is based on a given palr
of right and left-active schedules and hence is conditional on

the schedule-generating rules.

Schedule-Generating Rules

The problem of developing "reasonable' rules or procedures
for generating left and right-active schedules deserves come com-
ment here. Obviously, all left-justified schedules for a given

project are not equally "good," in general, if we assume some

43

measure of "goodness" such as minimum schedule length or maximum
utilization of resources. Using these criteria, for example, we
would conclude that schedule 1 in the above project is better
than schedules 4, 5 or 6; it is shorter and has a higher daily
average utilization of resources.

As we noted in Chapter 2, only an analytic solution would
guarantee us an optimum schedule (as defined above):; the lieuris-
tic methods aim at a satisfactory solution with more reasonable
computational effort. Most of the network-based methods for
project scheduling discussed in Chapter 2 would probably gesner-
ate a left-justified schedule, however, since they either assume
unlimited resources and schedule all jobs at early start (in
which case slack calculations are unambiguous), or they attempt
to schedule all jobs at early start, delaying those that occur
on peak days only enough to reduce the peak loads to some de-
sired level. However, our concern here is not how to generate
a left-justified schedule, but rather, how to calculate job
slack values for some given schedule.

If we assume, then,that a left-justified feasible sched-
ule has been generated by some means, what would be a reasonable
approach to determining a set of slack values for the jobs?

This amounts, of course, to defining a procedure for obtaining
a related right-justified schedule. As we previously noted,
several different right-justified schedules may be related to

a given left-justified schedule. The corder in which jobs are
right shifted accounts for these differences. As an example

of a procedure that might be used, we describe below some rules
that generate a right-active schedule from a given left-active
schedule by a series of local right shifts. The rules are

simple and unambiguous, and have several other virtues that

44
will become apparent.

1) Given a left-justified schedule, select from it the set
of jobs whose finish time (EF)l is a maximum (there will be
one or more jobs in this set; their EF determines the project
finish date F). For each of these jobs, set LS = ES, LF = EF, -
and TS = 0, Set i = 1.

2) Consider now the jobs whose EF = F -~ i. If the set is
empty, go on to the next step. If the set contains exactly one
member, right shift the job until it meets a technological or
resource constraint of jobs already considered in previous steps
(or, if none exist, until the job's finish date = F). At this
point, set LS = ES + the number of days the job was right
shifted, LF = LS + t, and TS = LS - ES. If there is more than
one job in the set, the priority of right shifting is determined
as follows: calculate for each job separately an LS (assumiﬁg
in each case that no other jobs in the set have been right
shifted). Arrange the jobs in descending order of their LS
(Li.e., the latest LS first) and right shift the jobs in that
order. In case of a tie in LS's, arrange the tied jobs in ascend-
ing order of manpower requirements (i.e., the smallest crew-size
jobs first) and right shift the jobs in that order. If there
are still ties, then decide on the order of shift.''ng by random
selectlon wrem Ehe. tigd jobss A6 =ach. job is cight shiEsed,
calculate its LS, LF, and TS as above.

3) Seti=14+1, If 1 < F, then return to step 2). If
1 = F, then stop; all jobs have bee. considered, and a unique

slack value assigned to each of them

1 The following notation 1is used throughout: ES (early start),
EF (early finish), LS (late start), LF (late finish), TS
(total slack).

The main advantage of these priority rules is that they
tend to move first the shortest jobs and/or the jobs that can
be right shifted the furthest. 1In ageneral this will tend to
distribute potential slack to the largeét number of jobs, rather
than distributing larger amounts of slack to fewer jobs. (We
will see later that local suboptimalities in a ichedule can be

removed if all jobs in a local group have slack.) Consider the

following example:

> (shop limit = 10)

_____________ l "

In this left-justified schedule, if the 2-job is right shifted
first, then ﬁﬁe 4 and l-jobs will have no slack. But if the
above priority rules are followed, the l-job will be right
shifted first (2 days), then the 2-jcb (1 day) and the 4-job
(1 day). Hence all three end up with slack. The resulting
right-justified schedule (below) could obviously be shortened

if all jobs were left shifted one day.

_____ > (shop limit = 10)

I+ should be noted that right shifting jobs in decreas-
ing order of their EF has the advantage of gsometimes removing

resource "bottlenecks"--for example:

-———

L f L

e, B

45

o
l .
> | i (shop limit = 10)
8 l k|
|

i
The 2 job forms a bottleneck past which the l-job cannot be
moved. (This assumes, of course, only local right shifting
is permitted, so that slack values obtained are convex. Rules
allowing global right shifts would ignore such bottlenecks
and might have some advantages, if slack convexity is not re-
quired.) The l-job can be right shifted, however, if the 2-
job is moved first (as the priority rules dictate)--hence the
advantage of shifting jobs as they are encountered, going from
right to left across the Schedule Chart.

The priority rules above will not bring such favorable

results with all schedules, however. For example, the schedule

(shop limit = 10)

would be right shifted as follows according to the priority rules:

————————————————————— l
7 »
1
l >
I »
s S 1
\ 51
w1 (shop limit = 10)
—————————————— 3
——————— o o . — —— 6

47

One of the l-jobs ends u» with no slack. Had all of the l1—-jobs
been righv shifted before the 3-job, however, th2 schedule

would appear thus:

AR — 1
Y
2 1
7 V. il
N~ 1
\ >
\
N I, 1

and all but the 6—-job would have slack. The schedule could
obviously be shortened. A different set of pricrity rules
would be needed to discover such situations. As suggested
above, some combination of priority rules, perhaps applied
probabilistically, might lead to *he best overall results.
Another approach would be to construct, alternately, a right-
justified schedule, then a left-justified schedule, another
right-justified schedule, and so forth, back and forth, each
one derived from (i.e., associated with) the previous sched-
ule, with the hope of finding larger slack values, This
procedure could be continually repeated until one approaches
the maximum slack values for each job (or an "optimum" dis-
tribution of slack, according to some criteria).

We have now accomplished our immediate objective of
extending the concept of job slack to the limited resource
case, noting its reliance upon a set of schedule-generating
priority rules and giving an example of such a set cf rules.

Formally, we may define slack, in either the limited or un-

limited case, as follows:

43
Dofinition: TTJ.(K,y) = sz(y) - ssj(x), x e J,, y € Jr.
That is, the total slack of job j, relative to schedules x and
vy, equals the late start of j in schedule y minus the early
start of j in schedule x, If x and y are associated with each
other, the slack values are convex. If resources are not limit-
ing, then J1 and Jr cach contain just one schedule and the slack
values are unique, ﬁ

We are now prepared to dilscuss the concept of critical

sequence.

The Critical Sequence

In the case of unlimited resources, the string of criti-
cal jobs which determines the minimum project length is aptly
named the "critical path." On the project graph it can be
traced as an unbroken sequence of technologically ordered jobs;
it forms a literal path from start to finish. The analogous
concept we are developing for the limited resource case differs
in that a technologically connected path of c¢ritical jcbs does
not always (in fact, does not usually) exist; but a sequence
of critical jobs can nevertheless be identified--hence the term
"critical sequence." Further, it is composed of one or both of

two types of sequences which we shall now define:

Definition: Given a project X, a technological sequence of

jobs is a set T of two or more jobs technologically connected
in a linear (non-branching) sequence (i.e., the ith job in the
sequence i1s the immediate predecessor of the (i*l)th job) .

In a given feasible schedule, a technological sequence is joint
if there are no intervening time periods between the completion
time of one job and the start time of its immediate successor
(when both are in the sequence). That is,

AS, + t, = AS_, << k, and k € T.
j j X] J

If ASJ S tJ < ASk for any two jobs j and k € T, j << k, the

sequence is disjoint at their juncture. A joint technological

seyguence 1s in essence a 1ocal critical path; to delay any jeb

in the sequence would delay the completion of the whole sequence.

Definition: Given a feasible schedule, a resource sequence of

jobs 1is a set Rs of two or more jobs that require the resources
of the same shop s and that do not overlap in time. (A job
which requires multiple resources may be a member of several
resource sequences.) A resource sequence is Joint if the jobs
in the sequence span an interval of time Z with no overlaps or
gaps. That is, if the jobs are arranged in increasing order
of AS, then

ASJ + tJ = ASk for any two adjacent jobs j and k
in the ordered list, and >z ti = Z. Such a sequence of jobs
i€R
s

may or may not be technologically related.

We are now able to define critical sequence.

Definition: In a given feasible schedule, a critical sequence
(if it exists) 1is a set CS of one or more jobs that has the
following properties:

1) All jobs in CS have zero slack.!

2) If CS contailns more than one job and if the jobs are

arranged in ascending order of AS, then

a) any two adjacent jobs in the list are co-members
of either a joint technclogical seqguence or a joint
resource sequence (or both):

b) the first job in the list is also the first mem-
ber cf every joint technological and/or resource se-
quence to which it belongs; and

c) the last job in the list is also the last member
of every joint technological and/or resource sequence
to which it belongs.

1 As calculated by the procedure outlined abeove, or some
other schedule generating procedure,

As a consecguence of these properties and previous defini-
tions, we can observe the following features of a craitical se-
quence:

1) The length of the critical sequence (and hen:e the pro-
ject) is

z = s ti
i€eCsS

2) In more descriptive terms, a critical sequence {of two

or more jobs) follows either a joint technolcgical sequence or

a joint resource sequence, or an alternating combination of both.
Note that, as a consequence of 2) - a) above, when a shift from
one to the other occurs, the two sequences share at their junc-
ture a job which is common to both. Thus if a given technologi-
cal sequence is followed by a resource sequence, the last job

in the former occurs in the shop of the latter and is therefore
also a member of the latter segquence. To illustrate, consider

the following portion of a critical sequence.

d

R | 1

Assume job a is in shop 1 and jobs b, ¢, and d are in shop 2.

As the schedule graph indicates, a << b and a and b form a joint
technological sequence., But b is also a member of a joint re-
source sequence, b - ¢ - d. The same sharing ccndition holds
when a resource sequence 1s followed by a technological sequence;

the first member of the latter is also a member of the former.

1 ¢Since a multi-resource job belongs to several resource se-
quences, the one of relevance here involves the resource
which constrains the job from left or right shifting.

50

1

Not every left-justified schedule will have a critical
sequence of zero slack joks. Consider the following left-

justified schedule:
L2]

{(shop limit = 10)

l = i

Both the 2 and 3 jobs have unconditional slack (by our established
procedure, 2 would have three days and 3 would have two days slack).
A critical sequence, therefore, does not exist. However, the
schedule can easily be shortened as follows:

2

7 8

Py .

>

And in this schedule, 2 critical sequence does exist {(consisting

of the 7 and 8 jobs). The first schedule exhibits what we will
call a local guboptimality. We will see that local suboptimali-
ties may be removed easily, and that a left-justified schedule
with no local suboptimalities always has a critical sequence.

We need first to define some terms.

Definition: Local Set L = [1,, 1,0 oo ln]: Given a left justi-
fied schedule, a local set is any set of one or more jobs which
(a) have the same early start (we will refer to it as ESL), (b)
are in the same shop, and (c) are resource constrained only.

(If the set contains one job only, requirements (a) and (b),

of course, are superfluous.)

Definition: Constraining Set of a lo. a1l set G = [91, = PR gn]x
Given a local set in a left-justified schedule, a constraining
set consists of those jobs which constrain the local set from

further left shifting, i.e., all jobs using the same resource

as L such that EFG = ESL'

52

Definition: Concurrent Set of a local set C = [c1, Chs ey cn]:

Given a lcocal set in a left-justified schedule, a concurrent set

consists of those jobs which are concurrent to the beginning day
set (but nct membkers of that set); i.e., all jobs

¢ such that ESC = BS, = EE c £ L,

o

of the local

cl

Definition: Local Suboptimality: A left-justificd schedule is
said to contain a local suboptimality if it contains a local
set for which all jobs in the constraining set and concurrent
set have slack.

Definition: Left-Active Schedule: A left-justified schedule
will be called a left-active schedule if it contains (a) no
local suboptimalities and (b) no jobs which can be started
earlier by global left shifting.l

Although all five definitions above apply to a left-
jusiified schedule, they are symmetrical in the left-right
dimension. Thus the definition of a right-active schedule
follows from the above definitions by changing *"left" to
"right," "earlier" to "later," "beginning" to "ending," "Es"
to "LF," and "EF" to "LS."

With the aid of the above definitions, we may now for-
mally prove the existence of a critical sequence in a left-

active schedule. (The following theorems and corollary assume

1 We should ncte here the similarity of "critical sequence"
to the Giffler-Thompson notion of an "active chain" in the
job-shop problem [16, p. 493]. Likewise, our "left-active
schedule" is analogous to their "active schedule," which
they define as "a feasible schedule having the property that
no operation can be made to start sooner by permissable left
shifting," Our additional requirement of no "local subopti-
malities," (noted above for a left-active schedule) reflects
the more complex nature of the project scheduling problem.
In the latter case, a job (operation) may be scheduled on
any one of several identical facilities (e.g., machines)
that are available in a given shop. (In the Giffler-Thomp-
son case, each facility is unigue.) Thus it is possible for
a schedule to be "active" in the sense that no jobs can be
left shifted (locally or globally) and still not contain a
critical sequence, as noted above (p. 51). The Giffler-
Thompson job-shop problem, then, may be considered a special
case of the large project problem.

that resource limits arc constant over the schedule period.)

Theorem 1l: A schedule can always be shortened if it contains
a local suboptimality.

Proeof: It is obvious that if all jobs in a Schedule Chart
that occur on a given dayl are left shifted one day, then
the project finish date may be reduced by one day, for all
succeeding jobs may then also be left shifted one day. Thus
if we can prove that a local set and all its concurrent jobs
can be left shifted one day, we have proved the theorem.
Begin by right shifting2 all the concurrent jobs and con-
straining predecessors of the local set. This is possible
since, by the definition of local suboptimality, all have
slack. The new feasible schedule obtained has, of course,
the same finish date as the old. Now left shift by one day
the local set (L) plus all of the jobs presently concurrent
with it (C). (Some of the jobs previously right shifted--
including all jobs globally right shifted--may have moved
beyond the point of concurrence with L). The legality of
this move may be examined by considering the two possible
types of constraints: (a) technological and (b) resource
constraints. Since we have assumed the level of resources
in all shops 1is constant over the scheduling perioca, then
technological and rescurce constraint points to left shift-
ing occur only at the tail-end of ,obs on the 5chedule Chart,
i.e., at their EF.

Consider constraints of type (a): Note that the jobs in
C originally had ES < ES;, or else they would not be con-
concurrent with L after the right shifting. And since no
jobs with EF < BSL were right shifted, then none of the

1 This includes both jobs that start on the given day and jobs
started earlier, but still active (unfinished) on that day.

2 The order of shifting outlined in whatever procedure was
used for calculating slack values may be followed, or any
other order that will allow all jobs involved to be locally
or globally moved at least one day.

53

54

predecessors of C were noved. Hence there are no techno-
logical constraints to a one-day left shift of jebs in C.
Nor are there like constraints for L, since jo»s in this

set were resource constrained only.

Now censider type (b) constraints. Note that all jobs
originally right shifted had EF > ESL. Thus, that shifting
could not have caused any of the constraints to the left of
ESL to become more severe; i.e., right shifting of those
jobs could not have increased the resource load on any day
prior to ESL, in any shop. And since jobs in C are to be
left shifted no more than they were right shifted, then the
left shifting cannot increase resource loads on davs prior
to ESL above the.r original levels.l Therefore no new
resource constraints are created by left shifting and the
jobs may be moved the one day required. The proof is com-
plete.

Note that the resulting schedule is not necessarily left
justified, and lccal suboptimalities may still exist. Additional
left shifting and continued application of the above procedure
will lead eventually to the removal of all suboptimalities. We

may state this as a corollary:

Corollary: 2ny left-justified schedule may be converted into
a left-active schedule by continued right and left shifting.

Prcof: If the left-justified schedule has no suboptimalities
and no possibilities for global left shifting, it is already
left active. If global left shifts are possible, perform

them., If the schedule contains a suboptimality, then shorten
the schedule by the above procedure and left justify the result.

1 Except for the day Jjust prior to ES; which may be increased
by left shifting of the local set; however, as we have noted,
this creates no problems as there are no jobs with EF = ESL
and hence no constraints to left shifting on that day.

55

If it still contains a suboptimality or possible global left
shifts, repeat the process. By & serics of such moves (finite
in number) all suboptimalities may eventually be removed and

Theorem 2: Every left—acti&e schedule contains at least one

critical sequence.

Proof: The proof is based on the observation that no job J
can have zero slack unless one or more of its constraining
successors alsc has zero slack; for if all such jobs could
be right shifted, then so could j. Thus, if we can identify
a zero-slack job snywhere in the left-active schedule, we
can trace a joint sequence of zero slack jobs from that
point in the schedule to its termination. More specifically.
we shall prove that at least one of the jobs which begin on
day zero has zero slack, and therefore, by the above reason-
ing, a critical sequence of zero slack jobs exists from
_ start to finish.
The proof will be presented in the form of an algorithm:
(A) Consider the set J of all jobs having EF = F. All have
TS = O.
Pick one of these jobs and call it j.
T If EsJ = 0, go to (E).
Since ESJ > 0O, then there must exist a left-constraining
set of j.
(B) Examine GJ (the constraining set of j).
If ng » O for all g € G, go tc (C).
Pick a job g for which ng = 0; call it j§.
If ESJ = 0, go to (E).
Since ES€, » O, then j must have a constraining set. Go
to (B).
(C) Exanine C, (the concurrent set of j).
If TSc > O for all c ¢ CJ' go to (D).
Pick a job c for which TSc = O; call it j. .
If ESj = 0, go to (E).
i Since ES, » O, then j must have a constraining set. Go
) to (B).

—

(D) A local suboptimality exists, conirary tc the hynothesis

of a left-active schedule. Therefore, both ng > 0, all
q € Gj’ and TSC > 0, all ¢ &€ C_,, cannot hold.

(E) We have found a job (j) which begins on day O and has
zero slack. Therefore, a critical sequence exists and
the proof is complete.

Note that each time the search cycles through step (B},
the job being examined has an earlier ES than the previous
job considered, since all jobs in either G, or C, have
ES < ESj. Thus one 1is assured of eventually reaching a job
whose ES = O, since the schedule is finite in length.

Implications of the Critical Sequence Concept

for Project Scheduling

Identification of a critical sequence has much of the
same utility, for purposes of scheduling, as the designation
of a 2ritical path in the unlimited resource case. In order
to shorten a schedule, for example, unly jobs on the critical
sequence need to be considered. Where critical sequences
exist in parallel, all must be contracted to have any effect
on the project finish date. Critical jobs may be shortened
by improved technology or by additional assignment of resources
("crashing" the job). The latter is possible, of course, only
if resource limits have not been reached on "crash" days (or
if overtime or subcontracting is allowed). The Kelley approach
[22] to minimizing project costs by "crashing" critical jobs
{until the costs of doing so exceed the savings that result)
may a.z0 be used in the limited-resource problem, if *“crash"
costs are modified when necessary to include costs of over-

time and subcontracting.

57

Variable Resource Limits

We have thus far considered the special case of rezsource
availability where resource levels are constant throughout the
scheduling period. 1In this case constraint points to left shift-
ing occur only at the project start date and at terminal points
(AF) of already scheduled jcbs:; likewise, constréints to right
shifting occur only at the project finish date and at the begin-
ning points (AS) of already schcduled jobs. However, if the
available resources are uneven over the scheduling period (i.e.,
if a4 # ag . 1 for any 1 < d < z, where the a's are entries in
the resource availability vector As), then constraint points
can occur on days when resources change, whether or not jobs

end or start on the same days. To illustrate:

Day o) 1 2 3 4

Shop Limits 10 10 10 10

—— s e o - s e ——

Opviously, job 2 could be left shifted to start at day 2, job 1
to day O, and job 6 to day 1. In every case, the constraining
point is either the terminal point of another job or the start
date of the project. Consider an example where resources are

uneven, however,.

Day

Shop Limits

Job 2 could be left shifted to start at day 1 and job 1 to day O,
but job 6 could not be moved at all--even though no job ends at
day 3 to constrain it. Job 6 is effectively constrained by the
reduced resources on day 2 (as compared to day 3). Thus, the
previously described notion of a critical saquence does not
readily apply here. The schedule cannot be shortened (if the
original start date is observed), yet no critical sequence of
jobs from start to finish exists.

In general, a critical sequence may or may not exist in
a project with variable resources. If a schedule may be sliortened
from either end (start or finish), sometimes a critical sequence
may be created (as is possible in the example above):; but this

is not always possible. For example:

Day 9] 1 2 3

Shop Limits 10 5 10

Both Jobs 7 and 8 have zero slack, but no critical sequence

exists and the schedule may not be shortened given the resources

available,

Theorem 3: If recsources available are a decreasing function
of time (i.e., ag 2 34410 Lgdc< z), a critical sequence always

ocvd aba
AL CT e

Proof: Since ag 2 3341 there is no possibility of left
shifts being constrained by reduced resources. Hence the
only points of restraint are job terminal points, and the
proof given for Theorem 2 applies.

Whether or not a complete critical sequence exists, fhere
will always be in every project one or more jobs with zer» slack
(e.qg., every job whose early finish in a left-active schedule
equals the project Finish date). The limited-resource concept
of slack discussed above applies equally well in the variable
resource case, and the operational utility of slack is unchanged.
Conceptually, one could calculate slack values for jobs in a
project {(following some rules or procedures for generating right
and left-active schedules) and attempt to minimize project costs

using the methods discussed on p.56.

Relationship of Job-Shop and Large Pro ‘ect Problems

We have earlier noted the similarities between "active
chain"” in the job-shop problem and "critical sequences" in the
large project problem. Here we will consider the relationship
of the two problems in greater detail:

- Typically a "job" in a job-shop consists of a sequence
of operations to be performed in a given order on some object:
Each operation requires a different facility (machine or other
resource) for a given time period. Conceptually, a job can be

pictured as a simple, single chain network:

50

Each operation (except the bevinning or endiny one) has
one predecessor and one successor operation. (In some cases,
the exact order of operations isg arbitrary, but only one opera-
tion 1is performed at a time.)

In contrast, the large project problem is typically char-
acterized by a more complex technological ordering. Each job
may have several predecessors or successors; jobs may be per-
formed in series or parallel, as indicated by their partial

ordering:

v

In the job-shop problem, the finish date of each job is
of concern; in the large project problem, only the project com-

pletion date is important.

Note that a project may look like a number of job-shop

chains connected at the start and finish:

> - -
/ - - '\
S
»
\ - - /
> >

>

Y
Y

5
=

And by use of dummy jobs (having given time lengths but zero
resource requirements), the job-shop chains can be constrained
to start no sooner, and finish no later, than any desired start
an@ stop dates (which, of course, must be sufficiently separated
to permit completion of all operations in.a job chain). Thus
the job-shop problem can be considered a special case of the
large project problem. An analytic solution to the latter pro-

blem conceptually may be applied to the former. Likewise, a

given heuristic approach to large project scheduling should be
applicable to job-shop scheduling problems, though its power

in the latter case may differ from that in the former.

Chanter 4

CONPUTER [MODEL3 FOR LARSE PROJZCT SCHIDULING

As we have noted, those who follow a su-called ncuristic
approach to prcplem solving are interested in gaining "heurisw
tic power" in their program--i.e., computational efficiency.
They do this either because an algorithmic program is unavail-
able or because such a program is computationally infeasible.l
In the latter case, they may "sacrifice" an optimum solution
1f indeed the calculations could ever be completed) for the
program's capacity to rapidly find a satisfactory solution.

Similarly, our goal has been to develop a combination
of scheduling rules into a program which can quickly generate
a yood project schedule. This "heuristic power" of the program
enables us to include probabilistic elements in the procram
rules (explained below), so that a number of different sched-
ules can be generated in a reasorable length of time and the
best one selected from the group. In this manner we hope to
increase the probability of finding an optimum schedule, or
at least a good one.

The heuristics we use in our models were developed
first from ideas which, intuitively, seemed to be reascnable
approaches to scheduling, later from additional ideas which
grew out. of experience in applying the models, and finally
from the theoretical considerations discussed in Chapter 3.

The models described in this chapter follow two differ-

ent approaches to project scheduling. We will refer to the

1 See, for example, Clarkson [QE, Ftscher and Thompson [12],
Gere [15], Karg and Thompson [20], Kuehn and Hamburger [25],
Tonge [45].

the models as
1) Resource smoothing programs and
2) Limited resource allocating programs.

In the first apprroach, jobs are scheduled without re-

gard to resource limits. The resulting manpower requirements
on peak workload days are then reduced by shifting suitable
jobs beyond the peak days. The focus of the program is on the
required resources of a given schedule and how these require-
ments may be leveled., In the second approach, however, the
focus 1g on the available resources, which are serially allo-
cated, day by day, to jobs ordered according to their ecarly
start times. The finish date is variable, since it may be
extended when jobs are delayed for lack of resources. The
rest of this chapter will ke devoted to describing in some

detall the scheduling models based on these two approaches.

The M52 Models

The first of the models programmed were the so-called
¥s? models (for Multi-ship, Multi-Shop), originally developed
for scheduling ship repairs in a Navy shipyard.l They are
gerierally applicakle, however, to industrial or other types
of problems which involve several projects and a number of
different skill groups or shops. Ag the reader will note, the
152 models are examples of resource smocthing programs.

Data inputs are minimal: eacn job in each project is

identified by a number j, a time length t, a shop or resource

group s, and a set of immediate predecessors. Multi-skill jobs

1 The models were the joinrt development of Mssrs., F. K. Levy,
G. L. Thompson, P. R. Winters, and the author. The first
of the MS2 models was reported in [28].

64

are handled as separate, sinjle-skill jobs; the program is so
written as to insure they will all be started on the same day.
ﬁach project, consisting of a set of jobs, is identified by a
start date and a due date. Below is an outline of two varia-
tions of the model describing the heuristics they use for gen-

erating a schedule.

Ms®-1

A} Schedule all jobs at carly start and plot manpower re-
quirements in each shop, by day.

B) Calculate peak manpower requircments in each shop, and
set "trigger levels" for all shops one unit below tlheir respec-
tive peaks.

C) Once again start scheduling jobs (in technological order),l
calculating the manpower locading charts simultaneously. Stop
when the trigger level of any shop (call it s) is exceeded.

D) Examine the jobs that are active on the peak day in shop
s. Compile a list of jobs which have sufficient slack to move
them beyond the peak day without delaying the due date, and
arrange them in descending order of their total slack. Pick
one of these jobs (by a sclection process2 that favors the jobs

highest on the list), and move it to the right on the Schedule

1 Jobs are technologically ordered if no job appears in a list
until all of its predecessors have been listed.

2 The selection procedure contains random elements and operates
as follows: With a probability of P > O, select the first
job in the list for the desired operation. If the first job
is not selected, place it at the bottom of the list and se-
lect the second (now the top) job wita the same prdbability
P. Ultimately a job will be selected, as P is greater than
zero. The probability of selecting any one job in repeated
trials is a function of P and the number of jobs in the list,
n. Thus the probability of selecting the ith job is

p(1-p) 1 |
1-(1-p)"

Chart a random numbcocr of devs Letw.on the mininw, 1 cvs rec-
2337y to push the job past the peak day and the maximum
move allowed by its total slack.

E) Continue with the scheduling of other jobs and plot-
ting of the manpower loading chart. If additional peaks
are gencrated, apply the procedure of D). If all jobs are
successfully scheduled, then lower the trigger levels of
all shops one more unit and return to C). If job shifting
is not successful in removing pecaks below the trigger levels,
then restore the previous set of feasible trigger levels and
attempt to reduce them shop by shop. As soon as no further
reduction in trigger levels is possible, then print out the
schedule.

F) Repeat the above process (as many times as is compu-
tationally feasible). Because of the random elements in
the program, it is likely that different schedules will
resnlt from each applicaticn of the program. Select as the
final schedule the one having the lowest manpower costs
(whicﬁ are assumed to be proportional to the trigger levels--
i.e., sufficlent men are hired to meet peak loads and are
paid whether idle or active on all days).

Note that the program does not assume limited resources.
In essence, it attempts to minimize the peak shop require-
ments given a fixed due date (and is therefore subject to
some of the same limitations we noted in Chapter 2 for simi-
lar scheduling models). A variation of the above model--
M32—2 --reverses the constraints: resources are limited and

the due date is wariable.

55

us-2

A) Schedule jobs at early stert, one at a time, plotting
manpower requirements in each shop, by days, until the require-
ments exceed the established resource limit in some shop.

B) Attempt to right strift slack jobs in the same manner as
D) above.

C) 1If job shifting is successful and a feasible schedule
is produced, then print the schedule and repeat the program (as
many times as is possible). If manpower requirements cannot Le
brought below fixed resource limits, then move the due date out
one day (or some other increment of time) and return to A).
Eventually enough time will be allowed to schedule all jobs
without exceeding resource limits.

D) After repeating the program several times, pick the best
schedule (in general, the shortest one). Costs here include
not only manpower charges but a "penalty fee" for each day the
project is delayed beyond the initial due date. (The cost
function for penalties need not be linecar; an exponentially in-
creasing function might be more appropriate for some projeét
situations.)

Thus M32—2 is a limited resource model, but not of type
two described above; resources are allocated job by job down a
technologically ordered list, rather than day by day to jobs

ordered according to their early start times.l

1 A job list ordered by early start times (in ascending order)
is also technologically ordered; but the reverse is not
necessarily true,

57

The 5PAR lModels

More sophisticated in terms of scheduling heuristics and
data handling ability are the SP&R series (3cheduling Program
for Allocating Resources) developed by the author. They were
specifically designed to consider the constraints of limited
resources, the possibilities of variable crew sizes on jobs in
a project, and additional alternatives (besides shifting slack
jobs) for dealing with peak load periods. The basic program
is quite straight forward. The early start (ES) and slack (TS)
are calculated for each job in a project, based on technological
constraints only. Then jobs are scheduled, day by day, starting
with d = 1, by selecting jobs trom the list of those currently
available (i.e., jobs with ES = d) and ordered according to
their slack. The most critical jobs have the highest probability
of being scheduled first, and as many jobs are scheduled as
available resources permit. (It is possible that not even
critical jobs on a glven day may be scheduled, because of jobs
scheduled on previous days which are still active.) If an avail-
able job fails to be scheduled on day d, its ES is increased to
d + 1 and an attempt is made to schedule it the next day. Eventu-
ally all jobs so postponed become critical and move to the top
of the priority list of availabie jobs. In each day's list of
available and active jobs, there are always one or more zero-
slack jobs {see Levy, Thompson and Wiest [27]); they receive
special treatment in some of the models described below. Proba-
bilistic elements built into the program provide some randomness
of job assigmments and the likely production of different sched-
ules each time the model is applied to a project--similar in

this respect to the MS2 models.

As 1s evident from the above descriontion, the SPLR models are
examples of the second approach to project scheduling described

earlier.

Modifying Heuristics

The basic program described above 1s enriched by a num-
ber of additional scheduling heuristics or subroutines designed
to ircrease the use of available resources and/or decrease the
iength of the schedule,

A) Crew Size Selection: With each job 1s associated a nor-

mal crew size cs, {the number of men or other resources normally
assigned to the job), a maximum crew size csy {the maximum number
of men required for "crashing" the job), and a minimum crew

size SEM (the smallest number of men which can be assigned to

the job). Normally cs_ < €S, CSpy-+ In some cases, jobs can be

m

neither stretched out nor crashed, in which case csm = csn = Csys*

or they can be stretched out but not crashed (cs < s = csy)

]

or vice versa (csm = Es < csM). Some jobs may have

Cs < Cs, < Csy but not permit changes in cs once a given crew

size has been assigned; this information is also fed into the
model with other job data. The rules for crew size selection

are as follows:

1) If the job has zero slack and if resources available

a are cs
sd &

M then schedule j with cs = csy. If
Cs < a_, < Cs

S ©ed then schedule j with cs = a

M’ sd’ £

agq < €S, then set cs = cs and go to the Borrow and
Reschedule routines (described below). If j is still

not scheduled, set cs = cs and try the same routines.

"If j is still not scheduled, then set E3 = E3 + 1 and
attempt to schedule the job the next day.
2) If j has positive slack and a_q 2 ©s_, then schedule

< Ccs_, set ¢s = a and

J with cs = SENG If cs < agg n

sd
schedule . If asd < csp then two approaches are used
(according to the particular SPAR model): (z) set ¢s = cs
oand try the Bcrrow and Reschedule subrout;nes, or (b) set

ES = ES + 1.

B} Add-On to Critical Jobs: Before any new jobs are scheduled

on a given day, examine jobs previously scheduled and still active.

If any of these jobs have zero slack and ¢s < cs and if resources

Ml

are available, increase ¢s as much as possible up to cs {Jobs

M*
which do not permit changes from an initial c¢cs assignment are

excluded from ccnsideration in this subroutine.

C) Multi-Resource Jobs: Sometimes a number of &ifferent

resources (men, machines, etc.) are : :quired for a given job,
each of which may be limited in quantity. In such cases, create
separate jobs for each resource and assign the jobs to start

on the same day, by means of the following device. If n jobs
are created out of an n-resource job, then append to each job j
in the group the number of the (j+l)th job, except for the nth
job, to which append the number of the first job in the group.
Thus if n = 3 and the three jobs created are numbered 5, 6, and

7, they would appear in the job list with multi-resource nota-

tion as follows:

Job Number Yulti-Resource Reference

t ~Nownmld
I N0

(Single resource jobs carry "O" in the multi-resource reference
column.) All jobs in a multi-resource group have the same prede-
cessors (and the same successors), so all become available for
scneduling on the same day d. As each job j is scheduled,
check to see if any octher j;ot 1in the multi-resource group has
been postponed to day 4 + 1. If not, schedule j on day d; if
so, then pcstpone job j by setting ESJ = d+1. If an attempt
to schedule job j falls because of limited resources, then de-

schedule all other jobs in the multi-resource aroup which have

already been scheduled, and reset their ES to d4dt+l,

D) Borrow from Current Active Jobs: When asq < °8, for
=]

some available zerc-slack job j (or < csm if the job has slack,

in some variations of SPAR), the model enters into a subroutine
for searching currently active jobs to see if sufficient men
might be borrowed from them for scheduling j on day 4. In

order to qualify for consideration a job k must

1) Thave As, < d and AF, > d (that is, it must be active);l

2) use the same resources as j:

3) have cs > cs !

1 After a job has bren scheduled, its start and finish times
are noted by AS (zusign start) and AF (assign finish).

4) bec a job for which assiyned crew sizes may be altered

during the job's active period: -

5) have TSQ > TSJ, where Tsi_is the slack of k after

its crew size has been recduced to csm.l
Compile a list of such jobs and sort in descending order of TS.
Select jobs from this list by the random device described earlier
(jobs with the most slack have the highest probability of being
selected), and reduce their cs to csm until sufficient men are
available for scheduling job j. Return then to the main routine
and schedule j,

The subroutine also has a "count first and see" feature:
check to see that borrowing will actually produce enough men to
schedule j before actually making the adjustments. The sul-
routine is also tied to the Reschedule subroutine (below): if
some (but not enough) men can be borrowed, examine the possibility
of also. rescheduling jobs before abandoning as a failure the
borrow subroutine., Finally, if the number of men that can be
obtained by borrowing and rescheduling 1s insufficient to sched-

ule j, then set ESJ = d+l.

E) Back Up and Reschedule Active Jobs: Sometimes a job j

could be scheduled if other jobs previously scheduled which use
the same resources had been postponed to a later start date. 1In
order to quaiify for this rescheduling, a job k must
1) Thave AS, < d and AF, > 4. {that is, it must be active);
2) use the same resources as J:

1 In the SPAR-1 models (see p. 77), cs 1s reduced only from
day d on; in SPAR-2, the reduction is also retroactive to

ASk.

-

* *
3) have T3, > T3, + b, wh2re T35, i3 the slarck of k after

k i k
it has been rescheduled to start on d+1l. (b 1is a paramete
which may be used to increase or decrease the number of
jobs considered for rescheduling; a large b would result
in the consideration only of jobs with large TS* values

as compared to TSJ, reflecting the possibility that such

jobs may have to be further postponed [beyond d+1] because

of resource limitations.)

The subroutine operates as follows: Sort all jobs which
gualify according to the above criteria in descending order of
ES, and further sort the list, in each group of jobs with the
same ES, in descending order of Ts*. From this list, select
lobs to be rescheduled, exhausting jobs whose ES = d-1 before
going to jobs with ES = d-2, and so forth.l Thus the tendency
is to first reschedule jobs which have the most slack and which
have to be postponed the fewest number of days. When sufficient
jobs have been rescheduled to permit the scheduling of j, then
return to the main routine and schedule j.

Note that the rescheduling of a job k does not affect
the TSJ of any Jobs in the set of available jobs to be scheduled
(1.e., jobs whose EsJ =] (). Tsj is a function nf the early
finish of job j's immediate predecessors and of the late start
of its immediaté successors. However, k belongs to neither set,
and it can be Celayed up to its LS without affecting jobs in
either set. Before kx 1s rescheduled, AS, < ES

< EF and

Kk

3 ¥

1 The random selection device is again used.

72

r

73

AF, > ESJ. But A3 < EFJ —> K £ [successors of j], and

AFk > ESJ —> k £ [predecessors of j]. The only way rescheduling
k could affect TSJ would be to delay the project f£inish date and
hence the late start of all jobs in SJ. According to the routine
above, however, k will not be rescheduled unless it has-~-after
rescheduling--~at least as much slack as j. Thus no job k will

be rescheduled if doing so would extend the finish date. Since
the TS of jobs 1n the available set is not affected by reschedul-
ing, then there is no need to go through the "hcusekeceping routine"
(below) of recalculating new values for ES, LS, TS, etc. after
each job is rescheduled; the order in which available jobs are
scheduled is thus unchanged.

The reschedule routine has much the same effect as a
"look-ahead" feature. Instead of attempting to lcok ahead to
future needs of critical jobs (which would be difficult to do
in the limited resource case, since jobs are not always scheduled
at their ES), the model schedules all jobs posszible as it moves
along from day to day, "repenting" of previous scheduling "errors"
if jobs are enrncountered which have more critical need of resources

than the jobs to which the resources were assigned at earlier dates.

F) Add-On Unused Resources: After as many as possible of

the available jobs are scheduled, there may still be unused
resources in some shop s. The program attempts to assign these
resources to active jobs. In order to qualify for additional

resources, a job j must

1) Thave ASJ < 4 and AFj

with at least one more day to go):

> d+l (it must be active

2) use the resources of shop s:

74

3) have cs3 < Csy,
4) Dbe a job for which assigned crew sizes may be altered

during the job's active period.

Examine the remaining resources ry of each shop in turn, after

all avallable jobs have been considered. If rS > bs (a parameter
reflecting the per cent utilization of resources which is de-
sired), then compile a list of jobs which meet the above criteria.
Order the list in ascending order of TS, pick a job (by the ran-
dom device, favoring the jobs with the lowest TS), and increace
its cs to csy (or to cs + o if cs
ing the cs of jobs in the list until'the list or L 1s exhausted.

M~ €S> rs). Continue increas-

The increment is temporary; jobs so supplemented return to their
assigned cs the next day (unless unused resources are avallable
then also).

The program contains.three additional major subroutines
which dc not properly belong in the above iist of modifying
heuristics. They are listed below, however, for completeness

in describing the program.

G) Housekeepinag Subroutine: After going through the above

scheduling routines each day d, the model then records the re-
sults in a manpower loading table (resources used in each shop)
and in a job assilgnment .table (number of men assigned on each
job); and it updates the critical path data (ES, LS, EF, LF,

AS, AF, TS, and man days remaining) for each job. Note that
several of the above subroutines may alter a job's total slack:
e.g., when Csy is assigned to a critical jcb, the shorter.ing of
the job may result Ln its gaining positive slack (and some other

job or jobs becoming critical).

o]

75

H) Cost Calculations: The Functional: In all of the SPAR

models, the finish date is a variable; and in those with a search
routine (described below), shop rescurce levels are also variable.
The functional can take any desired form, but two have been used

thus far:

m *
1) Total Cost = K.z + = ag W

s=1
where K is a daily cost (e.g., overhead expenses and/or due date

’

s

penalties, charged on a per-day basis), z is the length of the
schedule, q; is the maximum crew size required in shop s, and
W is the average daily wage in shop s. The implicit assumption
is that crew sizes are maintained at peak loads and are paid
whether active or idle. Should the circumstances of a specific
project justify it, a non-linear cost function of z could be

substituted for the linear one above--e.g., when penalties for

exceeding the due date increase exponentially.

*

m
2) Total Cost = K.z + = a; ¥g
=1 !

where K,Az and W, are as above, and a; is the optimum shop crew
size based on a premium rate v for overtime or subcontracting
when manpower require@ents exceed a;. (v is a multiplying factor;
thus overtime would cost Ve per day.) The assumption is made
that reqular crew sizes are maintained at a;, even during slack

periods. If we let Fa represent the number of days out of z
8

that manpower requirements in shop s equal or exceed ag, then

*
ag is that manpower level for which

* .
Fy v>z>F

* . v
5 (as+1)

)

*
That is to say, if ag is raised cnz day awvove ag, then the
resular wage rate paid the extra man for z days (z-ws) cxceeds

the costs of paving a man at overtime rates for F(a*

+1) days
s

(F(a;+l) B B | e

I' Shop Resource Level Search Rules: It is possible that,

in some cases, the costs of increasing shop resource levels
would b~ more than offset by the resulting decrease in overhead
charges and/or due date penalty fees. The reverse situaticn
misht also be true. Hence we have developed some search rules
for trying to find some optimum combination of shop resource
levels and resulting finish date, Two approaeches have been
explored:
1) Start with minimal resource levels (just sufficient
to insure that all jobs can be scheduled, serially if
not in parallel). Generate a schedule and calculate its
cost. Then increase the resource level in all shops
associated with jobs having zero slack. Generate a new
schedule and calculate its cost. If lawer than the first
schedulé's cost, repe<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>