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NOMENCLATURE

English Letter Symbols

.

Matrix total heat transfer area, £t
Matrix minimum free flow area, ft2
Matrix total frontal area, £t2

Solid matrix cross sectional area available for thermal
conduction, fr2

Conduction area corrected for effect of perforations, ft2
Plane surface area, ft2

Plate thickness, ft

Short side of a rectangular flow passage, ft

Plate spacing, ft or in,

Long sidz of a rectangular flow passage, ft

Flow stream capacity rate, (ﬁcp), Btu/(hr °F)

Matrix capacity, W.c, Btu/°F

Specific heat at constant pressure, Btu/{1ba°F)

Matrix material specific heat, Btu/(1bm°F)

Hydraulic diameter, Arh
Inside pipe diameter, in.

Flow friction power per unit area, HP/ft2

Mean friction factor, dimensionless. This is the "emall"

or "Fanning" friction factor. (Ratio of wall shear stress
to the fluid dynamic head.)

Exchanger flow stream mass velocity, (ﬁ/Ac). 1bm/ (he ftz)

Proportionality f,ctor in Newton's Second Law, s ° 32.2
(1bm f£t)/(1bf sec’)

Unit condugtancc for thermal convection heat transfer,

Btu/(hr ft* °F), or heat transfer pover per unit area
per degree temperature difference, Btu/(hr f£t2 °F)
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English Letter Symbols (continued)

b Colburn factor = NST NPR2/3’ heat transfer characteristic,
dimensionless

j! Colburn j factor based on plane surface area, A*, dimension-
less

Kc’ Ke Contraction loss coefficient for flow at heat exchanger

entrance or exit respectively, dimensionless

k Unit thermal conductivity, Btu/(hr ft2 °F/ft)

ks Matrix thermal conductivity, Btu/(hr ftz °F/ft)

L Total matrix flow length, ft

m Mass flow rate, lbm/hr

P Pressure, 1bf/ft2

p Porosity for matrix surfaces, dimensionless

q Heat transfer rate, Btu/hr

R Gas constant, (ft 1bf)/(lbm °R), (53.35 for air)

L2 Hydraulic radius, (AcL/A), ft, (Iorh = hydraulic diameter)

8 Solidity of a perforated material, l-u, dimensionless

T Absolute temperature, degrees Rankine, °R

t Temperature, degrees Fghrenheit, °F

Vm Matrix volume, ft3

V. Material volume corrected for effects of perforations

w. Mass of matrix, lbm

x Distance along the flow passage in direction of flow, ft

Greek Letter Symbols

o Aspect ratio of a rectangular flow passage, b/a, dimension-
less

8 Compactness; ratio of Eota heat transfer area to the volume
between the plates, ft*/ft

4 l'Deno:cl difference

§ Fin thickness, ft
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Greek Letter Symbols (continued)

g

Subscripts

atm

Conduction area reduction ratio due to perforations in
perforated material; cross sectional area of pe-forations/
cross sectional area, dimensionless

Time
ksAs
Longitudinal conduction parameter, i dimensionless
P

Time parameter
Fluid viscosity coefficient, lbm/hr ft

Area reduction ratio due to perforations in perforated
material, dimensionless

Density, 1bm/ft3
Ratio of freeflow area to frontal area, Ac/Afr’ dimensionless
Denotes "function of"

Compactness for perforated mcterial including the effect
of area reduction, A*s/VA, dimensionless

Summation

Local atmosphere

Fluid

Initial, individual

Equivalent

Mean or matrix, as appropriate
At orifice

(Matrix material) solid

Standard temperature and pressure
Upstremm

Dovnstrean

viii

o\




Dimensionless Groupings

Ny

NR(p)

NSt

NNu

NPr

NTu

i

Reynolds number, (ArhG/u), a flow modulus

Reynolds number for pipe, (dG/u)

Stanton number, (h/ch), a heat trinsfer modulus
Nusselt number, (hérh/k), a heat transfer modulus
Prandtl number, (ucp/k), a fluid properties modulus
Number of heat transfer units, (hA/ﬁcp)

Generalijed heat transfer grouping - Colburn "j" factor,
(NStNPrz 3). This factor versus NR defines heat transfer

characteristics of the surface.

Mean friction factor. This is the "small" or "Fanning"

friction factor (Ratio of wall shear stress to the fluid
dynamic head). This factor versus Np defines the fric-

tion characteristics of the surface.

Conduction parameter, ksAs/ﬁLc for solid material;
kgAy/hLc, for perforated material

Equivalent conduction parameter (Eorrected for equivalent
length in perforated material), Ark

hA

We
8 8

Time parameter, e
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INTRODUCTION

The present investigation i8 an outgrowth of the continuing program

at Stanford University [8]1 for the evaluation of heat tranifer surfaces.

The experimental work reported by Howard [4] was performed at the U. S.

Naval Postgraduate School, fontzrey, and a continuation of that work is

prerented herein.

DESCRIPTION OF SURFACES

The eight compact heat exchanger surfaces tested were:

1. Skewed passage

a.

20° total skew angle; 160/40 TV perforated nickel

2. Modified parallel plate

160/40 TV perforated nickel

160/40 Q perforated nickel

125 M perforated nickel

125 P perforated nickel

50 G perforated nickel

160/40 TV perforated nickel fins with solid nickel splitters

solid nickel

The skewed passage surface employs corrugated sheets of 160/40 IV per-

forated nickel, stacked alternately with the lines of corrugations 10°

from the flow direction, thereby forming a total angle of 20° between

1

Numbers in brackets refer tvo numbered items listed in References.

1
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adjacent stacked plates. It is the same geometry as one employed by
Howard [4]. The modified parallel plate surfaces were made by alternately
stacking a formed plate and a plane splitter plate to prevent nesting, as

shown in the sketch below and in the enlarged photograph of Figure 30,

*rﬂzfﬁ

The flow channels formed by this geometry may be compared to rectangular

P

channels with an aspect ratio, a = b/a, of about 7,

The perforated nickel plate employed is an electro-deposited metallic

sheet of integral structure manufactured by Perforated Products, Incorporated.

This matevial is described in detail in Appendix C. The geometrical and
phyaical properties of the surfaces are given in Figures 3 through 7.
All matrices formed had a frontal cross section of approximately
3.2 inches square and s length of 2.0 inches in the flow direction. All
matrices had flow passages with a hydraulic diameter of approximately

.002 feet, thus the L/DH ratio in all cases was of the order of 83.




PRESENTATION OF RESULTS

Heat transfer and flow friction data for each matrix investigated
are given in both tabular and graphical form, TABLES I through VIII and
Figures 9 through 16, using the Colburn j modulus, Fanning friction factor,
and Reynolds number. In evaluating the Reynolds number, the hydraulic
diameter, which is defined as four times the hydraulic radius, was used.
The effects of entrance, exit, and flow acceleration have been considered
in the evaluation of f£f. (See Appendix A).

Figures 17 through 22 show heat transfer and friction comparisons
between various matrices investigated. Also plotted in Figure 18 for
comparison purposes are the theoretical laminar flow solutions for
parallel plates -and rectangular passages [6, 8, 11]} Both solutions are
for an infinite length to hydraulic diameter ratio, and the heat transfer
solutions are for constant wall temperature. In Figures 23 through 25,
"figure of merit" type curves are presented. The j/f versus Reynolds
number thus plotted gives an indication of the required matrix flow
frontal area for a given pressure drop.

Lastly, in Figures 26 through 28, heat transfer power versus flow
friction power curves on a unit area basis, evaluated for fluid proper-
ties at standard conditions of dry air at 500°F and one atmosphere, are

presented (See Appendix A).

EXPERIMENTAL METHODS
To obtain the heat transfer data, a transient technique was employed.
Briefly, this method consists of heating the test matrix by heated air

to a uniform temperature (approximately 20°F above ambient in thase tests)




and then subjecting the matrix to a step change in the air flow tempera-

ture to ambient temperature. The air temperature downstream of the

£y
-

matrix is monitored and recorded versus time. There are several ways
of constructing such a test rig [4, 10, 12]. The one used in these tests
is shown in Figure 1, and described in detail in Appendix B.

A series of fine nichrome wire heaters were installed upstream of
the matrix to heat the air. Turning off the heaters provides the step
change in temperature of the air without disturbing the flow. By
referencing the thermocouples downstream of the matrix to the thermo-
couples upstream of the heaters, the initial temperature difference can
be very closely controlled. This temperature difference is continuously
recorded by a strip chart recorder when a run is made. This recordéd
trace has the distinct advantage in that there is no transposition of
data required which would produce increased uncertainties. Reduction of
the data follows the method of Locke [10] and Howard [5], whereby the
Ntu of the'surface can be evaluated by determining the maximum slope of
the fluid temperature difference versus time curve during the cooling
transient.

Pressure drop data for evaluating the friction factor were obtained
from static pressure taps located in the test section immediately upstream
and downstream of the matrix. The static pressure immediately upstream
of the matrix was also recorded. Velocity profiles were taken just
upstream of the matrix to assure that uniform flow conditions were being
maintained by the screen pack straightener and by the wire heaters. The

flow was measured by an A.S.M.E, standard D and D/2 orifice meter with

- e -
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changeable orifice plates [14], and was located downstream of the test
section. Various manometers were used consistent with the pressure

range encountered. All pressure drop data for evaluating the frictionm
factor were taken under ambient air conditions (i.e., isothermal flow).

The data reduction relationships are given in detail in Appendix A.

EXPERIMENTAL UNCERTAINTIES

The experimental uncertainties can be considered to be in two cata-
gories. First, in the manner ‘in which the experimental gear attempt§ toi
meet the idealizations of the experimental method. These are discussed
in detail by Howard in [4] and [5].

By insuring uniform flow to the matrix, minimizing the temperature
change to minimize fluid property changes, and in the careful design
of the fluid heater, these idealizﬁtions are met. The second catagory
can be grouped in three areas: |

(1) uncertainty of physical constants,

(2) inaccuracy in the geometric measurements,and

(3) instrumentation inaccuracies.

For the determination of the uncertainties reported, the method of Kline
and McClintock (9] was used.

(1) Values for the physicsl constants required were obtained from
(1), [2), and [3]). The uncertainties in these values, as best as can be

deteimined, are listed below:

Cy t  0.5%
c ¢t 0.52
P .
NPr t 2,02
k. t  0.5%
p t  1,0%




‘It is noteworthy that the accuracy for the value of o depends upon
the metal used. Where pure metals are used the accuracy quoted is
feasible; however,this is not the case with alloys. Thus the tolerance
of c, can be a major cause for inaccuracy [10].

(2) Due to inconsistencies in eonstruction of the matrices, errors
in lineal dimensions are considered to be * 0.5Z. Inasmuch as the
weigh; of the matrix can be determined as accurately as desired, the
error in VS is considered negligible. Based on this, the uncertainties
in geometric measurements are considered to be as follows:

| A, Afr’ Ac, As, Ak’ t 1.02
L 0,57
»WS < 0.1%, negligible

(3) Instrumentation inaccuracies were essentially those cbtained
in pressure measurement. With the exception of the temperature measure-
ment at the orifice, all temperatures recorded were temperature dif-
ferences which were recorded in inches (See Appendix A). The temperature
measurement at the orifice was obtained by a copper-constantan shielded
thermocouple which was read by a Leeds and Northrup portable potentio-
meter. Assuming adequate manufacturer's calibration of the thermocouple
wire, the estimated possible error is * one-half of the smallest division
on the potentiometer, or * 0.0025 millivolts which is approximately %0,1°F.

Since the range of pressures varied, requiring several different

manometers, the maximum uncertainty encountered was used in the uncertainty

analysis. These values are listed below:

P t 1,25%

)
AP t 1,252

)
AP t 1,702

n

"
Patm t 0,0005" Hg (negligible) f

6 .




Qne final parameter for which uncertainty must be determined before
an analysis of the experimental results can be made is NTu' Inasmuch as
Colburn j factor is not a linear function of Reynolds number, uncer-
tainty for high and low NR values was considered. Using Figure 3-A
of reference [4] or Figure 5 of reference [5] and the uncertainty in
maximum slope as 2.0% the uncertainty interval using reference [9]
in the Colburn j factor varies from ¢ 7,5Z at high Reynolds Numbers to
t 10,2% at low Reynolds Numbers. The uncertainty interval for Reynolds

Number is ¢ 2,32, and for the friction factor, f, the uncertainty

interval is t 4,3%.

DISCUSSION OF RESULTS

The perforated nickel matrices investigated covered a wide range of
percent open area, 12 to 50%. ‘Both slotted and round perforated nickel
surfaces were evaluated for the "modified parallel plate" geometry. The
perforated nickel geometric properties are given in APPENDIX C for the
various types investigated. In order to make a reasonable comparison of
the performance among these matrices, the same frontal area and flow
length were specified. Results are presented in Figures 9 and 10 and
listed in TABLES I and II for the slotted perforated nickel matrices;
those for the round perforated matrices are given in Figures 11, 12, and
13 and tabulated in TABLES ITI, IV, and V. ‘

In order to establish a meaningful fiducial point, a solid nickel
matrix of the identical material (obtained from the same manufacturer)
with the same frontal area and flow length as the perforated matrices was

fabricated. The performance of this matrix is illustrated in Figure 15

with tabular values given in TABLE VII.

IR




The best performing slotted perforated nickel matrix was the 160/40Q.
The 50G round perforated nickel (50Z open area) was the best surface in-

"parallel plate" nickel matrices.

vestigated among the

Ag another approach to evaluating the Colburn j factor, j' was con-
sidered. The parameter j' is based on the plane surface area, A%, as
if no perforations were present; whereas, j is based on the heat transfer
surface area, A, which inciudes the plate solidity correction, s. The
value of j' is readily attainable from the relationship j' = j x s,
where s = A/A*, (See Appendix D). The determination of the solidity
1s fully described in APPENDIX C. Figure 13 for the 50G perforated
nickel matrix includes the values for j' versus Reynold's number in
addition to the f and j values,

A comparison of the performance of the two slotted perforated
matrices together with the solid nickel matrix is shown in Figure 19.
A similar comparison for the round perforated nickel matrices is given
in Figure 20.

It is readily apparent that the perforated material yields a
higher heat transfer characteristic. Inasmuch as the friction factor
also shows an increase, a more appropriate comparison can be made from
the flow area "goodness'" factor curve in Figures 23 through 25. The
“"heat transfer power (hSTD) versus flow friction power (ESTD) per unit
area given in Figures 26 through 28, is another "goodness" factor
evaluation. Here the information for each of the matrices is presented
based on standard conditions for fluid properties and a common hydraulic
diameter, (See APPENDIX A).

So that an appreciation for the perforated material might be realized

in direct transfer type of heat exchanger application in addition to its

8




use in matrix type for rotary regenerators, a "parallel plate" matrix
with the 160/40TV perforated nickel fins and solid nickel splitter plates
was fabricated. The performance of this matrix is given in graphical

and tabular form in Figure 14 and TABLE VI. A comparison with the solid
nickel matrix is made in Figure 21. Figure 25 contains the j/f presenta-
tion and Figure 26 shows the hSTD vs. ESTD for this matrix. Here again
is a noticeable increase in heat transfer performance, but with a
negligible increase in friction factor.

For the 160/40TV perforated nickel material, a 20° skew matrix was
compared in performance against the "modified parallel plate" to see
how these two configurations compare with one another. The separate
performance for each has been mentioned previously; however, the
direct comparison is shown in Figure 22, As with the other nickel surfaces,
the flow area "goodness" factor is represented in Figure 23.

In the results of this investigation are several items which are
general in nature, but nonetheless extremely important. In the laminar
Reynolds number range, friction factor is inversely proportional to
Reynolds number. By Reynolds analogy, it was anticipated that the Colburn
j factor should likewise be inversely proportional to Reynolds number in
this region. However, the experimentally obtained values of j in the
lov laminar Reynolds range utilizing the equivalent conduction length
(defined in APPENDIX C) together with Figure 2-A of [4) or Figure & of
[S]) yielded lower than anticipated values for j. Assuming the Reynolds
analogy to hold the j vs. NR experimental curve was extrapolated, shown

as a dashed line on the Figures. The j and Ntu values obtained in this

manner at the given experimental NR are asterisked in the Tables.

p- e




The second item is that of an equivalent conduction length which
was stated earlier. In the perforated fin material the slots or round
holes, as the case may be, provide for a winding heat flow path. It
" was appreciated that the matrix flow length, L, was not the true con-
duction path but somewhat less than actual. A mean conduction path
length evaluation is presented in APPENDIX C. The conduction parameter,
A, based on the flow length, L, was evaluated, and by simply multiply-
ing by the ratio L/Lk (also given in APPENDIX C), the value of A, was
determined.

The entrance and exit length effects for a matrix with a small
hydraulic radius are small. In the evaluation for Fanning frictionm
factor (APPENDIX A), the effects of exit and entrance length were
considered using values of Kc and Ke from Figures 5-3, -4, or -5 of
reference [8], as appropriate. For the perforated surfaces, the K values
were taken corresponding to laminar flow conditionms.

A final item worth mentioning is again concerned with the low
Reynolds range. A slight alteration in the conduction parameter value

has a marked effect on the N . value in this range. For this reason,

Tv
vhen utilizing a nickel material, or any other material with a wide
range of specified values for thermal conductivity, it is mandatory

that the appropriate value of k. be obtained. The value of ) is

directly proportional to this k‘ value, i.e.,
kcAs

A - L E c

P

10
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CONCLUSIONS

A very definite improvement in performance is achieved with the
utilization of a perforated material. Kays [6] postulated the
improved heat transfer characteristic without "a large amount of
form drag so characteristic of high performance surfaces". The
perforations apparently disturb the thermal boundary layer to a
much greater degree than the hydrodynamic boundary layer. The
perforated nickel matrices investigated herein confirm Kays'
hypothesis.

The experimentally determined Colburn j values in the low
Reynolds range were lower than the j values obtained by extrapolating

the § versus N, curve from the higher Reynolds range. Because of the

R

large uncertainties involved in the low Reynolds range the extra-

polated data are considered more reliable. ‘
Effects of longitudinal conduction have been considered in

the analysis of data. For the perforated material matrices, correc-

tions for the actual conduction path length and for the area removed

by the perforations have been included.

The best performance for a perforated "parallel plate" matrix

vas attained by the 50G type material.
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Matrix Material

Specific Heat (cs) 3tu/ib F

‘Thermal Corncuctiviuy (K,) Hiu/ nr 1t

Material Thickness, incues

Total Heat Transfer Arca (A) fu<
Frontal Ares (Aen) U

Total Cornduction Liwy (Ak) ree
Free Flow area (h.)
Matrix Volume (/g)
Matrix Densivy (Q,n) R
Hydraulic Diameter (Lu)
Compactness (é) R LA

Porosity (p)

160/40 TV 160/40 Q
Perf.Nickel Perf.Nickel
0.106% 0.1065

F 38,7 : ©38.7
0.0022 0.0016
18,593 16,2667
0.06Y5% 0.06953
OeOuliuly 0.002887
G.0584 0.06142
Caliasug 0.011588

3.5 59.2

0.0ul%29 0.002028
IV 1403.8
U840 0.883

Fipure *, JGeometric o pnyuiead Properties of Slotted
Fort.roed Niokes Lotu/ul .J ana Af)U/l.U Q)
THaraeau. LT Laurines

Best Available Copy
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Matrix Material

Specific Heat (cg) Btu/lb °F

Thermal Conauctivity (kg) Bti/ ar ft OF
Fin Thickness, inches

Splitter Thickness, inclrec

<

Total Heat Transfer area (i) f&

Frontal Area (Afr) ftz

Total Conduction Area (Ak) fLE
Free Flow Area (A.) 14
Matrix Volume (V,) ft°

Matrix Density ( @ ) lb/ft3
Hydraulic Diameter (Dy) ft
Compactness (@) ft2/1t]

Porosity (p)

1()0//;0 TV Fins -
Solid Nickel Splitters

0.1065
38.7
0.0022
0.0020
19,3084
0.06953
0,00689
0.05883
0.011588
69.1
0.00194
1666.2
0.8u6

Figure 5. Geometric and Physicul Properties of Slotted Perforated
Mckel Fin (160/40 TV) with Solid Splitters,"Parallel

Plate" Maurix
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Matrix Material

Specific Heat (cg) Btu/lb °F
Thermal Conductivity (kg) Btu/ hr ft °F
Material Thickness, inches

Total Heat Transfer Area (A) ft<
Frontal Area (App) ft?

Total C&nduction Area (Ag) 12
Free Flow Area (A,) ft2

Matrix Volume (Vi) £t

Matrix Density ( Q ,) 1b/1t3
Hydraulic Diameter (D) ft
Compactness (@) l‘t.z/t"c.3

Porosity (p)

Solid Nickel
0.1065
38.7
0.0020
20.1875
0.06953
0.01014
0.05939
0.011588
7.9
0.001961
1742.1
0.854

Figure 6. Geometric and Physical Properties of a
Solid Nickel "Parallel Plate" Matrix
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Matrix Material

Specific Heat (ecg) Btu/lb F
Thermal Conductivity (kg) Btu/ hr ft F
Material Thickness, inches

Total Heat Transfer Area (i) ft<
Frontal Area (Ap.) ft?

Total Conduction Area (A,) ft2
Free Flow Area (A,) e

Matrix Volume (Vy) £t

Matrix Density (@,) 1lb/rt’
Hydraulic Diameter (Dy) ft
Compactness (@) ft2/rtl

Porosity (p)

20 Degree Skew
160/40 TV
Perf .Nickel
0.1065

38.7

0.0022
151
0.0734
0.00349
0.06412
0.01211
50,1
0.00252
1272.8

0.873

Figure 7. Geometric and Physical Prcperties of a Slotted
Perforated Nickel (160/40 TV) 20° Skew Matrix
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Figure 29. Lnlarged Photcgraph of the 20° Skew
Matrix, 160/40 iV rerforated Nickel

Figure 30. Enlarged Photograpn of the Modified
Parallel Plate Matrix, 160/40 TV

Perforated hickel




Figure 31. Matrix Holder
(Upstream View)
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APPENDIX A

DATA REDUCTION RELATIONSHIPS

Sumnsrized herein are those data reduction relationships which are
of prime importance in obtaininé the heat transfer and flow friction
characteristics as presented from the raw data taken. Before the data
on the matrices tested can be reduced, or a comparison of the different
matrices can be made, it is essential to obtain accurate geometrical
dimensions. The geometrical factors of interest are the porosity, p,

. the hydraulic diameter, DH’ and the area compactness, 8. Determination

of any of these fixes the third since it may be shown [11] that

s 12 (A1)
H
The definitions of these terms are:
A
o Free Flow Area _ _c -
) » Frontal Area Af (a-2)
r
4 x Free Flow Area Ac
(2) by = Heat Transfer Surface Area ‘L (4-3)
o Heat Transfer Surface Area = _A -
(3) B = prontal Area x Flow Length Ag L (a-4)
MAXIMUM SLOPE

The maximum slope of the generalized cooling curve is a unique

function of Nru and A [10].

11"
= o0, ,)) (A=5)
q [_‘"“ruj . %

v and "ru have both been previously defined, but for convenience

the relationships are restated:
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hA
TE e and N, =
W.C. Tu ]lc_P
Therefore:
[ 3
T/NTu = (ncplﬂscs) 0
and
* -
d(‘r/NTu) = mcplwscs)de = (C/Cs)de
Furthermore:

t,-t t.~t
£21 ‘e27te

1
a1ty tetty

(7]

and

d[t_fz.:fi]._l_ ¢ [eertel
tfl-ti tfl-ti £f2 "fl

Combining (A-6) and (A-7)

Leamty
dt't
£1°%

dltgy-ty ]
d [r/ll.m]

c
c tfl-tl de

(a-6)

(A-7)

(A-8)

ty-4)

it~ 4]

o\




From the above sketch

w Leatnl
do 3
max
. X -
(2 Chart speed do, sec

3)y= d(tfz-tfl), inches

() M = (tf1~t1), inches

Combining these determined values into (A-8) yields:

alfets -
L7ty s 1 .y
W T "M %" Chart speed (A-9)
max
k A

With this value of maximum slope and A = Ei-% » enter TABLE I

or Figure 4 of Howard [5] or Figure 2-A of Howard [4] to obtain a

corresponding Ntu value.

MASS RATE OF FLOW:

The mass rate of flow i{s calculated from the method given in reference
[14]) with necessary rearrangements in order to reduce unnecessary hand
calculations and to gain the full benefits of Murdock [13]:
5 -3s0ka’F WAy (A-10)
where: K = flow coefficient, including velocity of

with C = orifice coefficient of

approach -/E:EE
discharge (obtained from [13]) and

A= ratio of orifice diameter to internal pipe (f in [¥])
diameter, dO/d

d° = orifice diameter, inches

Fa = thermal expansion factor

Y = expansion factor

Y = specific veight of fluid floving = i< with P in 1bg/fe?,
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R = 53.35 (ft-1bf)/(1bm-"R)

T = t(°F) + 459.7 = degrees Kankine (°R)
APo = Pressure drop across the orifice, inches HZO substituting
%1-. for vy, since the magnitude of the local acceleration of gravity, g,

is taken as being equal to the magnitude of standard acceleration of

gravity, 8.3 and for K. gives:

c
/1-g¥

8B 2 pyfe . B

‘/1_3;, 0o & o RT (a-11)

Inserting the mumerical value for R and converting P to uaits of

1b£/in? yields:

2 e, ¢ C—

s _ 589.81 Cdy F.Y a2 - {i(psia) (A-12)
__?1_?____
From Figure 38, reference [14]: Faz 1.00
From Figure 40b, reference [14): Y = 0,9985 = 1.0
The pressure, P, in (A-12), is hereafter referred to as P3
and is determined by the following relationship:
P, = (P, - P /13.6) 0.4912, 1bf/1n’ (a-13)
Where Patm is the atmospheric pressure in inches of mercury,
Po is the static pressure upstream of the orifice in inches
of nzo
13.6 inches of lle/tnch of mercury
0.4912 (lbf/i.nz)linch of mercury
The temperature, T, in (A-12) is the air temperature at the
orifice in degrees Rankine (‘!‘o):
T, =t  +459.7 (A-14)

Replacing P a and Y in (A~12) with their numerical values, the squation

reduces to the working fomm:

o




., 589.81¢Cd? B,
m= AP ¢ 7= lom/hr (A-15)
/1-g o
REYNOLDS NUMBER:
Reynolds number is defined as:
G
NR - (A-16)
where G is the mass flow velocity based on the free flow area, Ac.
G = B = k] (A"l?)
Ac pAfr
Substituting (A-17) into (A-16):
® DH
N = uA, ) (4-18)
4T m_ 1
But from (A-1) D, /p = — , therefore: N, = = (A-19)
H B R uAfr 8

Equation (A-19) shows that for a given matrix and mass flow rate the
Reynolds number is inversely proportional to the compactness. Substi-
tuting (A-4) into (A-19) yields the working equation:
Ny = % (A-20)
FANNING FRICTION FACTOR
The following sketch together with equation (A-21) desciibes the

flow system under consideration: [8]

] a b 2
| CLLLLLLLLLLLLLL |
, varssarredussatl :
o

> | EmmmmE | >
\ tmmrmrrh |
{ a i [

2 v

G

ﬁ-—z-‘-;# [(K +1-p ) - 2 - 1) + E—-.‘- (l-p -K ) "i“l (A-21)

entrance flow core exit
affect acceleration friction effect
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1 and vy ) v2 in the above

sketch as the pressure changes (for gas flow heat exchanger application)

It is important to note that V=V

from section 1 to a and b to 2, respectively, are very small relative
to the total pressure. Inasmuch as the testing is performed with air

at moderate temperatures and pressures, the perfect gas law is applicable

(P = pRT).
D A T
1 Ao B_Ac
Substituting v = > and recalling that LR °TL A from

equation (A-3), equation (A-21) solved for f for the iscthermal case
becomes:

P,+P, [ K K P.+P r
- AP 172 e\ 1721 1 2)._1.1. -
£ [fgc” ¢Z -T2 (pl +P2) 2 ‘Pz pl)(“" ]L (a-22)

pytp
vhere pm = 12 2 with the upstream values subscripted by 1 and the

downstream subscripted by 2. Rc is the entrance coefficient and Ke the
exit coefficient, and both are dependent on porosity, shape of the flow
cross section,and the matrix Reynolds number. Values of Kb and Ke

are obtained from Figures 5-3,-4, -5 of reference [8].

1f we consider an order of magnitude approximation, the first temm
in (A-22) is by far the greatest comtributor to friction factor for
small pressure differentials.

P, +P

The approximation, therefore, that J.z._l - P-z Plz l’2

reduces (A-22) to the following
£ - [chp. & - &)+ {;f (m’)] & (a-23)

London [11) points out that the relationships given here can be

recombined in such a manner so as to show that f is proportional to the

porosity cubed and inversely proportional to the compactness (f a pslﬂ).




COLBUR™__j FACTOR:

Colburn j factor is defined as:

2/3 2/3
J = NgyNpp e Gc. Yor ! (A-24)
P
Substituting (A~17) for G and multiplying by A/A yields
A
hA 2/3
R bal (a-25)
P
but #é- = N,
mc Tu
P
therefore:
A
2/3

j = NTu—ﬁ- Np, / (A-26)

Combining equations (A-1) and (A-3):
S
A 8L
thus:
2/31%
RN Ny (a-21)

It is apparent from equation (A-27) that the Colburn j factor
is directly proportional to porosity and inversely proportional to

compactness (jap/8).

HEAT TRANSFER POWER AND FLOW FRICTION POWER:

An evaluation of the heat transfer power versus flow friction
pover is of interest in that it i{s a measure of relative performance.
The heat transfer power per unit area per degrse tempezature

difference is [8):
x 2/30y
pr

Equation (A-28) with the properties evaluated at standard conditions

of dry air at 500°F and one atmosphere becomes:

"




L e

- i 2., -
h o.oz195(Dn) (Ng}) Btu/hr £t °F (A-29)

STD

where
cp = 0.2477 Btu/lbm °F

u = 0.0678 lbm/hr ft
p = 0.0413 1bm/ft3

Np, = 0.671

) 4
The flow friction power per unit area is [8]:

3
1yl (1 \ 3
ch o Dn R
When equation (A-30) is evaluated at standard conditions (u and p

values given above), the flow friction power per unit area at standard

conditions is:
N

3
3
-7/1 R 2
Egrp = 1+11 x 10 (—"u) f(——-moo) HP/ft

For comparison purposes the surface geometries were reduced to a

3

common hydraulic dismeter of D, = 2 x 107 ft.




APPENDIX B

DESCRIPTION OF EQUIPMENT

Heat transfer data was obtained utilizing the "single blow"

technique which consists briefly of monitoring the fluid temperature

response at the test matrix exit while subjecting the inlet to the test

matrix to a step change in fluid temperature.

Friction factor was determined from presgure drop data obtained

from static pressure taps located in the test section - one at inlet,

the other at the exit.

Necessary equipment to perform such an experiment falls into one

of the following categories:

(1)
(2)
3
(4)
(5)
(6)

D .1

Fluid source

Flow metering system
Temperature measuring system
Pressure measuring system
Fluid heater system

Matrix holder and test section cesing

Afr, the working fluid, was provided to the test appsratus by

connecting the rig to the inlet of a 39!?. multistage, Spencer Turbo-

Compressor rated for 550cfm operating on a 220 volt a.c. power supply.

FLOV METERING SYSTEM; (See Pigure 1)

The flow metering systes consisted of an ASME standard orifice

section constructed for d and d/2 pressure taps in a 3.08" inside diameter

metal tube. [14]). A wide flow range was obtained by utiliszing thin
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plate concentric orifices of throat diameter 2,310, 1.971, 1.232Z,
1.540, 0.462, and 0.308 inches respectively.

Control of the pressure drop across the orifice was maintained by
a gate valve downstream of the apparatus, ahead of the compressor inlet
- and -another gate valve on the compressor inlet. The blast gate on the
compressor discharge was pre-set so that the unit could not be operated

beyond the full load rating of the turbo.

TEMPERATURE MEASURING SYSTEM: (See Figure 1)

The majority of the temperatures were measured with iron-constantan
thermocouples. These thermocouples use iron for the positive conductor
and constantan for the negative conductor. Measuring Tl is a group of
five thermocouples in series, bound together and insulated from each
other by teflon tape and inserted in a 1/8" diameter aluminum tube to
serve as a radiation shield. A small aperture was cut in the .nserted
tube facing upstream. Tz and TA are five wire thermocouple grids, connec-
ted in series, mounted permanently in the test section casing. Ts is
a movable five wire series connected thermocouple grid located in the
matrix holder so that it is adjacent to the downstream side of the
matrix. The purpose of connecting the thermocouples in series was to
magnify the emf output sc that the instrument sensitivity to small
temperature changes would be enhanced. With Tz bucked against T‘, ic
is possible to determine the temperature uniformity across the matrix.

Tl versus 13 indicates the difference between upstream and downstremm
temperatures; thus, it is this combination which is used to record the
rate of change of upstream and dovnstream temperatures vwith time, result-

ing from the step change in fluid temperature upstream. This diffesrential
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is recorded on a Minneapolis-Honeywell "Brown" Recorder and serves as

the primary data for heat transfer evaluation of the matrix. The
recorder has variable chart speeds so that acceptable cooling curves for
maximum slope determination can be generated. This instrument has a span
adjustment which permits the span to be varied continuously from the
narrowest to the widest span desired from 0 to 55 millivolts. For the
work performed herein, the recorder was precalibrated for a 0 - 3 milli-
volt scale, This unit also has adjustable supression and damping adjust-
ment features. The damping adjustment provides a filter network for
removing a.c. strays, and provides correct damping so that neither underr
shoot nor overshoot in the response curves is experienced.

A copper constantan thermocouple was inserted into the duct just
ahead of the orifice to measure To' orifice temperature. This temperature
was read in millivolts on a Rubicon Company Portable Precision Potentio-
meter, converted to degrees Fshrenheit and recorded for each run.

A copper constantan thermocouple grid was inserted in place of 13
to determine the temperature distribution across the cross section during
initial check out of the apparatus. This thermocouple arrangement was
part of a special holder lined with balsa wood to provide a smooth,
continuous flow passage, vhich also containaed an impact tube used for

checking the velocity profiles (See Pigure 33).

PRESSURE MEASURING SYSTEM: (See FPigure 1)

Pressure taps are located upstresm and dowvnstream of the matrix
and on either side of the orifice. Each tep is connected to an approp-
riate manometer or draft gage vis Imperial Company "poly-flo" tubing.
Quick closing valves were installed at various positions in the line to

pemait {solation of sections and as a safety featurs.

67

e ot o, Al




T T

The following instruments were utilized:

(1) Meriam Instrument Company, O - 50" manometer

(2) Merism Instrument Company, -8" to +8" manometer

(3) Ellison Differential Direct Draft Gages, 0 - 6",0 - 8"

(4) Ellison Inclined Draft Gages, 0 - 0.5", 0 - 6",

(5) E. Vernon Hill and Company Type "C" Micromanometer,

0 - 1.25",

Any one of these instruments or a combination can be used to measure the
differential pressures of the orifice or matrix or the required static
pressures - upstream of matrix and upstream of the orifice. Cross check-

ing of the various instruments assured reliable operation.

FLUID HEATER SYSTEM: (See Figure 1)

The heater section is comprised of 28 nichrome wire heaters of
0.0031" diameter. The heater system was designed to elevate the air
temperature 20°F above ambient for a mass rate of flow of 1000 1b/hour.
The nichrome material was selected because it has high resistivity, low
thermal conductivity and specific heat, and has a very small time constant
so that it permits one to approach the idealized step function.

The wire heaters ars wound two to a bakelite frame, 1/32" batween
each vire, with 50 and 52 wires respectively to each heater on a framse.
Thuse heaters are connected fin parallel, then via a switch to a varisble
voltage bus. The heater frame and its electrical connections are apparent
in Figures 34 and 35.

A schematic wiring diagram for cne of the two heater complexes is
shown below. A totsl of 14 frames are wired ifn this fashion, theredy
putting all 28 heaters in parallel, permitting two to be switched on or

off at s time.




BusBar _

n Heater Selector
Selector Switch
Panel —J o—0—
2!
/ -
p Ls §
v -
220 Varae O;‘NH?:O?

The number of heaters in use decreases as flow rate decreases. The
necessary voltage variations are obtainable by a General Radic Company
Type W20HM "Variac" Autotransformer, 0 - 280 volt, 8 amp load from a

240 volt 50 - 60 cycle line.

MATRIX HOLDER AND TEST SECTION: (See Figures 31, 32, and 35)

The matrix holder and test section are made of polyethylene plastic.

The test section casing holds the T, and T, thermocouple grids permanently

z 4
mounted, as well as the upstream and downstream static pressure taps
required for determining friction factor. All parts were machined to
close tolerance to assure a snug fit fot-the matrix holder and to guaran-
tee good aligmment of the flow chamnel through the heater and tast sec-
tions. The flow channel 1s 3 - 3/16" x 3 - 3/16" and matrices of flow
lengths up to 3" may be tested. As mentioned previously under Temperature
Measuring System, the ‘1'3 thermocouple grid i{s located in the matrix holder.
Correct positioning of the test matrices in the flow chamnel is
ensured by using styrofoam plastic inserts. The inlet cone and stainless

steel 60 mesh screen employed provided a wiform velocity to the hsater

sectfon.
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APPENDIX C
PERFORATED NICKEL GEOMETRIC PROPERTIES

The material used in the perforated plate matrices was pure nickel,
electro-deposited sheet of integral structure manufactured by Perforated
Products, Incorporated. Types 160/40TV, 160/40Q, 50G, 125M and 125P
were utilized in the matrices - the first two of these having slotted
openings and the remaining three having round openings. A brief des-
cription of each of the aforementioned types as specified by the manu-~
facturer is set forth in Table C-1.

Inasmuch as the perfcrations in all cases were conical, the use of
the average slot length or average hole diameter was considered é
propos. Close examination of each of the different types revealed that
this average value was somewhat less than the dimensions specified by the
manufacturer in each case. In addition to the requirement for determin~
ing porosity of the plate, a correction for the increased longitudinal
conduction length due to the perforations as well as a correction to
the solid conduction cross-sectional area was performed. The following
idealized patterns for each type used, best illustrate these corrections.

60/40TV
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Frmr g e

Cross Hatched Area, Ach = (,0063)(.025) = ,0001575 in.2

Slotted Area, A , in A = (.0008)(.0155) = .0000124 in.2

Flate Porosity, the fraction of open or slotted area,

Lo tal
Ach A
sl

Solidity, s, is 1 - v =1 - e
ch

_ .0000124
.0001575

o

s =1 = 0.9212

T

.0063" = Iy

I

P '
l._ .oca;“'_.l
L, coniuction path length, = 0.0125 + 0.0063 = 0,0188"
i

L

. :0063 _
L~ otss - 0-3%1
1

The solid cross sectional area for heat conduction, Aki varies along
the path length., The area, Aki' selected was the cross sectional ares
between the slots normal to the flow direction, i.e.,

Ay, = (0-0095)(0.0022) = 0.0000209 1n.2
Just as L = ZL1 where L is the total matrix flow length and L1

is the flow length between two successive perforations; so does Lk - th
i

and Ak = EAki. in evaluating Ak’ a conduction area reduction ratio

: i

cross sectional area ’
therefore, Ak’ is the solid cross sectional area multiplied by 1 - §

i.e.,
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A = A (1-D)

. _ £:0155) (.0022)\ _ 2
1.6058 <:1 F 25 (0022)) ~ 0-6102 in
2

= 0,00424 ft.

Ay = (.0063)(.025) = 0001575 in.>
A = (.0019)(.0161) = .00003059 in.’ = .655
4 - - - 2
v = .1942 5 = A (1-0) = 002887 fe.
s = .8058
L = 0.3351, same as 160/40TV
L
YELY .0079"
»
d=.00%66
\ 0079 sin 60°
ACh ‘7, -.-.oom'
. 2 . Mole _ 00001052
Ay = (-00684)(.0079) = ,00005404 1n.® v Rt - 40003408 0.19466
Aoy {(.00366)2 - .00001052 in.% s = .8053

12




{96
.
Ly \’J L4 = 000 sin 60°

The equivalent conduction length, Ly , is computed in the case of
i 2xr

round perforations assuming the path to be as shown above, i.e., -1;-

where r, 1is the radial distance equal to one-half the center to center

distance. Thus

L - 22 0079) | gog27"

"3 2
and
Ly 00684
T = “Goe7 - .82709
1

Ak is determined as in the case of the slotted perforations.

[ = dism. of hole x plate thickness

center to center distance x plate thickness

. 00366) (,0016

" 1.0079) (.0016) - +%633

Therefors, A = A (1-0) = 1.1679 in.2 (1-.4633)

= .6268 in.2 = .00435 ft.>

7




0079 "~

A = (.00684)(.0079) = .00005404 in2

Ale ™t (.00291)% = .00000665

A, = A (1-7) = .00640 £e2

v = 0,12307
L
s = 5.8769 L . .82709
i
Lki = ,00827" r = 0.3684
506
[[]
0197"—
d=_ o38"
* -
\‘/ Ly = 097 sin 60
ﬁ\ = OO\M‘
RNV :
Ach = (,01706)(.0197) = ,00033608 ln.z
) 1 2 2 L
Lholc ] 2(.0138) = ,00014957 in. -[t - .82697
v = 44504 1
s = ,55496 t = .7005

Ly = -02063"
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APPENDIX D

SAMPLE CALCULATIONS

The following sample calculations are based on data obtained from

Run #1 for the modified parallel plate matrix constructed from the

160/40Q perforated nickel material. The basic geometric parameters are

illustrated in Appendix A.

Prior to the reduction of data, several fixed parameters must be

evaluated.

DIMENSIONS OF FINNED SHEETS: 3.9375" x 2.00" x .0016"
(before forming)

DIMENSIONS OF SPLITTER PLATES: 3.1875" x 2.00" x 0016"
NUMBER OF FINNED SHEETS: 102

NUMBER OF SPLITTER PLATES: 103

WEIGHT OF MATRIX: 311.0979 gms/453.6 gm/1lb = 0,68584 1b.

MATERIAL CONSTANTS:
k8 = 38,7 Btu/hr -°F - ft

Cy ™ 0.1065 Btu/1b - °F

o, = 0.321 1b/in> = 554.7 1b/ft>

PLANE SURFACE AREA, A%, = 02) (2 21‘2.9375+ .1873) _
2

20.1875 ft
HEAT TRANSFER AREA, A, = PLANE SURFACE AREA x SOLIDITY
A = A%s
= (20.1875) (.8058)

A= 16,2667 ft2

FRONTAL AREA, A, , = 3.141" x 3.1875"= 10.012 in?

fr

A

- 2
tr 0.06953 ft
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It has been shown in Appendix A; however, that this can be alternately
expressed as:

R
Dy=4yg

Inasmuch as the perforations have no effect on the hydraulic diameter

the value of B rather than B is used.

D, = 4 (27223:) ={0.002028 e}

Now we are in a position to reduce the data. The following
presentation outlines the steps required.

RECORDED DATA:

d = 2,310"
()
AP = 6,69 in H O T =69.9 °F
o 2 0
APm = 10,15 in HZO ' Patm- 30.140 in Hg.
P = 10,65 in 1,0 Chart Speed = 4 in/sec.
. 2,310
Po = 20.80 in HZO B=d /d 3.08 0.75

DETERMINATION OF MASS RATE OF FLOW: (See Appendix A)

P
o 589,81 Fa ¥ AP x =2
A-e ° T,

wvhere: C = C + AC L ] fron refetcncc [13]
n(d )

P3 - (Patm - P°/13 .6) 0 4912; 'l'o - to (°F) +459.7
Y = 1,0 Fig. 40b of Reference [14)
r. = 1.0 Fig. 30 of Reference [14]
Por R, = 0.75 and d = 3,08", C, = 0.60691 and AC = 0.03839, respectively.

P, = 30,140 ~ x 0.4912 = 14.Q537 pst

29.80
3 13.6

n

e e 2 rn e et e




SOLID MATRIX CROSS SECTIONAL AREA, As’

A.s = 102 x 3.9375" x .0016" + 103 x 3.1875" x .0016"

= 1.1679 in?

2

As = 0.00811 ft

FREE FLOW AREA, Ac’ = FRONTAL AREA - SOLID CROSS SECTIONAL AREA

Ac = Afr B As

2

Ac = 0.06142 ft

CONDUCTION AREA CORRECTED FOR EFFECTS OF PERFORATIONS, Ak’

Ak - As (1-7) where 7 is the conduction 2rea reduction
ratio (See Appendix C).

= 0.00811 (1-0.644)

A = 0.00288 fe2

MATRIX FLOW VOID VOLUME _ Vm-Vs _ 1 - Vs
MATRIX VOLUME Va Vi

0.00135 _

- TOTAL HEAT TRANSFER AREA
COMPACTNESS, B MATRIX VOLUME

_A _ 16,2667 _
Vm - 0.01159

POROSITY, p, =

1403.75 £e2/£t3

Note that B includes the effect of area reduction due to perforations.

B for an unperforated surface would therefore simply be the plane

surface area divided by the matrix volume.

A* 20,1875

2,..3
Ve " 0.01159 - 1742.1 £t°/ft

THE EYDRAULIC DIAMETER, D, = 4r, = 4 _FLOW CROSS SECTIONAL

WETTED PERIMETER

To = 69.0 + 459.7 = 528.7 °R
2

;1 - (0.75)i .

& = 1605.242 C

assume C = 00,6000

then R = 963.145 lbm/hr
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104 ~(4)(12)h

C=¢c,+4aC Npca ) vhere Mo i5) * 73.1416) (3.08)n
0

[ 4
= 4,961 =
u

4 is evaluated at temperature to by means of the linear approxima-

tion u = 0.0395 + 0.64167 x 102 t, = 0.0395 + 0.64167 x 107%(69.0)

= 0.04392 1bm/hr ft

therefore,

10%) (0.04392

C = 0.6104
This value of C is compared with the assumed value of C and
successive iterations are performed until the two values are equal.
The iterative process shows that a value of C = 0,6172 satisfies

this requirement and thus

@ = 990,756 lbm/hr

MATRIX REYNOLDS NUMBERS:

Two values for Reynolds number are required, one for the isothermal
flow friction fector evaluation and second for the hoaf transfer
evaluation. The two values differ only in so far as the difference
in the absolute viscosities. Mg is evaluated at orifice temperature
(to) vhereas "y (heat transfer) is evaluated at average bulk fluid

temperature which is assumed to be at t, + 10°r.

o ud (a)—l(neso.ne)_ 978,54
Rt " A, " (16.2667)(.04392)

)7 S £,04392) _
"In A"a n‘f “n 924,54 (. 04456) 911.23
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CONDUCTION PARAMETER:
kA o _ (38.7)(0.00288)

A = The = (2712)(990.756) (.26) - 0.00282
A = L = 0.3351 from Appendix C.
K
therefore

Ak = (.00282) (.3351) = | 0.000944

MAXIMUM SLOPE:

The slope of the cooling curve was determined by the method
prescribed in Appendix A from Figure 36. Slopes were determined
for each of the curves and the averagg value was used.

s

MAXTMUM SLOPE = =% (%] = =% x SLOPE x CHART SPEED
max

E‘ = W = (0.68584 1b)(0.1065 Btu/lbm °F) = 0.07304
C= ﬁcp = (990.756 1b/hr) (0.24 Btu/lbm *F)(1 hr/3600 sec) = 0,06605.
SLOPE = 0.14357 (See Figure 36)

vhence,

MAXIMUM SLOPE = (’8223’;) (0.14357) (4) = |0.63507

COLBURN | FACTOR:
Enter Table 1 or Figure 4 of Howard [S5] or Figure 2-A of Howard

[4) with the values of A\, and MAXIMUM SLOPE to determine NT“ = 4,05.

k
Linear interpolation from this table is sufficient.

A

N Sy 23
J=Npu % ¥

2/3 _ 6.8017 - 0.82353 x 10™% ¢

PR o
therefore

from Appendix A,

N using a linear approximation;

j = (4.05) {%ggg%%%} (.7960) = 10.01217

PANNING FRICTION PACTOR:
From Appendix A, the friction factor is:

AP T,
a2 Py qety] B
fa [zgcp_ &2 - (xc-:.\ 2 (149 )] -




P = 30.140 in Hg x 0.4912 22— = 14,8048 pst

atm in Hg
P, = 10.65 in H)0 x 5.204 TE8E— = 55.42 psf = 0.3849 psi
Py = 10.15 10 B0 x 5.204 3255 = 52.82 pof 0.3668 psi
P, =P, - P =146.8048 - 03849 = 14,4199 pst
P, = B, - OB = 14,4199 - 0.3668 = 14,0531 psi
P.+P
1*P)
Pmean = 2 = 14,2365 psi
(144)
_ Toean _ (16.2365) (144) _ 3
Fmean = R(t_:59.7) - (53.35)(528.7) - O-07%68 1bm/tt
m_ _ 990.756 _ 2 2
6 = & = ooeta - 161%0.84 Toa/hr £e” = 4,481 lba/see e
H _ 0,000507
8« 2300307 . 0.00304

Kc- 0.48 and Ke = -0,33 from Figure 5-3 of reference [8].

(14pd) = 1 + (0.8834)2 = 1.7804

2) (32.2)(0.07268) (52.82) _ 2668
£- (4.481) (0.48-0.33) - T35 (1.7004)]:1

(0.00304)
= (12.3126 - 0.150 - 0,04587) (0.00304)

f = 0.03686

2/3

The thermal properties, u and an » Vere obtained by linsar

interpolation of data from reference [3). The values of k. and <,
were obtained directly from veferences [2] and {1) for nickel and

stainless steel respectively.
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