AD NUMBER

| AD466351 |

LIMITATION CHANGES

TO:
Approved for public release; distribution is unlimited.

FROM:
Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; 25 FEB 1965. Other requests shall be referred to Defense Advanced Research Projects Agency, 675 North Randolph Street, Arlington, VA 22203-2114.

AUTHORITY

ARPA ltr, 6 Nov 1972
X-RAY TRANSPORT - I

(SCATTERING)

KN-65-62(R) 25 February 1965
BEST
AVAILABLE COPY
NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
X-RAY TRANSPORT - I

(SCATTERING)

KN-65-62(R) 25 February 1965

Wm. J. Veigele

SUBMITTED TO: Advanced Research Projects Agency
Order Number 343-62
Project Code Number 7200
Contract SD-135
As the temperature of thermal sources is increased, a region \((kT > 2 \text{ kev})\) is encountered in which transport of the emitted photon (of the order of \(10^{-5} \text{ kev}\)) through low and medium atomic number materials is determined by other than photoelectric absorption only. Recent Kaman Nuclear reports include pertinent discussions, but it was considered useful to generalize and extend this work and to collect working equations and graphs under one cover. This paper briefly discusses the phenomenology of Compton and Rayleigh scattering, establishes working equations, provides tables of scattering data, displays graphs of equations and data in the photon energy range from one to one-thousand kev, discusses the effect of scattering on x-ray transport, and suggests general methods of solution of the multiple scattering problem.
ABSTRACT

Compton and Rayleigh scattering for x-rays in the range of 10 to 1000 kev is described, and equations, data, and graphs are presented. Effects of scattering on transport are discussed, and methods of solving the multiple scattering transport problem are suggested.
LIST OF SYMBOLS

E recoil electron kinetic energy
h Planck's constant
B_e electron binding energy
\theta angle between incident and scattered photon directions
\phi angle between incident photon and recoil electron
m_0 electron rest mass
c speed of light
\lambda_0 incident photon wavelength
\lambda' scattered photon wavelength
\nu_0 incident photon frequency
\nu' scattered photon frequency
\alpha \frac{h \nu_0}{m_0 c^2}
\alpha' \frac{h \nu'}{m_0 c^2}
d(e\sigma) differential collision cross section per electron
d(e\sigma_a) differential scattering cross section per electron
d(e\sigma_a) differential absorption cross section per electron
d(a\sigma) differential collision cross section per atom
d(a\sigma_a) differential scattering cross section per atom
d(a\sigma_a) differential absorption cross section per atom
\theta_l lower limit for \theta
\theta_u upper limit for \theta
e \sigma total (average) collision cross section per electron
LIST OF SYMBOLS (Continued)

\(e \sigma_s \) total (average) scattering cross section per electron
\(e \sigma_a \) total (average) absorption cross section per electron
\(a \sigma \) total (average) collision cross section per atom
\(a \sigma_s \) total (average) scattering cross section per atom
\(a \sigma_a \) total (average) absorption cross section per atom
\(d(e \sigma_{\text{incoh}}) \) differential incoherent collision cross section per electron
\(S \) incoherent scattering function
\(v \) incoherent scattering function parameter
\(F \) coherent atomic structure factor
\(u \) coherent atomic structure factor parameter
\(d(a \sigma_{\text{coh}}) \) differential coherent scattering cross section per atom
\(B \) build-up factor
\(a_o \) Bohr radius = \(\hbar^2/4\pi^2me^2 \)
\(e \) electronic charge
\(\rho \) material density
\(d \) material dimension
LIST OF FIGURES

1. Domains of Dominance of X-ray Attenuation Mechanisms
2. Compton Scattering of a Photon by an Electron
3. Scattered Photon Energy (Dependence on Scattering Angle and Incident Energy)
4. Recoil Electron Direction (Dependence on Scattering Angle and Incident Energy)
5. Recoil Electron Kinetic Energy (Dependence on Recoil Direction and Incident Energy)
6. Klein-Nishina Cross Sections (Dependence on Incident Energy)
7. Collision Differential Cross Section (Dependence on Scattering Angle and Incident Energy). (The probability per incident photon per electron/cm² of material that the scattered photon lies in dθ at θ.)
8. Collision cross section for the Number of Photons Scattered into the Interval θ_s ≤ θ ≤ θ_u (Dependence on Scattering Angle and Incident Energy)
9 (a, b) Number of Photons Scattered in an Energy Increment (Dependence on Incident Energy)
10. Incoherent Scattering Function from the Thomas-Fermi Model
11. Coherent Atomic Structure Factor from the Thomas-Fermi Model
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Free Electron Klein-Nishina and Rayleigh Cross Sections and Average Energies</td>
<td>9</td>
</tr>
</tbody>
</table>

vii
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>ii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>List of Symbols</td>
<td>iv</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vi</td>
</tr>
<tr>
<td>List of Tables</td>
<td>vii</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. Compton Free Electron Inelastic Scattering Relationships</td>
<td>1</td>
</tr>
<tr>
<td>3. Compton Free Electron Inelastic Scattering Cross Sections</td>
<td>3</td>
</tr>
<tr>
<td>4. Compton Bound Electron Inelastic Scattering</td>
<td>10</td>
</tr>
<tr>
<td>5. Rayleigh Elastic Scattering</td>
<td>11</td>
</tr>
<tr>
<td>6. Photon Transport, Build-up, and Distribution</td>
<td>12</td>
</tr>
<tr>
<td>Footnotes</td>
<td>14</td>
</tr>
</tbody>
</table>
1. **Introduction**

In the transport of x-rays through matter, there are three dominant mechanisms of interaction. These are the photoelectric effect, the Compton effect, and pair production, having domains of relative dominance as shown in Figure 1.

The region of interest here is \(10 < \nu_0 < 1000\) kev where pair production may be neglected. Other less dominant effects have been shown to be unimportant except for the Rayleigh effect which will be considered below. Also, the Compton effect is discussed in terms of its three components: (1) absorption, (2) inelastic scattering from free electrons, and (3) inelastic scattering from bound electrons.

2. **Compton Free Electron Inelastic Scattering Relationships**

Assuming a stationary electron, the recoil electron kinetic energy \(E\) greater than the electron binding energy \(B_e\), and applying the laws of conservation of relativistic energy and momentum to the situation in Figure 2.

One obtains for the scattered photon wavelength shift

\[
\lambda' - \lambda_0 = \left(\frac{h}{m_0 c}\right) (1 - \cos \theta)
\]

(1)
COMPTON SCATTERING
(FREE ELECTRON – INCOHERENT)

\[\lambda' - \lambda = \left(\frac{h}{m_e c} \right) (1 - \cos \theta) \]

FIGURE 2
COMPTON SCATTERING OF A PHOTON BY AN ELECTRON
and for the scattered photon energy, using $\alpha = \frac{h\nu_0}{m_0c^2}$,

$$\nu' = \nu_0\left[1 + \alpha(1 - \cos \theta)\right]^{-1}$$

(2)

which is plotted in Figure 3 for $10 < \nu_0 < 1000$ kev. Equation 2 determines the energy ν' of a photon of incident energy ν_0 scattered at an angle θ.

The recoil electron direction, ϕ, is related to θ and α by

$$\cot \phi = (1 + \alpha) \tan \left(\frac{\theta}{2}\right)$$

(3)

which is shown in Figure 4.

Recoil electron kinetic energy is given by

$$E = \nu_0 - \nu' = \nu_0\alpha(1 - \cos \theta) / \left[1 + \alpha(1 - \cos \theta)\right]$$

(4)

and is plotted in Figure 5. This may be expressed in terms of ϕ using Equation (3).
Figure 5: Recoil Electron Kinetic Energy, E, in kev

- ϕ: 0°, 10°, 30°, 45°, 60°, 70°, 80°

- $h \nu_0$ (kev)

- Kinetic energy scale: 0.01, 0.10, 1.0, 10.0, 100.0, 1000.0
3. Compton Free Electron Inelastic Scattering Cross Sections

When photons collide with electrons, the number of photons scattered in a particular direction may be described by a differential collision cross section per electron

\[d(\sigma) = \frac{\text{energy scattered/sec (erg/sec-electron)}}{\text{incident intensity (erg/cm}^2\text{-sec)}}. \]

(5)

The amount of energy scattered in a particular direction may be given by a differential scattering cross section per electron

\[d(\sigma_s) = \frac{\text{energy scattered/sec (erg/sec-electron)}}{\text{incident intensity (erg/cm}^2\text{-sec)}}. \]

(6)

and the amount of energy absorbed by the electron may be given by the differential absorption cross section per electron

\[d(\sigma_a) = \frac{\text{energy absorbed/sec (erg/sec-electron)}}{\text{incident intensity (erg/cm}^2\text{-sec)}}. \]

(7)

These are related as follows [and shown in Figure (6)]:

\[d(\sigma) = d(\sigma_s) + d(\sigma_a), \]

(8)

\[d(\sigma_s) = \frac{\nu}{\nu_0} d(\sigma), \]

(9)

and
FIGURE 6
KLEIN – NISHINA CROSS SECTIONS, DEPENDENCE ON INCIDENT ENERGY
The differential cross sections per atom are obtained by multiplying by the atomic number \(Z \) of the material, e.g.,

\[
\frac{d(\sigma_a)}{d(\sigma)} = Z \frac{d(\sigma)}{d(\sigma)}.
\]

The explicit collision cross section for incident unpolarized radiation derived by Klein and Nishina is given by

\[
\frac{dL}{d\Omega} = \frac{r}{\sin \theta} \frac{d\Omega}{d\Omega} \left[\frac{1}{1 + \alpha(1 - \cos \theta)^2} \right] \left[1 + \frac{\alpha^2(1 - \cos^2 \theta)}{1 + \cos^2 \theta} \right] \]

where \(r = e^2/m_0 c^2 = 2.818 \times 10^{-13} \) cm and \(d\Omega \) = differential element of solid angle at \(\theta \) into which photons are scattered. This equation is known to agree well with experiments up to \(\alpha \simeq 600 \). For small \(\alpha \) it reduces to the Thomson scattering equation. From Equations (8), (9), (10), and (11), one may obtain explicit forms for \(d(\sigma_a) \), \(d(\sigma_a^d) \), \(d(\sigma_a^s) \), and \(d(\sigma_a^s) \). From

\[
d\Omega = 2\pi \sin \theta \ d\theta
\]

we have
\[
d(\varepsilon\sigma)/d\theta = 2\pi \sin \theta \frac{d(\varepsilon\sigma)}{d\Omega},
\]

which gives the probability per incident photon per electron per cm\(^2\) of material that the scattered photon will be directed between \(\theta\) and \(\theta + d\theta\). This is shown in Figure 7.

Using Equations (3) and (13), the number of electrons recoiled into \(d\phi\) at \(\phi\) may be written

\[
d(\varepsilon\sigma)/d\phi = [d(\varepsilon\sigma)/d\Omega] \left[\frac{2\pi(1 + \cos \theta) \sin \phi}{(1 + \alpha) \sin^2 \phi} \right].
\]

Cross sections giving the probability of an event occurring so that a photon is scattered into a restricted angular region may be determined from the integrals of the differential cross sections; e.g.,

\[
e\sigma\left(\theta_L \leq \theta \leq \theta_U\right) = \int_{\theta_L}^{\theta_U} [d(\varepsilon\sigma)/d\Omega] d\Omega.
\]

Values\(^1\) for \((0 < \theta < \theta_U)\) are plotted in Figure 8, from which much useful information may be obtained, such as:

1. the number of photons scattered into the interval \(\theta_1 \leq \theta \leq \theta_2\) corresponds to \(e\sigma(\theta_2) - e\sigma(\theta_1)\),

2. the collision cross section for forward scattering is \(e\sigma(\leq \pi/2)\) and for backward scattering is \(e\sigma(\leq \pi) - e\sigma(\leq \pi/2)\).
FIGURE 8

$e^\delta(\leq \theta)$ IN 10^{-5} cm2/ELECTRON

$\hbar \nu_0$ (kev)
(3) the number of recoil electrons scattered into $\phi_1 \leq \phi \leq \phi_2$
is read from Figure 8 after using Equation (3), or Figure 4,

(4) the number of photons scattered between θ_1 and θ_2 is the
number of electrons scattered between ϕ_1 and ϕ_2 where the
angles are related by Equation (3), and

(5) the fraction of scattered photons with more than an arbitrary energy is obtained in conjunction with Figure 3.
For example, what fraction of 100 kev photons have energy
greater than 80 kev? From Figure 3, $\theta \approx 100^0$; and from
Figure 8, $e\sigma(\leq 100^0) = 320$ and $e\sigma(\leq 180^0) = 500$; thus, the
fraction is $320/500 = .64$.

One also may obtain, from Equation (16), the average (total
over-all scattering angles) collision cross section per elec-
tron, which is the probability of removal of a photon from a
collimated beam while passing through an absorber with one
electron/cm2,

$$e\sigma = \int_0^{\pi} d(e\sigma)$$

$$= 2\pi r_o^2 \left[\frac{1 + \alpha}{\alpha^2} \left[\frac{2(1 + \alpha)}{1 + 2\alpha} - \frac{\ln(1 + 2\alpha)}{\alpha} \right] + \frac{\ln(1 + 2\alpha)}{2\alpha} - \frac{(1 + 3\alpha)}{(1 + 2\alpha)^2} \right]$$ (17)

which, for $\alpha \ll 1$ becomes
\[
e_\sigma \approx (3\pi r_o^2/3) \left[1 - 2\alpha + (26\alpha^2/5) - (133\alpha^3/10) + \frac{114\alpha^4}{35} + \ldots \right]. \tag{18}
\]

For \(\alpha \lesssim 0.2 \) terms up to \(\alpha^3 \) are sufficient for 5% accuracy.

For \(\alpha \gg 1 \), Equation (17) becomes

\[
e_\sigma \approx \pi r_o^2 \left(1 + 2 \ln 2\alpha / 2 \alpha \right). \tag{19}
\]

Similarly,

\[
e_\sigma_s = \pi r_o^2 \left[\frac{\ln(1 + 2\alpha)}{\alpha^3} + \frac{2(1 + \alpha) (2\alpha^2 - 2\alpha - 1)}{\alpha^2 (1 + 2\alpha)^2} + \frac{8\alpha^2}{3(1 + 2\alpha)^3} \right]. \tag{20}
\]

From these, one may obtain the average energy per scattered photon, \((h\nu')_{av} \), as the energy scattered in all collisions divided by the number of collisions; i.e.,

\[
(h\nu')_{av} = (h\nu_o) \frac{e_\sigma_s}{e_\sigma}. \tag{21}
\]

Using Equations (21) and (4), one obtains the average energy of the recoil electrons, \(E_{av} \).

Also, one may write, using Equations (12), (13), and (2), the number of photons scattered into \(dh\nu' \) at \(h\nu' \) as

\[
\frac{d(e_\sigma)}{dh\nu'} = \frac{d(e_\sigma)}{d\Omega} \frac{d\Omega}{dh\nu'}
\]
or in terms of α,

$$d(e \sigma)/d\alpha' = (\pi r_0^2/\alpha^2) \left\{ (\alpha/\alpha') + (\alpha'/\alpha) - 2[(1/\alpha')-(1/\alpha)]
ight\} + [(1/\alpha')-(1/\alpha)]^2$$

(22)

which is plotted in Figure (9).

Various cross sections per electron and average energies are listed below in Table I.
\[\frac{d\sigma}{d\alpha'} \text{ (cm.) / ELECTRON} \]

\[10^{-21} \]

\[10^{-22} \]

\[10^{-23} \]

\[10^{-24} \]

\[10^{-25} \]

- 500 KEV
- 700 KEV
- 1000 KEV

\[h \nu_0 \]

\[\alpha' \text{ (INCREASES TO THE LEFT)} \]

FIGURE 9 (b)
Table I
FREE ELECTRON KLEIN-NISHINA AND RAYLEIGH CROSS SECTIONS AND AVERAGE ENERGIES

<table>
<thead>
<tr>
<th>(kev)</th>
<th>e^σ</th>
<th>e^σ_s</th>
<th>e^σ_a</th>
<th>R^σ</th>
<th>(kev) n'_{av}</th>
<th>(kev) E_{av}</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>640.5</td>
<td>628.5</td>
<td>12.0</td>
<td>910.0</td>
<td>9.8</td>
<td>0.20</td>
</tr>
<tr>
<td>15</td>
<td>629.0</td>
<td>611.6</td>
<td>17.4</td>
<td>476.0</td>
<td>14.6</td>
<td>0.40</td>
</tr>
<tr>
<td>20</td>
<td>618.0</td>
<td>595.7</td>
<td>22.3</td>
<td>303.0</td>
<td>19.3</td>
<td>0.70</td>
</tr>
<tr>
<td>30</td>
<td>597.6</td>
<td>566.5</td>
<td>31.1</td>
<td>125.0</td>
<td>28.4</td>
<td>1.60</td>
</tr>
<tr>
<td>40</td>
<td>578.7</td>
<td>540.1</td>
<td>38.6</td>
<td>74.6</td>
<td>37.3</td>
<td>2.70</td>
</tr>
<tr>
<td>50</td>
<td>561.5</td>
<td>516.2</td>
<td>45.3</td>
<td>38.0</td>
<td>46.0</td>
<td>4.00</td>
</tr>
<tr>
<td>60</td>
<td>545.7</td>
<td>494.5</td>
<td>51.2</td>
<td>28.5</td>
<td>54.4</td>
<td>5.60</td>
</tr>
<tr>
<td>80</td>
<td>517.3</td>
<td>456.7</td>
<td>60.6</td>
<td>19.0</td>
<td>70.6</td>
<td>9.40</td>
</tr>
<tr>
<td>100</td>
<td>492.8</td>
<td>424.8</td>
<td>68.0</td>
<td>16.3</td>
<td>86.2</td>
<td>13.8</td>
</tr>
<tr>
<td>150</td>
<td>443.6</td>
<td>363.1</td>
<td>80.5</td>
<td>122.8</td>
<td>27.2</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>406.5</td>
<td>318.6</td>
<td>87.9</td>
<td>156.8</td>
<td>43.2</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>353.5</td>
<td>258.2</td>
<td>95.3</td>
<td>219.1</td>
<td>80.9</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>316.7</td>
<td>218.6</td>
<td>98.1</td>
<td>276.0</td>
<td>124.</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>289.7</td>
<td>190.5</td>
<td>99.2</td>
<td>329.0</td>
<td>171.</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>267.5</td>
<td>169.2</td>
<td>98.3</td>
<td>379.0</td>
<td>221.</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>235.0</td>
<td>138.9</td>
<td>96.1</td>
<td>473.0</td>
<td>327.</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>211.2</td>
<td>118.3</td>
<td>92.9</td>
<td>560.0</td>
<td>440.</td>
<td></td>
</tr>
</tbody>
</table>
4. Compton Bound Electron Inelastic Scattering

From Table I., we see that for low $h\nu_0$ the average electron recoil energy becomes of the order of E_e, and the free electron assumption of the Compton effect derivation may be violated. This and the initial momentum an electron has in an atom results in a small shift of $h\nu^\prime$ and $(\lambda^\prime - \lambda_0)$ which we will neglect. More importantly, electron binding affects the differential collision cross section because it introduces a probability that the electron will not be recoiled from the atom but excited to a different bound energy level instead. The mutually independent probabilities of collision, and either recoil or excitation results in a total differential incoherent collision cross section given by

$$\frac{d(e\sigma_{\text{incoh}})}{d\Omega} = \left[\frac{d(e\sigma)}{d\Omega} \right] S$$ \hspace{1cm} (23)

where $S = S(h\nu_0, Z, \theta)$ is the incoherent scattering function5,6 which may be expressed7 as a function of a parameter v where

$$v = \left(\frac{2}{3} \right) \left(\frac{137/2^{2/3}}{Z^{2/3}} \right) (\alpha_0) \sin(\theta/2) = \left(\frac{4\pi}{3} \right) (\alpha_0/\lambda) (1/2^{2/3}) \sin(\theta/2).$$ \hspace{1cm} (24)

Of the various approaches to an analytical expression for S, we select here that derived5,6 on the Thomas-Fermi atomic model plotted in Figure 10 and given by the empirical equation
\[S = 1 - e^{-4.875v^{0.8559}} \] (35)

to within 10% accuracy.

5. Rayleigh Elastic Scattering

For sufficiently small incident photon energy compared to the electron's binding energy there is too little energy transferred to the electron to produce recoil or excitation. The entire atom absorbs the photon momentum and the scattered radiation has no wavelength shift. All electrons in an atom act similarly so scattering from electrons in the same atom is in phase or coherent and in the low energy limit becomes classical Thomson scattering. (If many atoms are in an ordered arrangement, the scattering is called Bragg reflection.) This may be treated like Compton bound electron scattering by modifying the Thomson differential coherent scattering (no absorption) cross section by an atomic structure factor, getting

\[d\sigma_{\text{coh}} \frac{d\Omega}{d\Omega} = (r_0^2/2) (1 + \cos^2 \theta) F^2, \] (26)

where \(F = F(h\nu, Z, \theta) = F(u) \) and

\[u = 2(137/r^{1/3}) \alpha \sin (\theta/2) = 4\pi(a_\alpha \lambda)(1/Z^{1/3}) \sin(\theta/2). \] (27)
Figure 11 shows F/Z taken from Nelms and Oppenheim, from which the empirical expression

$$F/Z = e^{-1.488u^{0.3884}} (1 + u^{-0.2998}) + 3.266 \times 10^{-3}$$

(28)

has been computed accurate to within 10%.

6. **Photon Transport, Build-Up, and Distribution**

Transport through a medium may result in an accumulation of primary direct photons and secondary scattered photons at a point of interest. The ratio of the number of primary plus secondary photons to the number of primary photons at a point is called the build-up factor B.

Upon Compton scattering, the scattered photon has lower energy and is more susceptible to further "energy loss" by additional Compton scattering or photoelectric absorption. A Rayleigh scattered photon has a large probability of being Compton scattered or photoelectrically absorbed upon further collision. An increase in the probability of collisions by an increase in dimension or density of the transport material, therefore, degrades the energy spectrum to lower values, spreads the time of arrival of photons, distributes the directions of arrival of photons, and changes B.
\[u = 2 \left(\frac{137}{2} \frac{\alpha}{Z^2} \right) \sin \left(\frac{\theta}{2} \right) \]
If the transport medium geometry (actually distance multiplied by density, ρd) is small compared to photon mean free paths or if only narrow photon beams are considered, then for attenuation the usual exponential expression is used with the attenuation coefficient consisting of $\sigma^P + \sigma^O + \sigma^R$ with σ^C modified for bound electrons. For energy deposition the absorption coefficient $\sigma^P + \sigma_a^C$ with σ_a^C modified for bound electrons is used. In either case, corrections for fluorescence in high Z materials and Bremsstrahlung at high energies should be considered.

When the transport medium ρd is of the order of mean free paths or when the medium has finite thickness but infinite extent so that only a few successive scatterings occur, one may apply the scattering equations the appropriate number of times using the Compton collision or absorption coefficients for attenuation or deposition, respectively. However, if the mean free path of the scattered photon is less than ρd, the probability of its being absorbed before escaping the medium is increased so that for energy deposition the absorption coefficient is only a lower limit while the attenuation coefficient is an upper limit. For ρd much larger than the collision mean free path of the scattered photon, the attenuation coefficient would be used for energy deposition as well as attenuation.
When ϕd is sufficiently large for multiple scattering to occur, simple multiple application of the above equations becomes inordinately complicated and solutions to the problem of photon build-up and distribution must be obtained from other methods such as a statistical study of scattering of many photons or the more general transport theory.

Inherent difficulties and inaccuracies in approximate solutions of the general transport theory limit its practical usefulness, therefore, statistical methods such as the Kaman Nuclear Monte Carlo Gamma Ray Transport Code15 written for the IBM 7090 Computer and recently adapted for x-rays12 are more popular for practical calculations of photon build-up and distribution resulting from scattering.

A report describing the Monte Carlo computations and including results for air transport, is in preparation.
FOOTNOTES

1. For a comprehensive discussion, see: R. D. Evans, Encyclopaedia of Physics, XXXIV, S. Flugge, Editor, Springer-Verlag, Berlin, 1958.

2. Wm. J. Veigele, "Influence of Scattering on X-Ray Transport in Air" (U), Kaman Nuclear, KN-692-64-27(QPR), Chapter 3, Colorado Springs, Colorado, 30 November 1964. SRD.

14. For a general and comprehensive discussion, see: U. Fano, L. V. Spencer, and M. J. Berger, Encyclopaedia of Physics, XXXVIII/2, S. Flugge, Editor (Springer-Verlag, Berlin, 1959).