UNCLASSIFIED

AD NUMBER
AD465948

NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution authorized to U.S. Gov’t. agencies and their contractors; Administrative/Operational Use; APR 1965. Other requests shall be referred to Air Force Flight Dynamics Lab., Wright-Patterson AFB, OH 45433.

AUTHORITY
AFFDL ltr, 6 Apr 1972

THIS PAGE IS UNCLASSIFIED
CATALYTIC REDUCTION OF CARBON DIOXIDE TO METHANE AND WATER

G. A. REMUS, et al

GENERAL AMERICAN TRANSPORTATION CORPORATION

TECHNICAL REPORT AFFDL-TR-65-12

APRIL 1965
NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any right or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified requesters may obtain copies of this report from the Defense Documentation Center.

Foreign announcement and dissemination of this report is not authorized.

The distribution of this report is limited because the report contains technology identifiable with items on the strategic embargo lists excluded from export or re-export under U. S. Export Control Act of 1949 (63 STAT. 7) as amended (50 U. S. C. App. 2020.2031) as implemented by AFR 400-10.

Copies of this report should not be returned to the Research and Technology Division unless return is required by security considerations, contractual obligations, or notice on a specific document.
CATALYTIC REDUCTION OF CARBON DIOXIDE TO METHANE AND WATER

G. A. REMUS, et al

GENERAL AMERICAN TRANSPORTATION CORPORATION
FOREWORD

This report summarizes the work accomplished under contract AF 33(615)-1219, for research on catalytic reduction of carbon dioxide to methane and water. This work was performed under project 6146, "Atmosphere and Thermal Control", and task 6146-32, "Oxygen Recovery From Carbon Dioxide." The effort was initiated on 6 January 1964 and completed 31 December 1964, by the NRD Division of the General American Transportation Corporation, 7501 Natchez Avenue, Niles, Illinois 60648. The work was monitored by Lt. Derry W. Marshall, Environmental Control Branch (FDFE), Air Force Flight Dynamics Laboratory, Research and Technology Division, Wright-Patterson Air Force Base, Ohio 45433.

The work reported herein was performed by personnel within the Chemical and Biological Research Section of NRD's Environmental Systems Group, under the direction of Mr. R. A. Bambenek and supervision of Mr. J. D. Zeff. Mr. G. A. Remus served as project engineer with the assistance of Mr. R. W. Ferris for the preparation and testing of catalysts.

This report has been reviewed and is approved.

T. J. Baker
Assistant for R & T
Vehicle Equipment Division

Manuscript released by the author 15 January 1965 for publication as an RTD Technical Documentary Report.
ABSTRACT

A literature search was conducted to determine suitable candidate catalysts for the Sabatier reaction. A test system was designed and fabricated for evaluating the candidate catalysts material to select an optimum catalyst. The system included a reactor sized to handle 2.5 lbs of CO₂ per day, equivalent to one-man output. Three smaller reactors were also used to test more accurately the effects of changes in temperature, flow and catalyst configuration.

The optimum catalyst was determined to be ruthenium metal powder, having a bulk density of 85 lb/ft³, and an average particle diameter of 0.002-0.003 inch. The minimum temperature required with this catalyst to provide over 99% conversion of CO₂ was 357°F at one atmosphere, a H₂:CO₂ ratio of 4.4, and a space velocity of 310 hr⁻¹. During a thirty-day duration test with ruthenium metal powder CO₂ conversion remained essentially at 99%, and the catalyst remained unchanged. A short period of intermittent injection of H₂S gas into the feed gas line did not affect performance. Operation at reduced pressures down to 5 psia caused only a 1-2% decrease in CO₂ conversion with all other parameters held constant.

The theoretical equilibrium reaction limitations are discussed in the report. Various laboratory catalyst preparations and their effects on the reaction are described, and conclusion and recommendations are listed at the end of the report.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
</tr>
<tr>
<td></td>
<td>1.1 Program Objectives</td>
</tr>
<tr>
<td></td>
<td>1.2 Program Phases</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE SEARCH</td>
</tr>
<tr>
<td></td>
<td>2.1 Independent Research</td>
</tr>
<tr>
<td></td>
<td>2.2 Government Publications</td>
</tr>
<tr>
<td></td>
<td>2.3 Industrial Publications</td>
</tr>
<tr>
<td></td>
<td>2.4 Summary</td>
</tr>
<tr>
<td>3</td>
<td>EXPERIMENTAL SYSTEM</td>
</tr>
<tr>
<td></td>
<td>3.1 Reactor Configuration</td>
</tr>
<tr>
<td></td>
<td>3.1.1 Reactor 1-G</td>
</tr>
<tr>
<td></td>
<td>3.1.2 Reactor 1-S</td>
</tr>
<tr>
<td></td>
<td>3.1.3 Reactor 2-G</td>
</tr>
<tr>
<td></td>
<td>3.1.4 Reactor 3-G</td>
</tr>
<tr>
<td></td>
<td>3.2 Test Monitoring and Control System</td>
</tr>
<tr>
<td>4</td>
<td>CATALYST TESTING PROGRAM</td>
</tr>
<tr>
<td></td>
<td>4.1 General Plan</td>
</tr>
<tr>
<td></td>
<td>4.2 Reaction Theory</td>
</tr>
<tr>
<td></td>
<td>4.3 Experimental Test Results</td>
</tr>
<tr>
<td></td>
<td>4.3.1 Catalyst and Support Materials</td>
</tr>
<tr>
<td></td>
<td>4.3.2 Catalyst Tests</td>
</tr>
<tr>
<td></td>
<td>4.3.2.1 Reactor 1-S</td>
</tr>
<tr>
<td></td>
<td>4.3.2.2 Reactor 2-G</td>
</tr>
<tr>
<td></td>
<td>4.3.2.3 Reactor 3-G</td>
</tr>
<tr>
<td></td>
<td>4.3.3 Preparations of Catalysts</td>
</tr>
<tr>
<td></td>
<td>4.3.3.1 Plutonium Preparations</td>
</tr>
<tr>
<td></td>
<td>4.3.3.2 Platinum Preparation</td>
</tr>
<tr>
<td></td>
<td>4.3.3.3 Nickel Preparations</td>
</tr>
<tr>
<td></td>
<td>4.3.4 Discussion of Test Results</td>
</tr>
<tr>
<td></td>
<td>4.3.4.1 Catalyst Performance</td>
</tr>
<tr>
<td></td>
<td>4.3.4.2 Effects of Laboratory Preparations</td>
</tr>
<tr>
<td></td>
<td>4.3.4.3 Experimental Temperature Composition, Pressure, and Space Velocity Effects</td>
</tr>
<tr>
<td>SECTION</td>
<td>CONTENTS</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>4.4</td>
<td>Optimum Catalyst</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Catalyst Selection</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Catalyst Properties and Design Data</td>
</tr>
<tr>
<td>5</td>
<td>CONCLUSIONS AND RECOMMENDATIONS</td>
</tr>
<tr>
<td>5.1</td>
<td>Conclusions</td>
</tr>
<tr>
<td>5.2</td>
<td>Recommendations</td>
</tr>
</tbody>
</table>

APPENDIX

A. LITERATURE REFERENCES 44
B. EXPERIMENTAL TESTS 50
C. CATALYST LISTING 60
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-S Reactor Assembly Drawing</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Photograph of 1-S Reactor Assembly</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>2-G Reactor Schematic Drawing</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>3-G Reactor Schematic Drawing</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>Experimental Test System with 1-S Reactor</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>Equilibrium Constant vs Temperature</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>Theoretical CO$_2$ Equilibrium Conversion vs Temperature</td>
<td>17</td>
</tr>
<tr>
<td>8</td>
<td>Catalyst Materials and Supports</td>
<td>21</td>
</tr>
<tr>
<td>9</td>
<td>CO$_2$ Conversion vs CO$_2$ Outlet Concentration</td>
<td>24</td>
</tr>
<tr>
<td>10</td>
<td>RuO$_4$ Deposition System</td>
<td>32</td>
</tr>
</tbody>
</table>
SECTION 1
INTRODUCTION

1.1 Program Objectives

The overall objective of this program was to develop a catalyst which would efficiently promote the Sabatier process, i.e., reduction of carbon dioxide with hydrogen at low temperatures to form water and methane in high yields. Complete conversion is promoted by operating at 300°F or lower, based on theoretical equilibria with stoichiometric quantities of hydrogen and carbon dioxide. The accompanying objectives were:

1. To relate catalyst performance with catalyst properties, preparations and possible poisoning.
2. To determine yields at varying temperatures, flow rates and pressures.
3. To measure and relate power requirements for heating and initiation of the reaction with a system capable of processing 2.5 lbs. CO₂/day.

From the results of these objectives, and on the basis of a comparison of performance and operating temperatures and power requirements an optimum catalyst was to be selected.

1.2 Program Phases

The initial phase of the program consisted of a literature search of publications of work reported for the reactions between carbon dioxide and hydrogen and for all catalysts utilized in these reactions. From this search a listing of candidate catalyst materials was prepared.

The second phase consisted of the design and fabrication of an experimental system which was used to measure the catalyst performance of the selected candidate materials.

The third phase of the program was the actual testing of catalyst materials and the measurement of operating variables. In this phase data were collected on yields, temperatures, flow rates, pressures, and power requirements for the various materials tested; the effects of using different catalyst preparations were also correlated with catalyst performance. The test results from this phase were used as the basis for selection of the optimum catalyst and for the final program conclusions and recommendations.
SECTION 1

INTRODUCTION

1.1 Program Objectives

The overall objective of this program was to develop a catalyst which
would efficiently promote the Sabatier process, i.e., reduction of carbon
dioxide with hydrogen at low temperatures to form water and methane in high
yields. Complete conversion is promoted by operating at 300°F or lower,
based on theoretical equilibrium with stoichiometric quantities of hydrogen
and carbon dioxide. The accompanying objectives were:

1. To relate catalyst performance with catalyst properties,
 preparations and possible poisoning.

2. To determine yields at varying temperatures, flow rates and
 pressures.

3. To measure and relate power requirements for heating and initiation
 of the reaction with a system capable of processing 2.5 lbs.
 CO\textsubscript{2}/day.

From the results of these objectives, and on the basis of a comparison
of performance and operating temperatures and power requirements an optimum
catalyst was to be selected.

1.2 Program Phases

The initial phase of the program consisted of a literature search of
publications of work reported for the reactions between carbon dioxide and
hydrogen and for all catalysts utilized in these reactions. From this
search a listing of candidate catalyst materials was prepared.

The second phase consisted of the design and fabrication of an
experimental system which was used to measure the catalyst performance of
the selected candidate materials.

The third phase of the program was the actual testing of catalyst
materials and the measurement of operating variables. In this phase data
were collected on yields, temperatures, flow rates, pressures, and power
requirements for the various materials tested; the effects of using
different catalyst preparations were also correlated with catalyst performance.
The test results from this phase were used as the basis for selection of
the optimum catalyst and for the final program conclusions and recommendations.
SECTION 2
LITERATURE-SEARCH

The literature search was directed mainly to investigating publications on CO₂ methanation and reduction catalysts based on independent, government and industrial research. The investigation was not limited only to reactions which give methane and water as the primary end products but also considered the general hydrogenation of carbon dioxide regardless of end products, because the catalysts used had potential application, with modification, to the Sabatier process.

2.1 Independent Research

The investigation of independent research was initiated with an extensive examination of the American Chemical Society "Chemical Abstracts". References on methanation and reduction of carbon dioxide were examined beginning with the year 1900 and extending through 1963. A large number of references, approximately seventy, were found pertinent and their abstracts recorded. Slightly over one-half of the references dealt with methane as the CO₂ reduction product, while the remainder indicated production of higher hydrocarbons, carbon monoxide, and pure carbon.

Many catalysts and combinations of catalysts were described, but those which indicated the highest methanation capability were Group VIII metals - Ru, Rh, Ir, Pt, and Co. Early work (1925) by Fischer and Tropsch showed that ruthenium will promote the reduction of CO₂ with H₂ to give only CH₄ and H₂O at 3000 to 4000°F and atmospheric pressure, with complete conversion of the CO₂; partial conversion starts at 2000°F. Various other metals will also give complete conversion but not necessarily at as low temperatures as with ruthenium. The order of methanating activity of these metals is as shown above, according to Fischer.

Catalysts other than Group VIII pure metals promoted the formation of higher hydrocarbons such as formaldehyde. These catalysts were alloys of Group VIII metals with each other or with Cu, Ag, Au, Zn, Sn, Ba, Cr, or oxides of Al, Zn, Cr, Ba, Mn, Ti, Ce, Th, Mo, or Li.

In addition to the Chemical Abstracts, the Science Abstracts published by the Institution of Electrical Engineers and the Engineering Index published by Engineering Index, Inc., were investigated; they did not provide any data beyond that shown in the Chemical Abstracts.

2.2 Government Publications

Documents and publications from various government research and testing laboratories also were investigated in the same manner, particularly in light of the large amount of work performed in recent years in the area of catalysis by these agencies.

The literature search of government publications on contract projects, symposia, and independent reports included:
1. NASA, Nuclear Science Abstract
2. NASA, Scientific and Technical Aerospace Reports
3. NASA, Technical Publications Announcements
4. NASA, International Aerospace Abstracts
5. ASTIA, Technical Abstracts Bulletin
6. ORB, U. S. Government Research Reports.

Most of the information extracted from these sources confirmed, expanded, or refined earlier referenced work.

2.3 Industrial Publications

Publications by industrial catalyst manufacturing concerns were investigated as follows:

1. Engelhard Industries, Inc.; Technical Bulletin,
2. Platinum Metals Review (J. Bishop & Co.),
4. Annotated Bibliography on Ruthenium, Rhodium, and Iridium as Catalysts (The International Nickel Co., Inc.),
6. Catalogues dealing specifically with catalyst supports and promoters were obtained from the Norton Co., Johns-Manville Celite Division, Kraft Chemical Co. (Chicago); Tamms Industries Co. (Chicago).

2.4 Summary

The literature search indicated the successful use of several materials as catalysts for carbon dioxide reduction with approximately total methanation at temperatures between 300°C and 500°C. Of these materials, ruthenium provided the best performance, while other Group VIII metals also catalyzed carbon dioxide reduction.

All of the references consulted in the three areas of the literature search are tabulated in the appendix.
SECTION 3

EXPERIMENTAL SYSTEM

The experimental system was designed and fabricated to operate at a nominal capacity of 2.5 lbs. carbon dioxide/day over a test temperature range from 200°F to 600°F, and at pressures of 5, 10 and 14.7 PSIA. The system was to provide the test data required to accurately monitor catalyst performance in terms of the reaction yield and temperature, at varied flow rates.

The system consists of:

1. A reactor and electric heater with variable voltage control
2. CO₂ and H₂ flow regulators and rotameters
3. A temperature sensing controller for operation of the heater
4. Manometers for reactor pressure indication
5. An outlet gas water trap and absorbent
6. An outlet gas flowmeter
7. Thermocouples and temperature indicators.

A gas chromatograph and several infra-red detectors were used to monitor the inlet and outlet gas stream composition.

Four different reactor configurations were used in the experimental system during different phases of testing. As the program progressed it became apparent that different configurations were needed because no one configuration alone provided for accurate measurement of all the testing variables.

3.1 Reactor Configuration

3.1.1 Reactor 1-G

The first reactor was fabricated from glass. This reactor was utilized prior to the design and fabrication of a full-size stainless-steel reactor for preliminary testing with commercially prepared rhodium and ruthenium catalysts. The purpose of these tests was to obtain experience with catalysts as supplied from a commercial source and to observe any performance characteristics which might affect the design or fabrication of the full-size reactor.

The 1-G reactor was made of Vycor glass, capable of withstanding 1200°F. It was 1 inch in diameter and 18 inches long. Approximately 35 grams of 1/8-inch catalyst pellets filled a 10-inch length in the tube. Two 1/8-inch diameter thermocouple wells ran through the length of the tube.

A series of preliminary tests were run with the glass tube at low CO₂
feed rates (0.2-0.3 lb. CO$_2$/day), and no unusual results were noted. Consequently, the full-size reactor was fabricated and incorporated into the system.

3.1.2 Reactor I-S

The full-size reactor, designated I-S, was made of stainless-steel and was sized to handle the carbon dioxide output of one man. This reactor was suitable for use with catalyst particles above 0.04 inch in diameter.

The design of the catalytic reactor was based on three major factors:

1. A carbon dioxide flow of 2.5 lbs/day with a stoichiometric quantity of hydrogen.

2. A catalyst bed space velocity nominally of 500/hr or higher with a catalyst bed length/diameter ratio between 3 and 4.

3. Control of the catalyst bed temperature both during start-up which requires heating, and during continuous operation which requires cooling.

Various other factors were considered, including:

1. Preheating the inlet gases to reaction temperature before the gases enter the catalyst bed,

2. Preventing outlet gases from cooling and condensing H$_2$O formed in the reaction,

3. Simple but multiple temperature measurements at selected points within the reactor and catalyst bed,

4. Simple removal and replacement of the catalyst material.

The reactor assembly drawing is shown in Figure 1, and a photograph in Figure 2.

Based on the required CO$_2$ flow, space velocity, and bed length/diameter ratio, for operation at approximately 400°F and 14.7 psia the catalyst bed dimensions are 8-inches long and 2-inches in diameter. The bed volume is 24 cubic inches and holds approximately 450 grams of 1/8-inch cylindrical alumina pellets. To provide for removing the heat of the exothermic reaction the reactor was fitted with a permanent cooling jacket, which forms an annular passage around the length of the catalyst bed. The annulus is 1/16-inch thick, and air circulates during cooling along the bed length parallel to CO$_2$ flow within the bed. The annulus is only 1/16-inch thick to minimize resistance to heat transfer during start-up or subsequent bed heating. An electric heating tape, with a nominal output of 150 watts, was wrapped spirally around the outside of the jacket.

Incoming CO$_2$ and H$_2$ are heated to reaction temperature by passing centrally through the length of the catalyst within a 1/2-inch diameter tube.
After leaving this tube the gases reverse flow direction and pass through the catalyst bed. By this means the center of the bed is cooled and the inlet gases are simultaneously preheated.

The end of the reactor where gas flow direction reverses is fitted with a flange and removable end-plate for access to the catalyst. A silicone rubber O-ring seals the end-plate to the flange. A thin metal baffle plate is attached to the inside of the end plate. This baffle prevents gas flow from striking the end-plate and traps a stationary gas volume to prevent overheating of the end-plate and possible damage to the O-ring seal.

At the opposite end of the reactor a 1/2-inch diameter outlet tube discharges from the wall of the reactor. Hot reaction gases contact all surfaces of this end to maintain a high temperature and prevent H20 condensation.

The catalyst is contained between two removable perforated disks which slip over and are supported on the central gas inlet tube. Two temperature wells of 1/8-inch diameter are located in the catalyst along the length of (1) the gas inlet tube, and (2) the inner surface of the reactor wall. Temperatures are measured at various points in the well by moveable thermocouples. The reactor was fabricated entirely from stainless-steel; all seams were heliarc welded, except for the thermocouple well connections which were brazed.

This reactor configuration provided data on gas flow rates, power inputs, and temperature control techniques. However, during operation, a 100-250°F temperature gradient in both the axial and radial direction of the catalyst bed prevented accurate measurement of the reaction temperature.

3.1.3 Reactor 2-G

Primarily to eliminate the extreme temperature gradient problem, a second glass reactor was fabricated, and designated No. 2-G. The reactor, shown in Figure 3, provides the following:

1. A catalyst support for fine catalyst metal powders, and catalysts on fine support powders, up to 150 mesh;

2. A smaller catalyst bed volume which permits testing smaller amounts of catalysts, and which minimizes the temperature gradients in the bed.

This reactor differed from the original glass reactor (1-G) in that its length to diameter ratio was approximately 2:1 instead of 10:1, although the total catalyst bed volumes were approximately the same. The 2-G reactor was heated externally by a spirally wrapped heating coil. No provision was made for cooling the reactor because it was anticipated that radiation and convection away from the outer reactor surfaces would provide adequate heat removal.

Two thermocouple wells, one at the bed wall and the other at the bed center, were used to measure temperatures within the catalyst. Inlet gases were not preheated.
Figure 3 2-G REACTOR SCHEMATIC DRAWING
Although operations with this reactor essentially eliminated excessive temperature gradients in the catalyst bed, and permitted testing of catalyst powders, the reactor volume was large and did not provide for testing of low volumes, in the range of 10 cc, of catalyst materials.

3.1.4 Reactor 3-G

In order that tests could be performed on limited amounts of catalyst, a third glass reactor (designated 3-G) was fabricated. This reactor is shown in Figure 4.

This reactor was designed primarily for testing pure metals in the platinum family which are generally available only in powder form, approximately 150- to 200-mesh (0.003 to 0.002-inch average particle diameter). Flow in this reactor is upward, since preliminary tests showed downward flow through powder of this mesh size creates a very high (3-4 psi) pressure drop through a 1- to 2-inch deep layer. The top of the reactor is curved into an elbow and heated to prevent condensation of product water which could otherwise condense and collect on the catalyst surface and impair the reaction.

3.2 Test Monitoring and Control System

The test monitoring and control system consisted of the following components as shown in Figure 5:

1. \(\text{CO}_2 \) and \(\text{H}_2 \) flow regulators and rotometers
2. A temperature sensing controller for heater operation
3. A water manometer for inlet reactor pressure indication
4. An outlet gas flowmeter
5. Thermocouples and temperature indicators
6. Gas analyzers for measuring feed and outlet gas compositions

The \(\text{CO}_2 \) and \(\text{H}_2 \) flow regulators were 1/4-inch Nuclear Products Company vernier fine metering valves, fed by Bastian and Blessing low pressure single-stage regulators set at 2 psig. The rotometers were Fischer and Porter 29A-19202 glass flowmeters with sapphire floats, with a nominal maximum capacity of 360 cc/min based on standard air. The temperature controller was a West Instrument Corp. Model J indicating pyrometric controller actuated by a thermocouple sensing the catalyst bed temperature. The outlet gas flowmeter was an American Meter Company Model No. AI-27-1 Wet Test Meter, having a maximum flow rate capacity of 4.7 liters/hr. The thermocouple used was Chromel-Alumel, and the temperature indicator-recorder was a Minneapolis Honeywell 24-point multipoint recorder.

A Beckman GC-2 chromatograph with a thermal conductivity detector was used initially to monitor the inlet and outlet gas stream. The changes in composition were fairly rapid and the chromatograph response time was inadequate for closely relating degree of conversion to temperature.
Figure 4 3-G REACTOR SCHEMATIC DRAWING
Subsequently, the chromatograph was replaced by two Mine Safety Appliance Co. LIRA Model 300 Infra-red detectors both reading 0-30\% CO$_2$ by volume. The detectors continually and separately monitored the inlet and outlet gas composition. The signal from the outlet detector was fed into a series of points on the 24-point recorder to give a relatively continuous indication of degree of CO$_2$ conversion simultaneously with temperature indication.
SECTION 4

CATALYST TESTING PROGRAM

The catalyst testing program was concerned with the actual performance rating of a series of catalysts tested under varied operating conditions. The primary objective was to determine the optimum catalyst which would provide essentially complete (99% or higher) CO₂ conversion at the lowest temperature. The accompanying major objectives were to relate catalyst performance with catalyst properties and preparations, and to determine temperature, pressure, and space velocity effects on CO₂ conversion. During testing the power and cooling necessary for initiation and control of the reaction were measured for a system operating at one-man capacity.

4.1 General Plan

The overall approach for catalyst testing considered several basic factors. First, the theoretical aspects of the chemical reaction were examined to determine temperature and pressure limitations, where possible, based on chemical equilibrium theory. The theoretical calculations indicated the practical temperature ranges and the effects of subatmospheric pressures for actual experimental testing.

Second, candidate catalyst materials were procured specifically as catalysts from industrial manufacturers, to take advantage of the specific properties designed into the materials by the manufacturers. The physical properties of these catalysts, such as size, density, shape, chemical composition, support material, etc., were used as the basis for final selection for actual testing.

Third, based on the performance of industrial catalysts, laboratory preparations were made of high performance catalyst materials to show the effects of preparations on the amount of CO₂ converted. Also, various industrial catalyst materials were pre-treated in the laboratory to determine the effects of pre-treatments such as hydrogen reduction, air oxidation, or surface activation with mineral acids.

Finally, both the industrial and the laboratory-prepared catalyst materials were tested under varied conditions of temperature, flow, feed composition, and pressure. These parameters were varied to provide sufficient data to adequately rate the performance of each material, to determine the minimum operating reaction temperature, and to ultimately determine the overall optimum catalyst along with the power and cooling requirements for sustained, controlled and efficient reactor operation.
4.2 Reaction Theory

The chemical equation for the Sabatier reaction is:

\[\text{CO}_2 + \text{H}_2 \rightarrow \text{CH}_4 + 2\text{H}_2\text{O} \]

The equilibrium relation is:

\[K_p = \frac{[\text{CH}_4][\text{H}_2\text{O}]}{[\text{CO}_2][\text{H}_2]^4} \]

where \(K_p \) = Equilibrium constant, pressure

\([___]\) = Volume concentration = Mole fraction

\(\pi \) = Total pressure

If the degree of conversion of \(\text{CO}_2 \) is represented by \(X \), then the number of moles of \(\text{CO}_2 \) at equilibrium is \(1 - X \), of \(\text{H}_2 \) is \(1 - 4X \), of \(\text{CH}_4 \) is \(X \), of \(\text{H}_2\text{O} \) is \(2X \), and the total present is \(5 - 2X \).

The equilibrium relation becomes:

\[K_p = \frac{(X)(2X)^2(5 - 2X)^5}{(1 - X)(4 - 4X)^4(5 - 2X)^3\pi^2} = \frac{X^3(5 - 2X)^2}{64(1 - X)^5\pi^2} \]

From the Gibbs' free energy relationship, enthalpies, and standard heats of formation the equilibrium constant may be related to temperatures to give the graph shown in Figure 6.

From the equilibrium equation and this graph, the theoretical degree of \(\text{CO}_2 \) conversion can be related directly to the equilibrium temperature. This relationship is depicted in Figure 7 which shows the maximum possible \(\text{CO}_2 \) conversion at atmospheric pressure and any given temperature for a stoichiometric \(\text{H}_2:\text{CO}_2 \) ratio of 4:1.

From this curve it can be seen that, from equilibrium considerations, it is desirable to operate the reaction at temperatures approximating 300°F for 100% \(\text{CO}_2 \) conversion, or up to 400°F for 99% conversion; operation at temperatures higher than these will prohibit this high degree of \(\text{CO}_2 \) conversion.

If all of the reactor bed were at a temperature higher than 400°F, it would be impossible to achieve 99% conversion, with the actual possible degree conversion governed by the minimum temperatures in the bed. In practice, however, there is usually a temperature gradient in the bed, with the inlet running higher than the outlet.
Figure 6 EQUILIBRIUM CONSTANT VS. TEMPERATURE
\[\text{CO}_2 + 4\text{H}_2 \rightarrow \text{CH}_4 + 2\text{H}_2\text{O} \]

\(R = \frac{\text{H}_2}{\text{CO}_2} \) ratio, volumetric

\(\pi = \) Reaction Pressure, Pia.

Figure 7 THEORETICAL CO\(_2\) EQUILIBRIUM CONVERSION VS. TEMPERATURE
For example, at the inlet where the temperature may be 550°F, due to the exothermic energy release, conversion will approximate 96%, while the middle is at 400°F with 99% conversion, and the outlet at 300°F, with conversion approaching 100%.

Complete conversion would thus be achieved but only because a sufficient portion of the reactor was at 300°F. The ideal theoretical reactor would operate isothermally at a maximum of 300°F, with the inlet gases preheated to this temperature level. If the reaction could be initiated and sustained at even lower temperatures complete conversion would still be achieved. This lower temperature would be limited only by the vapor pressure and corresponding dew point of the product water. Condensation of product water within the catalyst bed could have the undesirable effect of decreasing the activity and capacity of the reactor.

The theoretical temperature to which the gas mixture could rise in an adiabatic reaction may be calculated on the standard heat of reaction, the heat capacities of the reactants and products, and the degree of CO₂ conversion. By using mean molal heat capacities the temperature may be closely approximated by the following equation:

\[T = T_{\text{Ref.}} + \frac{(\Delta H_R)(X)}{(X C_1 + 2 X C_2 + (1 - X) C_3 + 4 (1 - X) C_4)} \]

where \(T \) = theoretical reaction temperature

\(T_{\text{Ref.}} \) = standard reference temperature, 77°F (25°C)

\(\Delta H_R \) = standard heat of reaction

\(X \) = degree of CO₂ conversion

\(C \) = mean molal heat capacity between \(T \) and \(T_{\text{Ref.}} \),

with subscripts 1 = CH₄, 2 = H₂O, 3 = CO₂, and 4 = H₂.

Curves of the temperature versus CO₂ conversion are shown also on Figure 7, for \(H_2/CO_2 \) ratios of 4.0 and 4.5. (For \(H_2/CO_2 = 4.5 \) the coefficient of \((1 - X)C_4\) becomes 4.5).

The intersection of this curve with the equilibrium conversion curve indicates the maximum temperature to which the reactor bed could rise in an uncooled reactor.

As can be seen from the graph, the temperature would approximate 1080°F, and conversion would be 50%. This temperature is of importance in reactor design since it demonstrates the maximum to which reactor materials would be subjected in an emergency operation where cooling failed.
For operation with the H_2CO_2 ratio greater than 4.0 the family of short curves aligned with the equilibrium curve shows the effect of these ratios with values of 4.1, 4.3 and 4.5. At a ratio of 4.5 a conversion of 99% is possible at temperatures up to approximately 575°F, as compared to 400°F for a 4.0 ratio. These curves thus demonstrate that 99-100% conversions are possible well above the 400°F limit if the H_2CO_2 ratio is increased by only a slight amount.

The effects of operating at pressures below atmospheric can also be determined theoretically from the equilibrium relation, by substituting appropriate values for the equilibrium equation. The dotted line on Figure 7 shows the maximum possible CO$_2$ conversion versus temperature for stoichiometric H_2CO_2 ratio of 4:1, but at 5 psia.

From the dotted curve it can be seen that the maximum temperature for 99% conversion at this pressure is approximately 360°F, which is 40°F below the maximum at atmospheric pressure. The curve shows that the effect of operating at lower pressures may be offset if the reaction can be catalyzed to completion at a lower temperature. This again is due to the fact that the equilibrium constant increases with decreasing temperature.

In summary, the effect of operating at subatmospheric pressures down to 5 psia should be negligible from equilibrium considerations in a reaction temperature range of 300°F to 400°F.

The effects of changing the space velocity through the reactor could not be predicted with reliability, since these effects are dependent on the kinetics of the reaction. The theoretical kinetic aspects of the reaction are such that estimates of the reaction rate could be in error by one or two orders of magnitude, based on the present state of kinetic theory.

In practice the space velocity through the reactor was held in the range of 500/hr, based on the conclusions in Technical Documentary Report No. FD 64-22, Part I, "Investigation of Catalytic Reactions for CO$_2$ Reduction." E. B. Thompson, Jr., October 1964.

4.3 Experimental Test Results

In this section the experimental results are discussed for all of the catalysts tested in each of the different reactors. Summaries of all tests in the complete program are listed consecutively in numerical order and are shown in the appendix.

Also in this section the commercial catalysts used are described along with support materials. The results of the tests are summarized in terms of catalyst performance, and the effects of various catalyst preparations, temperature, pressure, and space velocity are related to overall performance. Following the discussion of the test results the details of the chemical preparations are summarized for each of the catalysts prepared in the MHD laboratories.

Based on CO$_2$ conversion, sustained operation, minimum temperature, and power and cooling requirements the optimum catalyst was selected.
4.3.1 Catalyst and Support Materials

The materials tested in this program as potential catalyst candidates were selected from a listing based on the literature search. The list of candidate materials was:

Ru, Rh, Ir, Ni, Co, Os, Pt, Pd, Ta, W, Nb, Mo.

These materials were procured primarily from catalyst manufacturers but also from manufacturers of the pure metals or metal oxides. The materials procured specifically as catalysts were supported on various media, namely, alumina (Al₂O₃), carbon, and kieselguhr (diatomaceous earth). These support media were in the form of either 1/8 x 1/8 and 3/16 x 3/16-inch cylinders, or powders between 150 and 250 mesh.

All of the candidate materials except tungsten and tantalum were procured specifically as catalysts and supplied on one or more of these support media. Most of the materials were also procured as pure metals in powder form ranging in size from 50 to 250 mesh. The table in Figure 8 shows a listing of the candidate materials and supports tested and the associated experiment number(s) for each material.

For initial testing in the program, commercial catalysts were selected instead of laboratory prepared catalysts, to take advantage of the specific catalytic properties designed into the catalyst and support by the commercial manufacturers. In this manner the experience and preparative techniques of these manufacturers were utilized, and the likelihood of successful reactor operation was increased.

Pellet catalysts were used because they provided a high surface area for a given weight of catalytic agent. This was of importance in testing metals in the platinum family. Also the pellet catalysts were easily and readily tested in the full-size reactor while powdered materials were not, since the powders could pass through the perforated disks on the ends of the catalyst bed.

The pellet alumina-supported catalysts in the platinum family were 0.5% metal by weight on Al₂O₃. Physical examination of this pellet showed the metals impregnated to depths between .01 and .03 inches into the surface of the alumina, rather than as a very thin pure metallic layer on the outer pellet surface. Nickel and its oxide and amine derivatives in pellet form, both on alumina and kieselguhr supports, were homogeneous pellets with no distinctive outer surface layer. The amount of nickel in the pellets ranged from 10% to 60% by weight.

Although the supported catalysts were metallic in nature, they were not electrically conductive, indicating that the metals were combined with the supports in other than a purely mechanical fashion. The support materials were activated alumina, pure carbon, and kieselguhr. Kieselguhr is essentially a hydrous amorphous silica containing trace amounts of iron oxide, alumina, and other oxide impurities. Several types of commercial kieselguhrs were used as supports:

20
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ru</td>
<td>1,15,18,26,4</td>
<td>51,52</td>
<td>68</td>
<td>68</td>
<td></td>
<td></td>
<td>68</td>
<td>108</td>
<td>100-200 mesh Ni gauze</td>
</tr>
<tr>
<td>Sr</td>
<td>16,17,78</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>61,99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>78</td>
<td>118,118</td>
<td>63</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>Ni (NiO)</td>
<td>39,40,86,105</td>
<td>19,32-36,65</td>
<td>63</td>
<td>63</td>
<td></td>
<td></td>
<td>63</td>
<td>55,58,72,77,83</td>
<td>160-169</td>
</tr>
<tr>
<td>Ni on</td>
<td>66</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>Spec.Supp.</td>
<td>69,70</td>
<td>(2-30)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>Ni Amide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>43,42,79</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>Ta₂O₅</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>Cs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>MnO₅</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>MnO₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>Pure Kies.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td></td>
</tr>
</tbody>
</table>

Numbers indicate experimental test number

Figure 6 CATALYST MATERIALS AND SUPPORTS
a. Micro-cell E Synthetic calcium silicate formed by reacting diatomite with lime. Surface area $1.75 \text{ m}^2/\text{gm}$, particle size $< 0.1 \mu$. Product of Johns-Manville Corp.

b. Filter-cell Natural (uncalcined) diatomite. Surface area $10-15 \text{ m}^2/\text{gm}$, particle size $4-6 \mu$. Product of Johns-Manville Corp.

c. Multi-cell Diatomaceous earth. Surface area $46.1 \text{ m}^2/\text{gm}$, average particle size $10-12.5 \mu$, Product of Tamms Industries Co., Chicago, Ill.

The surface areas of several kieselguhr range between 10 and $175 \text{ m}^2/\text{gm}$, while activated gamma alumina is $220 \text{ m}^2/\text{gm}$, and carbon is 800 to 2000 $\text{ m}^2/\text{gm}$.

Pure metal powders and metal oxide powders used in the program were used essentially in the form obtained from commercial sources. The powders ranged from 30 to 250 mesh. The platinum family metals were obtained from manufacturers who deal in both catalysts and the pure precious metals. The other metals and metal oxides were obtained from commercial sources in the chemical and metallurgical industries.

The physical properties, support material and supply source for all the catalysts used are listed in the appendix.

4.3.2 Catalyst Tests

The basic operating conditions for measuring catalyst performance were as follows:

\[\begin{align*}
\text{CO}_2 \text{ Flow (one-man)} & : \quad 2.5 \text{ lbs/day} = 430 \text{ cc/min at 1 atm., } 10^0 \text{F} \\
\text{H}_2 \text{ Flow} & : \quad 4.0 \text{ to } 4.5 \times \text{CO}_2 \text{ Flow} \\
\text{Reactor Pressure} & : \quad 14.7, 10.0 \text{ and } 5.0 \text{ psia}
\end{align*} \]

The full-size stainless steel reactor, No. 1-8, was built and sized to operate under these conditions, while the three glass reactors, Nos. 1-2, 2-3, and 3-6, were built for special purposes and were not designed specifically to operate under all of the above conditions.

During operation of the system the objective of performance testing primarily was to relate the degree of carbon dioxide conversion with temperature, at varied flow rates and pressures for different catalysts and supports. The degree of carbon dioxide conversion is the fraction of carbon dioxide entering which reacts with hydrogen to form methane and water.

From the reaction equation,

\[\text{CO}_2 + 4\text{H}_2 \rightarrow \text{CH}_4 + 2\text{H}_2\text{O} \]

the degree of conversion may be calculated from a measurement of the inlet and outlet CO_2 concentrations. Assuming the product water is condensed out,
the degree of conversion is:

$$X = \frac{(a - u)(a - 4ab)}{a}$$

where

- X = fraction of inlet CO$_2$ converted
- a = mole fraction of CO$_2$ in inlet gas
- b = mole fraction of CO$_2$ in outlet gas
- with product water condensed out.

In the actual system where the inlet CO$_2$ concentration, a, was fixed, the degree of CO$_2$ conversion was read directly from the outlet gas CO$_2$ concentration, b.

The graph in Figure 9 shows the degree of CO$_2$ conversion versus CO$_2$ outlet concentration for several inlet CO$_2$ concentrations.

The 4-S reactor was designed to allow operation at one-man capacity with measurements of carbon dioxide conversion, reaction temperature and pressure, and system heating and cooling requirements. As will be described subsequently, accurate catalyst bed temperature measurements were not possible, and smaller reactors such as the 2-G and 3-G were needed to decrease the catalyst bed size and permit accurate temperature measurements.

Based on the results of the literature search, molybdenum and rhodium were indicated initially as the best catalysts for low temperature CO$_2$ methanation. Consequently both to test reactor operation and to gain experience with the test monitoring system several preliminary tests were initiated with these catalysts using the 1-G glass reactor.

At a CO$_2$ flow of approximately 0.2-ma capacity (50 cc/min), with 1/8-inch pellets of 0.7% rhodium on alumina, conversion began at 400°F, and reached 65% at 500°F. With similar pellets of molybdenum, CO$_2$ conversion began at approximately 300°F and completed between 350°F and 450°F. These tests showed no unusual results and testing was consequently changed to the full-size 1-S reactor.

4.3.2.1 Reactor No. 1-S = A series of twenty-one tests were run in the 1-S reactor. Ruthenium, iridium, and rhodium on 1/8-inch alumina pellets, and nickel on 1/8-inch kieselguhr pellets were tested in this series. These catalysts were supplied by commercial manufacturers.

The best performance with this reactor at one-man CO$_2$ capacity (approximately 471 cc CO$_2$/min, H$_2$:CO$_2$ of 4:1) was with ruthenium where 99% CO$_2$ conversion occurred at approximately 540°F, 1 atm., and a space velocity of 470 hr$^{-1}$ (Test #9). Space velocity is Total Gas Volume Flow Rate, S.T.P./Total reactor Volume.

The other catalysts tested under the same conditions and providing the same conversion required reaction temperatures of 675°F for nickel-kieselguhr (#19) and over 750°F for rhodium (#18). Iridium promoted no conversion up to
Figure 9 (CO$_2$ CONVERSION VS. CO$_2$ OUTLET CONCENTRATION)
The temperatures indicated are the maximum in the catalyst bed and parts of the bed were at considerably lower temperatures. However, any decrease below this maximum temperature resulted in lowering of the percentage of CO₂ converted.

The temperature in the bed of the 1-S reactor ran typically as follows:

<table>
<thead>
<tr>
<th>Inlet End</th>
<th>Middle</th>
<th>Outlet End</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall</td>
<td>395</td>
<td>540</td>
</tr>
<tr>
<td>Center</td>
<td>445</td>
<td>503</td>
</tr>
</tbody>
</table>

The middle of the reactor ran at higher temperatures than either end of the 8-inch long reactor. Once the reaction reached complete CO₂ conversion the maximum temperature remained in the middle. However, at the start of the reaction the highest temperature was at the center of the inlet end.

The temperature profile in the reactor remained relatively constant during sustained operation if alternate heating and cooling were properly regulated. When cooling was not provided the reaction temperature would rise spontaneously at one-man CO₂ feed rates, and in some tests rose readily to 750°F and would have gone higher if allowed.

The large temperature gradients in the 1-S reactor prevented accurate correlation of a true reaction temperature with CO₂ conversion, and also created difficulties in closely controlling the temperature by either heating or cooling the reactor.

The best performances with the 1-S reactor at varied fractions of one-man capacity for these catalysts were as follows, for 99% conversion at 1 atm., and H₂:CO₂ of 4.6:

<table>
<thead>
<tr>
<th></th>
<th>CO₂ cc/min</th>
<th>Space Time, hr⁻¹</th>
<th>Reaction Temp., °F</th>
<th>Test No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruthenium</td>
<td>472</td>
<td>470</td>
<td>540</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>382</td>
<td>380</td>
<td>475</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>221</td>
<td>220</td>
<td>500</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>117</td>
<td>117</td>
<td>525</td>
<td>21</td>
</tr>
<tr>
<td>Nickel-Kies.</td>
<td>472</td>
<td>470</td>
<td>675</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>382</td>
<td>380</td>
<td>640</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>221</td>
<td>220</td>
<td>530</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>117</td>
<td>117</td>
<td>410</td>
<td>19</td>
</tr>
<tr>
<td>Rhodium</td>
<td>472</td>
<td>470</td>
<td>> 750</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>382</td>
<td>380</td>
<td>740</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>221</td>
<td>220</td>
<td>667</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>117</td>
<td>117</td>
<td>585</td>
<td>18</td>
</tr>
</tbody>
</table>

Again ruthenium provided the best overall performance although the required reaction temperature did not decrease as anticipated with decreasing space velocities, as it did with nickel and with rhodium. This disparity
in temperatures is attributed to the fact that the temperature measurements for ruthenium were made in four different tests with varying changes in the considerable temperature profile in the 1-3 reactor. The temperature measurements were sequential during the same tests for nickel and for rhodium, and showed at least a consistent trend within each test.

4.3.2.2 Reactor No. 2-3 - The difficulties in measuring a true reaction temperature in the 1-3 reactor led to the construction of the 2-3 reactor. A series of twenty-three tests (Nos. 22 to 44) were run with the 2-3 reactor. Ruthenium and nickel, each on 1/8-inch alumina, cobalt and nickel, each on 1/8-inch kieselguhr, and ruthenium on alumina powder were tested in this series.

The 2-3 reactor volume was approximately 0.25 of the 1-3 reactor volume. A flow of 117 cc CO₂/min (in terms of space velocity, 420 to 470) was equivalent to a one-man CO₂ flow in the 1-3 reactor. At this space velocity the maximum temperature in the reactor for 99% CO₂ conversion at 1 atm, and H₂:CO₂ of 4.6 with ruthenium on 1/8-inch alumina was 480°F at the outlet of the catalyst bed (Test #24).

The vertical temperature gradient was 100°F in the reactor, but this was not unexpected because the inlet gases were not preheated. The front end of the bed heated the inlet gas and ran at approximately 430°F. Since the reaction is exothermic the true temperature for 99% conversion in the 2-3 reactor bed was between 380°F and 480°F for this test. The radial temperature gradient was approximately 100°F - 150°F.

To decrease the vertical temperature gradient the space velocity in the reactor was lowered to approximate values of 310, 330, 130, and 65 hr⁻¹ in the 1-3 reactor. The best performances for approximately complete conversion (95-99%) at 1 atm, and H₂:CO₂ of 4.45 were:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>cc/min</td>
<td>Vel. hr</td>
<td>°F</td>
<td></td>
</tr>
<tr>
<td>Ruthenium 117</td>
<td>418</td>
<td>405-480</td>
<td>24</td>
</tr>
<tr>
<td>1/8" Alum. 38</td>
<td>132</td>
<td>430-470</td>
<td>31</td>
</tr>
<tr>
<td>19</td>
<td>66</td>
<td>360-412</td>
<td>28</td>
</tr>
<tr>
<td>Nickel 95</td>
<td>330</td>
<td>465-532</td>
<td>36</td>
</tr>
<tr>
<td>1/8" Kies. 43</td>
<td>132</td>
<td>330-390</td>
<td>35</td>
</tr>
<tr>
<td>19</td>
<td>66</td>
<td>360-400</td>
<td>34</td>
</tr>
</tbody>
</table>

In these tests the vertical temperature gradient in the bed decreased to 40°F at 66 hr⁻¹ and 75°F at 418 hr⁻¹. The true reaction temperature was thus more closely related to CO₂ conversion.

In later tests of ruthenium on 1/8-inch alumina (No.37,38) the degree of CO₂ conversion dropped off sharply to between 40% and 75% at temperatures and velocities which previously were adequate for 99% conversion, i.e., 480°F and 418 hr⁻¹. Reactivation of the ruthenium by reduction with hydrogen at 300°F for 170 hours raised the conversion to 85% of expected capacity (No.43), but only temporarily, since in the next test the conversion dropped to 48% (No.44), at 415-423°F and 66 hr⁻¹.
In all the tests with the 2-G reactor the temperature and conversion values were allowed to come to equilibrium and stabilize by operating the system for sufficiently long periods up to one hour at each temperature level.

Tests with ruthenium on alumina powder showed no conversion even up to 700°F. Nickel on 1/8-inch alumina only after reduction with hydrogen at 650°F for 16 hours provided 38% conversion at 643°F and 66 hr⁻¹. Cobalt on 1/8-kieselguhr provided 83% conversion at 677°F and 66 hr⁻¹.

Several additional factors were observed during this series of tests:

a. Decreasing the H₂:CO₂ ratio from 4.4 to 4.0 decreased conversion from 96% to 89% (28).

b. Carbon dioxide desorbs from the catalyst surface when the bed temperature is lowered, giving a temporary, apparent but false change in CO₂ conversion (26, 33).

c. CO₂ conversion increases with temperature increase up to a particular temperature. Above this temperature conversion either increases no further or actually decreases (35, 37, 38).

d. With both nickel and cobalt catalysts some carbon monoxide (0.15-0.20%) was formed in the 500°F-550°F range.

The catalyst volume in the 2-G reactor (83 cc) was too large for testing samples of pure precious metal catalyst powders. The 3-G reactor (10 cc) was built primarily for this purpose.

4.3.2.3 Reactor No. 3-G - A series of 79 tests were run with the 3-G reactor. Of this number 34 tests were run on commercially supplied catalysts, and 25 on catalysts prepared in the MRD laboratories. Both vertical and radial temperature gradients in the catalyst bed approximated 30°F.

The majority of tests in the series were made on ruthenium and nickel in several forms on various supports, and as pure metal powders. The remaining members of the platinum group and cobalt were tested on various supports, and with the exception of platinum and palladium, as pure metals. In addition, tungsten, columbium and its oxide, molybdenum and its oxide, and tantalum oxide were tested.

All of the catalysts tested with the exception of two were in the form of powders or 1/8-inch and 1/16-inch pellets. The two exceptions were ruthenium on two different metal gauze supports.

The best CO₂ conversion performance in all of the tests in the 3-G reactor was with 10 cc of ruthenium metal powder (150-200-mesh) which promoted over 99% conversion at 357°F, 1 atm., H₂:CO₂ of 4.45, and a space velocity of 310 hr⁻¹ (Test #53). This performance was achieved only after the ruthenium was activated with nitric acid washing and air roasting as described in Section 4.3.3.1. The raw, unactivated, commercial ruthenium powder promoted no conversion of CO₂ up to 475°F; after reduction with hydrogen at 325°F for 16 hours it promoted only 37% conversion at 573°F (46, 48). For comparison
purposes, 10 cc of ruthenium on 3/8-inch alumina pellets (used in earlier tests in the 2-6 reactor) were similarly activated with nitric acid and air roasting and tested, but promoted 29% conversion only after the reaction reached 600°F; conversion was 0% at 397°F and did not actually start until 415°F (#37).

Ruthenium on kieselguhr powder provided 35% conversion at 575°F, and on alumina powder only 9% at 650°F (#60, 62). Ruthenium on carbon promoted no conversion up to 550°F (#64).

The second best performance in the 3-6 reactor was with osmium metal powder (150-mesh) which promoted over 39% CO₂ conversion at 450°F under all the same conditions as with ruthenium metal powder, but at a space velocity of 620 h⁻¹ (Test #49). The osmium was activated only by reduction with hydrogen at 325°F for 15 hours. For comparison, osmium on 3/6-inch alumina pellets were tested after similar hydrogen activation but promoted only 78% conversion at 660°F; conversion did not actually start until the reactor temperature reached 500°F (#61). Further activation was attempted by nitric acid washing and air roasting but this completely removed the osmium metal from the alumina supports. Activation in this manner is dangerous because poisonous osmium pentoxide vapor can be generated.

The third best performance was with nickel which promoted 39% conversion at 500°F to 520°F. Both nickel metal powder and nickel on kieselguhr powder and 3/6-inch pellets promoted the reaction (#65, 63, 92). However, the nickel metal powder required preparation by thermal decomposition of reagent grade nickel formate with subsequent hydrogen reduction, and storage in a CO₂ atmosphere until used in the reactor to prevent the highly pyrophoric nickel from spontaneously oxidizing and losing its catalytic properties. Unless these procedures and precautions were observed, i.e., use of reagent grade materials, hydrogen reduction, and carbon dioxide storage, this conversion temperature could not be attained with pure nickel metal.

A special commercial stabilized nickel amine originally provided 37% conversion at 450°F, but the test was of short duration, and after the catalyst was reduced in hydrogen at 325°F for 16 hours 97-5% conversion required 550°F (#59, 70).

Neither rhodium or iridium metal powders, pre-reduced with hydrogen, promoted any conversion up to 580°F (#53, 74). The other pure metals tested, columbium, tungsten, and molybdenum, showed meager or no conversion up to 650°F (#73, 84, 95).

An interesting phenomenon was noted with columbium. The metal powder as commercially supplied ranged from 60 to 200-mesh in size, and in this form did not promote CO₂ conversion. The metal was sieved and a sample with size 150 to 200-mesh was separated. This sample promoted 30% conversion at 660°F (#87), where no conversion occurred with the coarser sample (73).

Nickel on kieselguhr, either commercially available or laboratory prepared, required activation by hydrogen reduction, but did not require storage in a CO₂ atmosphere. Both pellets and powder performed equally well.
in the 3-6 reactor. The laboratory prepared nickel on kieselguhr involved nickel formate and ammonia as described in Section 4.3.3.3.

None of the other catalysts performed as well as ruthenium, osmium or nickel. A commercial cobalt catalyst on 3/8 x 3/16-inch kieselguhr provided 97% conversion but only at 657°F after activation with hydrogen at 325°F for 16 hours (#79). Pure cobalt metal powder promoted only 65% conversion at 650°F (#86).

The oxides of columbium, tantalum and molybdenum promoted no conversion up to 600°F (#80, 82, 92).

Among the members of the platinum group (excepting ruthenium) on various supports the best performance was with 5% rhodium on alumina powder which promoted 90% conversion at 650°F (#71). None of the other supported catalysts in this group showed any appreciable conversion capability.

Among the mixtures of powders made by grinding up the 1/8-inch alumina pellets having 0.5% platinum group coatings, the best performance was with a 50-50 mixture of ruthenium and palladium. This mixture promoted 96% conversion at 650°F (#114). Each of these powders alone promoted 83% (Ru) and 72% (Pd) conversion between 675° and 700°F (#110, 115). This indicated that a synergetic effect does take place with mixtures of the platinum metals.

The two samples of ruthenium deposited on the surface of 200-mesh stainless steel gauze, and 200-mesh nickel gauze provided no conversion up to 500°F (#103, 105).

A long duration run was made with pure ruthenium metal powder to determine the relative life of this catalyst (#125). The run was continued for thirty (30) days. The ruthenium metal powder was a mixture of catalysts from runs #116 to #119. The required reaction temperature was 435°F for complete CO₂ conversion, although in previous testing, the required temperature was only 357°F (#53). The space velocity and H₂/CO₂ ratio were 310 hr⁻¹ and 4.45:1, respectively.

During the entire thirty-day run, the catalyst provided continuous and complete CO₂ conversion with no signs of deterioration or change in the catalyst. After the test was stopped the physical appearance of the catalyst was essentially unchanged, although the ruthenium did appear somewhat lighter in color than at the start of the test. This slight color change may have been due to desorption of surface water from the catalyst, brought about by the sustained high temperature.

During the last three days of the test, hydrogen sulphide gas was introduced into the carbon dioxide and hydrogen feed line to determine the effects, if any, of poisoning the catalyst. All of the Group VIII metals catalysts, both the platinum group and Fe, Co and Ni, have been reported susceptible to poisoning by sulfur compounds, such as H₂S, mercaptans and carbon disulfide, particularly when these metals were used in the Fischer-Tropsch synthesis of paraffins from carbon monoxide and hydrogen.

The hydrogen sulfide was injected into the inlet gas stream which was
flowing at a total rate of 50 cc/min of CO₂ and H₂. At 15-minute intervals a quantity of 0.01 cc of H₂S was injected into the stream for a period of six hours on three successive days. This amount of H₂S produced no change in the CO₂ conversion effectiveness of the ruthenium catalyst.

4.3.3 Preparations of Catalysts

The results of the literature search and of initial experimental tests indicated that ruthenium was the catalyst with the greatest potential for successfully promoting complete and low-temperature reduction of carbon dioxide. On this basis ruthenium was selected for experimental laboratory preparation to determine the effects of different preparations and supports on CO₂ reduction. Platinum and nickel were also selected for laboratory preparation. A total of twenty-five tests were made with laboratory-prepared catalysts, all in the 3-C reactor. The numbers of these tests are: 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 75, 76, 77, 78, 79, 80, 83, 89, 90, 91, 94, 95, 96, 97, 98, 100, 107, 108 and 109.

Several different methods were used for preparing catalysts. These were:

a. Decomposition of a thermally unstable compound or H₂ reduction to give a finely divided compound such as a pure metal or metal oxide from a metal salt.

b. Impregnation of a carrier or support material with a solution of the catalyst salt, followed by reduction or ignition of the mixture, leaving pure metals or metal oxides deposited on materials with high surface area to volume ratios.

c. Precipitation of a catalyst material from solution, with subsequent washing of extraneous ions, and final conversion by heating or drying.

d. Co-precipitation of a catalyst material and support material from solution to provide a greatly dispersed catalyst with high activity.

e. Application of films of active metal catalysts to surfaces by actual evaporation of the metal with condensation upon the support surface.

In addition to these chemical preparations, various platinum group catalysts from commercial sources on 1/8-inch alumina pellets were ground to powder, approximately 100-150-mesh, and mechanically mixed in varying ratios of one metal to another, for measuring the effect of using mixtures of these metals as catalysts.

4.3.3.1 Ruthenium Preparations - To prepare solutions of ruthenium from the metal a special technique is required, since ruthenium metal is highly stable and unreactive with most acids and bases.

a. Preparation of X₂RuO₄₃ and Purified Ru Metal
Potassium ruthenate, K₂RuO₄, is prepared from ruthenium metal by mixing one part (by weight) of finely divided ruthenium, one part KNO₃, and ten parts KOH in a pure silver crucible and heating to fusion at approximately 900°F. The probable reaction is:

\[\text{Ru} + 2\text{KNO}_3 + 2\text{KOH} \rightarrow \text{K}_2\text{RuO}_4 + 2\text{KNO} + \text{K}_2\text{O} + \text{H}_2\text{O} \]

A silver crucible and silver stirring spatula are required since silver is not attacked by the fused alkali.

No particular precautions are necessary during this preparation other than observing the temperature minimum. At 820°F, the reaction does not proceed even after several hours. At 900°F, the conversion is practically complete after 10 minutes, but to insure complete conversion the mixture should be maintained at this temperature for a minimum of one hour. When the reaction is nearly complete, the melt surface becomes jet-black, and lustrous in appearance.

On completion of the reaction the crucible and contents are cooled to room temperature, followed by dissolution of the solidified mass in distilled water. The resulting solution is deep red in color.

The solution is heated to boiling and an excess of ethyl alcohol added drop-wise. A finely-divided black precipitate of Ru(OH)₄ immediately forms. The reaction involved is:

\[\text{K}_2\text{RuO}_4 + 4\text{C}_2\text{H}_5\text{OH} \rightarrow \text{Ru(OH)}_4 + 2\text{C}_2\text{H}_5\text{OK} + 2\text{CH}_3\text{CHO} + \text{H}_2 \]

The precipitate is then separated from the solution by means of a Buchner funnel.

The precipitate is washed between ten and fifteen times with distilled water until a neutral pH is indicated. A dilute KNO₃ solution may be used initially to neutralize any remaining KOH, but this is unnecessary if the precipitate is thoroughly washed.

On completion of the washing step, the precipitate is placed in an evaporating dish and baked at 200°F in air. This converts the hydroxide to RuO₂.

To obtain a purified finely-divided ruthenium metal, the resultant RuO₂ is reduced in a stream of hydrogen at 300°-400°F for four to five hours. The resultant metal particle size is between 150- and 250-mesh (0.030-.0015-inch) (Test #56). *

To obtain a finely-divided ruthenium metal-kieselguhr catalyst, a quantity of kieselguhr approximately 100 times the metal weight of ruthenium is added to a K₂RuO₄-water solution followed by addition of ethyl alcohol. This brings

* Numbers in parentheses indicate the number of the experimental test in which the catalyst was tested as listed in the appendix.
about the precipitation of Ru$_2$(OH)$_4$ in the presence of the kieselguhr support. The product is washed repeatedly until no traces of KOH remain, and then is dried at 200°C to convert the precipitate to RuO$_2$, which can then be converted to ruthenium metal on kieselguhr by reduction in H$_2$ at 300°C.

The powder can be used either in this state or pressed into pellets, although pellets made from this powder are difficult to form, have little mechanical strength, and disintegrate in water ([51, 52, 60]).

b. Vapor Deposition with RuO$_4$

Ruthenium tetroxide, RuO$_4$, was prepared according to the following procedures.

A small quantity of RuO$_4$ (prepared as described previously) is placed in a distillation flask, followed by the addition of an excess of concentrated perchloric acid. The mixture is heated to gentle boiling at which time the flask becomes filled with yellow gaseous RuO$_4$. The probable reaction is:

$$2\text{RuO}_2 + \text{HClO}_4 \rightarrow 2\text{RuO}_4(\text{g}) + \text{HCl}$$

The RuO$_4$ was driven off and condensed as a yellow solid in a flask at the temperature of dry ice-acetone. The RuO$_4$ was then dissolved in cold water.

On completion of the reaction, the solution of RuO$_4$ was heated to room temperature and transferred to an alumina support by means of the system shown schematically in Figure 10.

![Figure 10 RuO$_4$ Deposition System](image)

Heating the RuO$_4$ solution released an RuO$_4$ vapor and the vapor collected on the surface of the support, at the same time converting to a shiny black deposit after a few hours. This deposit is believed to be RuO$_2$. The deposit clings tenaciously to the pellet, being removed only by scratching the surface.
with a sharp instrument ([#95, #6, 106, 107]).

An alternate method was tried for the preparation of RuO₂, based on general information in the literature indicating the RuO₂ could be prepared directly from the metal by heating in oxygen. This method was attempted with no success over a temperature range from 770° to 500°C.

c. RuO₂ Impregnation

The alumina supports (both 1/8-inch spheres and cylinders) were immersed directly in liquid RuO₂, removed from the liquid, and allowed to dry in air. The yellow RuO₂, again changed color to a dull, light grey deposit on the surface of the support, differing markedly from the vapor-deposited supports ([#27]).

d. RuO₂ - Perchloric Acid Impregnation

On completion of an RuO₂ preparation, as described above, a viscous, black liquid remains in the distillation flask. When all remaining water is driven off by heat, the remaining liquid containing dissolved or highly subdivided ruthenium is jet-black in color and similar to concentrated perchloric acid in viscosity.

When Al₂O₃ pellets are immersed in this liquid and then removed and heated to 600°F in hydrogen, a poorly adherent black deposit remains ([#98]).

e. Electrolytic Deposition of Ruthenium

Attempts were made to deposit ruthenium black on nichrome ribbon using a platinum anode, and the following electrolytes:

(a) 0.5 gm RuCl₃ + 0.5N HCl,
(b) 0.5 gm Ru(OH)₃ + 1 gm sulfuric acid in 100 ml H₂O
(c) 5 x 10⁻³M Ru(NO)Cl₃ + 0.5N HCl.

Cases (a) and (c) produced dull grey, poorly adherent deposits over a range of current values from 25-200 milliamperes, at room temperature. In case (b) no plating occurred for conditions identical to those in (a) and (c). Rather, ruthenium metal collected in the bottom of the cell directly below the cathode.

f. Activation of Ruthenium Metal Powder

The following treatment was found to markedly improve the catalytic activity of ruthenium metal powder.

Ten grams of ruthenium (approximately 7 cc) was placed in a beaker containing 75 ml of 5N HNO₃. The mixture was heated to 105°C, held at temperature for five minutes and then cooled to room temperature. The mixture was then washed repeatedly with distilled water until pH measurement indicated
neutral. The metal was then dried.

Next, the ruthenium was placed in a silver crucible and heated in air to 400°C. The ruthenium was maintained at this temperature for one hour, at which time it was cooled rapidly to room temperature, and subsequently used for testing.

4. Deposition of RuO$_2$ on Stainless Steel and Nickel Gauze

Ruthenium dioxide was deposited on 200-mesh stainless steel gauze by wrapping the stainless steel tightly around a strip of nickel foil, and then immersing it in a solution of RuO$_2$ and H$_2$O. A black deposit formed after a few minutes which became powdery and poorly adherent on drying. No deposition took place when the stainless steel was placed alone in the RuO$_2$-H$_2$O solution, indicating that the nickel probably acted as a reducing agent. This material, on testing, was found to be catalytically inactive however. After testing, inspection showed that the original powdery deposit had been replaced by a grey-brown, tenacious deposit (Table 1).

Ruthenium dioxide was deposited from an RuO$_2$-H$_2$O solution on 200-mesh nickel gauze, in the same way as on stainless gauze, but gave much the same results as the stainless-steel-RuO$_2$ material. One exception noted was that the RuO$_2$ deposit, subsequent to testing, appears to have been replaced by metallic ruthenium instead of the dull, grey-brown deposit observed with the stainless-steel (Table 1).

5.3.3.2 Platinum Preparation

Preparation of Platinum Black on Filter-Cell:

This preparation is based on the reaction

$$\text{PtCl}_4 + 4\text{H}_2\text{O} \rightarrow \text{Pt} + 4\text{HCl} + 4\text{NaCl} + 2\text{H}_2$$

In practice, a 0.85 gm sample of PtCl$_4$ was dissolved in 250 ml distilled water followed by the addition of 1.5 gm Filter-cell which results in the formation of a slurry. A 0.85 gm amount of NaCO$_3$ is subsequently added. This affects the reduction of the PtCl$_4$ to the black which is adsorbed on the Filter-Cell. The Filter-cell is then washed and filtered repeatedly in a fritted glass, Buchner funnel. After washing, the platinum-black-Filter-cell mixture is dried at 150°F in air. The dried powder is finally ground to 200-mesh particle size and tested (Test #34).

5.3.3.3 Nickel Preparations

Various methods were used to prepare both pure nickel metal and nickel on support media. Nickel is readily soluble in bases and acids, and its salts are easily converted to the metal or its oxide.

Pure nickel powder was prepared in several ways, from the carbonate, oxide, and formate. Only after careful preparation from reagent grade materials, and without exposing the precipitated nickel to air was any degree
of conversion achieved. Nickel in its pure state is readily oxidized by air and rapidly loses its catalyzing properties. The preparations are as follows:

a. Reagent grade nickel oxide was heated in hydrogen at 1700°F in a Wyco glass tube for 16 hours to provide pure nickel metal powder, approximately 200-mesh, for use in testing (Test 5).

b. Nickel Carbonate on Kieselguhr

In this method, a 0.1 molar solution of NiSO₄ is prepared, followed by the addition of a catalyst carrier such as Kieselguhr or activated charcoal. Next, hot Na₂CO₃ solution is added to the NiSO₄-carrier mixture, precipitating NiCO₃, which is adsorbed on the carrier. The NiCO₃-carrier is separated from the solution and washed repeatedly with distilled water until all detectable SO₄²⁻ has been removed.

After washing, the NiCO₃-carrier is evaporated to dryness. The product becomes granular and hard and it is necessary to grind and sieve the compound for use as a catalyst.

The dried product is now placed in an alumina crucible and heated to 700°F in air, which brings about the decarbonization of the apple-green NiCO₃, forming green-black NiO. The conversion seems to be complete after approximately 1-1/2 hours. The NiO can now be reduced to Ni in hydrogen at 200°F for 16 hours completing the preparation.

The carrier materials used in this preparation included Multicel, (Test 61) and activated carbon. Multicel worked satisfactorily, adsorbing NiCO₃ with ease; the activated carbon, however, adsorbed insignificant amounts, obviating its use as a carrier.

c. Nickel Formate Decomposition to Nickel and Nickel on Kieselguhr

Ni(OH)₂ was precipitated from NiCl₂ solution with NaOH and washed with distilled water. The Ni(OH)₂ slurry was then dissolved in a slight excess of H₂O₂ and the solution evaporated to dryness obtaining crystallization of nickel formate.

The nickel formate was then heated to 500°F in a hydrogen atmosphere which resulted in its slow decomposition to nickel metal according to the reaction:

$$\text{Ni(OH)}_2 \xrightarrow{\Delta} \text{Ni} + \text{H}_2 + 2\text{CO}_2$$

The decarbonization was allowed 2-1/2 days to go to completion. The resulting nickel powder weighed slightly less than the theoretical yield indicating the possibility that some moisture was originally present in the formate crystals (Tests 55, 58, 75, 76).

In preparing nickel on Kieselguhr the above described procedure was used with the modification that Multicel was added to the Ni(OH)₂ after it was dissolved in a slight excess of H₂O₂. The weight of Multicel used was approximately equal to the weight of the nickel in the Ni(OH)₂ (Test 89).
In another nickel formate decomposition, the hydrogen feed was interrupted when, during the heat-up, the formate reached 500°F. Gas evolved from the decomposing formate at several hundred cc/min. The temperature of the reaction remained at 500°F for approximately one hour and then rose to 900°F, apparently because the decomposition reaction had ended and no gas flow was available to dissipate the heat from the reactor heater. The nickel powder so obtained was allowed to reduce two hours at 600°F–700°F in hydrogen, followed by cooling to room temperature in a CO₂ atmosphere. The nickel was then stored in CO₂ until used (n#53).

In another preparation of nickel on kieselguhr the following procedure was used.

A three gm quantity of reagent-grade Ni(CO₃)₂ was added to 200 ml of concentrated NH₄OH solution, bringing about the dissolution of the Ni(CO₃)₂. Since Ni(CO₃)₂ is insoluble in H₂O, but very soluble in concentrated NH₄OH, it seemed advisable to use this medium for dissolution, since it would be of little difficulty to drive off the NH₄OH as NH₃ and H₂O at a later stage of the preparation, thereby leaving the nickel uncontaminated, in its final state.

Next, 20 cc (3 gm) of Multigel was added to the NH₄OH-Ni(CO₃)₂ solution, forming a thin paste. This paste was placed in an oven and heated to 200°F to remove NH₃ and H₂O and finally decomposed at 500°F, in air, to reduce the Ni(CO₃)₂⁺ to metallic nickel. The reaction equation for the reduction is given:

\[\text{Ni(CO₃)₂} \rightarrow \text{Ni} + \text{CO} + \text{H₂O} + \text{CO} \]

This procedure effects the preparation of approximately 50% (by weight) nickel – 50% Multigel catalyst of reasonable purity and surface area (n#90,91).

a. Nickel Powder from Nickel Nitrate

Nickel nitrate was thermally decomposed to form nickel trioxide, which in turn was reduced at 500°F–1000°F in a hydrogen ambient. The resultant nickel metal, however, formed a compacted mass unsuitable for use as a catalyst.

4.3.4 Discussion of Test Results

4.3.4.1 Catalyst Performance - The best catalyst performances are summarized in the table below for the B-6 and 3-3 reactors. Ranking is based on essentially complete carbon dioxide conversion (97%–99%) at the lowest reaction temperature, and at equivalent space velocities and H₂:CO ratios. Conversions below this range and at temperatures above 575°F were not included.
<table>
<thead>
<tr>
<th>Rank</th>
<th>Catalyst</th>
<th>Reactor</th>
<th>% Conversion</th>
<th>Temp. F.</th>
<th>Space Vel.</th>
<th>H₂CO₂ Ratio</th>
<th>Test No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ruthenium metal powder</td>
<td>3-G</td>
<td>99</td>
<td>357 (435)</td>
<td>310</td>
<td>4.45</td>
<td>(116, 117)</td>
</tr>
<tr>
<td>2</td>
<td>Osmium metal powder</td>
<td>3-G</td>
<td>99</td>
<td>450</td>
<td>620</td>
<td>4.45</td>
<td>99</td>
</tr>
<tr>
<td>3</td>
<td>Ruthenium on 1/8" Al₂O₃</td>
<td>2-G</td>
<td>99</td>
<td>480</td>
<td>418</td>
<td>4.6</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>Nickel metal powder</td>
<td>3-G</td>
<td>99</td>
<td>500</td>
<td>310</td>
<td>4.45</td>
<td>83</td>
</tr>
<tr>
<td>5</td>
<td>Nickel on Multicel pwdr.</td>
<td>3-D</td>
<td>99</td>
<td>520</td>
<td>310</td>
<td>4.45</td>
<td>91</td>
</tr>
<tr>
<td>6</td>
<td>Nickel on 1/8" Kieselguhr (2-6)</td>
<td>(36)</td>
<td>(38)</td>
<td>(332)</td>
<td>(330)</td>
<td>4.45</td>
<td>(36)</td>
</tr>
<tr>
<td>7</td>
<td>Nickel on Kieselguhr powder</td>
<td>3-G</td>
<td>97</td>
<td>485 (98)</td>
<td>(537)</td>
<td>4.45</td>
<td>121</td>
</tr>
</tbody>
</table>

In several other tests 97%-99% conversion was achieved at temperatures ranging between 390°-450°F but at lower space velocities. Nickel on 1/8-inch kieselguhr provided 98% conversion at 390°F and at 332 hr⁻¹, but as shown above this same catalyst required 520°F at 310 hr⁻¹. Similarly ruthenium on 1/8-inch Al₂O₃ provided 98% conversion at 412°F but at 67 hr⁻¹.

These performances are based on essentially complete conversions at the lowest temperature in the best test for each category of catalyst in its most active state. For example, ruthenium on 1/8-inch Al₂O₃ pellets provided 99% conversion at 480°F in test #24. In subsequent tests the identical catalyst sample gave lower conversions with other conditions equal indicating a slow decrease in the catalytic capacity of this sample.

In tests which provided less than 99% conversion no higher conversion could be achieved than the figures shown, even when the temperature was increased. Also, in several instances the conversion decreased on increase of temperature.

All of the catalysts in this summary table, with the exception of two, were either pure metal powders or commercial catalysts from industrial catalyst manufacturers. The nickel metal powder in test #83 was prepared in the MRD laboratories, as was the nickel on kieselguhr powder in test #91. Both laboratory prepared catalysts required special preparative procedures as discussed in Section 4.3.3.3.

4.3.4.2 Effects of Laboratory Preparations - During the course of
the experimental program ruthenium and nickel appeared to give the highest conversion performances. Consequently laboratory preparations of potential catalysts were concerned mainly with these two metals on several different supports.

Ruthenium was prepared on kieselguhr powder, 1/8-inch alumina pellets, stainless steel gauze, nickel gauze, and as pure metal.

Pure metal powder was prepared from a solution of a ruthenium salt, primarily to determine if there were any differences in performance between the laboratory prepared sample and the commercially supplied metal. Both were powders of very closely similar size, 150- to 200-mesh. The prepared metal powder provided 71% conversion at 470°F, approximately 100°F higher than achieved with commercially supplied metal, but at a space velocity approximately five times as high (66). Ruthenium on kieselguhr powder provided 99% conversion at 575°F (56), which is approximately 100°F higher than was needed for commercially supplied ruthenium on alumina pellets. None of the other ruthenium preparations provided any appreciable conversion. In general, the laboratory preparation of ruthenium did not provide as high performance as the commercial metal powder or supported catalysts.

Nickel was prepared on kieselguhr powder and as the pure metal. After several different preparation techniques were used, pure nickel metal powder was prepared from a salt of the metal. The prepared nickel metal powder provided 93% conversion at 500°F, and the nickel on kieselguhr 99% conversion at 520°F (43, 51). Use of reagent-grade materials, reduction with hydrogen, and storage in a carbon dioxide atmosphere were essential to provide this performance. These performances are considered slightly better than with commercial nickel catalysts primarily because the degree of conversion was slightly higher (99% vs 93% in tests 43, 51 vs. 447, 121) at similar space velocities and temperature ranges.

In summary, the effects of the laboratory preparations on CO₂ conversion performance were as follows:

1. The laboratory preparations of ruthenium, both as metal powder and as supports, required approximately 100°F higher operating temperatures for complete CO₂ conversion than did commercially supplied ruthenium.

2. The laboratory preparation of nickel both as metal powder and on supports did not require as high operating temperatures for complete CO₂ conversion as did commercially supplied catalysts.

3. For both ruthenium and nickel, the laboratory-prepared powders provided lower reaction temperature than supported metals.

4. For both metals on supports the best support material was kieselguhr.

4.3.4.3 Experimental Temperature, Composition, Pressure, and Space Velocity Effects - The effect of temperature upon the reaction was generally as expected from the information collected during the literature search, and from the theoretical considerations of the chemical
equilibrium relationship.

Various references showed that the minimum temperature at which complete CO₂ reduction was possible was 310°F with a ruthenium catalyst, and that the reaction was initiated at approximately 200°F. In test #53 with ruthenium the reaction began at 273°F and completed at 397°F, bearing out the effect of activation temperature on initiating and completing the CO₂ reduction in the expected 300°F to 400°F temperature range.

The chemical equilibrium relationship indicated that essentially complete CO₂ conversion was possible up to a given temperature, and that conversion would decrease if all of the reactor bed were above this temperature. This was shown true in several tests where increasing the reaction temperature did not increase conversion and actually caused a decrease in some instances, with attendant formation of CO as an undesirable end product. This behavior was demonstrated in tests #35, 37, 38, 54 and 59.

For an H₂:CO₂ ratio of approximately 4:1 the equilibrium relation indicates the maximum temperature for 99% complete CO₂ conversion is 615°F. In accordance with this, test #35 showed a drop in 96% conversion at 300°F to 88% at 665°F.

Theoretically, from equilibrium considerations, it is impossible to achieve essentially complete (> 99%) conversion at temperatures above 300°F for a H₂:CO₂ ratio of 4:1. This was verified in test #36 where 96% conversion required 552°F at a H₂:CO₂ ratio of 4.15:1. When the ratio was decreased to 4.0:1, the conversion dropped to 66% at 537°F. Thus a 10% excess of hydrogen in the feed allowed approximately complete CO₂ conversion with all other conditions remaining equal. In addition, the excess of hydrogen has been reported desirable to prevent the formation of CO which acts effectively as a transient inhibitor of the CO₂ reduction process.

The effect of decreased pressure on the reaction was shown theoretically to be relatively slight for essentially complete CO₂ conversion. Tests with ruthenium metal powder indicated only a slight change from 99% to 98% conversion when the reaction pressure was changed from 14.7 psia to 5.0 psia, holding the temperature constant (#117, 118, 119). This change is in very close agreement with the behavior predicted from chemical equilibrium theory.

The effect of space velocity with all other factors remaining equal was to decrease the fraction of CO₂ conversion as the space velocity increased (#8, 11, 18, 19, 20).

4.4 Optimum Catalyst

4.4.1 Catalyst Selection

On the basis of the results of the experimental testing program ruthenium has developed as the optimum catalyst. The factors which determined the optimum catalyst were: (1) completeness of CO₂ conversion, (2) minimum reaction activation temperature, (3) catalyst configuration and support material, (4) reaction pressure, (5) space velocity, and (6) chemical inertness and non-toxicity.
The primary comparison of the three most efficient catalyst materials, ruthenium, osmium, and nickel was discussed in Section 4.3.4.1. On the combined basis of CO₂ conversion, reaction temperature and space velocity, ruthenium and osmium metal powders could be rated as approximately equal, both being very near pure or supported nickel.

The pure metal powders in all cases performed better than when supported. However, a comparison of ruthenium and osmium on supports indicated supported ruthenium as far superior to supported osmium.

In addition, osmium metal is relatively easily oxidized to the tetroxide, which is an extremely poisonous gas. Although ruthenium tetroxide is also a highly poisonous gas it is very difficult to form from the pure metal.

In tests of ruthenium and nickel at reduced pressures, ruthenium and nickel both performed approximately equally on the basis of pressure variation, but again, ruthenium operated at a lower reaction temperature level than nickel. (Ru at 455°F; 97% conversion at 24.7 psia, 99% at 5 psia. Ni at 485°F; 97% at 24.7 psia, 99% at 3 psia).

4.4.2 Catalyst Properties and Design Data

The pure ruthenium metal powder has a bulk density of 85 lb/ft³, and the particles have an average diameter between 0.002 and 0.003 inches. The pressure drop through the particles with upward flow through an unrestrained bed is approximately 3 inches W.G. per inch of bed length at a linear velocity of 0.33 ft/min. For restrained beds (such as would be required for zero-gravity operation, or for downward flow) larger particle sizes are essential.

In a one-man system at a space velocity of 310 hr⁻¹, approximately two pounds of the ruthenium powder tested would be required for the reactor bed. Based on the thirty-day duration test performed, the weights of catalysts needed for 100-, 200-, and 300-day missions would be 6.8, 13.3 and 20 lbs, respectively. These are maximum weights and could be reduced depending on the success of more extensive duration tests. During the duration tests, the catalyst appeared unaffected by the short periodic injection of hydrogen sulphide into the feed gases.

For a one-man reactor (designed approximately similar to the 1-8 reactor) weighing seven pounds and containing two pounds of catalyst, the heating requirement to initiate the reaction would approximate 350 Btu, which is the estimated heat input to raise the reactor and catalyst to 350°F. The cooling rate requirement to maintain the system at this temperature level is 167 Btu/hr, which is the approximate value of the heat of reaction for one-man capacity. Cooling would be accomplished both by heat losses through insulation and by circulation of a cooling fluid around the reactor; the amount of fluid coolant needed is thus dependent upon the final reactor and insulation design.
5.1 Conclusions

On the basis of the combined phases of the complete program to determine an applicable low temperature-high yield catalyst for promoting the Sabatier reaction, the following conclusions have been reached.

a. The optimum catalyst was determined to be pure ruthenium metal powder, unsupported, average particle diameter 0.002 to 0.003 inch, bulk density 85 lb/ft3.

b. With this catalyst the minimum operating temperature for complete (>99%) single-pass CO$_2$ conversion was 357°F, at 14.7 psig when the space velocity was 310 hr$^{-1}$, and the H$_2$/CO$_2$ ratio was 4.4 as a minimum.

c. Pretreatment of the ruthenium metal powder with 5 normal nitric acid washings at 200°F and air oxidation at 750°F was necessary to activate the catalyst.

d. Supported ruthenium, both commercially supplied and laboratory prepared, did not provide as high CO$_2$ conversion as did pure ruthenium metal with all other factors being equal.

e. Ruthenium metal could not be oxidized to any of its oxides, particularly to poisonous ruthenium tetroxide (RuO$_4$), when roasted in pure oxygen up to 800°F, demonstrating a highly desirable inertness to oxidation.

f. Continuous operation for a thirty-day period with ruthenium metal powder caused no changes in CO$_2$ conversion or in the catalyst material. On this basis, for a one-man reactor, a maximum of two pounds of catalyst are adequate for a thirty-day mission.

g. Pure ruthenium, nickel and osmium metal powders in all instances provided higher CO$_2$ conversion than any of their supported forms, either as pellets or as powders.

h. Ruthenium on alumina (Al$_2$O$_3$) showed a gradual loss of catalyzing capacity with passage of time, and could not be effectively reactivated by nitric acid washing and air roasting.

i. Osmium metal powder was rated as the second best performing catalyst with complete conversion at 450°F and a space velocity of 620 hr$^{-1}$, with all other parameters the same as for ruthenium metal in b.

j. Nickel metal powder was rated as the third best performing catalyst with complete conversion at 500°F with all other parameters the same as for ruthenium metal in b.
k. All of the platinum group metals promoted varying degrees of CO₂ conversion either as pure metals or on various supports, with the exception of iridium. Neither pure powder nor alumina supported iridium provided any CO₂ conversion.

l. Pure metal tungsten powder, and the oxides of columbium, tantalum, and molybdenum, in powder form, did not promote CO₂ conversion at temperatures up to 650°F.

m. Pure metal powders of cobalt, columbium, and molybdenum provided only partial (15-45%) CO₂ conversion at 650°F.

n. Combinations of powders of 1) ruthenium on Al₂O₃ and palladium on Al₂O₃ or 2) ruthenium on Al₂O₃ and platinum on Al₂O₃ provided higher CO₂ conversion than any of the single materials alone.

o. Operation at 5 psia versus 34.7 psia caused a decrease in CO₂ conversion from 99% to 92% with the ruthenium catalyst.

p. A stoichiometric H₂/CO₂ ratio is not adequate for rapid single-gas complete CO₂ conversion. A ratio of approximately 4.4 appears adequate.

q. Operation at temperatures in excess of 600°F caused a decrease in CO₂ conversion at an H₂/CO₂ ratio of 4.4 in accordance with predictions based on equilibrium theory.

r. Treatment of catalysts with hydrogen at 300°F to 600°F for extended time periods (36 hr or longer) in general is not adequate alone to activate or regenerate ruthenium or nickel catalysts. Additional specific preparations and pretreatments are necessary.

s. The 1-8 reactor with ruthenium on Al₂O₃ pellets sustained one-man CO₂ conversion with no electrical input, and required controlled cooling to prevent excessive temperature rise.

t. Operation of the 3" long x 2" diameter one-man reactor (No. 1-8) demonstrated that large temperature gradients existed in the reactor bed, with the axial gradients ranging from 100°F to 250°F, and the radial gradient from 25°F to 150°F.

u. Continuous infra-red detection of the inlet and outlet CO₂ concentration was required for accurate correlation of CO₂ conversion with reaction temperature.

5.2 Recommendations

Based on the observations and conclusions drawn from the complete program the following recommendations are made concerning the use, operation, evaluation and future testing of catalyst materials and a full-size reactor for the Sabatier reaction.

a. The full-size one-man reactor should be designed to minimize the
temperature gradient within the catalyst bed and operate as nearly isothermally as possible, by using devices such as heat transfer fins, or special reactor shapes to aid in rapid removal of the heat of reaction.

b. A longer duration test should be made with the optimum catalyst, and the effects of poisoning should be further explored.

c. When the optimum catalyst, ruthenium metal powder, is to be used in a zero-gravity environment, it should be used in the form of particles larger than 0.002 to 0.003-inch in diameter, to eliminate the high pressure drop which would result from packing of the smaller sized particles.

d. Pure ruthenium metal powder should be tested in larger grain sizes to determine the relation between CO₂ conversion and pressure drop for varied particle diameters.

e. Additional controlled tests with ruthenium metal powder should be run at varied space velocities since this information is of importance in trade-off studies for the design of a full-size reactor.

f. Mixtures of pure ruthenium metal powder, with other metals such as platinum, palladium, and rhodium should be tested as potential improved catalysts to determine if the mixtures of metals demonstrate the synergistic effects noted with powdered mixtures of these metals on alumina supports.

g. Similarly metal powders of alloys of ruthenium and other members of the platinum group should be tested as potential improved catalysts.

h. Although osmium has the potentiality of creating a poisonous by-product if it is inadvertently oxidized, its catalyzing capabilities should be further investigated.

i. The reactor bed should run isothermally and not be cooled by the inlet gases. Heat of reaction should be removed externally, not by the reaction gases. The inlet gas to outlet gas heat exchanger in a full-size reactor should be separate from the reactor catalyst bed.
APPENDIX A

LITERATURE REFERENCES
<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Product</th>
<th>Conditions</th>
<th>Author</th>
<th>Chem.</th>
<th>Abstract</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu₄Al₂O₃₃</td>
<td>NCH₂</td>
<td>100°C, 200°C</td>
<td>Tempe's & Monroe</td>
<td>40:1140</td>
<td></td>
<td>JACS, 67, 2158-70 (1945)</td>
</tr>
<tr>
<td>Not-Specified</td>
<td>NCH₂</td>
<td>100°C, 200°C</td>
<td>E. Smith & Heil</td>
<td>24:5365</td>
<td></td>
<td>JACS, 24, 1037 (1930)</td>
</tr>
<tr>
<td>80%Al₂O₃,20%ZrO₂</td>
<td>Higher Alcohols</td>
<td>220°C, 180°C</td>
<td>Bocharova & Kogan</td>
<td>30:4302</td>
<td></td>
<td>Petrovka, Topl. 8, 1107 (1937)</td>
</tr>
<tr>
<td>80%Al₂O₃,20%ZrO₂</td>
<td>Higher Alcohols</td>
<td>220°C, 180°C</td>
<td>Bocharova & Kogan</td>
<td>30:4302</td>
<td></td>
<td>Petrovka, Topl. 8, 1107 (1937)</td>
</tr>
<tr>
<td>Lithium Borohydride</td>
<td>LiBH₄</td>
<td>70% yield</td>
<td>Brown & Burr</td>
<td>40:563</td>
<td></td>
<td>AEC-40689 Dell. Feb. 18, 1949</td>
</tr>
<tr>
<td>Lithium Aluminate</td>
<td>Li₄Al₃O₆</td>
<td>30% yield</td>
<td>Frick & Atkins</td>
<td>30:13</td>
<td></td>
<td>JACS, 57, 2222 (1933)</td>
</tr>
<tr>
<td>Rare Earths</td>
<td>RE₄O₆</td>
<td>30% yield</td>
<td>Jacobson</td>
<td>30:13</td>
<td></td>
<td>JACS, 57, 2222 (1933)</td>
</tr>
<tr>
<td>Rare Earths</td>
<td>RE₄O₆</td>
<td>30% yield</td>
<td>Jacobson</td>
<td>30:13</td>
<td></td>
<td>JACS, 57, 2222 (1933)</td>
</tr>
<tr>
<td>Rare Earths</td>
<td>RE₄O₆</td>
<td>30% yield</td>
<td>Jacobson</td>
<td>30:13</td>
<td></td>
<td>JACS, 57, 2222 (1933)</td>
</tr>
<tr>
<td>Zn-Cu-Al</td>
<td>KOH</td>
<td>30% yield</td>
<td>Brown & Morris</td>
<td>30:13</td>
<td></td>
<td>JACS, 57, 2222 (1933)</td>
</tr>
<tr>
<td>Electrical Discharge</td>
<td>KOH</td>
<td>30% yield</td>
<td>Brown & Morris</td>
<td>30:13</td>
<td></td>
<td>JACS, 57, 2222 (1933)</td>
</tr>
<tr>
<td>Not-Specified</td>
<td>KOH</td>
<td>30% yield</td>
<td>Brown & Morris</td>
<td>30:13</td>
<td></td>
<td>JACS, 57, 2222 (1933)</td>
</tr>
<tr>
<td>Hot-Pilaments</td>
<td>KOH</td>
<td>30% yield</td>
<td>Brown & Morris</td>
<td>30:13</td>
<td></td>
<td>JACS, 57, 2222 (1933)</td>
</tr>
<tr>
<td>Al-Thoria</td>
<td>ZrO₂</td>
<td>350°C, 1 atm</td>
<td>Northava, Kimoto & Abe</td>
<td>42:1497</td>
<td></td>
<td>Rev. Trav. Chim. 89, 1146 (1930)</td>
</tr>
<tr>
<td>Al₂O₃-Molybdenum Oxide</td>
<td>ZrO₂</td>
<td>350°C, 1 atm</td>
<td>Northava, Kimoto & Abe</td>
<td>42:1497</td>
<td></td>
<td>Rev. Trav. Chim. 89, 1146 (1930)</td>
</tr>
<tr>
<td>Catalyst</td>
<td>Product</td>
<td>Conditions</td>
<td>Author</td>
<td>Chem. Abstract</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
<td>------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Ru</td>
<td>CH₃OH</td>
<td>Start at 100°C, Atm. Press.</td>
<td>Fischer, Bahr, Meisel</td>
<td>330-340°C</td>
<td>Ber. 69, 183-6 (1926)</td>
<td></td>
</tr>
<tr>
<td>Na₂O-23</td>
<td>CH₃OH</td>
<td>Hydrated or small amounts of CH₃OH</td>
<td>Fischer, Bahr, Meisel</td>
<td>330-340°C</td>
<td>Ber. Chem. 16, 2069 (1935)</td>
<td></td>
</tr>
<tr>
<td>Bacterium lacticum</td>
<td>CH₃OH</td>
<td>100°F, Fermentation</td>
<td>Bohr, Gassmann,</td>
<td>53-6279°C</td>
<td>Mikrobiologiya 28, 272-23 (1959)</td>
<td></td>
</tr>
<tr>
<td>Not-Specified</td>
<td>CH₃OH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu, Ni, Co-Ni</td>
<td>CH₃OH</td>
<td>2000 to 450°C, Atm. Press.</td>
<td>Cratty, Russell</td>
<td>281-789°C</td>
<td>JACS, 80, 1077 (1958)</td>
<td></td>
</tr>
<tr>
<td>Ni-kieselguhr</td>
<td>CH₃OH</td>
<td>110°F, 61°C, Other condition, rewritten and redated</td>
<td>Upero, Wender, Ufer</td>
<td>801266°C</td>
<td>Helvetica Chim. Acta 86, 1077 (1958)</td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>CH₃OH</td>
<td>200°F, 10°C, 10°C</td>
<td>Schloss, Schall, Y. T. Dositkov</td>
<td>801266°C</td>
<td>Helvetica Chim. Acta 86, 1077 (1958)</td>
<td></td>
</tr>
<tr>
<td>Catalyst</td>
<td>Product</td>
<td>Conditions</td>
<td>Author</td>
<td>Chem. Abstract / Reference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------</td>
<td>------------</td>
<td>----------------------</td>
<td>----------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni-Kieselgrafit-Wege</td>
<td>CH₄</td>
<td>Atm. Press, 350°C</td>
<td>Westig</td>
<td>5611210/147</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni-Phoria</td>
<td>CH₄</td>
<td></td>
<td>Russell et al.</td>
<td>5011265</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni-Ce(III)Oxide</td>
<td>CH₄</td>
<td>125°C-280°C</td>
<td>Vlasenko</td>
<td>56112700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>CH₄</td>
<td>125°C-250°C</td>
<td>Vlasenko</td>
<td>56112700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe + 10...100% CO</td>
<td>Hydrocarbons</td>
<td></td>
<td></td>
<td>53/22895a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Specified</td>
<td>CO</td>
<td>Red heat</td>
<td>Meyer, Blending</td>
<td>111277</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe, Co, Ni</td>
<td>CH₄</td>
<td></td>
<td>Holland, T.</td>
<td>5611269</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Specified</td>
<td>CO</td>
<td></td>
<td>Piez</td>
<td>1112732</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Specified</td>
<td>CO</td>
<td></td>
<td>Neumann, K.</td>
<td>911235</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Powdered Ni</td>
<td>CH₄</td>
<td>800°C</td>
<td>Miller, March</td>
<td>1712895</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni on Hg0/Granules</td>
<td>CH₄</td>
<td>125°C, atm. Press</td>
<td>Neumann and L. 2000</td>
<td>11912083/12083</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Specified</td>
<td>NiO</td>
<td>125°C</td>
<td>Adlfried Fabrik</td>
<td>7911287</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>CO</td>
<td>933°C-2150°C</td>
<td>Hinkelwolf, F.</td>
<td>1913138</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Specified</td>
<td>CO</td>
<td>1000°C</td>
<td>Prichard, D.</td>
<td>1913141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luminous-discharge</td>
<td>HCHO</td>
<td></td>
<td>Bioehn, Bonhoeffer</td>
<td>3811269</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pajgel</td>
<td>HCHO, MCH</td>
<td></td>
<td>Morris, Hayerson</td>
<td>3811295/3911295</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nermutolaminio silicones</td>
<td>CH₄</td>
<td>Atmospheric Temperature</td>
<td>Decarrier, A.</td>
<td>3711268</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>CH₄</td>
<td></td>
<td>Chakravarty, and O.</td>
<td>3811260</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>CH₄</td>
<td></td>
<td>Sabatier and S.</td>
<td>3311241</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td>CH₄</td>
<td></td>
<td>Sabatier and S.</td>
<td>3311241</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catalyst</td>
<td>Product</td>
<td>Conditions</td>
<td>Author</td>
<td>Chem. Abstract</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>------------</td>
<td>--------------------</td>
<td>----------------</td>
<td>----------------------------</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>CH₄</td>
<td></td>
<td>Schuster, Tanneh</td>
<td>3013967⁹</td>
<td>Brennstoff-Chem. 15,358</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>CH₄</td>
<td></td>
<td>Sabatier, and</td>
<td></td>
<td>Comp. Rend. 139, 914 (1906)</td>
<td></td>
</tr>
<tr>
<td>Ni-Co</td>
<td>CH₄</td>
<td>150²-400⁰;</td>
<td>Koch, and Huster</td>
<td>2715154⁴²</td>
<td>Brennstoff-Chem. 11,295</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Goodfellow with</td>
<td></td>
<td></td>
<td>(1933)</td>
<td></td>
</tr>
<tr>
<td>Ni-Porcelain</td>
<td>CH₄</td>
<td></td>
<td>Joehn</td>
<td>811659</td>
<td>J. Gasb.chem. 87,73,203,128,</td>
<td></td>
</tr>
<tr>
<td>Ni-porcelain</td>
<td>CH₄</td>
<td>50000 atm, press</td>
<td>Passerand, and</td>
<td>221213⁶</td>
<td>(1916)</td>
<td></td>
</tr>
<tr>
<td>Ni-porcelain-seria</td>
<td>CH₄</td>
<td>322°C-35°C,</td>
<td>Campbell, and</td>
<td>221218</td>
<td>Ind. Eng. Chem. 120,133</td>
<td></td>
</tr>
<tr>
<td>Ni-porcelain</td>
<td>CH₄</td>
<td>335°C-</td>
<td>Campbell, and</td>
<td>221218</td>
<td>Ind. Eng. Chem. 125,133</td>
<td></td>
</tr>
<tr>
<td>Ni-porcelain</td>
<td>CH₄</td>
<td>350°C-</td>
<td>Campbell, and</td>
<td></td>
<td>(1938)</td>
<td></td>
</tr>
<tr>
<td>Ni-nitride</td>
<td>CH₄</td>
<td>475°-15 psi,</td>
<td>Ghosh, Chakravarty</td>
<td>261848</td>
<td>Z. Elektrochem. 57,775 (1931)</td>
<td></td>
</tr>
<tr>
<td>Ni-Thorite-Ceria-Carbon</td>
<td>CH₄</td>
<td>Flow-system,</td>
<td>Chakravarty</td>
<td>221285⁶</td>
<td>R. Ind. Chem. 125,396 (1938)</td>
<td></td>
</tr>
<tr>
<td>Ceria-promoted,</td>
<td>CH₄</td>
<td>Flow, Hydrocarbons</td>
<td>Madison, and</td>
<td>221335</td>
<td>J. Am. Chem. 81,594 (1959)</td>
<td></td>
</tr>
<tr>
<td>Cu-contg...Co</td>
<td></td>
<td></td>
<td>Russell</td>
<td></td>
<td>(1958)</td>
<td></td>
</tr>
<tr>
<td>with CO₂, CO,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂-SO₂, Salts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP VIII metals</td>
<td>CH₄</td>
<td>Flow, Hydrocarbons</td>
<td>Mcgrath</td>
<td>-8128336</td>
<td>J. Am. Chem. 72,8637739, May 15, 1953</td>
<td></td>
</tr>
<tr>
<td>(atomic No.>26)</td>
<td>CH₄</td>
<td>Flow, Hydrocarbons</td>
<td>Mcgrath</td>
<td>-8128336</td>
<td>J. Am. Chem. 72,8637739, May 15, 1953</td>
<td></td>
</tr>
<tr>
<td>Co-Fe alloys</td>
<td>CH₄</td>
<td>Flow, Hydrocarbons</td>
<td>Mcgrath</td>
<td>-8128336</td>
<td>J. Am. Chem. 72,8637739, May 15, 1953</td>
<td></td>
</tr>
<tr>
<td>Co-Ni, Ni₇Co₃</td>
<td>CH₄</td>
<td>Flow, Hydrocarbons</td>
<td>Mcgrath</td>
<td>-8128336</td>
<td>J. Am. Chem. 72,8637739, May 15, 1953</td>
<td></td>
</tr>
<tr>
<td>Catalyst</td>
<td>Reference</td>
<td>Author</td>
<td>Title</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------------</td>
<td>----------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platinum Metal-Ceramic Carrier</td>
<td>U.S. 3,125,539</td>
<td>Teague, E. D.</td>
<td>"Ceramic Catalyst Having a Sprayed Coating of a Platinum Family Metal"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noble Metals</td>
<td>U.S. 3,133,732</td>
<td>Neary, K. K., Thorg, J. E., Hinlicky, J. A.</td>
<td>"Reactivation of Noble Metal Catalysts With Gaseous Halogen"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noble Metal</td>
<td>U.S. 3,135,699</td>
<td>Henzog, H.</td>
<td>"Regenerating a Hydrogenation Catalyst"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platinum Group</td>
<td>U.S. 3,125,539</td>
<td>Norton Co.</td>
<td>"Ceramic Catalyst Plane Sprayed with a Platinum Group Metal"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platinum Group Metals</td>
<td>French Patent 1,346,159</td>
<td>Brown, H. C., Brown, C. A.</td>
<td>"Finely Divided Platinum Metal Catalyst"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>U.S. 3,009,685</td>
<td>Bertalochi, H.S.</td>
<td>"Aluminum Catalyst of Increased Surface Area"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noble Metals</td>
<td>U.S. 2,945,797</td>
<td>Hochstron, J.</td>
<td>"Recovery of Noble Metals From Catalyst Composites"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ruthenium</td>
<td>Pt Metals Rev. Bishop Co. Vol. 3 No. 2</td>
<td></td>
<td>"Ruthenium Catalyst for Paraffin Wax Synthesis"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ruthenium and Osmium</td>
<td>Pt Metals Rev. Bishop Co. Vol. 6 No. 1</td>
<td></td>
<td>"Ruthenium and Osmium as Hydrogenated Catalysts"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ruthenium</td>
<td>Pt Metals Rev. Bishop Co. Vol. 3 No. 2</td>
<td></td>
<td>"Electrodeposition of Ruthenium"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt Group Metals</td>
<td>U.S. 2,885,289 (May 2, 1952)</td>
<td>Notes, J. W., Keith, C. D.</td>
<td>"Catalyst Preparation"</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GENERAL REFERENCE TEXTS

APPENDIX B

EXPERIMENTAL TESTS
Test Reactor Catalyst O2 Feed Temp. N

<table>
<thead>
<tr>
<th>Test</th>
<th>Reactor</th>
<th>Catalyst</th>
<th>O2 Feed</th>
<th>Contact</th>
<th>Temp.</th>
<th>Space</th>
<th>Stay Time</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (4/21)</td>
<td>0-0</td>
<td>1/8" Al</td>
<td>1/8" Al</td>
<td>350</td>
<td>470</td>
<td>350</td>
<td>470</td>
<td>7.6</td>
</tr>
<tr>
<td>2 (4/20)</td>
<td>0-0</td>
<td>1/8" Al</td>
<td>1/8" Al</td>
<td>350</td>
<td>470</td>
<td>350</td>
<td>470</td>
<td>7.6</td>
</tr>
<tr>
<td>3 (4/20)</td>
<td>0-0</td>
<td>1/8" Al</td>
<td>1/8" Al</td>
<td>350</td>
<td>470</td>
<td>350</td>
<td>470</td>
<td>7.6</td>
</tr>
<tr>
<td>4 (4/29)</td>
<td>0-0</td>
<td>1/8" Al</td>
<td>1/8" Al</td>
<td>350</td>
<td>470</td>
<td>350</td>
<td>470</td>
<td>7.6</td>
</tr>
<tr>
<td>5 (4/29)</td>
<td>0-0</td>
<td>1/8" Al</td>
<td>1/8" Al</td>
<td>350</td>
<td>470</td>
<td>350</td>
<td>470</td>
<td>7.6</td>
</tr>
<tr>
<td>6 (5/1)</td>
<td>0-0</td>
<td>1/8" Al</td>
<td>1/8" Al</td>
<td>350</td>
<td>470</td>
<td>350</td>
<td>470</td>
<td>7.6</td>
</tr>
<tr>
<td>7 (5/4)</td>
<td>0-0</td>
<td>1/8" Al</td>
<td>1/8" Al</td>
<td>350</td>
<td>470</td>
<td>350</td>
<td>470</td>
<td>7.6</td>
</tr>
<tr>
<td>8 (5/5)</td>
<td>0-0</td>
<td>1/8" Al</td>
<td>1/8" Al</td>
<td>350</td>
<td>470</td>
<td>350</td>
<td>470</td>
<td>7.6</td>
</tr>
<tr>
<td>9 (5/13)</td>
<td>0-0</td>
<td>1/8" Al</td>
<td>1/8" Al</td>
<td>350</td>
<td>470</td>
<td>350</td>
<td>470</td>
<td>7.6</td>
</tr>
<tr>
<td>10 (5/10)</td>
<td>0-0</td>
<td>1/8" Al</td>
<td>1/8" Al</td>
<td>350</td>
<td>470</td>
<td>350</td>
<td>470</td>
<td>7.6</td>
</tr>
<tr>
<td>11 (5/19)</td>
<td>0-0</td>
<td>1/8" Al</td>
<td>1/8" Al</td>
<td>350</td>
<td>470</td>
<td>350</td>
<td>470</td>
<td>7.6</td>
</tr>
<tr>
<td>12 (5/20)</td>
<td>0-0</td>
<td>1/8" Al</td>
<td>1/8" Al</td>
<td>350</td>
<td>470</td>
<td>350</td>
<td>470</td>
<td>7.6</td>
</tr>
</tbody>
</table>

a. Space Velocity = Total (CO2 + H₂) volume flow rate at 70°F, 1 atm./Catalyst bed volume.
b. Stay Time = 3500/space vel.
c. Gas composition measured by Beckman GC-2 Gas Chromatograph
d. Gas composition measured with LIRA infrared CO₂ analyzer, 0.14 CO₂

Temp. measured at middle center of bed only. 470°C. Control lean CO₂ output. Reactor insulated and not cooled.

Temp. controlled with heater only, manually. Temperature is minimum which still allows 95% CO₂ conversion. Reactor insulated and not cooled.

Temp. measured at six points. Top, Mid, Bot. at wall and center. Highest temp. occurs at top-center, but this appears to be the controlling temperature. There is a 500°F vertical gradient. No cooling air un insulated.

The max. temp. is initially at mid-center, for 95% cont., but moves up to top-center and remains, gradient as before. No cooling air un insulated.

Used cooling air for first time. Max. temp. point moved from mid-center to top center as before. Cooling creates sharp temp. changes, making control difficult. Added temperature controller to control heater. Used cooling air to cycle reaction and keep temp. as low as possible. Control is difficult. Cycling creates 15° to 200°F temp. fluctuations. Conversion approximates 80% at 45°F.

Controller now turns off heater and turns on cooling air simultaneously at a given control temperature. Reactor was insulated with a 1/2" layer of asbestos around body only; ends still un insulated. Control at a single level is still difficult.

Simultaneous control of heat and air creates 100-200° temperature cycling. Reactor temperature profile continually shifts, making relation of conversion to temp. difficult. Vertical gradient is 200° to 250°F, radial gradient is 5° to 25°F.

With no cooling, reactor rose to 690° at top center with manual cooling, conversion dropped off to 94° at 353°F (top-center).

Flow reduced 500. A 6" thick layer of fiberglass was added around reactor. With no cooling reaction was nearly self-sustaining at 417°F but cooled to 361°F where com. dropped to 21%. A 0.025" carbon monoxide LIRG was added to monitoring system in outlet gas line.

At 3/4" flow reaction sustained itself down to 677°F but began to fall off at 640°F. Reactor was air-cooled after reaction achieved 95% conversion.

Reactor is self-sustaining for 1/2" flow down to 60°F, but fell off to 93° at 60°F when cooled by air.
<table>
<thead>
<tr>
<th>Test No.</th>
<th>Reactor No.</th>
<th>Catalyst</th>
<th>CO Feed</th>
<th>X$_2$O$_2$</th>
<th>% CO</th>
<th>Catalyst Space</th>
<th>Stay Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>(5/22)</td>
<td>Ru on 1/8" Al</td>
<td>470</td>
<td>4.6%</td>
<td>96%</td>
<td>Ru on 1/8" Al</td>
<td>470</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/8" Al</td>
<td>703</td>
<td></td>
<td></td>
<td>1/8" Al</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>(5/28)</td>
<td>Ru on 1/8" Al</td>
<td>220</td>
<td>4.6%</td>
<td>99%</td>
<td>Ru on 1/8" Al</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/8" Al</td>
<td>700</td>
<td></td>
<td></td>
<td>1/8" Al</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>(5/29)</td>
<td>Ir on 1/8" Al</td>
<td>220</td>
<td>0.0%</td>
<td>95%</td>
<td>Ir on 1/8" Al</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/8" Al</td>
<td>700</td>
<td></td>
<td></td>
<td>1/8" Al</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>(6/01)</td>
<td>Ru on 1/8" Al</td>
<td>220</td>
<td>4.6%</td>
<td>99%</td>
<td>Ru on 1/8" Al</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/8" Al</td>
<td>700</td>
<td></td>
<td></td>
<td>1/8" Al</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>(6/02)</td>
<td>Ru on 1/8" Al</td>
<td>220</td>
<td>4.6%</td>
<td>99%</td>
<td>Ru on 1/8" Al</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/8" Al</td>
<td>700</td>
<td></td>
<td></td>
<td>1/8" Al</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>(6/03)</td>
<td>Ru on 1/8" Al</td>
<td>117</td>
<td>4.6%</td>
<td>99%</td>
<td>Ru on 1/8" Al</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/8" Al</td>
<td>717</td>
<td></td>
<td></td>
<td>1/8" Al</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>(6/04)</td>
<td>Ru on 1/8" Al</td>
<td>117</td>
<td>4.6%</td>
<td>99%</td>
<td>Ru on 1/8" Al</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/8" Al</td>
<td>717</td>
<td></td>
<td></td>
<td>1/8" Al</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>(6/05)</td>
<td>Ru on 1/8" Al</td>
<td>117</td>
<td>4.6%</td>
<td>96%</td>
<td>Ru on 1/8" Al</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/8" Al</td>
<td>717</td>
<td></td>
<td></td>
<td>1/8" Al</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>(6/06)</td>
<td>Ru on 1/8" Al</td>
<td>117</td>
<td>4.6%</td>
<td>99%</td>
<td>Ru on 1/8" Al</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/8" Al</td>
<td>717</td>
<td></td>
<td></td>
<td>1/8" Al</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>(6/07)</td>
<td>Ru on 1/8" Al</td>
<td>117</td>
<td>4.6%</td>
<td>99%</td>
<td>Ru on 1/8" Al</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/8" Al</td>
<td>717</td>
<td></td>
<td></td>
<td>1/8" Al</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>(6/08)</td>
<td>Ru on 1/8" Al</td>
<td>117</td>
<td>4.6%</td>
<td>96%</td>
<td>Ru on 1/8" Al</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/8" Al</td>
<td>717</td>
<td></td>
<td></td>
<td>1/8" Al</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>(6/09)</td>
<td>Ru on 1/8" Al</td>
<td>117</td>
<td>4.6%</td>
<td>99%</td>
<td>Ru on 1/8" Al</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/8" Al</td>
<td>717</td>
<td></td>
<td></td>
<td>1/8" Al</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>(6/10)</td>
<td>Ru on 1/8" Al</td>
<td>117</td>
<td>4.6%</td>
<td>99%</td>
<td>Ru on 1/8" Al</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/8" Al</td>
<td>717</td>
<td></td>
<td></td>
<td>1/8" Al</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>(6/11)</td>
<td>Ru on 1/8" Al</td>
<td>117</td>
<td>4.6%</td>
<td>99%</td>
<td>Ru on 1/8" Al</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/8" Al</td>
<td>717</td>
<td></td>
<td></td>
<td>1/8" Al</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>(6/12)</td>
<td>Ru on 1/8" Al</td>
<td>117</td>
<td>4.6%</td>
<td>99%</td>
<td>Ru on 1/8" Al</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/8" Al</td>
<td>717</td>
<td></td>
<td></td>
<td>1/8" Al</td>
<td></td>
</tr>
</tbody>
</table>

Remarks

Top 2-1/2" of reactor contains catalyst. Lower 2-1/2" now filled with alumina metal 1/8" pellets. The top portion is filled with catalyst. Bottom reactor is filled with catalysts.

Top reactor showed temp. required for self-sustaining reaction running at 500°F, or 50°F higher than previously noted in run No. 15. Catalyst was left open for four days prior to use.

Catalyst was reduced overnight at 500°F. Reaction is not quite self-sustaining. Conversion falls off at 600°F.

No appreciable conversion of CO was found with Iridium catalyst. Iridium was out-gated under vacuum at 700°F.

No appreciable conversion of CO could be expected with catalysts in this capacity. Iridium was reduced overnight at 500°F with hydrogen.

Catalyst was reduced overnight at 500°F with Ru.

Nickel-Iridium catalyst reduced overnight at 500°F with Ru.

Test of 1/4-mesh purity at 1/4-mesh CO flow. Catalyst was not reduced.

Catalyst reduced overnight at 300°F in E. Slightly higher conversion results at approximately same temperature.

First tests with 2-0 reactor to test powder catalysts and similar amount of pellets. No conversion. Catalyst was pre-reduced with H$_2$ at room temp. for 3 hours to produce altered Ru.

Catalyst was reduced for 16 hrs at 300°F with Ru. Lack of conversion was not anticipated.

96 grams of Ru on Alumina pellets was tested for comparison with 1-8 reactor, since small temp. gradients would be expected. Vertical gradient 150-500°F, radial 10-300°F.

At these 100°C, and total flow rates could not be readily related to gas composition.

Absorption and desorption of CO from catalyst surface caused fluctuations in gas composition when temperature level was changed preventing correlation of temperature and conversion. Outlet and initial inlet composition measured with 0-300°C LIR infrared analyzer. Temperature and outlet composition equilibria are required to relate accurately CO conversion with temperature.

Gas composition measured by LIR infrared analyzer, 0-300°C.
Remarks

Higher flow rates permit more rapid measurement of outlet gas composition.

Verification of lower temperature-conversion relation.

Check on run No. 26

At this CO₂ flow rate 57% conversion occurred at 270°F, relatively a constant temp. throughout catalyst bed. Conversion started at 500°F. Conversion profile was verified by monitoring the outlet gas flow rates. CO₂ conversion level was allowing to stabilize for each temp. and flow measurement.

Barsh No. RL-004, 5% Ni on Kieselguhr. Catalyst was not reduced during constantly changing conversion.

Catalyst was reduced for 60 hrs with E₂ at 300°F. Higher conversion achieved at lower temp., but results not clear due to chromatography and desorption of CO₂ by the catalyst itself with time change.

Repeat & clarification of run No. 33. Reaction started at 170°F. Maximum conversion was 55% at 400°F.

Increased the CO₂ flow rate. Inlet and outlet CO₂ concentration now continuously monitored by separate LIRA CO₂ analyzers. Checked effect of decreased reactor temp. above 500°F conversion appears to decrease at this flow and space velocity.

Increased flow requires higher temp. for conversion in comparison with previous run. Change in E₂, CO₂ ratio to 4.0 decreased conversion to 95% at 497°F.

Comparable test to No. 36 using Ru on 1/16" Al shows a higher temp. required. Max. CO₂ conv. was 58% at 500°F. Raising temp. to 700°F, 40-11 increased CO₂, but did not increase conversion.

Repeat of No. 37, but raising temp. to 700°F: 40-11 did not increase conversion, but conv. did not decrease significantly either.

Catalyst is Barsh No. RL-007, 15% Nickel oxide on Alumina. Did not form any CO₂, but did promote formation of 0.15% CO at 550°F as measured on 0.0 to 0.5% CO LIRA infrared detector.

Reduced RL-007 for 16 hrs at 600°F with E₂. Some CO₂ conversion achieved as shown. CO began to form at 400-500°F, and reached 0.4% at 61°F.

Table

<table>
<thead>
<tr>
<th>Test</th>
<th>Reactor</th>
<th>Catalyst</th>
<th>CO₂ Feed</th>
<th>E₂ : CO₂</th>
<th>% CO₂ conv</th>
<th>Catalyst</th>
<th>Space² h⁻¹</th>
<th>Stay time</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>2 0</td>
<td>Ni on 1/16" Al (94 cc)</td>
<td>19</td>
<td>4.45²</td>
<td>95²</td>
<td>470</td>
<td>67</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>2 0</td>
<td>Ru on 1/16" Al (94 cc)</td>
<td>19</td>
<td>4.45²</td>
<td>95²</td>
<td>470</td>
<td>67</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>2 0</td>
<td>Ni on 1/16" Al (94 cc)</td>
<td>19</td>
<td>4.45²</td>
<td>95²</td>
<td>470</td>
<td>67</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>2 0</td>
<td>Ni on 1/16" Al (94 cc)</td>
<td>19</td>
<td>4.45²</td>
<td>95²</td>
<td>470</td>
<td>67</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>2 0</td>
<td>Ni on 1/16" Al (94 cc)</td>
<td>19</td>
<td>4.45²</td>
<td>95²</td>
<td>470</td>
<td>67</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>2 0</td>
<td>Ni on 1/16" Al (94 cc)</td>
<td>19</td>
<td>4.45²</td>
<td>95²</td>
<td>470</td>
<td>67</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>2 0</td>
<td>Ni on 1/16" Al (94 cc)</td>
<td>19</td>
<td>4.45²</td>
<td>95²</td>
<td>470</td>
<td>67</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>2 0</td>
<td>Ni on 1/16" Al (94 cc)</td>
<td>19</td>
<td>4.45²</td>
<td>95²</td>
<td>470</td>
<td>67</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>2 0</td>
<td>Ni on 1/16" Al (94 cc)</td>
<td>19</td>
<td>4.45²</td>
<td>95²</td>
<td>470</td>
<td>67</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>2 0</td>
<td>Ni on 1/16" Al (94 cc)</td>
<td>19</td>
<td>4.45²</td>
<td>95²</td>
<td>470</td>
<td>67</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2 0</td>
<td>Ni on 1/16" Al (94 cc)</td>
<td>19</td>
<td>4.45²</td>
<td>95²</td>
<td>470</td>
<td>67</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2 0</td>
<td>Ni on 1/16" Al (94 cc)</td>
<td>19</td>
<td>4.45²</td>
<td>95²</td>
<td>470</td>
<td>67</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2 0</td>
<td>Ni on 1/16" Al (94 cc)</td>
<td>19</td>
<td>4.45²</td>
<td>95²</td>
<td>470</td>
<td>67</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2 0</td>
<td>Ni on 1/16" Al (94 cc)</td>
<td>19</td>
<td>4.45²</td>
<td>95²</td>
<td>470</td>
<td>67</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2 0</td>
<td>Ni on 1/16" Al (94 cc)</td>
<td>19</td>
<td>4.45²</td>
<td>95²</td>
<td>470</td>
<td>67</td>
<td>54</td>
<td></td>
</tr>
</tbody>
</table>

r. Gas composition measured with 0-20% CO LIRA.
<table>
<thead>
<tr>
<th>Test No.</th>
<th>Reactor No.</th>
<th>Catalyst</th>
<th>CO Feed (cfm)</th>
<th>H2/CO</th>
<th>5% CO Concr.</th>
<th>Catalyst Temp. (°F)</th>
<th>Space Vel. (hr⁻¹)</th>
<th>Stay Time (sec)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>44 (7/22)</td>
<td>2-0</td>
<td>Co on</td>
<td>19</td>
<td>1.15</td>
<td>0.6</td>
<td>325</td>
<td>66</td>
<td>54</td>
<td>Earsaw catalyst No. Co-001C, 15% cobalt on Kieselgur, supplied as activated, reduced and stabilized was used without pretreatment with H₂. The catalyst was reduced with H₂ for 60 hours at 250°F. 0.06% CO was noted at 510°F. Ruthenium pellets were reduced in H₂ at 300°F for 120 hours prior to use in reactor. Conversion was not as high as at comparable temperatures as in earlier tests which ran at even higher space velocities. Reduced catalyst overlite with H₂ at 300°F. Conversion was even lower than in Run 43. Activity of catalyst appears to be decreasing. Ruthenium on alumina powder (same sample used in test No. 22 & 23) was reduced for 120 hours with H₂ at 300°F. Test performed in 3-Ø reactor Ruthenium metal powder (150-200 mesh) was tested as supplied from (4Ą-1) D.P. Goldsmith Co., and (4Ą-2) England Ind. No activation was performed. Pellets of Earsaw Ru-010, Nickel on Kieselgur were ground to powder, approx. 350 mesh and reduced for 16 hours with H₂ at 300°F. Fresh ruthenium powder from English-Ind. (150-200 mesh) was reduced for 16 hours with H₂ at 303°F. Fresh oxides powder from English-Ind. (150-200 mesh) reduced for 16 hours with H₂ at 303°F. This catalyst was designed to show total conversion, 50% in any tests to date. Conversion temp. for the high space velocity and low stay time shown. Fresh rhodium powder from English-Ind. (150-200 mesh) reduced for 16 hours with H₂ at 303°F. Ruthenium was prepared on Kieselgur powder (0.5 g of Ru on 13 g of Kieselgur) and formed into 1/8" dia. x 1/8" long pellets. The pellets were reduced for 16 hours with H₂ at 300°F.</td>
</tr>
<tr>
<td>45</td>
<td>2-0</td>
<td>Ni on</td>
<td>19</td>
<td>1.15</td>
<td>0.6</td>
<td>293</td>
<td>66</td>
<td>54</td>
<td>Ni catalyst on 15% Cu on Kieselgur, supplied as activated, reduced and stabilized was used without pretreatment with H₂. The catalyst was reduced with H₂ for 60 hours at 250°F. 0.06% CO was noted at 510°F. Ruthenium pellets were reduced in H₂ at 300°F for 120 hours prior to use in reactor. Conversion was not as high as at comparable temperatures as in earlier tests which ran at even higher space velocities. Reduced catalyst overlite with H₂ at 300°F. Conversion was even lower than in Run 43. Activity of catalyst appears to be decreasing. Ruthenium on alumina powder (same sample used in test No. 22 & 23) was reduced for 120 hours with H₂ at 300°F. Test performed in 3-Ø reactor Ruthenium metal powder (150-200 mesh) was tested as supplied from (4Ą-1) D.P. Goldsmith Co., and (4Ą-2) England Ind. No activation was performed. Pellets of Earsaw Ru-010, Nickel on Kieselgur were ground to powder, approx. 350 mesh and reduced for 16 hours with H₂ at 300°F. Fresh ruthenium powder from English-Ind. (150-200 mesh) was reduced for 16 hours with H₂ at 303°F. Fresh oxides powder from English-Ind. (150-200 mesh) reduced for 16 hours with H₂ at 303°F. This catalyst was designed to show total conversion, 50% in any tests to date. Conversion temp. for the high space velocity and low stay time shown. Fresh rhodium powder from English-Ind. (150-200 mesh) reduced for 16 hours with H₂ at 303°F. Ruthenium was prepared on Kieselgur powder (0.5 g of Ru on 13 g of Kieselgur) and formed into 1/8" dia. x 1/8" long pellets. The pellets were reduced for 16 hours with H₂ at 300°F.</td>
</tr>
<tr>
<td>46</td>
<td>2-0</td>
<td>Ru on</td>
<td>19</td>
<td>1.15</td>
<td>0.6</td>
<td>325</td>
<td>66</td>
<td>54</td>
<td>Ru catalyst on 15% Cu on Kieselgur, supplied as activated, reduced and stabilized was used without pretreatment with H₂. The catalyst was reduced with H₂ for 60 hours at 250°F. 0.06% CO was noted at 510°F. Ruthenium pellets were reduced in H₂ at 300°F for 120 hours prior to use in reactor. Conversion was not as high as at comparable temperatures as in earlier tests which ran at even higher space velocities. Reduced catalyst overlite with H₂ at 300°F. Conversion was even lower than in Run 43. Activity of catalyst appears to be decreasing. Ruthenium on alumina powder (same sample used in test No. 22 & 23) was reduced for 120 hours with H₂ at 300°F. Test performed in 3-Ø reactor Ruthenium metal powder (150-200 mesh) was tested as supplied from (4Ą-1) D.P. Goldsmith Co., and (4Ą-2) England Ind. No activation was performed. Pellets of Earsaw Ru-010, Nickel on Kieselgur were ground to powder, approx. 350 mesh and reduced for 16 hours with H₂ at 300°F. Fresh ruthenium powder from English-Ind. (150-200 mesh) was reduced for 16 hours with H₂ at 303°F. Fresh oxides powder from English-Ind. (150-200 mesh) reduced for 16 hours with H₂ at 303°F. This catalyst was designed to show total conversion, 50% in any tests to date. Conversion temp. for the high space velocity and low stay time shown. Fresh rhodium powder from English-Ind. (150-200 mesh) reduced for 16 hours with H₂ at 303°F. Ruthenium was prepared on Kieselgur powder (0.5 g of Ru on 13 g of Kieselgur) and formed into 1/8" dia. x 1/8" long pellets. The pellets were reduced for 16 hours with H₂ at 300°F.</td>
</tr>
<tr>
<td>47</td>
<td>2-0</td>
<td>Ru on</td>
<td>19</td>
<td>1.15</td>
<td>0.6</td>
<td>325</td>
<td>66</td>
<td>54</td>
<td>Ru catalyst on 15% Cu on Kieselgur, supplied as activated, reduced and stabilized was used without pretreatment with H₂. The catalyst was reduced with H₂ for 60 hours at 250°F. 0.06% CO was noted at 510°F. Ruthenium pellets were reduced in H₂ at 300°F for 120 hours prior to use in reactor. Conversion was not as high as at comparable temperatures as in earlier tests which ran at even higher space velocities. Reduced catalyst overlite with H₂ at 300°F. Conversion was even lower than in Run 43. Activity of catalyst appears to be decreasing. Ruthenium on alumina powder (same sample used in test No. 22 & 23) was reduced for 120 hours with H₂ at 300°F. Test performed in 3-Ø reactor Ruthenium metal powder (150-200 mesh) was tested as supplied from (4Ą-1) D.P. Goldsmith Co., and (4Ą-2) England Ind. No activation was performed. Pellets of Earsaw Ru-010, Nickel on Kieselgur were ground to powder, approx. 350 mesh and reduced for 16 hours with H₂ at 300°F. Fresh ruthenium powder from English-Ind. (150-200 mesh) was reduced for 16 hours with H₂ at 303°F. Fresh oxides powder from English-Ind. (150-200 mesh) reduced for 16 hours with H₂ at 303°F. This catalyst was designed to show total conversion, 50% in any tests to date. Conversion temp. for the high space velocity and low stay time shown. Fresh rhodium powder from English-Ind. (150-200 mesh) reduced for 16 hours with H₂ at 303°F. Ruthenium was prepared on Kieselgur powder (0.5 g of Ru on 13 g of Kieselgur) and formed into 1/8" dia. x 1/8" long pellets. The pellets were reduced for 16 hours with H₂ at 300°F.</td>
</tr>
<tr>
<td>Test</td>
<td>Reactor</td>
<td>Catalyst</td>
<td>CO Feed</td>
<td>E/min</td>
<td>E2:CO2</td>
<td>% CO</td>
<td>Catalyst Space*</td>
<td>Space*</td>
<td>Stay Time</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td>-------</td>
<td>--------</td>
<td>-----</td>
<td>----------------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>53</td>
<td>3-0</td>
<td>Ru Metal</td>
<td>9.5</td>
<td>4.45</td>
<td>0</td>
<td>873</td>
<td>310</td>
<td>5.8</td>
<td>3-0</td>
</tr>
<tr>
<td>54</td>
<td>(8/5)</td>
<td>Ru Metal</td>
<td>10.0</td>
<td>4.0</td>
<td>0</td>
<td>320</td>
<td>310</td>
<td>5.8</td>
<td>3-0</td>
</tr>
<tr>
<td>55</td>
<td>(8/6)</td>
<td>Ru Metal</td>
<td>9.5</td>
<td>4.45</td>
<td>0</td>
<td>285</td>
<td>310</td>
<td>5.8</td>
<td>3-0</td>
</tr>
<tr>
<td>56</td>
<td>(8/6)</td>
<td>Ru Metal</td>
<td>10.0</td>
<td>4.0</td>
<td>0</td>
<td>320</td>
<td>310</td>
<td>5.8</td>
<td>3-0</td>
</tr>
<tr>
<td>57</td>
<td>(8/7)</td>
<td>Ru on Al2O3</td>
<td>9.5</td>
<td>4.45</td>
<td>0</td>
<td>475</td>
<td>310</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>(8/10)</td>
<td>Ru Metal</td>
<td>9.5</td>
<td>4.45</td>
<td>0</td>
<td>375</td>
<td>310</td>
<td>5.8</td>
<td>3-0</td>
</tr>
<tr>
<td>59</td>
<td>(8/20)</td>
<td>Ru on Al2O3</td>
<td>9.5</td>
<td>4.45</td>
<td>0</td>
<td>375</td>
<td>310</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>(8/11)</td>
<td>Ru on Al2O3</td>
<td>9.5</td>
<td>4.45</td>
<td>0</td>
<td>475</td>
<td>310</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>(8/12)</td>
<td>Ru on Al2O3</td>
<td>9.5</td>
<td>4.45</td>
<td>0</td>
<td>375</td>
<td>310</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>(8/13)</td>
<td>Ru on Al2O3</td>
<td>9.5</td>
<td>4.45</td>
<td>0</td>
<td>475</td>
<td>310</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>(8/14)</td>
<td>Ru on Al2O3</td>
<td>9.5</td>
<td>4.45</td>
<td>0</td>
<td>375</td>
<td>310</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>(8/15)</td>
<td>Ru on Al2O3</td>
<td>9.5</td>
<td>4.45</td>
<td>0</td>
<td>375</td>
<td>310</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>(8/16)</td>
<td>Ru on Al2O3</td>
<td>9.5</td>
<td>4.45</td>
<td>0</td>
<td>375</td>
<td>310</td>
<td>5.8</td>
<td></td>
</tr>
</tbody>
</table>

Remarks:
- Approx. 50% Ruthenium metal was mixed with Kieselguhr, both 900 mesh, to form a homogeneous mixture. Kieselguhr is 100 mesh, supplied from the Tannin Co., Chicago, Ill.
- The ruthenium is the same sample in Run No. 40. It was treated with boiling 5% KOH, for 10 min., and then roasted in air at 650°F for 8 hrs.
- Same catalyst as Run 23. CO: H2 ratio was lowered to 1:4, to reduce the reaction temp., for 95% conversion increased to 650°F. Higher than 95% was not achieved, up to 910°F.
- Nickel powder was prepared from nickel carbonate and reduced for 16 hours with H2 at 300°F. Durian run some CO: H2 up to 0.05%. was noted above 500°F.
- Nickel from nickel carbonate was deposited on Kieselguhr, powder. Ru: H2 = 1:50, Kieselguhr, and reduced for 16 hrs at 350°F with H2 prior to testing.
- Nickel from nickel carbonate was deposited on Kieselguhr powder, Ru: H2 = 3:5, Kieselguhr, and reduced for 16 hrs at 375°F with H2 prior to testing.
- Cobalt on Kieselguhr, Type Co-2000 Earshot Chem. Co., 10 powder form was prepared by crushing commercially supplied pellets. Powder was reduced for 16 hrs at 300°F in H2 prior to testing.
- 5% Ruthenium on carbon powder (150-200 mesh) from England Ind. was treated with boiling 5% KOH, for 10 minutes and roasted at 650°F for 2 hrs in air and then in H2 at 350°F for 16 hours.
- Cobalt on Kieselguhr, Type Co-2000 Earshot Chem. Co., 10 powder form was prepared by crushing commercially supplied pellets. Powder was reduced for 16 hrs at 300°F in H2 prior to testing.
- 5% Ruthenium on carbon powder (150-200 mesh) from England Ind. was treated with boiling 5% KOH, for 10 minutes and roasted at 650°F for 2 hrs in air and then in H2 at 350°F for 16 hours.
<table>
<thead>
<tr>
<th>Test</th>
<th>Reactor No.</th>
<th>Catalyst</th>
<th>CO Feed</th>
<th>Dr.100%</th>
<th>CO Conv.</th>
<th>Catalyst Temp.°F</th>
<th>Vol. Hr.</th>
<th>Stay Time Sec.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>66</td>
<td>(8/18)</td>
<td>Co (c-25)</td>
<td>9.5</td>
<td>4.45</td>
<td>0</td>
<td>320</td>
<td>5.8</td>
<td></td>
<td>Girdler Co. T-256 reduced and stabilized nickel on special support. No pretreatment.</td>
</tr>
<tr>
<td>67</td>
<td>(8/18)</td>
<td>Rh Metal Powder</td>
<td>9.5</td>
<td>4.45</td>
<td>0</td>
<td>580</td>
<td>310</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>(8/19)</td>
<td>Ir on 1/8"</td>
<td>9.5</td>
<td>4.45</td>
<td>0</td>
<td>570</td>
<td>310</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>(8/19)</td>
<td>Co (c-25)</td>
<td>9.5</td>
<td>4.45</td>
<td>97</td>
<td>445</td>
<td>310</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>(8/20)</td>
<td>Co (c-25)</td>
<td>9.5</td>
<td>4.45</td>
<td>35</td>
<td>165</td>
<td>310</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>(8/21)</td>
<td>Rh on Al2O3 Powder (10 cc)</td>
<td>9.5</td>
<td>4.45</td>
<td>0</td>
<td>150</td>
<td>650</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>(8/21)</td>
<td>Ir on 1/8"</td>
<td>9.5</td>
<td>4.45</td>
<td>0</td>
<td>600</td>
<td>310</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>(8/24)</td>
<td>Co Metal Powder (10 cc)</td>
<td>9.5</td>
<td>4.45</td>
<td>0</td>
<td>635</td>
<td>310</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>(8/25)</td>
<td>Ir Metal Powder (10 cc)</td>
<td>9.5</td>
<td>4.45</td>
<td>0</td>
<td>550</td>
<td>310</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>(8/25)</td>
<td>Ni Metal Powder (10 cc)</td>
<td>9.5</td>
<td>4.45</td>
<td>0</td>
<td>350</td>
<td>310</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>(8/26)</td>
<td>Ni Metal Powder (10 cc)</td>
<td>9.5</td>
<td>4.45</td>
<td>0</td>
<td>475</td>
<td>310</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>(8/27)</td>
<td>Ni Metal Powder (10 cc)</td>
<td>9.5</td>
<td>4.45</td>
<td>0</td>
<td>575</td>
<td>310</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>(8/27)</td>
<td>Pt on 1/8"</td>
<td>9.5</td>
<td>4.45</td>
<td>0</td>
<td>485</td>
<td>310</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>(8/28)</td>
<td>Co(6-65)</td>
<td>9.5</td>
<td>4.45</td>
<td>0</td>
<td>300</td>
<td>310</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>(8/31)</td>
<td>Cu2O Powder (7 cc)</td>
<td>9.5</td>
<td>4.45</td>
<td>0</td>
<td>650</td>
<td>450</td>
<td>9.8</td>
<td></td>
</tr>
</tbody>
</table>

Columbian pentoxide was prepared by oxidation of Columbian metal with oxygen at 600°F. No pretreatment with hydrogen. Up to 1.5% carbon monoxide formed at 600-650°F. Pentoxide changed in color from white to grey, possibly a different oxide of columbium.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>(9/12)</td>
<td>3-0</td>
<td>0.9% Ca</td>
<td>9.15</td>
<td>4.45</td>
<td>0</td>
<td>11</td>
<td>635</td>
<td>310</td>
<td>5.6</td>
<td>16 hrs</td>
<td>Catalyst reduced 16 hrs at 575°F in H₂.</td>
</tr>
<tr>
<td>62</td>
<td>(9/4)</td>
<td>3-0</td>
<td>Ca₃(PO₄)₂</td>
<td>9.15</td>
<td>4.45</td>
<td>0</td>
<td>635</td>
<td>310</td>
<td>5.8</td>
<td></td>
<td></td>
<td>Catalyst not-reduced prior to use.</td>
</tr>
<tr>
<td>63</td>
<td>(9/8)</td>
<td>3-0</td>
<td>Zn powder</td>
<td>9.15</td>
<td>4.45</td>
<td>0</td>
<td>375</td>
<td>310</td>
<td>5.8</td>
<td></td>
<td></td>
<td>Prepared by decomposition of reagent-grade nickel formate</td>
</tr>
<tr>
<td>64</td>
<td>(9/9)</td>
<td>3-0</td>
<td>W powder</td>
<td>9.15</td>
<td>4.45</td>
<td>0</td>
<td>635</td>
<td>310</td>
<td>5.8</td>
<td></td>
<td>Reduced for two hours at 650°F.</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>(9/9)</td>
<td>3-0</td>
<td>No powder</td>
<td>9.15</td>
<td>4.45</td>
<td>0</td>
<td>635</td>
<td>310</td>
<td>5.8</td>
<td></td>
<td>Reduced 16 hours at 400°F in H₂.</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>(9/10)</td>
<td>3-0</td>
<td>Co powder</td>
<td>9.15</td>
<td>4.45</td>
<td>0</td>
<td>635</td>
<td>310</td>
<td>5.8</td>
<td></td>
<td>Reduced 70 min. at 650°F in H₂.</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>(9/11)</td>
<td>3-0</td>
<td>Co powder</td>
<td>9.15</td>
<td>4.45</td>
<td>0</td>
<td>635</td>
<td>310</td>
<td>5.8</td>
<td></td>
<td>Fine mix (150-200) reduced 35 hours at 350°F.</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>(9/12)</td>
<td>3-0</td>
<td>Pt on catalyst</td>
<td>9.15</td>
<td>4.45</td>
<td>0</td>
<td>635</td>
<td>310</td>
<td>5.8</td>
<td></td>
<td>Catalyst not-reduced prior to use. H₂O on activated Al₂O₃/1/8-pellets.</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>(9/14)</td>
<td>3-0</td>
<td>Pt on multicol</td>
<td>9.15</td>
<td>4.45</td>
<td>23</td>
<td>635</td>
<td>310</td>
<td>5.8</td>
<td></td>
<td>Prepared from nickel formate precipitated on multicol and decomposed at 500°F.</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>(9/14)</td>
<td>3-0</td>
<td>Pt on multicol</td>
<td>9.15</td>
<td>4.45</td>
<td>23</td>
<td>635</td>
<td>310</td>
<td>5.8</td>
<td></td>
<td>Prepared by dissolving Ni(NO₃)₂ in conc. H₂SO₄ and adding multicol to form a thin paste. Paste was heated at 500°F to remove H₂O and ZnO then decomposed at 500°F.</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>(9/15)</td>
<td>3-0</td>
<td>Pt on multicol</td>
<td>9.15</td>
<td>4.45</td>
<td>0</td>
<td>635</td>
<td>310</td>
<td>5.8</td>
<td></td>
<td>Catalyst, same as in run of 9/14. Reduced 16 hrs at 530°F in H₂.</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>(9/16)</td>
<td>3-0</td>
<td>Pt on multicol</td>
<td>9.15</td>
<td>4.45</td>
<td>0</td>
<td>635</td>
<td>310</td>
<td>5.8</td>
<td></td>
<td>H₂O on Al₂O₃ pellets not reduced prior to use.</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>(9/17)</td>
<td>3-0</td>
<td>Pt on Pt</td>
<td>9.15</td>
<td>4.45</td>
<td>0</td>
<td>635</td>
<td>310</td>
<td>5.8</td>
<td></td>
<td>catalyst reduced 16 hrs at 300°F.</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>(9/18)</td>
<td>3-0</td>
<td>Pt on Pt</td>
<td>9.15</td>
<td>4.45</td>
<td>0</td>
<td>635</td>
<td>310</td>
<td>5.8</td>
<td></td>
<td>Prepared by precipitating Pt on Teflon in a slurry with sodium formate. Pt = 21% wt. of catalyst.</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>(9/19)</td>
<td>3-0</td>
<td>Ru on</td>
<td>9.15</td>
<td>4.45</td>
<td>0</td>
<td>635</td>
<td>310</td>
<td>5.8</td>
<td></td>
<td>Prepared by condensing Ru₃ vapor on surface of high surface area 1/8 Al₂O₃ spheres. No reduction prior to use.</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>(9/20)</td>
<td>3-0</td>
<td>Ru on</td>
<td>9.15</td>
<td>4.45</td>
<td>0</td>
<td>635</td>
<td>310</td>
<td>5.8</td>
<td></td>
<td>Catalyst of test 695 reduced overnight at 300°F in H₂.</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>(9/21)</td>
<td>3-0</td>
<td>Ru on</td>
<td>9.15</td>
<td>4.45</td>
<td>0</td>
<td>635</td>
<td>310</td>
<td>5.8</td>
<td></td>
<td>Prepared by immersing spheres in RuCl₃ solution followed by evaporating to dryness. Reduced overnight at 300°F.</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>(9/22)</td>
<td>3-0</td>
<td>Ru on</td>
<td>9.15</td>
<td>4.45</td>
<td>0</td>
<td>635</td>
<td>310</td>
<td>5.8</td>
<td></td>
<td>Prepared by immersing spheres in perchloric acid-RuCl₃ mixture.</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>(10/1)</td>
<td>3-0</td>
<td>Ru on</td>
<td>9.15</td>
<td>4.45</td>
<td>0</td>
<td>635</td>
<td>310</td>
<td>5.8</td>
<td></td>
<td>Catalyst washed with concentrated H₂SO₄ for 10 min. at room temperature.</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>(10/2)</td>
<td>3-0</td>
<td>Ru on</td>
<td>9.15</td>
<td>4.45</td>
<td>0</td>
<td>635</td>
<td>310</td>
<td>11.6</td>
<td></td>
<td>Catalyst unreduced prior to use; obtained from Engelhard.</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>----------</td>
<td>---------------------</td>
<td>----------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>3-0</td>
<td>5% Ni on Carbon Powder (10 cc)</td>
<td>9.15</td>
<td>4.45</td>
<td>0</td>
<td>600</td>
<td>310</td>
<td>11.6</td>
<td>Catalyst reduced prior to use; obtained from Engelhard.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>3-0</td>
<td>5% Ni on Carbon Powder (10 cc)</td>
<td>9.15</td>
<td>4.45</td>
<td>0</td>
<td>605</td>
<td>310</td>
<td>11.6</td>
<td>Same catalyst as 10/13, reduced 16 hours at 350°F.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>3-0</td>
<td>5% Pt on Carbon Powder (10 cc)</td>
<td>9.15</td>
<td>4.45</td>
<td>0</td>
<td>372</td>
<td>310</td>
<td>11.6</td>
<td>Catalyst reduced prior to use; obtained from Engelhard.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>3-0</td>
<td>5% Pt on Carbon Powder (10 cc)</td>
<td>9.15</td>
<td>4.45</td>
<td>0</td>
<td>450</td>
<td>310</td>
<td>11.6</td>
<td>Same catalyst as 10/14, reduced 16 hours at 500°F.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>3-0</td>
<td>Ni-0XO2</td>
<td>9.15</td>
<td>4.45</td>
<td>0</td>
<td>725</td>
<td>310</td>
<td>11.6</td>
<td>Catalyst obtained from Barrois, reduced for 16 hrs at 400°F.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>3-0</td>
<td>Ru on 1/8" Al<sub>2</sub>O<sub>3</sub> Pellets</td>
<td>9.15</td>
<td>4.45</td>
<td>0</td>
<td>615</td>
<td>310</td>
<td>11.6</td>
<td>Catalyst prepared by vapor deposition of RuO<sub>4</sub> on bare alumina support, from RuO<sub>4</sub>-H<sub>2</sub>O solution. Pellets vapor-deposited with RuO<sub>4</sub>-H<sub>2</sub>O, followed by reduction in pure H<sub>2</sub> at 900°F, followed by reduction in H<sub>2</sub> at 15 hrs at 250°F.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>3-0</td>
<td>Ru on 1/8" Al<sub>2</sub>O<sub>3</sub> Pellets</td>
<td>9.15</td>
<td>4.45</td>
<td>0</td>
<td>600</td>
<td>310</td>
<td>11.6</td>
<td>The catalyst was prepared by immersing 300-mesh stainless-steel gauze which is in direct contact with pure nickel foil, in a RuO<sub>4</sub>-H<sub>2</sub>O solution. The gauze was then cut into circles the same radius as the 3-0 reactor and mounted on a stainless steel thermowell.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>3-0</td>
<td>Ru on 300-mesh stainless-steel gauze</td>
<td>9.15</td>
<td>4.45</td>
<td>0</td>
<td>600</td>
<td>310</td>
<td>11.6</td>
<td>This catalyst was prepared in the same fashion as the stainless-steel gauze catalyst mentioned in Test 7-1283, with the exceptions that nickel gauze alone was placed in the RuO<sub>4</sub>-H<sub>2</sub>O solution; and the plated gauze was cut into thin strips and wound into small balls.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test No.</td>
<td>Reactor No.</td>
<td>Catalyst</td>
<td>Co Feed</td>
<td>% CO</td>
<td>Space Vel</td>
<td>Stay Time</td>
<td>Remarks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>----------</td>
<td>---------</td>
<td>------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110 (11/2)</td>
<td>3-G</td>
<td>0.5% Ru on Al₂O₃</td>
<td>9.15</td>
<td>4,45</td>
<td>1</td>
<td>475</td>
<td>310</td>
<td>12</td>
<td>1/8" pellets (Engelhard) were ground to 200-mesh powder and tested without prior reduction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111 (11/3)</td>
<td>3-0</td>
<td>0.5% Ru on Al₂O₃</td>
<td>9.15</td>
<td>4,45</td>
<td>1</td>
<td>410</td>
<td>310</td>
<td>12</td>
<td>1/8" pellets (Engelhard) were ground to 200-mesh powder. Then 10 cc 0.5% Ru on Al₂O₃ was thoroughly mixed with 5 cc 0.5% Pt on Al₂O₃. This mixture of powders was then reduced for two hrs at 200°F in hydrogen, and subsequently tested.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112 (11/4)</td>
<td>3-0</td>
<td>0.5% Ru on Al₂O₃</td>
<td>9.15</td>
<td>4,45</td>
<td>1</td>
<td>660</td>
<td>310</td>
<td>12</td>
<td>Same mixture as Test 111, but in addition, mixture was reduced for 16 hours at 210°F and then tested.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113 (11/5)</td>
<td>3-0</td>
<td>0.5% Ru on Al₂O₃</td>
<td>9.15</td>
<td>4,45</td>
<td>1</td>
<td>600</td>
<td>310</td>
<td>12</td>
<td>1/8" pellets (Engelhard) were ground to 200-mesh powder. Then 5 cc 0.5% Ru on Al₂O₃ was thoroughly mixed with 5 cc 0.5% Pt on Al₂O₃, and subsequently tested.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114 (11/6)</td>
<td>3-0</td>
<td>Catalyst</td>
<td>9.15</td>
<td>4,45</td>
<td>0</td>
<td>460</td>
<td>310</td>
<td>12</td>
<td>Catalyst of Test 113 reduced 16 hrs at 100°F in H₂-CO₂ ambient.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115 (11/10)</td>
<td>3-0</td>
<td>0.5% Pt on Al₂O₃</td>
<td>9.15</td>
<td>4,45</td>
<td>1</td>
<td>500</td>
<td>700</td>
<td>30</td>
<td>12</td>
<td>1/8" pellets (Engelhard) were ground to 200-mesh powder and subsequently tested.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>116 (11/18)</td>
<td>3-0</td>
<td>Ru metal powder</td>
<td>9.15</td>
<td>4,45</td>
<td>1</td>
<td>385</td>
<td>435</td>
<td>310</td>
<td>12</td>
<td>Same powder tested in Test 116.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>117 (11/20)</td>
<td>3-0</td>
<td>Ru metal powder</td>
<td>9.15</td>
<td>4,45</td>
<td>1</td>
<td>350</td>
<td>430</td>
<td>310</td>
<td>12</td>
<td>Same catalyst as the one tested in test 117. The reactor was held under a vacuum during this run, the pressure in reactor being 10 psia.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>118 (11/23)</td>
<td>3-0</td>
<td>Ru metal powder</td>
<td>9.15</td>
<td>4,45</td>
<td>1</td>
<td>440</td>
<td>310</td>
<td>12</td>
<td>Same catalyst as the one tested in test 116. The reactor was again held under a vacuum, the pressure being 5 psia.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>119 (12/24)</td>
<td>3-0</td>
<td>Ru metal powder</td>
<td>9.15</td>
<td>4,45</td>
<td>1</td>
<td>440</td>
<td>310</td>
<td>12</td>
<td>Same catalyst as test 118. Reduced for 16 hrs at 315°F prior to use. Reactor held under vacuum, the pressure being 3 psia.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120 (11/25)</td>
<td>3-0</td>
<td>Ni/CoO₂ powder</td>
<td>9.15</td>
<td>4,45</td>
<td>1</td>
<td>485</td>
<td>310</td>
<td>12</td>
<td>Same catalyst as in test 117. Reduced for 16 hrs at 315°F prior to use. Reactor held under vacuum, the pressure being 10 psia.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121 (11/25)</td>
<td>3-0</td>
<td>Ni/CoO₂ powder</td>
<td>9.15</td>
<td>4,45</td>
<td>1</td>
<td>485</td>
<td>310</td>
<td>12</td>
<td>Same catalyst as in test 120. Reactor under atmospheric pressure.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122 (11/25)</td>
<td>3-0</td>
<td>Ni/CoO₂ powder</td>
<td>9.15</td>
<td>4,45</td>
<td>1</td>
<td>485</td>
<td>310</td>
<td>12</td>
<td>Same catalyst as in Tests 101 - 19. Reactor at atmospheric pressure. Duration run for thirty days did not change performance or appearance of catalyst. Conversion varied between 98 and 99%. Hydrogen sulfide injected into feed gas stream at 15 min. intervals, quantity 0.01 cc., for periods of six hours on 27th to 29th days did not cause any change in conversion.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX C

CATALYST LISTING
<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Manufacturer</th>
<th>Cat. No.</th>
<th>Support*</th>
<th>1/8" Mesh</th>
<th>Other</th>
<th>Sample No.</th>
<th>Test No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruthenium</td>
<td>Engelhard</td>
<td>-----</td>
<td>Pure Metal</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>Goldsmith</td>
<td>-----</td>
<td>Pure Metal</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>MOD</td>
<td>-----</td>
<td>Pure Metal</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>Engelhard, Goldsmith</td>
<td>-----</td>
<td>Pure Metal</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>Engelhard</td>
<td>-----</td>
<td>Alumina</td>
<td>X</td>
<td></td>
<td>33</td>
<td>1-13, 20, 21, 26, 31, 37, 38, 43, 44</td>
</tr>
<tr>
<td>*</td>
<td>Engelhard</td>
<td>-----</td>
<td>Alumina</td>
<td>X</td>
<td></td>
<td>31, 59, 60</td>
<td>29, 33, 43, 46, 110</td>
</tr>
<tr>
<td>*</td>
<td>MOD</td>
<td>-----</td>
<td>Alumina</td>
<td>X</td>
<td></td>
<td>59</td>
<td>106, 107</td>
</tr>
<tr>
<td>*</td>
<td>MOD</td>
<td>-----</td>
<td>1/8" Spheres</td>
<td></td>
<td></td>
<td>45</td>
<td>55-98</td>
</tr>
<tr>
<td>*</td>
<td>MOD</td>
<td>-----</td>
<td>200 Mesh</td>
<td>X</td>
<td></td>
<td>53</td>
<td>51</td>
</tr>
<tr>
<td>*</td>
<td>MOD</td>
<td>-----</td>
<td>X</td>
<td></td>
<td></td>
<td>69</td>
<td>55-60</td>
</tr>
<tr>
<td>*</td>
<td>MOD</td>
<td>-----</td>
<td>Carbon</td>
<td>X</td>
<td></td>
<td>71, 72</td>
<td>61</td>
</tr>
<tr>
<td>*</td>
<td>MOD</td>
<td>-----</td>
<td>St. Steel</td>
<td>200-Mesh</td>
<td></td>
<td>63</td>
<td>110</td>
</tr>
<tr>
<td>*</td>
<td>MOD</td>
<td>-----</td>
<td>Nickel</td>
<td>200-Mesh</td>
<td></td>
<td>1.5</td>
<td>109</td>
</tr>
<tr>
<td>Ruthenium & Palladium</td>
<td>Engelhard</td>
<td>-----</td>
<td>Alumina</td>
<td>X</td>
<td>Originally 1/8" Pellets</td>
<td>58</td>
<td>111, 112</td>
</tr>
<tr>
<td>*</td>
<td>Engelhard</td>
<td>-----</td>
<td>Alumina</td>
<td>X</td>
<td>Originally 1/8" Pellets</td>
<td>43</td>
<td>113, 114</td>
</tr>
<tr>
<td>*</td>
<td>Sodium</td>
<td>-----</td>
<td>Pure Metal</td>
<td>X</td>
<td></td>
<td>69</td>
<td>50-67</td>
</tr>
<tr>
<td>*</td>
<td>Carbon</td>
<td>-----</td>
<td>X</td>
<td></td>
<td></td>
<td>70</td>
<td>71</td>
</tr>
<tr>
<td>*</td>
<td>Iridium</td>
<td>-----</td>
<td>Pure Metal</td>
<td>X</td>
<td></td>
<td>73-76</td>
<td>102, 102</td>
</tr>
<tr>
<td>*</td>
<td>Carbon</td>
<td>-----</td>
<td>X</td>
<td></td>
<td></td>
<td>73-76</td>
<td>102, 102</td>
</tr>
<tr>
<td>*</td>
<td>Osmium</td>
<td>-----</td>
<td>Pure Metal</td>
<td>X</td>
<td></td>
<td>66</td>
<td>49</td>
</tr>
<tr>
<td>*</td>
<td>Carbon</td>
<td>-----</td>
<td>X</td>
<td></td>
<td></td>
<td>15-23</td>
<td>81, 99</td>
</tr>
<tr>
<td>*</td>
<td>Platinum</td>
<td>-----</td>
<td>Carbon</td>
<td>X</td>
<td></td>
<td>77</td>
<td>93</td>
</tr>
<tr>
<td>*</td>
<td>Palladium</td>
<td>-----</td>
<td>Alumina</td>
<td>X</td>
<td></td>
<td>9-14</td>
<td>76</td>
</tr>
<tr>
<td>*</td>
<td>Carbon</td>
<td>-----</td>
<td>X</td>
<td></td>
<td></td>
<td>79</td>
<td>103-104</td>
</tr>
<tr>
<td>*</td>
<td>Nickel</td>
<td>-----</td>
<td>Pure Metal</td>
<td>X</td>
<td>From Nickel Formate</td>
<td>58</td>
<td>100</td>
</tr>
<tr>
<td>*</td>
<td>Carbon</td>
<td>-----</td>
<td>X</td>
<td></td>
<td></td>
<td>79</td>
<td>103-104</td>
</tr>
<tr>
<td>*</td>
<td>Nickel Oxide</td>
<td>-----</td>
<td>Alumina</td>
<td>X</td>
<td>Originally 1/8" Pellets</td>
<td>78</td>
<td>115</td>
</tr>
<tr>
<td>*</td>
<td>Nickel Alumina</td>
<td>-----</td>
<td>Pure Metal</td>
<td>X</td>
<td>From Nickel Oxide</td>
<td>50</td>
<td>55-59, 75-76, 83</td>
</tr>
<tr>
<td>*</td>
<td>City Chem.</td>
<td>-----</td>
<td>Pure Metal</td>
<td>X</td>
<td>From Nickel Oxide</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>Hardox</td>
<td>WI-O-06</td>
<td>Alumina</td>
<td>X</td>
<td></td>
<td>3</td>
<td>39, 40</td>
</tr>
<tr>
<td>*</td>
<td>Hardox</td>
<td>WI-O-06</td>
<td>Alumina</td>
<td>X</td>
<td></td>
<td>3</td>
<td>39, 40</td>
</tr>
<tr>
<td>*</td>
<td>Hardox</td>
<td>WI-O-06</td>
<td>Alumina</td>
<td>X</td>
<td></td>
<td>3</td>
<td>39, 40</td>
</tr>
<tr>
<td>*</td>
<td>Hardox</td>
<td>WI-O-06</td>
<td>Alumina</td>
<td>X</td>
<td></td>
<td>3</td>
<td>39, 40</td>
</tr>
<tr>
<td>*</td>
<td>Hardox</td>
<td>WI-O-06</td>
<td>Alumina</td>
<td>X</td>
<td></td>
<td>3</td>
<td>39, 40</td>
</tr>
<tr>
<td>*</td>
<td>Hoelscher</td>
<td>C-01-01</td>
<td>Alumina</td>
<td>X</td>
<td></td>
<td>2</td>
<td>41, 42, 63</td>
</tr>
<tr>
<td>*</td>
<td>City Chem.</td>
<td>-----</td>
<td>Pure Metal</td>
<td>X</td>
<td></td>
<td>39</td>
<td>66</td>
</tr>
<tr>
<td>*</td>
<td>Columbian</td>
<td>-----</td>
<td>Pure Metal</td>
<td>X</td>
<td>60-200-Mesh Powder</td>
<td>41, 42</td>
<td>73, 87</td>
</tr>
<tr>
<td>*</td>
<td>Clay</td>
<td>-----</td>
<td>Pure Powder</td>
<td>X</td>
<td></td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>Nickel Alumina</td>
<td>-----</td>
<td>Pure Powder</td>
<td>X</td>
<td></td>
<td>36</td>
<td>82</td>
</tr>
<tr>
<td>*</td>
<td>Stainless</td>
<td>-----</td>
<td>Pure Metal</td>
<td>X</td>
<td></td>
<td>60</td>
<td>84</td>
</tr>
<tr>
<td>*</td>
<td>Molibdenum</td>
<td>-----</td>
<td>Pure Metal</td>
<td>X</td>
<td></td>
<td>70</td>
<td>66</td>
</tr>
</tbody>
</table>

*All supported platinum group metals are 0.5% metal on 1/8" alumina pellets, and 5.0% metal on alumina or carbon powders.
A literature search was conducted to determine suitable candidate catalysts for the Sabtter reaction. A test system was designed and fabricated for evaluating the candidate catalysts material to select an optimum catalyst. The system included a reactor sized to handle 2.5 lbs of CO₂ per day, equivalent to one-man output. Three smaller reactors were also used to test more accurately the effects of changes in temperature, flow and catalyst configuration.

The optimum catalyst was determined to be ruthenium metal powder, having a bulk density of 85 lb/ft³, and an average particle diameter of .002-.003 inches. The minimum temperature required with this catalyst to provide over 99% conversion of CO₂ was 357°F, at one atmosphere, a H₂:CO₂ ratio of 4.4 and a space velocity of 310 hr⁻¹. During a thirty-day duration test with ruthenium metal powder CO₂ conversion remained essentially at 99%, and the catalyst remained unchanged. A short period of intermittent injection of H₂S gas into the feed gas line did not affect performance. Operation at reduced pressures down to 5 psia caused only a 1-2% decrease in CO₂ conversion with all other parameters held constant.

The theoretical equilibrium reaction limitations are discussed in the report. Various laboratory catalyst preparations and their effects on the reaction are described, and conclusion and recommendations are listed at the end of the report.
Security Classification

<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ROLE</td>
<td>WT</td>
<td>ROLE</td>
</tr>
</tbody>
</table>

INSTRUCTIONS

1. **ORIGINATING ACTIVITY**: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2. **REPORT SECURITY CLASSIFICATION**: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

3. **REPORT TITLE**: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, allow title classification in all capitals in parenthesis immediately following the title.

4. **DESCRIPTIVE NOTES**: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. **AUTHOR(S)**: Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. **REPORT DATE**: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

7. **TOTAL NUMBER OF PAGES**: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

8. **NUMBER OF REFERENCES**: Enter the total number of references cited in the report.

9. **CONTRACT OR GRANT NUMBER**: If appropriate, enter the number of the contract or grant under which the report was written.

10. **PROJECT NUMBER**: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

11. **ORIGINATOR'S REPORT NUMBER(S)**: Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

12. **OTHER REPORT NUMBER(S)**: If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

13. **AVAILABILITY/LIMITATION NOTICES**: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 (1) "Qualified requesters may obtain copies of this report from DDC."

 (2) "Foreign announcement and dissemination of this report by DDC is not authorized."

 (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through DDC."

 (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through DDC."

 (5) "All distribution of this report is controlled. Qualified DDC users shall request through DDC."

 If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

14. **SPONSORING MILITARY ACTIVITY**: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

15. **ABSTRACT**: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

 It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (T), (S), (C), or (U).

 There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

16. **KEY WORDS**: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.