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ABSTRACT 

Calculated reentry aerodynamic heating effects on the exter- 
nal skin of an ICBM reentry test vehicle having a relatively low 
wcight-to-drag ratio are presented in this report. The vehicle is 
a blunt cone with the aft portion designed to fail just after maxi- 
mum heating and the forward portion designed to survive to impact. 

The tape-wound, reinforced plastic heat shield is subjected 
to maximum reentry heating rates between 125 x 10 and 650 x 104 

kcal/m hr. Resulting external and internal surface te.nperature 
histories are given. Effects of extreme trajectory, vehicle char- 
acteristics, and atmosphere variations on the aluminum substruc- 
ture temperature histories are discussed. 
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INTRODUCTION 

As a part of the ARPA experimental reentry radar discrimination 
program,  the U.S.  Army Missile Command (USAMICOM) bas been 
engaged in the design and fabrication of several typical,  lightweight 
ICBM reentry vehicles having various ballistic factors.    Vehicle No.   1, 
which is discussed in this report, is a blunt cone,  ablative skin vehicle 
designed to survive intact to an altitude of 30.48 kilometers.    At this 
altitude the forward portion of the vehicle separates xrom the destruct- 
ible aft frustum.    The forward portion of the vehicle is designed to 
survive to impact so that recorded data can be obtained. 

The purposes 01 this report are: 

To show the type of reentry environment to which the vehicle 
is exposed. 

To show the calculated ablative heat shield reqa remsnts. 

To predict external surface temperatures along the external 
surface of the blunt cone vehicle. 

To assist in determining the criteria for initiating separation 
of the recovery capsule. 

VEHICLE DESCRIPTION AND ENVIRONMENT 

The vehicle is a blunt cone having a nose radius of 0. 15875 meter 
(6. 25 inches) and a cone half angle of 14 degrees (Figure 1).    The 
initial ballistic coefficient,   W/CQA,  is approximately 537 kg/m2 

(110 lb/ft2).    The forward portion of the vehicle, termed the recovery 
tip in Figure 1, contains a tape recorder and associated recovery gear 
and is designed to survive reentry to impact.    The aft portion of the 
vehicle, the destructible frustum, is designed to fail at a reentry 
altitude just below 30.48 kilometers (100,000 feet).    This type vehicle 
skin design is advantageous due to the critical weight limitations and 
other vital criteria specified in the vehicle experiment requirements. 

Shielding of the reentry vehicle during ascent by use of a shroud 
is considered necessary to prevent heat from soaking through the heat 
shield to vital components before the reentry phase begins.    Nominal 
reentry conditions are 6,096 m/sec (20,000 ft/sec) at an angle of 
23 degrees below the local horizon.    Shown in Figure 2 are the cal- 
culated velocity and altitude histories.    These trajectory parameters 
were calculated by the Advanced Systems Laboratory,  USAMICOM. 



The vehicle spins about its centerline axis,  and the initial angle-of- 
attack is less than 5 degrees. 

THEORETICAL PROCEDURES AND BASIC ASSUMPTIONS 

Aerodynamic heating to the vehicle was calculated by real gas 
procedures based on the widely accepted methods of Fay and Riddell, 
and of Rose,  Probstein,  and Adams.    Aerodynamic heating,  ablation, 
conduction,  pressure distribution,  and weight calculation procedures 
used by Stress and Thermodynamics Analysis Branch are described 
briefly in Appendixes A.  B,  and C.    To obtain a simple internal config- 
uration on a hemisphere when the external radius and required thick- 
nesses versus angular station are known,  a method was developed 
whereby the weight is kept to a minimum while the specified thick- 
nesses are met or slightly exceeded at all spherical stations.    This 
procedure,  as explained in Appendix D,  is for an internal surface 
described by a spherical sector with the radius originating on the 
vehicle centerline. 

Temperature limits were set on the aluminum substructure,  as 
determined by the sens-üvity of internal components and the mechan- 
ical properties of aluminum alloys versus temperature.    For the 
recovery tip the design temperature is approximately 378° K,  and for 
the destructible frustum a design temperature of 478° K was selected. 
Based on these substructure limits,  parameter studies were made for 
each vehicle station to determine the thickness of ablation material 
required to limit the aluminum to the specified temperature limits. 

Ablation calculations are based on the assumption that the fabri- 
cated material is of a quality at least equal to that of the "lap-wound" 
glass-phenolic produced by Westinghouse Electric Corporation and 
tested in ABMA aerodynamic heating simulation facilities in 1959 
and I960.1'2 

The initial skin temperature, at the beginning of reentry, was 
estimated to be 355° K to account for heat radiated in from the shroud 
during ascent. 

The net effects of a small angle-of-attack (5 degrees or less) on 
the heating to a spinning vehicle are assumed to be negligible so that 
zero angle-of-attack procedures can be used.    Some investigators3 

state that this approach is conservative. 

\ 



HFAT SHIELD MATERIALS 

The reinforced plastic heat shield selected for Vehicle No.   1 is 
"lap-wound" glass-phenolic.    This material was selected because of 
its low cost,  availability,   suitability to tape winding,  and adequacy as 
a h at shield in a relatively mild heating environment. 

The lap-winding technique is extremely flexible4 since the lami- 
nations are parallel to the vehicle centerline and a flat tape is used, 2 

The orientation of the tape in relation to the gas flow, though question- 
able at the beginning in 1958,  proved to be of no importance when 
tested in the severe environment of rocket motor exhaust jets. *'* 
The ablation results for lap-wound materials were quite comparable 
with those of tape-wrapped materials having lamiiations making a 
20-degree angle with the cone surface (each lamination sloping away 
from the centerline toward the rear of the vehicle). 

Glass-phenolic,  asbestos-phenolic.,  and Thermolag T-2305 were 
considered for protection of the recovery tip buiinead from base 
aerodynamic heating.    Of these materials the Thermolag T-230, 
a subliming compound, appears to be the most practical, weightwise. 
The base region is subjected to low heating rates for a short period 
of time after separation near 30.48 kilometers.    Since the shear and 
heating are low in the base region,  a reinforced plastic is considered 
unnecessary to prevent pitting and gouging. 

RESULTS AND DISCUSSION 

1.      Aerodynamic Heating 

Calculated real gas convective heating rates to a hot wall are 
presented in Figure 3 for the recovery tip and in Figure 4 for the 
destructible frustum.    Maximum reentry aerodynamic heating occurs 
near an altitude of 38 kilometers (125,000 feet).    The peak heating 
rates are between 125 X 104 kcal/m2hr on the aft destructible frustum 
and 650 X 104 kcal/m2hr at the 30-degree station on the hemisphere. 
The period of significant reentry heating above an altitude of 
30.48 kilometers is about 20 seconds.    Figure 3 shows that no signifi- 
cant aerodynamic heating occurs elfter 45 seconds,  corresponding to 
an altitude of approximately 24 kilometers.    The calculated hea   fluxes 
on the recovery tip drop quite rapidly after 38 seconds,  due to the 
sharp decrease in velocity resulting from a significant change in 
ballistic coefficient when the recovery tip separates from the aft 
frustum. 



2. Skin Temperature Histories 

Calculated external surface and internal substructure temper- 
atures are shown in Figures 5 through 14 for several vehicle stations. 
For the recovery tip (Figures 5 through 10) the substructure tempera- 
tures peak at or near impact.    The calculated bulkhead temperatures 
are shown in Figure 11 for Thermolag T-230,  a subliming material on 
the outsida of aluminum. 

In Figures 12 through 14 are calculated external and internal sur- 
face temperature histories for three stations on the aft destructible 
frustum.    The aluminum substructure temperature rises rapidly near 
40 seconds,  due to the recession of the ablation front toward the sub- 
structure. 

Surface temperature distributions at several altitudes are presented 
in Figure 15.    Below an altitude of 40.9 kilometers (134,000 feet) the 
entire vehicle surface has reached the ablation temperature. 

3. Ablation 

Ablation-depth histories calculated at selected stations along 
the vehicle are shown in Figure 16.    As expected, the forward stations 
begin ablating at altitudes above 200, 000 feet and the aft stations begin 
ablating at altitudes of approximately 150,000 feet.    The ablation depths 
at three altitudes are plotted versus body station in Figure 17.    From 
these ablation depths the weight of ablation material removed versus 
time or altitude was determined by procedures outlined in Appendixes 
B and C.    Figure 18 shows the calculated ablation weight-loss versus 
flight time.    At 100, 000 feet the total weight of material lost is almost 
25 pounds or 15.6 percent of the initial vehicle weight.    Approximately 
5 pounds have been removed from the recovery tip and 20 pounds from 
the destructible frustum at 100,000 feet.    For a constant CQA this 
weight loss results in the reduction of the ballistic coefficient from 
110 lb/ft2 to approximately 93 lb/ft2. 

4. Heat Shield Requirements 

The total heat shield requirements necessary to limit the 
internal substructure to 378° K (220° F) on the iecovery tip and 478° K 
(400° F) at 100,000 feet on the aft destructible frustum are shown in 
Figure 19.    The calculated glass-phenolic thicknesses are between 
14 and 24 millimeters (0. 55 and 0.94 inch) on the recovery tip.    Thick- 
nesses vary from 3 millimeters (0. 118 inch) at the aft end to 4 milli- 
meters (0. 153 inch) at the fore end of the destructible frustum. 



Calculated total heat shield and aluminum substructure weights 
are tabulated in Table I.    The total skin weight required is approxi- 
mately 65 pounds,  of which almost 45 pounds are on the destructible 
frustum.    Seventy percent of the total skin weight is attributed to the 
glass-phenolic heat shield, 

5.     Initiation of Separation of Recovery Tip 

In determining a criterion for initiation of separation,  several 
devices such as timers, temperature sensors,  and deceleration switches 
were considered.    The deceleration or "g" switch was selected as being 
the most practical.    As a result of the variation of "g" levels,  aero- 
dynamic loading,  and stibsequent effects of aerodynamic heating on the 
substructure due to variations in trajectories and vehicle parameters, 
additional reentry analyses of the destructible frustum became 
necessary.    In addition to the nominal trajectory,  minimum and maxi- 
mum deceleration flights were analyzed.    The primary differences in 
the trajectory parameters were determined by the Advanced Systems 
Laboratory,  USAMICOM,  and are shown in Table II. 

Calculated aluminum substructure temperatures versus altitude 
for the destructible frustum are shown in Figures 20,  21.  and 22.    As 
anticipated,  these data show the substructure temperature, at 30.48 kilo- 
meters to be highest for the vehicle flying the minimum "g" trajectory. 
The substructure temperature is lowest at any given altitude for the 
maximum "g" trajectory.    This trend is reasonable due to the large 
variation in flight time from 100 kilometers to 30.48 kilometers and 
the time dependence of heat flow through an ablation material having 
a low thermal diffusivity.    The flight time from 100 kilometers to 
30.48 kiloxneters is approximately 34, 5 and 25. 5 seconds,  respectively, 
for the minimum and maximum "g" trajectories. 

Immediately below an altitude of 30.48 kilometers the substructure 
temperatures rise sharply.    This is primarily due to the proximity of 
the receding ablation front to the aluminum substructure. 

CONCLUSIONS 

AMRAD Vehicle No,   1 is exposed to a relatively mild reentry 
environment.    The major portion of the vehicle is exposed to maximum 
aerodynamic heating rates of 300 X 104 kcal/m2hr or slightly less. 



The calculated glass-phenolic heat shield required for Vehicle 
No.   1 weighs about 46 pounds with 62 percent of this located on the 
destructible frustum.    The aluminum substructure weighs approxi- 
mately 19 pounds with 87. 5 percent of this located on the destructible 
frustum. 

At any given altitude above 30 kilometers,  the calculated sub- 
structure temperature for the aft destructible frustum increases as 
the vehicle trajectory goes from the maximum,  to nominal,  to minimum 
deceleration cases.    The increase in flight time to a given altitude is 
the major factor in this trend. 

Table I.   Skin Weights 

Vehicle section 
Aluminum 
thickness 

(in.) 

Aluminum 
weight 

(lb) 

Heat shield 
weight 

(lb) 

Total skin 
weight 

(lb) 

Recovery tip 

Destructible frustum 

0.054 

0.054 

2.485 

16.62 

17.423 

28.28 

*19.908 

44.90 

*lncludes insulation and substructure on recovery tip bulkhead. 

Table II.   Relationships Between Maximum and Minimum 
Deceleration Trajectories Compared With the Nominal 

Parameter Maximum "g" Minimum "g" 

W/CDA 90% nominal 110% nominal 

Reentry velocity 104 % nominal 95%> nominal 

Reentry angle 26 degrees 20 degrees 

Wind Headwind Tailwind 
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Figure 19.   Calculated Total Insulation Thickness Requirements 
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Figure 20,   Calculated Substructure Temperature Histories 
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Figure 21.   Calculated Substructure Temperature Histories 
for Intermediate Station of Aft Frustum 
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Appendix A 

USAMICOM AERODYNAMIC HEATING METHODS 

Widely accepted real gas methods are employed in the USAMICOM 
theoretical heating analyses.    At the stagnation point the Fay and 
Riddell method with a modified Lewis number (L) contribution6 is used. 
The equation for qc at Ö = 0° is 

-X/t 
0. 1 0.4 

qc=C1Dn      (p^^       (pffx^ 

0.25 

1+(L-1) 
-hDw\ 

0.48 

(hs~hw) 

where Qx is a constant. 

At body stations other than the stagnation point, the laminar heating 
rate is found by modifying the stagnation point rate according to the 
pressure distribution. 

For turbulent flow the theoretical heating rates are based on 
r.'ethods developed by AVCO7 with the modified L contribution inserted. 

qc=C2S    Pr      u  R, 

0.8 0.2 

1.037[G(X)] 1+(L-1) 

0.48 

(Vhw) 

To be conservative in the design of hardware, both laminar and 
turbulent heating rates are calculated at any given station except the 
stagnation point.    The higher heating rate is then selected for use in 
determining the structure response.    In this manner,  transition is 
effected and no other margins of safety are incorporated. 

Ideal gas procedures based on methods of Sibulkin, Eckert,  and 
Van Driest have also been used extensively in the past.    By proper 
modifications the reference temperature ideal gas procedure gives 
heating rates comparable to the real gas procedure. 8 

The pressure distribution on a hemisphere is determined from 
the modified Newtonian impact theory matched with a Prandtl-Meyer 
expansion to the tangent'point.    For the frustum,  a blast wave method 
is used to find the pressure decay between the tangent point and the 
sharp cone value.    These procedures are slightly conservative 
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compared^athe GASL 3-D method of characteristics.9   Results from 
the blunt cone pressure routines used herein have been favorably com- 
pared with experimental pressure data.' 

The viscosity, compressibility factor,  specific heat ratios,  local 
enthalpy,  local temperature,  local speed of sound,  and local density 
are taken from data published by C.  G.  Hansen10 and J.  Hilsenrath.11 

On the hemisphere a modified Newtonian flow theory is used to 
determine the velocity gradient. 

Before and after ablation,  a forward finite difference heat conduc- 
tion procedure is used.    During ablation a special conduction procedure 
applicable to conduction in a material having a receding surface is 
utilized.    Both of these procedures compare well with exact solutions. 

Ablation of material in flight is based on experimental results of 
material performance tests in liquid propellant rocket motors.    The 
average effective heat of ablation, H^,  versus heating rates (Figure 23) 
is determined by use of ablation depth measurements and metallic 
calorimeters. 

o 

o 

o 
I 

Heat flux to nonablating surface at the ca'atlng temperature 

Figure 23.   Experimental Thermal Performance 
of a Reinforced Plastic 
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Ablation and calibration models used in thy tests had tip diameters 
from 19.05 to 635 millimeters.    The stagnation temperatures were 
from 1920° to 4700° K and the pressures were between 70,000 and 
105,000 kg/m2.    Hot wall heat fluxes ranged between 50 X 104 and 
2000 X 104 kcal/m2hr. 

Even though the rocket motor exhaust gas composition differs con- 
siderably from air,  excellent flight and theoretical ablation correlations 
have been obtained using this semiempirical method.    One subscale and 
three full-scale IRBM vehicles flying near Mach 15 were recovered 
after flight and measured for material removal during the JUPITER 
research and development program. ^ 13'14   These ablation depth corre- 
lations were for glass-melamine, glass-phenolic,  refrasil-phenolic, 
and asbestos-phenolic materials.    The flight ablation depths of all four 
materials agreed very closely with the predicted values,  especially on 
the hemispherical portion of the blunt cones. 

Good comparisons have also been obtained between theoretical and 
flight data for the heat shield on a BIG JOE capsule reentering the 
earth's atmosphere approximately 6, 096 m/sec.14'15 
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Appendix B 

VOLUME OF HEMISPHERICAL SECTION 

Often in heat transfer work and in the design of blunt vehicles, it 
is necessary to calculate the weight of material removed by ablation 
or to determine the entire skin weight of hemispherical tips.    To 
obtain the weight it is required that the volume be known. 

The volume of the spherical section shown in Figure 24 is readily 
computed with the following equation: 

Vt -- Z*A6      I       [R2
06n - R062

n + 63
n/3j  sin 0n 

n= 1 
(i) 

:::^ 

Figure 24.   Volume of a Spherical Section 

This equation is derived as follows: 

x is the radius vector to the center of gravity of the incremental 
area 
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; 

y = x sin 9 is the moment arm 

dA = xd0dx is the incremental area 

dV = 27rydA = ZTTX
2
 sin ÖdÖdx 

:. Vt = ZTT I I xz sin 0d0dx 
Je = ü

0
 JR0 - 6 

Zn   *,e = * 
| Wo - (Ro " ö)3]sin ödö 

Je = o0 3    '0 = 0 
(2) 

n = (t>/A0  r , 
Vt = ZnAe        I [R2

06n - R062
r, + 63

n/3j sin 0n (3) 

By proper selection of the incremental angle, A0,  commensurate 
with the particular variation of wall thickness,  accurate volumes on a 
spherical tip can be obtained by use of Equation (3).    The thickness 
6  ,  measured normal to the external surface, is the average thickness 
over the A0 at increment n. 
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Appendix C 

VOLUME CALCULATION FOR FRUSTUMS 
OF RIGHT CIRCULAR CONES 

Equations determining the volume for frustums of right circular 
cones were derived using Pappus' second proposition; 

"If a figure of area A revolves about an axis in its plane but 
not cutting it, then for a complete revolution, the volume of the solid 
generated is: 

V = 27ryA (4) 

where y is the distance from the axis to the center of gravity of A. " 

The frustum volume equations were deduced for a linear and a 
nonlinear variation of skin thickness,   6,  with length,   Lx. 

1.      Linear Variation of Thickness With Length 

The volume of the frustum of a right circular cone having a 
linear variation of thickness with length,   Lx,  may be calculated by 
adding the volume of the solid generated by the rectangular area "A" 
(Figure 25) to the volume of the solid generated by the triangular area 
"B" in the following manner: 

For area "A" the volume is 

VA = 27r62Lx 

Jx R sin 0 + —- cos 0 sin 0 

and for area "B" the volume is 

VB= 2 
U 

R sin Ö + —- c os 6 - (ox + il^ii)   sin 

Combining Equations (5) and (6) gives the total volume,   V^. 

Vt = ^(-^-ij   R sm 0 +  (-i-^ij [—) cos 6 

\  61 + 62   / 

sin Q 

(5) 

(6) 

(•7) 
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Figure 25.   Linear Variation of Thickness With Length (L) 

2.      Nonlinear Variation of Thickness With Length 

The volume of the frustum of a right circular cone having a 
nonlinear variation of thickness with length can be calculated from the 
following equation where n is the increment being considered in the 
x direction: 

n = x^/Ax 
Vt = 27rAx T 

n =  1 
R6n + 

cos gxn 6n 
sin2 0 

6^ 
(8) 
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In deriving Equation (8) (Figure 26): 

The incremental area is dA = ödL 

The moment arm is yc 

The incremental volume is dV = 27ryc6dL 

—<L 

Figure 26,   Nonlinear Variation of Thickness With Length (L) 

Other pertinent equations are: 

dL = 
dx 

sin 0 

Yj = R sin ß 

Y2 = Yj + x cot 9 
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Yr = Y2 - ^ sin 9 

.". Y    = R sin Ö + x cot 0 - - sin 0 
C Ci 

Equation (8) can be used to accurately determine the volume of 
ablation material removed due to hypersonic flight in the atmosphere 
and the volume of an entire frustum of nonlinear thickness with length. 
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Appcrdix D 

SIMPLE INTERNAL SURFACE DESCRIPTION FOR A HEMISPHERICAL 
TIP HAVING A SKIN THICKNESS VARYING WITH ANGULAR STATION 

In the design of reentry vehicles,   it is frequently desirable or 
necessary to deviate slightly from optimum ablation material or heat- 
sink thickness requirements on a hemispherical tip to simplify the 
internal surface configuration.    A simple internal configuration is 
advantageous due to reduced costs of fabrication,   especially for ve- 
hicles that are to be produced only in limited numbers. 

For a given external spherical configuration and for known skin 
thickness requirements varying with angular stations (Figure 27),  a 
procedure has been derived for determining an internal surface cor.- 
figuration described by a spherical sector with the radius originating 
on the vehicle centerline. 

Figure 27.   Procedure for Describing a Simple Internal 
Surface Configuration 

Known parameters required for solution of the internal configura- 
tion are (Figure 27): 
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R0 - External radius 

6) - Skin thickness measured normal to the external surface 
at any known d\ 

6% — Skin thickness measured normal to the external surface 
at any known ö2 

It is required to find: 

Center location, C,  on the centerline for the internal surface 

Internal surface radius, Rj 

Calculated skin thicknesses at any desired angular station 

With the known parameters listed in Figure 27 let 

^i = (Ro - 6i) cos 0j 

X2 = (Ro - 62) cos 02 

Yi = (Ro - 61) sin 0! 

Yz = (Ro - 62) sin 02 

Then from triangle ACD 

yj + (Xi + Ax)2 = R- (9) 

and from triangle BCE 

y|+ (X2 +Ax)z = Rl (10) 

Solving Equations (9) and (10) simultaneously results in 

yf - y| + (xj + Ax)2 - (x2 + Ax)2 = 0 

or 

and 

(xf + yl) - (x2 + y2) + 2Ax(x1 - x2) = 0 (11) 

Ax=(x2 + y|)-(x! + yf) 
2(x1-x2) 

v     ; 
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Equation (12) defines the location of the internal surface center lying 
on the vehicle centerline. 

Substituting the Ax from Equation (12) into Equation (9) yields the 
solution for the internal radius 

Ri = yjyl + fo + Ax)2 (13) 

To find the skin thickness at any spherical station,  Q,  let 

x =  (R0 - 6^) cos 0 

and 

y = (RQ - 00) sin 9 

then from right triangle relations 

y2 + (x + Ax)2 = Rf (14) 

where Ax is length found from solution of Equation (12).    Substituting 
x and y into Equation (14) gives 

(R0 - 6Q)
Z
 sin2 6 +   [(RQ - 6Ö) cos 0 + Ax]2 = R? 

which expands to 

(R0 - öQ)
2
 + 2Ax(R0 - 6Q) COS 9 + (Ax2 - R?) = 0 (15) 

Solving for R0 - 6^ in Equation (15) yields 

_         .        -2Ax cos 9 ± v/4Ax2 cos2 0-4^x2-Ri) .1/x R0 - öö = 1 S^ f (16) 

Since R0 - 6^ must be positive for the hemispheres considered,  the 
radical in Equation (16) must be positive;  thus solving for 6Q,  the 
skin thickness,  at any angular station,  9,  gives 

6Ö = R0 + Ax cos 9 - v/Ri - Ax2  sin2 9 (17) 

To quickly obtain the best solution of an internal hemispherical 
configuration with the center on the vehicle centerline,   several pairs 
of required skin thicknesses (determined by stress and thermodynamic 
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analyses) at known angular stations are investigated by use of a high- 
speed digital computer.    The calculated skin thickness obtained from 
the computer program for each internal surface configuration (one 
configuration for each pair of skin thicknesses input to the program) 
is compared with known skin thickness requirements previously deter- 
mined from stress and thermodynamic analyses. 

Selection of the best internal surface configuration is then made 
from the skin thickness comparisons by considering primarily the 
effects of skin thickness deviations on accomplishment of the mission 
and the effects of skin thickness deviations on the total weight of the 
hemispherical section. 

With the skin thickness incorporated as an output to the configura- 
tion procedure, the weight of the material on a hemisphere is readily 
obtained by use of the volume equations presented in Appendix B. 
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