NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
Memorandum of Project MICHIGAN

HALL MEASUREMENTS OF THIN LAYERS OF SEMICONDUCTORS (U)

ALFRED E. ATTARD

INFRARED AND OPTICAL SENSOR LABORATORY
INSTITUTE OF SCIENCE AND TECHNOLOGY
THE UNIVERSITY OF MICHIGAN

June 1965

Contract DA-28-043-AMC-00013(E)
Memorandum of Project MICHIGAN

HALL MEASUREMENTS OF THIN LAYERS OF SEMICONDUCTORS (U)

ALFRED E. ATTARD

June 1965

Infrared and Optical Sensor Laboratory
Institute of Science and Technology
THE UNIVERSITY OF MICHIGAN
Ann Arbor, Michigan
NOTICES

Sponsorship. The work reported herein was conducted by the Institute of Science and Technology for the U.S. Army Electronics Command under Project MICHIGAN, Contract DA-28-043-AMC-00013(E). Contracts and grants to The University of Michigan for the support of sponsored research by the Institute of Science and Technology are administered through the Office of the Vice-President for Research.

Note. The views expressed herein are those of Project MICHIGAN and have not been approved by the Department of the Army.

Acknowledgments. The author wishes to thank Dr. Douglas E. Brown for many stimulating and penetrating discussions.

Distribution. Initial distribution is indicated at the end of this document. Distribution control of Project MICHIGAN documents has been delegated by the U.S. Army Electronics Command to the office named below. Please address correspondence concerning distribution of reports to:

Chief, U.S. Army Electronics Laboratories
Willow Run Office
The University of Michigan
P. O. Box 618
Ann Arbor, Michigan 48107

DDC Availability. Qualified requesters may obtain copies of this document from:

Defense Documentation Center
Cameron Station
Alexandria, Virginia

Final Disposition. After this document has served its purpose, it may be destroyed. Please do not return it to the Institute of Science and Technology.
PREFACE

Project MICHIGAN is a continuing, long-range research and development program for advancing the Army's combat-surveillance and target-acquisition capabilities. The research and development effort is oriented toward achieving new and improved techniques which will lead to new or greatly improved combat-surveillance and target-acquisition equipment that will meet the long-range operational requirements of the Army in the field. Sponsored by the U. S. Army Electronics Laboratories, of the U. S. Army Electronics Command, of the U. S. Army Materiel Command, this Project is carried out by a full-time Institute of Science and Technology staff of specialists in physics, engineering, mathematics, and related fields, by members of the teaching faculty, by graduate students, and by other research groups and laboratories of The University of Michigan.

The Project's emphasis is on the subjects of imaging radar, MTI radar, infrared-optical imaging and signal correlation techniques, image interpretation, and data transmission beyond the line of sight. Project MICHIGAN was established at The University of Michigan in 1953 and has received continuing support from the U. S. Army. The Project constitutes a major portion of the diversified program of research conducted by the Institute of Science and Technology. The function of the Institute of Science and Technology is to make available to government and industry the resources of The University of Michigan and to broaden the educational opportunities of students in the scientific and engineering disciplines.

Documents issued in this series of Technical Memorandums are published by the Institute of Science and Technology in order to disseminate scientific and engineering information as speedily and as widely as possible. The work reported may be incomplete, but it is considered to be useful, interesting, or suggestive enough to warrant this early publication. Any conclusions are tentative, of course. Also included in this series are reports of work in progress which will later be combined with other materials to form a more comprehensive contribution in the field.

Progress and results described in reports are continually reassessed by Project MICHIGAN. Comments and suggestions from readers are invited.

Robert L. Hess
Director
Project MICHIGAN
CONTENTS

Notices ... ii
Preface .. iii
Abstract ... 1
1. Introduction .. 1
2. Infinite-Sheet Formula 1
3. Boundary-Edge Correction 3
4. Corrections for Bottom Surface 6
5. Conclusions and Experimental Verification 8
6. Summary .. 9
Appendix A: The Potential Function in a Thin Sheet 10
Appendix B: Electric-Field Components in the Presence of a Magnetic Field 10
Appendix C: Hall-Voltage Evaluations 12
Appendix D: Relaxation Time for a Single-Carrier Charge 12
Appendix E: Two-Carrier Model 14
Appendix F: Boundary-Edge Corrections: Electrostatic Terms 15
Appendix G: Boundary-Edge Corrections: Magnetic-Coupling Terms 17
References ... 18
Distribution List 19
HALL MEASUREMENTS OF THIN LAYERS OF SEMICONDUCTORS

ABSTRACT

Hall measurements on thin films via a four-point probe method are described. Basic formulas are derived for an infinite sheet. Modifications of the infinite-sheet formula to correct for boundary conditions imposed by real, finite samples are discussed. Experimental evidence is presented which verifies the theory.

1 INTRODUCTION

Present trends in semiconductor technology reflect an increased interest in epitaxial layers of semiconducting materials on various kinds of substrates, as in surface-diffused layers in semiconducting materials. The accurate determination of the true carrier concentration in these thin layers is the subject of this paper.

The theory of measurement of sheet and bulk resistivities of semiconductors via four-point probe methods has been discussed by various authors [1, 2, 3]. In this paper, the theory of Hall measurements on thin samples by means of a four-point probe technique is developed for the case of an infinite sheet. Further, it is assumed that there is no conductivity modulation caused by the injection of carriers. The effects of sample thickness and geometry are discussed in relation to measurements on real, finite samples. (Since the completion of the work described here, two papers have been published on Hall measurements in thin samples [4, 5].)

2 INFINITE-SHEET FORMULA

Consider a current dipole (consisting of a current source and a current sink, each of current strength I) in an infinite sheet of thickness t. The potential at a point in the plane of the sheet can be demonstrated to be (see Appendix A)

\[\psi - \psi_0 = \frac{\rho}{2\pi t} \ln \left(\frac{r_1}{r_2} \right) \] \hspace{1cm} (1)
where \(r_1 \) and \(r_2 \) are the distances from the point to the source and the sink, respectively, and \(\rho \) is the volume resistivity. Let the source and sink be located at \(\left(\frac{s}{2}, 0 \right) \) and \(\left(-\frac{s}{2}, 0 \right) \), respectively, in the \(x, y \) plane. The electric field components at a point \((x, y)\) are then,

\[
E_x = K \left[\frac{s + x}{(s + x)^2 + y^2} + \frac{s - x}{(s - x)^2 + y^2} \right]
\]

\[
E_y = Ky \left[\frac{1}{(s + x)^2 + y^2} - \frac{1}{(s - x)^2 + y^2} \right]
\]

\[K = \frac{1}{2\pi\rho} \]

On the median plane, where \(x = 0 \), the field components become

\[
E_x = \frac{Ks}{s^2 + y^2}
\]

\[
E_y = 0
\]

Consider now the application of a magnetic field \(H \) in a direction perpendicular to the plane. The electric-field components under steady-state conditions can be shown to be (see Appendix B)

\[
E_x = E_x^0 + \mu HE_y^0
\]

\[
E_y = E_y^0 - \mu HE_x^0
\]

where \(E_x^0 \) and \(E_y^0 \) are the electric-field components for \(H = 0 \)

\(\mu \) = the mobility

On the median plane, where \(x = 0 \), these field components become

\[
E_x = \frac{Ks}{s^2 + y^2}
\]

\[
E_y = \frac{-\mu Hks}{s^2 + y^2}
\]

The Hall probes are located on the median plane at \(\left(0, \pm \frac{d}{2} \right) \). The Hall voltage is given by (see Appendix C)
Institute of Science and Technology The University of Michigan

\[V_H = \frac{2 \mu H \rho}{\pi t} \arctan \left(\frac{d}{s} \right) = \frac{2H I}{\pi e N} \arctan \left(\frac{d}{s} \right) \]

(11)

where \(N \) is the carrier concentration.

Equation (11) represents the case of a single carrier for which no allowance was made for the difference between Hall and drift mobilities. The corresponding equation, for a single carrier, which takes into account this difference is (see Appendix D)

\[V_H = \frac{2HI}{\pi e t} \frac{1}{N < \tau^2 >} \arctan \left(\frac{d}{s} \right) \]

(12)

The corresponding equations for a two-carrier model is (see Appendix E)

\[V_H = \frac{2HI}{\pi e t} \left[\frac{-N \tau^2 > n^2 + \frac{P \tau^2 > p^2}{m_e n^2 + m_h p^2} \right] \arctan \left(\frac{d}{s} \right) \]

(13)

For \(\tau_n = \tau_p = \tau \), this equation reduces to

\[V_H = \frac{2HI}{\pi e t} \frac{1}{< \tau^2 >} \left[\frac{-N \mu_n^2 + P \mu_p^2}{(N \mu_n + P \mu_p)^2} \right] \arctan \left(\frac{d}{s} \right) \]

(14)

3

BOUNDARY-EDGE CORRECTION

The modification of the potentials due to boundary edges of a semi-infinite sheet is now considered. Analysis is by the method of images. The image-current sources must be of the proper sign, magnitude, and position so that the boundary conditions are satisfied. For a nonconducting edge, the image-current source must be of the same sign as the object-current source in order to satisfy the condition that the current at the boundary (and hence the electric field) vanish in a direction normal to the boundary. For a conducting edge, the sign of the image-current source must be opposite to satisfy the condition that the electric field at the boundary vanish in a direction parallel to the boundary. Consider the boundary edge to be at a distance \(\xi \) from the origin. Let \(\theta \) be the angle between the edge and the x-axis measured clockwise from the negative x-axis (see Fig. 1). The object-current sources are located at \(\left(\frac{s}{2}, 0 \right) \), and the Hall probes are located at \(\left(0, \frac{d}{2} \right) \).
The perturbation of the Hall voltage due to the image-charges is determined for two cases:

First, for the contribution to the Hall voltage due to the additional electrostatic potentials produced by the image charges for zero magnetic field, and second, for the contribution due to the magnetic coupling of these additional field components.

Case 1: Zero Field Terms. The net contribution to the potential difference measured between the Hall probes as a result of the boundary edge is easily shown to be (see Appendix F)

$$\Delta V_H = \pm \frac{1}{2\pi t} \ln \frac{AB}{CD}$$ (15)

where

$$A = \left(-\frac{s}{2} \cos 2\theta - 2t \sin \theta \right)^2 + \left(\frac{d}{2} + \frac{s}{4} \sin 2\theta - 2t \cos \theta \right)^2$$ (16)

$$B = \left(\frac{s}{2} \cos 2\theta - 2t \sin \theta \right)^2 + \left(-\frac{d}{2} - \frac{s}{4} \sin 2\theta - 2t \cos \theta \right)^2$$ (17)

$$C = \left(\frac{s}{2} \cos 2\theta - 2t \sin \theta \right)^2 + \left(\frac{d}{2} - \frac{s}{4} \sin 2\theta - 2t \cos \theta \right)^2$$ (18)

$$D = \left(-\frac{s}{2} \cos 2\theta - 2t \sin \theta \right)^2 + \left(\frac{d}{2} + \frac{s}{4} \sin 2\theta - 2t \cos \theta \right)^2$$ (19)

Note that the perturbing potential vanishes when $\theta = 0, \frac{\pi}{2}, \pi, \text{ or } \frac{3\pi}{2}$. For these symmetry cases, the perturbing effect of the edge vanishes for any potential function of the central-force.
type. The use of the plus or minus sign depends upon whether the edge is conducting (+) or insulating (-).

Case 2: Magnetic-Coupling Terms. The magnetic-field-induced contribution to the Hall voltage can be shown to be of the form
\[\Delta V_H = -\mu_H \int_{-d/2}^{d/2} \Delta E_x \, dy \] (see Appendix G):

\[\Delta V_H = \frac{\pm \mu H \rho}{2\pi} \left[\arctan \frac{A_1}{B_1} - \arctan \frac{A_2}{B_1} - \arctan \frac{A_3}{B_2} + \arctan \frac{A_4}{B_2} \right] \] (20)

\[A_1 = \frac{s}{2} \sin 2\theta - 2\ell \cos \theta + \frac{d}{2} \] (21)
\[A_2 = \frac{s}{2} \sin 2\theta - 2\ell \cos \theta - \frac{d}{2} \] (22)
\[A_3 = -\frac{s}{2} \sin 2\theta - 2\ell \cos 2\theta + \frac{d}{2} \] (23)
\[A_4 = -\frac{s}{2} \sin 2\theta - 2\ell \cos 2\theta - \frac{d}{2} \] (24)
\[B_1 = -\frac{s}{2} \cos 2\theta - 2\ell \sin \theta \] (25)
\[B_2 = \frac{s}{2} \cos 2\theta - 2\ell \sin \theta \] (26)

For the case where \(\theta = 0 \), the perturbing potential difference is:

\[\Delta V_H(\theta = 0) = \frac{2\mu H \rho}{\pi \ell} \frac{1}{2} \arctan \frac{1 - \frac{d}{4\ell}} {\frac{s}{4\ell}} - \arctan \frac{1 + \frac{d}{4\ell}} {\frac{s}{4\ell}} \] (27)

For the case where \(\theta = \frac{\pi}{2} \), the perturbing potential difference becomes:

\[\Delta V_H(\theta = \frac{\pi}{2}) = \frac{2\mu H \rho}{\pi \ell} \frac{1}{2} \arctan \frac{\frac{d}{4\ell}} {1 + \frac{s}{4\ell}} - \arctan \frac{\frac{d}{4\ell}} {1 - \frac{s}{4\ell}} \] (28)

Expansion of the arctangent terms into infinite series permits evaluation of the coefficient of \(\frac{2\mu H \rho}{\pi \ell} \) for the two cases. For \(\theta = 0 \), the series expansion is

\[\pm \frac{1}{2} \sum_{r=1}^{\infty} \frac{(-1)^r (s/4\ell)^{2r-1}}{(2r-1)(4\ell)^{2r-1}} \left[\frac{1 + \frac{d}{4\ell}} {1 - \frac{d^2}{16\ell^2}} \right] \] (29)
For $\theta = \frac{\pi}{2}$, the series expansion is

$$\frac{1}{2} \sum_{r=1}^{\infty} \frac{(-1)^r (d)}{(2r-1)(4r)} \left(\frac{1 + \frac{s}{2r-1}}{4r} - \frac{1 - \frac{s}{2r-1}}{4r} \right)^{2r-1} \left(\frac{1 - \frac{s^2}{16r^2}}{16r^2} \right)^{2r-1}$$

The two forms are symmetric with respect to the interchange of s and d (as could be expected from the geometric symmetry). To facilitate the calculation of the boundary edge effect, we will let $s = d$.

The correction factor in terms of the percentage of variation in measurement is displayed in Fig. 2 as a function of t/s. For $t/s > 3$, the correction amounts to less than 1\%. (Note that $t/s = \frac{1}{2}$ corresponds to the boundary edge being at the probes, and that this "worst case" corresponds to an error of 23\%). Note that the magnitude of the correction is independent of the conductivity of the boundary edge.

4 CORRECTIONS FOR BOTTOM SURFACE

The perturbation of the Hall voltage due to the bottom surface is determined for the electrostatic zero-field case. Remarks about the magnetic coupling terms follow.

Case 1: Zero-Field Terms. The modifications of the potentials due to the effect of the bottom surface can be conveniently calculated with the use of Uhlir's M-functions [2]. However, it should be noted that the conclusions are, again, independent of the detailed form of the potential function, provided that it is of the central-force type.

For a nonconducting bottom surface, the potential at some point (x, y) in the plane of the sheet will be modified by

$$\Delta \varphi = \frac{-1\rho}{4\pi t} \left[M \left(\frac{F_3}{2t} \right) - M \left(\frac{F_4}{2t} \right) \right]$$

For a conducting bottom surface, the potential will be modified by

$$\Delta \varphi = \frac{-1\rho}{4\pi t} \left[M \left(\frac{F_3}{2t} \right) - M \left(\frac{F_4}{2t} \right) - M \left(\frac{F_3}{4t} \right) + M \left(\frac{F_4}{4t} \right) \right]$$
FIGURE 2. PERCENTAGE ERROR DUE TO MAGNETIC COUPLING. Edge Boundary:
\[s = d; \theta = 0, \pi/2. \]

where

\[r_3 = \sqrt{\left(x + \frac{a}{2}\right)^2 + y^2} \] \hspace{1cm} (33)
\[r_4 = \sqrt{(x - \frac{s}{2})^2 + y^2} \]

(34)

\[M(x) = 2 \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{\sqrt{n^2 + x^2}} \right) \]

(35)

For both of these cases, the perturbing potential will vanish for a point on the median plane where \(x = 0 \). Hence, the measured Hall voltage will not depend on whether the bottom surface is conducting or insulating.

Case 2: Magnetic Coupling Terms. Magnetic coupling terms were calculated for the case of an edge boundary because the presence of such a boundary does indeed change the current flow from that assumed for the original thin infinite sheet model. However, a correction for the effect of sample thickness is not necessary, because in the original model the current flow was assumed to be bounded by the upper and lower surfaces. Thus, a "correction factor" of the magnetic-coupling type was already built into the theory.

5 CONCLUSIONS AND EXPERIMENTAL VERIFICATION

Corrections to the Hall voltage necessitated by the effects of edge boundaries can be made small. The magnitude of such an effect is independent of whether the edge is conducting or insulating. Consequently, corrections to the Hall voltage are zero and also are independent of whether the bottom surface is conducting or insulating.

Measurements have been made to verify this latter conclusion. The Hall measurements were made on pieces of a thin slice of GaAs which had been doped with Te to an atomic concentration of approximately \(1 \times 10^{17} / \text{cm}^3 \). The pieces had irregular boundary edges, and no attempt was made to orient the Hall probes with respect to any edge. The results are tabulated in Table I. The numbers refer to the individual pieces of the same slice. The agreement is good, except for sample 3. This particular sample was almost too small to fit between the current and the Hall probes.
TABLE I. HALL-MEASUREMENT DETERMINATION OF CARRIER CONCENTRATION (77°C)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Backing</th>
<th>(n(\text{exp}))</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None</td>
<td>(1.53 \times 10^{17}) /cm(^3)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Gold (1)</td>
<td>1.35</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>None</td>
<td>2.31</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Gold (1)</td>
<td>6.57</td>
<td>sample barely touching probes</td>
</tr>
<tr>
<td>4</td>
<td>None</td>
<td>1.16</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Gold (2)</td>
<td>1.14</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>None</td>
<td>1.66</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Indium (1)</td>
<td>1.71</td>
<td>sample reoriented between measurements</td>
</tr>
<tr>
<td>5</td>
<td>Indium (3)</td>
<td>(1.12)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.57)</td>
<td></td>
</tr>
</tbody>
</table>

(1) evaporated
(2) conductive paint
(3) soldered

SUMMARY

Equations for the four-point Hall measurements of thin films were derived and experimentally verified, and the effects of boundaries were determined. It was found that the perturbing effects of boundary edges can be made small and that the perturbing effect of the conducting state of the bottom surface is zero. It must be emphasized that a boundary must exist on the bottom surface. Indeed, this is true for the case of semiconductors deposited on metal or insulating substrates, for the case of a surface-diffuse p-n junction where the junction itself forms a high-resistance boundary layer, and for the case of heterojunction layers. The method of analysis described here should therefore be useful in evaluating epitaxial layers of semiconductors on various kinds of substrates.
Appendix A
THE POTENTIAL FUNCTION IN A THIN SHEET

Consider the potential \(\phi \) at a distance \(r \) from a current source of magnitude \(I \). For an infinite sheet, when \(r \gg t \), the thickness, we may assume cylindrical symmetry for the current density \(J \):

\[
I = 2\pi rt J
\]

The potential at point \(r \) can be determined with reference to some standard point at \(r_0 \):

\[
\phi(r) - \phi(r_0) = \int_{r_0}^{r} dR = \sum_{K} I_{K} R_{K}
\]

where \(dR = \rho \frac{dr}{A} \) = incremental resistance
\(I' \) = current along path of integration = \(JA \)
\(\rho \) = volume resistivity
\(A \) = area of "tube" of current flow

Therefore,

\[
\phi(r) - \phi(r_0) = \int_{r_0}^{r} \rho \frac{dr}{2\pi} = \frac{\rho}{2\pi} \ln\left(\frac{r}{r_0}\right)
\]

For a dipole where \(r_1 \) is the distance of the point from the source \(I \), and \(r_2 \) is the distance from the sink \(-I\), the potential is

\[
\phi - \phi_0 = \frac{\rho}{2\pi} \ln\left(\frac{r_1}{r_2}\right)
\]

Appendix B
ELECTRIC-FIELD COMPONENTS IN THE PRESENCE OF A MAGNETIC FIELD

The Lorentz-force equation for a charged particle of charge \(e \) moving with velocity \(\vec{V} \) in an electric field \(\vec{E} \) and a magnetic field \(\vec{H} \) is

\[
\vec{F} = m \ddot{\vec{V}} = e(\vec{E} + \vec{V} \times \vec{H})
\]

The current density \(\vec{J} \) given in terms of the free carrier concentration \(n \) is

\[
\vec{J} = ne\vec{V}
\]
The change in this current \(d_1 \mathbf{J} \) in the direction of \(\mathbf{J} \) due to collisions in time \(dt \) is given by

\[
d_1 \mathbf{J} = -\mathbf{J} \frac{dt}{\tau}
\]

(42)

where \(\tau \) is the relaxation time for collisions.

In steady-state conditions, the net change in current \(d\mathbf{J} \) is zero; by definition, therefore,

\[
d\mathbf{J} = ne \dot{\mathbf{V}} dt - \mathbf{J} \frac{dt}{\tau} = \left[\frac{ne^2}{m} \mathbf{E} + \frac{ne}{m} \mathbf{J} \times \mathbf{H} \right] dt - \mathbf{J} \frac{dt}{\tau} = 0
\]

(43)

Whence,

\[
\mathbf{J} = \frac{ne^2}{m} \mathbf{E} + \frac{e}{m} \mathbf{J} \times \mathbf{H} = ne \mu \mathbf{E} + \mu \mathbf{J} \times \mathbf{H}
\]

(44)

where

\[
\mu = e\tau / m
\]

The current components, then, are

\[
\begin{align*}
J_x &= \frac{ne\mu}{1 + \mu H^2} \left[E_x 0 + \mu H E_y 0 \right] = ne\mu' E_x \\
J_y &= \frac{ne\mu}{1 + \mu H^2} \left[E_y 0 - \mu H E_x 0 \right] = ne\mu' E_y
\end{align*}
\]

(45)

(46)

where

\[
\mu' = \frac{\mu}{1 + \mu H^2} = \text{magnetic mobility}
\]

(47)

\[
\mathbf{E} = E_x 0 + E_y 0
\]

(48)

The magnetoresistivity is, then,

\[
\rho = \rho_0 \left(1 + \mu^2 H^2 \right)
\]

(49)

This is for the case of a single and constant relaxation time \(\tau \). If \(\tau \) is not the same for all carriers, or if \(\tau \) is dependent upon other parameters, the magnetoresistivity term will be expressed by a more complicated equation.
Appendix C

HALL-VOLTAGE EVALUATIONS

\[V_H = -\int_{-d/2}^{d/2} (E_y) \, dy \]

\[= -\frac{\mu H I \rho S}{2\pi} \int_{-d/2}^{d/2} \frac{dy}{\sqrt{\frac{S}{2} + y^2}} \]

\[= -\frac{\mu H I \rho S}{2\pi} \left[\arctan \left(\frac{y}{\sqrt{\frac{S}{2}}} \right) \right]_{-d/2}^{d/2} \]

\[= -\frac{\mu H I \rho}{\pi} \left[\arctan \left(\frac{d}{\sqrt{S}} \right) \right. \]

\[= -\frac{2\mu H I \rho}{\pi} \arctan \left(\frac{d}{S} \right) \cdots (52) \]

Appendix D

RELAXATION TIME FOR A SINGLE-CARRIER CHARGE

Let

\[\mu_i = \frac{e\tau_i}{m} \]

be the microscopic mobility of the i-th type of carrier. The corresponding microscopic conductivity \(\sigma_i \) is

\[\sigma_i = \frac{n_i e^2 \tau_i}{m} \cdots (54) \]

where \(n_i \) is the carrier density for the i-th type of carrier.

The ensemble average of the K-th power of the macroscopic relaxation time is given by

\[\langle \tau^K \rangle = \frac{\sum n_i \tau_i^K}{n} \]

where \(n = \sum n_i \cdot 12 \).
Equation (10) must then be modified to take into account the variation of the relaxation time. To do this, we consider the microscopic current density J_i for the i-th type of carrier characterized by a velocity V_i:

$$E_{y_i} = \mu_1 \frac{H S I \rho}{2 \pi t} \frac{1}{\frac{S}{2} + y^2} = \mu_1 Q$$

(56)

where I and ρ are gross macroscopic quantities, μ_1 refers to the microscopic mobility, and E_{y_i} refers to the microscopic fields.

Now,

$$J_y = \sigma E_y = \sum_i \sigma_i E_y = \sum_i \sigma_i E_{y_i} = e^2 \frac{m}{e} \sum_i n_i \tau_i = \frac{3}{2} \sum_i n_i \tau_i^2$$

(57)

Therefore,

$$\frac{e^2}{m} E_{y} <T> = \frac{3}{2} Q <T>$$

(58)

and

$$E_y = \frac{e^2}{m} <T> \frac{H I \rho}{2 \pi t} \frac{S}{2} + y^2$$

(59)

$$= \frac{e^2}{m} <T> \frac{S H I}{2 \pi t} \frac{S}{2} + y^2$$

$$= \frac{1}{n e \pi t} <T> \frac{S}{2} + y^2$$

(60)

The Hall voltage is then,

$$V_H = -\int_{-d/2}^{d/2} E_y |_{y=0}^{x=0} dy$$

(61)
Institute of Science and Technology The University of Michigan

$$\frac{-H_1 <r^2>}{\pi \text{tn} e <r^2>^2} \int \frac{S}{2} \frac{d}{y^2} dy$$

$$= \frac{2H_1 <r^2>}{\pi \text{nt} n <r^2>^2} \arctan \left(\frac{d}{S} \right)$$

(62)

Appendix E

TWO-CARRIER MODEL

For electrons and holes, the y components of the current densities for electrons J_{ny} and for holes J_{py} are given as

$$J_{ny} = \frac{n e \mu_n}{1 + \mu_n \frac{2}{H}} [E_y + \mu_n H E_x]$$

(63)

$$J_{py} = \frac{p e \mu_p}{1 + \mu_p \frac{2}{H}} [E_y - \mu_p H E_x]$$

(64)

The y component of the total current density is

$$J_y = \sigma E_y = \sum_1 \sigma_{n_i} E_{y_i} + \sum_j \sigma_{p_j} E_{y_j} = (\sigma_n + \sigma_p) E_y$$

(65)

$$\left[\sum \sigma_{n_i} + \sum \sigma_{p_j} \right] E_y = \left[\sum \sigma_{n_i} \mu_{n_i} + \sum \sigma_{p_j} \mu_{p_j} \right] Q$$

$$= [\sum \sigma_{n_i} \mu_{n_i} + \sum \sigma_{p_j} \mu_{p_j} \frac{H}{2} \pi t \frac{1}{\sum \sigma_{n_i} + \sum \sigma_{p_j} (\frac{S}{2})^2 + y^2}]$$

(66)

Whence,

$$E_y = \frac{\sum \sigma_{n_i} \mu_{n_i} + \sum \sigma_{p_j} \mu_{p_j} \frac{H}{2} \pi t \frac{S}{2} (\frac{S}{2})^2 + y^2}{\left[\sum \sigma_{n_i} + \sum \sigma_{p_j} \right]}$$

(67)
\[E_y = \frac{n e^3 \tau^2}{m_e^2} + \frac{p e^3 \tau^2}{m_h^2} \]

The Hall voltage is evaluated as before:

\[V_H = \frac{2HI}{\pi} \frac{\arctan \left(\frac{d}{s} \right)}{\left(\frac{S^2}{2} + y^2 \right)} \]

Appendix F

BOUNDARY-EDGE CORRECTIONS: ELECTROSTATIC TERMS

F.1. LOCATION OF THE IMAGE CHARGES

Let the source be located at \(X_1, Y_1 \) and the image at \(X_2, Y_2 \). Let \(X_0, Y_0 \) be a point on the intersection of the mirror plane and the line joining the image and object points. Let \(X, Y \) be any point on the image plane.

\[Y = -\frac{B}{A} X + B \]

Let \(X', Y' \) be any point on the line joining image and object points.

\[Y' = \frac{A}{B} X' + K \]

Obviously, when

\[Y = Y' \]

and

\[X = X' \]

then,

\[Y = Y' = Y_0 \]

\[X = X' = X_0 \]

15
Further,

\[X_2 - X_1 = 2(X_0 - X_1) \]
\[Y_2 - Y_1 = 2(Y_0 - Y_1) \]

(72)

Let \(\theta \) be the angle between the nearer plane and the \(X \) axis measured in counterclockwise direction from the mirror plane (see Fig. 1). Then,

\[\tan \theta = B/A \]
\[\sin \theta = \ell/A \]
\[\cos \theta = \ell/B \]

(73)

where \(\ell \) is the normal distance to the mirror plane measured from the origin.

Using the above relations, we obtain

\[X_2 = \frac{(A^2 - B^2)X_1 - 2ABY_1 + 2AB^2}{A^2 + B^2} \]
\[Y_2 = \frac{-2ABX_1 - (A^2 - B^2)Y_1 + 2A^2B}{A^2 + B^2} \]

(74)

The coordinates of the image point \(X_2, Y_2 \) are then obtained in terms of the mirror distance to the origin \(\ell \) and the mirror angle \(\theta \) (Fig. 1), and the object point coordinates \(X_1, Y_1 \):

\[X_2 = X_1 \cos 2\theta - Y_1 \sin 2\theta + 2\ell \sin \theta \]
\[Y_2 = -X_1 \sin 2\theta - Y_1 \cos 2\theta + 2\ell \sin \theta \]

(75)

F.2. ELECTROSTATIC CONTRIBUTION TO THE HALL VOLTAGE

The change in electrostatic potential caused by the two image charges, when the object charges are at \((S/2, 0)\) is, then,

\[\Delta \phi(X, Y) = \frac{IP}{2\ell} \ln \left[\frac{\left[(X - S/2 \cos 2\theta - 2\ell \sin \theta)^2 + (Y + S/2 \sin 2\theta - 2\ell \cos 2\theta)^2 \right]^{1/2}}{\left[(X + S/2 \cos 2\theta - 2\ell \sin \theta)^2 + (Y - S/2 \sin 2\theta - 2\ell \cos 2\theta)^2 \right]^{1/2}} \right] \]

(76)

The contribution to the voltage difference measured between the Hall probes at \((0, \pm \ell/2)\) is, therefore,
Institute of Science and Technology

The University of Michigan

\[\Delta V_H = \Delta \phi(0, d/2) - \Delta \phi(0, -d/2) \]

(77)

and Eq. (15) in the text is obtained.

Appendix G
BOUNDARY-EDGE CORRECTIONS: MAGNETIC-COUPLING TERMS

The variation of the X component of the field is

\[\Delta E_X = \frac{\partial}{\partial X} \Delta \phi(X, Y) \]

(78)

where \(\Delta \phi(X, Y) \) is derived as in Appendix F. The contribution to the Hall voltage is

\[\Delta V_H = -\mu H \int_{-d/2}^{d/2} \Delta E_X \bigg|_{X=0} \, dy \]

(79)

Equation (20) in the text is then obtained by simple but laborious algebra.
REFERENCES

DEPARTMENT OF DEFENSE

Director
Advanced Research Projects Agency
ATTN: Director, Technical Information
Washington, D. C. 20301

Defense Intelligence Agency
Dissemination Center (DIAAQ-3)
Arlington Hall Station
Arlington, Virginia 22212

Defense Documentation Center
Cameron Station
ATTN: TISHA
Alexandria, Virginia 22212

DEPARTMENT OF THE ARMY

Office, Chief of Research and Development
Department of the Army
ATTN: Physical Sciences Division (CRD/O-P&E)
Washington, D. C. 20310

Commanding Officer
U. S. Army Personnel Research Office
ATTN: CRD-AL-DRL
Washington, D. C. 20310

Commanding Officer
U. S. Army Research Office-Durham
ATTN: CRD-AA-IP
Box CM, Duke Station
Durham, North Carolina 27706

Chief
U. S. Army Armor Human Research Unit
ATTN: Library
Fort Knox, Kentucky 40121

Office, Assistant Chief of Staff for Intelligence
Department of the Army
ATTN: Systems Development Division
Washington, D. C. 20310

Commanding Officer
U. S. Army Imagery Interpretation Center
Fort Holabird, Maryland 21219

Office of the Chief of Communications-Electronics
Department of the Army
ATTN: CCEES-3a
Washington, D. C. 20310

Major Commands

Commanding General
U. S. Army Material Command
ATTN: AMCDD-DE-S
Washington, D. C. 20315

Commanding General
U. S. Army Material Command
ATTN: AMCGRD-RP-E
Washington, D. C. 20315

Commanding Officer
U. S. Army Cold Regions Research and Engineering Laboratory
Box 242
Hanover, New Hampshire 03755

Commanding Officer
Harry Diamond Laboratories
ATTN: Library
Washington, D. C. 20438

Director
U. S. Army Electronics Laboratories
ATTN: AMSEL-RD-H
Fort Monmouth, New Jersey 07703

Chief
U. S. Army Intelligence Materiel Development Office
U. S. Army Electronics Laboratories
Ft. Holabird, Maryland 21219

Chief
U. S. Army Electronics Laboratories
Mountain View Office
ATTN: Technical Library
P. O. Box 305
Mountain View, California 94042

Commanding General
U. S. Army Missile Command
ATTN: AMSMI-DE
Redstone Arsenal, Alabama

Commanding General
U. S. Army Electronics Laboratories
Liaison Office
Rome Air Development Center
ATTN: EMPL
Griffiss AFB, New York 13442

Commanding General
U. S. Army Missile Command
ATTN: Chief Document Section
Redstone Scientific Information Center
Redstone Arsenal, Alabama 35909

Director
U. S. Army Engineer Research & Development Labs
ATTN: Chief, Electrical Department
Ft. Belvoir, Virginia 22060

Director
U. S. Army Engineer Research & Development Labs
ATTN: STINFO Branch
Ft. Belvoir, Virginia 22060

Commanding General
U. S. Army Electronic Proving Ground
ATTN: Technical Library
Fort Huachuca, Arizona 85613

President
U. S. Army Infantry Board
ATTN: STOBE-PA
Fort Benning, Georgia 31905

Commanding General
U. S. Army Weapons Command
ATTN: AMSWE-RDR
Rock Island, Illinois 61202

Commanding General
U. S. Army Combat Developments Command
Experimentation Center
ATTN: CDEC-GC
Fort Ord, California 93941
<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Address</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commanding General</td>
<td>U.S. Army Combat Developments Command</td>
<td>Fort Ord, California 93941</td>
<td></td>
</tr>
</tbody>
</table>
PROJECT MICHIGAN DISTRIBUTION LIST 4 (Continued)

Director
Research and Technology Division
ATTN: SEG (SEST) Mr. David Egan
Wright-Patterson AFB, Ohio 45433

Commander
Rome Air Development Center
ATTN: Mr. J. A. Lovecchio (EMATS)
Griffiss AFB, New York 13442

Commander
APGC (PGSAP-1)
Eglin AFB, Florida 32542

Commander
U. S. Air Force Tactical Air Reconnaissance Center
Director of Intelligence (DRI)
ATTN: TARC Technical Library, AFL 44816
Shaw Air Force Base, South Carolina 29152

Commander
ESD/ESTI
L. G. Hanscom Field
Bedford, Massachusetts 01731

Commander
Strategic Air Command (DSBC)
544 Aerospace R Tech Wg (CAS)
Offutt AFB Nebraska 68113

U. S. MARINE CORPS
Commandant of the Marine Corps
U. S. Marine Corps
ATTN: CODE A02D
Washington, D. C. 20380

ADDITIONAL GOVERNMENT AGENCIES
Central Intelligence Agency
ATTN: OCR-DD/Dist. Dist.
Washington, D. C. 20505

Scientific and Technical Information Facility
ATTN: NASA Representative
P. O. Box 3700
Bethesda, Maryland 20014

MISCELLANEOUS ORGANIZATIONS
THRU: ONR Resident Representative
University of California
F. O. Box 109
San Diego, La Jolla, California

TO: Director, Visibility Laboratory
Scitipps Institution of Oceanography
University of California, San Diego
San Diego, California 92152

Applied Physics Laboratory
The Johns Hopkins University
ATTN: Documents Librarian
8621 Georgia Avenue
Silver Spring, Maryland 20910

THRU: Commander
Systems Engineering Group
Research and Technology Division
ATTN: SEKSE
Wright-Patterson AFB, Ohio

TO: The Ohio State University Research Foundation
1314 Kinnear Road
ATTN: Security Officer for Assistant Director Antenna Laboratory
Columbus, Ohio 43212

THRU: Office of Naval Research
Room 4128, Main Navy Building (Code 550)
18th Street and Constitution
Washington, D. C. 20360

TO: Syracuse University Research Corporation
P. O. Box 26, University Station
Syracuse, New York 13210

Remote Area Conflict Information Center
Battelle Memorial Institute
505 King Avenue
Columbus, Ohio 43201

Remote Area Conflict Information Center
Battelle Memorial Institute
1755 Massachusetts Avenue, N. W.
Washington, D. C. 20036

THRU: Director
Wright-Patterson AFB, Ohio 45433
ATTN: SEG/SEAEA

TO: Cornell Aeronautical Laboratory, Inc.
P. O. Box 109
McLean, Virginia 22101

THRU: Resident Office Headquarters
Los Angeles Contract Management District
United States Air Force
The RAND Corporation
Santa Monica, California 90406

TO: The RAND Corporation
1700 Main Street
ATTN: Library
Santa Monica, California 90406

THRU: U. S. Army R&D Operations Research Group
Research Analysis Corporation
McLean, Virginia 22101

TO: Research Analysis Corporation
ATTN: Library
McLean, Virginia 22101

Chief
U. S. Army Electronics Laboratories
Willow Run Office
The University of Michigan
UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA - R&D
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author)
Institute of Science and Technology, The University of Michigan, Ann Arbor, Michigan

2a. REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

2b. GROUP
UNCLASSIFIED

3. REPORT TITLE
HALL MEASUREMENTS OF THIN LAYERS OF SEMICONDUCTORS

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)
Memorandum of Project MICHIGAN

5. AUTHOR(S) (Last name, first name, initial)
Attard, Alfred E.

6. REPORT DATE
June 1965

7a. TOTAL NO. OF PAGES
25

7b. NO. OF REPS
5

8a. CONTRACT OR GRANT NO.
DA-28-043-AMC-00013(E)

8b. PROJECT NO.
1P6 20801 A 186

9a. ORIGINATOR'S REPORT NUMBER(S)
6400-38-R

9b. OTHER REPORT NO(S) (Any other numbers that may be assigned)

10. AVAILABILITY/LIMITATION NOTICES
Qualified requesters may obtain copies of this report from DDC.

11. SUPPLEMENTARY NOTES

12. SPONSORING MILITARY ACTIVITY
U.S. Army Electronics Laboratories
Willow Run Office, Box 618, Ann Arbor, Mich. 48107

13. ABSTRACT
Hall measurements on thin films via a four-point probe method are described. Basic formulas are derived for an infinite sheet. Modifications of the infinite-sheet formula to correct for boundary conditions imposed by real, finite samples are discussed. Experimental evidence is presented which verifies the theory. (U)
Semiconductors
Semiconducting films

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter: last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year or month, day, year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b. Sc. & Scd. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

(1) "Qualified requesters may obtain copies of this report from DDC."
(2) "Foreign announcement and dissemination of this report by DDC is not authorized."
(3) "U.S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through DDC."
(4) "U.S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through DDC."
(5) "All distribution of this report is controlled. Qualified DDC users shall request through DDC."

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (F), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.