NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
HYDRONAUTICS, incorporated
research in hydrodynamics

Research, consulting, and advanced engineering in the fields of NAVAL and INDUSTRIAL HYDRODYNAMICS. Offices and laboratory in the Washington, D. C., area: Pindell School Road, Howard County, Laurel, Md.
INTENSITY OF CAVITATION DAMAGE ENCOUNTERED IN FIELD INSTALLATIONS

By

A. Thiruvengadam

February 1965

Prepared Under

Office of Naval Research
Department of the Navy
Contract No. Nonr 3755(00)
NR 062-293
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>DEFINITION OF INTENSITY OF CAVITATION DAMAGE</td>
<td>3</td>
</tr>
<tr>
<td>FIELD INSTALLATIONS AFFECTED BY CAVITATION DAMAGE</td>
<td>4</td>
</tr>
<tr>
<td>CAVITATION DAMAGE INTENSITY ESTIMATOR</td>
<td>5</td>
</tr>
<tr>
<td>INTENSITY ENCOUNTERED IN FIELD INSTALLATIONS</td>
<td>7</td>
</tr>
<tr>
<td>Ships' Hull and Appendages</td>
<td>7</td>
</tr>
<tr>
<td>Ships' Propellers</td>
<td>8</td>
</tr>
<tr>
<td>Valves</td>
<td>9</td>
</tr>
<tr>
<td>Diesel Engine Cylinder Liners</td>
<td>9</td>
</tr>
<tr>
<td>Hydraulic Turbines and Pumps</td>
<td>9</td>
</tr>
<tr>
<td>Other Devices</td>
<td>10</td>
</tr>
<tr>
<td>LIMITATIONS</td>
<td>10</td>
</tr>
<tr>
<td>SOME REMARKS ON THE RANGE OF INTENSITIES FOR THE POSSIBLE APPLICATION OF KNOWN PROTECTION METHODS</td>
<td>12</td>
</tr>
<tr>
<td>Threshold Cavitation Damage Intensity for Metals</td>
<td>12</td>
</tr>
<tr>
<td>Some Remarks on Protection Methods</td>
<td>13</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>14</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>16</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1 - Cavitation Damage Intensity Estimator

Figure 2 - Effect of Displacement Amplitude on Cavitation Damage Intensity [Thiruvengadam and Waring (22)]

Figure 3 - Threshold Intensity of Cavitation Damage as a Function of High Frequency Endurance Limit of Metals

Figure 4 - Range of Intensities for the Possible Application of Known Protection Methods
LIST OF TABLES

Table 1 - Intensity of Cavitation Damage on Some Ship's Propellers
Table 2 - Intensity of Cavitation Damage on Valves
Table 3 - Intensity of Cavitation Damage on Diesel Engine Cylinder Liners
Table 4 - Intensity of Cavitation Damage on Hydraulic Turbines
Table 5 - Intensity of Cavitation Damage on Pumps
Table 6 - Threshold Intensity of Cavitation Damage for Six Metals
SUMMARY

A nomogram called "Cavitation Damage Intensity Estimator" is presented for estimating cavitation damage intensities of field installations. This simple approach is based on an earlier definition of cavitation damage intensity as the power absorbed per unit area of the eroded material. Using this estimator and the data published for field installations, the damage intensity is estimated for ships' appendages, ships' propellers, valves, Diesel engine cylinder liners, hydraulic turbine runners and pumps. These estimates show that the intensities for propellers and valves can be several orders of magnitude higher than that for laboratory test devices. A summarized analysis shows the field experience and laboratory experience in the proper perspective in terms of their intensities. The possible usefulness of various protection methods are projected for various intensity levels. The threshold intensity of cavitation damage is found to be proportional to the endurance limit of metals. These ideas are only preliminary in nature and further coordinated field and laboratory efforts are suggested in this direction.

INTRODUCTION

Ever since the discovery of the serious destruction of ships' propellers, hydraulic turbines and other major hydraulic structures due to cavitation damage, there have been several attempts to relate quantitatively the damage occurring in the field installations to that observed at the laboratory. These
attempts were handicapped by the lack of an acceptable definition of intensity of damage which can be readily computed for field devices as well as for laboratory devices.

Furthermore, the field experiences were mostly reported in a qualitative manner rather than in specific quantities such as depth of erosion, area of erosion, physical and chemical properties of materials and liquids used, hydrodynamic characteristics of the device, time of operation, time during which the most serious damage occurred. The reason for the lack of quantitative information is the obvious difficulty in obtaining such data. In fact, such detailed information is not available even for the research devices used in the laboratory.

As a result of this situation, there has been a general impression among the various investigators that the intensity of cavitation damage (although no quantitative definition of the intensity of cavitation damage was available until recently) experienced in field installations is very low when compared to the laboratory test devices, e.g. magnetostriction oscillators. It is for this reason that tests conducted in such devices have been called "accelerated" tests. In addition, this reasoning led to the question of the suitability of the test method for screening materials for use in field installations operating under so called "real time" damage conditions.

In the past, several repair procedures and protection methods have been highly successful in some cases, while the same methods have failed badly in other situations. Perhaps this
could have been explained or anticipated if there were some quantitative way of determining intensity ranges in which a given method proved to be successful. Furthermore, in certain cases, hydrodynamic redesign coupled with a superior material selection helped to reduce or completely eliminate cavitation damage. Such successes have gone unnoticed because of the lack of quantitative correlations between the remedy applied and output performance.

These considerations bring forth the necessity for a new approach toward quantifying the field experience rationally in terms of some acceptable and at the same time easily obtainable parameters and to compare them with laboratory experience. This would lead to an overall perspective of the problem of cavitation damage from the points of view of researchers, designers and operators. Such is the aim of this report.

DEFINITION OF INTENSITY OF CAVITATION DAMAGE

One of the approaches to the problem of cavitation damage is to define the intensity of cavitation damage in a rational manner and to compute its value for various field installations. Recently a reasonably successful definition of the intensity of cavitation damage has been proposed (1). According to this definition, the intensity is the power absorbed per unit area of the damaged material surface; it is given by

\[ I = \frac{1S_e}{t} \]  

[1]
where

\[ I \] is the intensity of cavitation damage,
\[ \bar{i} \] is the average depth of erosion,
\[ S_e \] is the strain energy of the metal, and
\[ t \] is the time.

Using this intensity parameter, sixteen laboratory devices were compared (1) and this attempt provided an overall assessment of the various devices used for research purposes.

FIELD INSTALLATIONS AFFECTED BY CAVITATION DAMAGE

It is the purpose of this report to estimate the intensity parameter for the field devices that have been plagued by cavitation damage in the past so that one can get a relative idea of how serious the cavitation damage problem is in relation to the various type of installations. The installations that have experienced serious cavitation damage may be listed as follows:

1. Ship underwater appendages, hydrofoils, struts, rudders, hull, etc.,
2. Ship propellers,
3. Hydraulic turbines,
4. Pumps,
5. Valves, regulators, sluice gates,
6. Diesel engine cylinder liners,
7. Bearings,
(8) Civil engineering hydraulic structures such as baffle piers, stilling basins, spillways, intake structures, penstocks and tunnels,

(9) Underwater sound transmission and detection devices, and

(10) Nuclear and space technology equipment such as liquid metal handling equipments, cryogenic liquid handling equipments.

This classification is by no means complete. An attempt will be made to discuss some of the above cases for which some quantitative information is available.

CAVITATION DAMAGE INTENSITY ESTIMATOR

A nomogram (Figure 1) called cavitation damage intensity estimator has been prepared using Equation [1] with three aims in mind. It provides a visual idea of the range of intensities encountered in actual practice within the ranges of the depth of erosion, material used and time of operation. It also provides a quick and easy method of estimating the intensity of damage for a given installation. This would be particularly useful for operators. Lastly, the selection of better materials, if available, is easily made.

The procedure in using this estimator is as follows:

1. To determine the intensity of damage, if the depth of erosion, the strain energy of the material eroded and the duration of erosion are available, draw a straight line connecting
the depth of erosion and the strain energy of the material eroded. This line will intersect the second line from the left (the line without any scale). Join this point of intersection with the duration of erosion by means of another straight line which will intersect the intensity scale, thus giving the intensity of cavitation for this case.

2. To determine the depth of erosion after a given operating time on a given metal, if the intensity of the system is known, proceed as follows:

   This procedure is the reverse of the previous operation, in which case one would draw a straight line connecting the duration of operation and the intensity so as to intersect the second line from the left. A straight line joining this point of intersection and the strain energy of the material would intersect depth of erosion scale, indicating the depth of erosion for these conditions.

3. To determine the strain energy of the material required to give a certain depth of erosion after a given duration of operation in a system of given intensity:

   In this case, a straight line joining the intensity and the time of operation would intersect the second line from the left. Another straight line connecting this point of intersection and the depth of erosion would cut the strain energy scale at the required value.
4. Similarly one can find the duration of operation for a given system of known intensity, fabricated from a given material, if a criterion for the allowable depth of erosion is set.

This estimator should be a convenient design tool for engineers. The usage of the proper units as shown in the nomogram for each parameter would yield the intensity in watts per square meter. The following conversion would give the intensity in American engineering units

\[
\text{Watt/Meter}^2 = 1.25 \times 10^{-4} \text{ H.P./Foot}^2.
\]

INTENSITY ENCOUNTERED IN FIELD INSTALLATIONS

Ships' Hull and Appendages

It is known that ship hulls and other appendages may be seriously damaged by cavitation (2). However very little data are reported. For one case of a destroyer, the armor hull plates above the propeller were pierced by a hole of dimensions of about one square foot after the destroyer had operated for several hours at maximum speed (3). If we assume the thickness of the armor plate as one inch, the time as 10 hours and the strain energy as 50,000 psi, we would obtain the intensity from the intensity estimator (Figure 1) of approximately as 250 watts/meter\(^2\). This intensity is amazingly high since it is 250 times that of the standard ASME magnetostriction device. One can easily conclude that no material can resist this intensity for a prolonged
period of operation and this would form a clue in suggesting a change in the hydrodynamic design and operational limits.

Lichtman et al (2) made a detailed survey of cavitation damage encountered in U. S. Navy vessels and attributed certain cavitation damage ratings. However no information as to the depth of erosion, material used and time of operation were given.

Ships' Propellers

Cavitation damage in some of the early designs of ship propellers was so serious that they had to be discarded after their maiden voyages. Neville (4) reported that for the case of the Bremen, the propeller blades were eroded up to 4 3/4 inches deep within two round trips across the Atlantic Ocean. Similarly several more instances may be cited from the literature. Actual data were collected for a few modern destroyers of the U. S. Navy which have experienced significant cavitation damage* (Table 1). The intensities ranged from $10^{-1}$ watt/meter$^2$ to 250 watts/meter$^2$ as compared to one watt/meter$^2$ for the ASME magnetostriction apparatus. In one case (DDG-15), the ship cruised at 20 knots for 20 hours and its intensity was of the order of 40 watts/meter$^2$, whereas for the other propellers, the exact duration of cavitation damage is not known. However, the number of hours of operation and the corresponding speed ranges were available in some cases. It is most likely that the major portion of damage occurred at speeds higher than 30 knots.

* These data were kindly furnished by Mr. J. Hill of U. S. Bureau of Ships, Department of the Navy (5).
Valves

The present survey shows that very serious damage may occur in valves controlling liquid flow. Borland and Stiles (6) reported that a 316 stainless steel needle valve failed in 10 minutes of operation. The maximum intensity for this case has been estimated to be as much as 3000 watts/meter$^2$. Table 2 shows the details and intensities for a few more cases.

Diesel Engine Cylinder Liners

Another case where cavitation damage seems to be important is the Diesel engine cylinder liners (12,13,14). As shown in Table 3, the damage intensity in certain specific cases can be as much as one watt/meter$^2$.

Hydraulic Turbines and Pumps

Almost parallel with the detection of cavitation damage in ship propellers, damage was also discovered in hydraulic turbines and pumps. However, it is much more difficult to extract quantitative data for turbines and pumps except for some early cases of severe erosion. In recent literature, the damage is described only qualitatively. Despite this limitation, some quantities have been estimated from photographs and other descriptions as shown in Table 4. In two cases for pumps, quantitative information was available and are included in Table 5. Both cases are examples of liquid metal handling pumps.

Since the operational times are total hours of operation and since cavitation damage occurs most likely during a part of this
time, the intensities estimated in this report would, in the Author's opinion, generally be lower than the actual intensities by a factor of at least ten.

Other Devices

Similar estimates of the intensity of damage could be made for any machine which has experienced cavitation damage. Since there is not much information available for other devices, no estimates are presented herein. However, this kind of estimation of intensity would form a guide for selecting suitable protection methods based on the experience with other devices.

LIMITATIONS

What has been presented in this report is only a preliminary step toward more rational approaches that are to come by a co-ordinated effort in the laboratory as well as in the field. Because of the approximate nature of the data available, the whole analysis is necessarily approximate. The intensities estimated herein would vary depending upon the depth of erosion. In most cases the maximum depth of erosion is reported and it would indicate the maximum intensity. This aspect is unavoidable unless more detailed observations are reported in the future.

Again, the property of the material characterising its energy absorbing capacity is not available accurately. Even the use of the strain energy (as given by the area of the stress-strain diagram from a simple tensile test) may not be justified for strain-rate sensitive materials. However, the strain energy seems to be adequate at least for the most common metals which
do not exhibit strain rate sensitivity (22,23). It should not be very difficult to replace the static strain energy property for any other property that represents the fracturing process during cavitation damage which may come to light as a result of future investigations. One approach is to obtain dynamic stress-strain data and to use the dynamic strain energy for strain-rate sensitive materials (24). In the case of corrosive environments, an equivalent strain energy which takes into account the reduction in mechanical properties as well as the increase in loss of material due to corrosion may have to be used.

In fact, it would be very easy to define the intensity of one of the laboratory devices (e.g. Standard ASME Magnetostriction Device) as unity and determine the equivalent strain energy in any environment for any given metal based on the depth of erosion and time. This would take into account directly the strain rate effects also.

The third important parameter is the time during which the erosion took place. This is very difficult to determine, particularly for field installations. Since the operating hydrodynamic parameters would be varying over a period of time and since the output intensity of damage as estimated in this report would also be varying along with input hydrodynamic parameters, the intensities reported herein are essentially approximate in most cases. However this kind of analysis brings forth the possibility of a quantitative approach for future guidance along with some a priori conclusions.

The intensities of the case histories reported herein apply only to specific cases where significant cavitation has occurred and should not be generalized, at this stage, for the purposes of design.
SOME REMARKS ON THE RANGE OF INTENSITIES FOR
THE POSSIBLE APPLICATION OF KNOWN PROTECTION METHODS

It is interesting to compare the intensity ranges for each of the field installations considered in this report with the intensities of the laboratory test devices reported in Reference 1. As pointed out earlier in this report, the damage intensities of certain valves have been estimated to be as much as 3000 watts/meter$^2$ and certain propeller damage intensities as great as 250 watts/meter$^2$ compared to one watt/meter$^2$ of the ASME Standard magnetostriction apparatus and of the Indian Institute of Science rotating disk apparatus. As more and more data become available, a statistical distribution of the occurrence of intensities for each type of installation will be possible.

Threshold Cavitation Damage Intensity for Metals

A few experiments were conducted using the HYDRONAUTICS Magnetostriction Apparatus to determine the threshold cavitation damage intensity for six metals. The experimental apparatus described in earlier reports (22,23) consists essentially of a magnetostriction transducer, an oscillator, an amplifier, a power supply, a voice coil and an oscilloscope. A specimen of the metal to be tested is vibrated in a liquid at a frequency of 14 kcs. The displacement amplitude can be controlled precisely. Using this apparatus, the intensity of cavitation damage was determined as a function of the displacement amplitude using different metals as shown in Figure 2 (22). This figure shows that the cavitation damage intensity is proportional to the square of the displacement amplitude.
It has been found that there is a minimum displacement amplitude for each metal below which there will be no cavitation damage for a prolonged duration. This minimum amplitude is called the threshold amplitude and the intensity of cavitation damage at this amplitude is called the threshold intensity of cavitation damage. The threshold intensity of cavitation damage for six metals was experimentally determined by arbitrarily setting the test duration as 20 hours since at this time interval nearly a billion cycles will be accumulated for this test frequency. The results of these experiments are shown in Table 6 along with the endurance limit of these metals at a billion cycles using the same apparatus as reported in Reference 23. Figure 3 shows that there is a good correlation between the threshold intensity of cavitation damage and the endurance limit at one billion cycles except for the case of SAE 1020 mild steel. This is due to the corrosive interaction. The only explanation available at present as to why this corrosion effect did not lower the endurance limit at the same rate, is that corrosion products are continuously removed during cavitation while they are not readily removed during fatigue tests. This could be significant for tests involving corrodable materials such as steel.

Some Remarks on Protection Methods

From the above experiments, it is clear that the level of threshold intensities for various metals are of the order of $10^{-1}$ watt/meter$^2$ at the most. Elimination of cavitation damage by substituting one metal for another is possible only up to
this level of intensity. For this reason, the usefulness of cathodic protection also seems to be limited at this level. If one is prepared to tolerate some erosion and periodic maintenance, then the materials selection coupled with cathodic protection can possibly extend the allowable intensity levels up to 1 watt/meter$^2$. However, if the intensity levels are higher than these values, then the above protection methods may not work. In such cases, hydrodynamic redesign, air injection and specifying limits for operation are the alternate remedial possibilities. These considerations are pictorially represented in Figure 4. Further field and laboratory investigations are needed to confirm these ideas.

CONCLUSIONS

The following conclusions are reached from these investigations:

1. The intensity of cavitation damage experienced in ship's propellers and valves can be several orders of magnitude greater than that of the laboratory test devices currently being used. The intensities encountered in other installations also can be as much as that of the experimental equipments. A more thorough systematic reporting of the field experience in the future would greatly enhance the understanding of this problem. A nomogram called the "cavitation damage intensity estimator" is presented in order to aid this effort of field observations.
2. The present analysis shows the range of applicability for the various protection methods in relation to the intensity of cavitation damage. Experiments on the threshold intensity of cavitation damage for metals show that the threshold intensity is proportional to the endurance limit of these metals. Based on this result one can conclude that the maximum threshold for metals is most probably of the order of $10^{-1}$ watt/meter$^2$.

3. These investigations have brought to light the necessity of learning more about the relationships between the hydrodynamic parameters controlling the input intensity and the output intensity so far discussed in this report. This knowledge would be useful in controlling the intensity of cavitation damage within the range wherein the structures can be made resistant by proper materials selection and auxiliary protection methods.
REFERENCES


<table>
<thead>
<tr>
<th>Designation</th>
<th>Ship Velocity (Knots)</th>
<th>Time of Operation (Hours)</th>
<th>Minimum Depth of Erosion (Inches)</th>
<th>Material Used</th>
<th>Strain Energy (psi)</th>
<th>Intensity Watts (meter)²</th>
<th>Location of Damage</th>
<th>Area of Damage</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bremen</td>
<td>500 - (2 round trips across Atlantic)</td>
<td>4-3/4</td>
<td>Al-Bronze (Assumed)</td>
<td>16,500</td>
<td>8</td>
<td>Metal not given.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DDO-15</td>
<td>20</td>
<td>20</td>
<td>7/8</td>
<td>Mn Bronze</td>
<td>18,000</td>
<td>36</td>
<td>6&quot; from hub</td>
<td>6&quot; x 1-1/2&quot;</td>
<td>All four blades showed similar damage</td>
</tr>
<tr>
<td>DD-779</td>
<td>&gt;30</td>
<td>5-1/4</td>
<td>3/16</td>
<td>Superston</td>
<td>22,600</td>
<td>40</td>
<td>6&quot; from hub</td>
<td>6&quot; x 1-1/2&quot;</td>
<td></td>
</tr>
<tr>
<td>Douglas H. Fox</td>
<td>25-30</td>
<td>120</td>
<td>3/16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD-78 Massey</td>
<td>0-25</td>
<td>2105</td>
<td>3/16</td>
<td>Mn Bronze</td>
<td>18,000</td>
<td>2</td>
<td>9&quot; from hub</td>
<td>7&quot; x 1/2&quot;</td>
<td></td>
</tr>
<tr>
<td>DD-806 Higbee</td>
<td>25-30</td>
<td>~ 100</td>
<td>1/2</td>
<td>Mn Bronze</td>
<td>18,000</td>
<td>5</td>
<td>Suction side,</td>
<td>18&quot; x 3&quot;</td>
<td>3000 miles traveled</td>
</tr>
<tr>
<td>DD-888 Stickell</td>
<td>&lt; 25</td>
<td>2013</td>
<td>1/4</td>
<td>Mn Bronze</td>
<td>18,000</td>
<td>10⁻¹</td>
<td>5&quot; x 2-1/2&quot;</td>
<td></td>
<td>Port side more pitted than Starboard</td>
</tr>
<tr>
<td></td>
<td>25-30</td>
<td>53</td>
<td>1/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>&gt; 30</td>
<td>6</td>
<td>1/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD-876 Rogers</td>
<td>&lt; 25</td>
<td>529</td>
<td>3/16</td>
<td>Superston</td>
<td>22,600</td>
<td>4 x 10⁻¹</td>
<td>4&quot; x 2&quot;</td>
<td></td>
<td>Damage on all four blades</td>
</tr>
<tr>
<td></td>
<td>25-30</td>
<td>10</td>
<td>3/16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>&gt; 30</td>
<td>8</td>
<td>3/16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>&gt; 30</td>
<td>128</td>
<td>3/16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD-838 Small</td>
<td>&lt; 25</td>
<td>1935</td>
<td>1/2</td>
<td>Superston</td>
<td>22,600</td>
<td>3 x 10⁻¹</td>
<td>Pressure side 4&quot; x 2&quot;</td>
<td></td>
<td>Test run</td>
</tr>
<tr>
<td></td>
<td>25-30</td>
<td>139</td>
<td>1/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>&gt; 30</td>
<td>25</td>
<td>1/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD-851 Rupertus</td>
<td>&lt; 25</td>
<td>1289</td>
<td>1/8</td>
<td>Superston</td>
<td>22,600</td>
<td>10⁻¹</td>
<td>3&quot; from leading edge</td>
<td></td>
<td>Starboard - less damage</td>
</tr>
<tr>
<td></td>
<td>25-30</td>
<td>42</td>
<td>1/8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>&gt; 30</td>
<td>8</td>
<td>1/8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD-875 Truber</td>
<td>&lt; 25</td>
<td>1220</td>
<td>3/4</td>
<td>Stainless</td>
<td>35,000</td>
<td>10⁻¹</td>
<td>6&quot; from trailing edge; 6&quot; from hub</td>
<td></td>
<td>On all blades</td>
</tr>
<tr>
<td></td>
<td>25-30</td>
<td>12</td>
<td>3/4</td>
<td>Steel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>&gt; 30</td>
<td>6</td>
<td>3/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD-836 McKenzie</td>
<td>&gt; 25</td>
<td>1458</td>
<td>1/8</td>
<td>NALAB Bronze</td>
<td>17,000</td>
<td>10⁻¹</td>
<td>Scattered pits over 50% at 6&quot; radius from hub</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25-30</td>
<td>26</td>
<td>1/8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>&gt; 30</td>
<td>10</td>
<td>1/8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### TABLE 2

Integrity of Cavitation Damage on Valves*

<table>
<thead>
<tr>
<th>Type</th>
<th>Hydraulic Details</th>
<th>Time of Operation</th>
<th>Depth of Erosion</th>
<th>Material</th>
<th>Strain Energy (psi)</th>
<th>Intensity watts/m²</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>6&quot; Cast Iron Test Valve</td>
<td>200 psig → 0 psig</td>
<td>3 or 4 wks.</td>
<td>Say 1/2&quot;</td>
<td>Cast Iron</td>
<td>10,000</td>
<td>5x10⁻¹</td>
<td>8</td>
</tr>
<tr>
<td>Feed Water Bypass regulator</td>
<td>2800-300 psi 600 fps 2&quot; x 3/4&quot;</td>
<td>6 to 9 hrs.</td>
<td>1/2&quot; to 1&quot;</td>
<td>316 St. Steel.</td>
<td>40,000</td>
<td>200</td>
<td>9</td>
</tr>
<tr>
<td>Control Valve</td>
<td></td>
<td>Few hrs. Assume 10 hrs.</td>
<td>Say 1/2&quot;</td>
<td>18-8 St. Steel with harder overlay</td>
<td>35,000</td>
<td>100</td>
<td>6</td>
</tr>
<tr>
<td>Control Valve</td>
<td>2000 psi pressure difference</td>
<td>10 min.</td>
<td>1/4&quot;</td>
<td>316 St. Steel</td>
<td>40,000</td>
<td>3000</td>
<td>6</td>
</tr>
<tr>
<td>Needle Valve</td>
<td>145 ft. head 72&quot; diameter</td>
<td>1 min.</td>
<td>1/2&quot;</td>
<td>Steel</td>
<td>15,000</td>
<td>5x10⁻¹</td>
<td>10</td>
</tr>
<tr>
<td>Needle Valve</td>
<td>52&quot; conduit</td>
<td>One flood. Assume 1 wk.</td>
<td>1-1/4&quot;</td>
<td>Steel</td>
<td>15,000</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Sluice Gate</td>
<td>10' x 9-1/2' size discharge of ≠ 5000 cu. secs.</td>
<td>1500 hrs.</td>
<td>3/4&quot;</td>
<td>Steel</td>
<td>15,000</td>
<td>3x10⁻¹</td>
<td>11</td>
</tr>
<tr>
<td>Sluice Gate</td>
<td>75 hrs.</td>
<td>1/4&quot;</td>
<td>Steel</td>
<td>15,000</td>
<td>2</td>
<td></td>
<td>11</td>
</tr>
</tbody>
</table>

* These are some specific cases where cavitation damage data are available.
<table>
<thead>
<tr>
<th>Horsepower</th>
<th>Time of Operation</th>
<th>Material Used</th>
<th>Maximum Depth inches</th>
<th>Strain Energy</th>
<th>Intensity</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 hours</td>
<td>Cast Iron</td>
<td>1/2</td>
<td>10,000</td>
<td>1</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>River Barge Diesel Engine</td>
<td>3 weeks</td>
<td>not given Assumed Cast Iron</td>
<td>1/16</td>
<td>10,000</td>
<td>10^{-1}</td>
<td>13</td>
</tr>
<tr>
<td>900 hours</td>
<td>Cast Iron</td>
<td>5/16</td>
<td>10,000</td>
<td>10^{-1}</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>one year</td>
<td>Cast Iron</td>
<td>3</td>
<td>10,000</td>
<td>10^{-1}</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>1000 hours</td>
<td>Cast Iron</td>
<td>1/10</td>
<td>10,000</td>
<td>5 x 10^{-2}</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

* These are some specific cases where cavitation damage data are available.
### TABLE 4

Intensity of Cavitation Damage on Hydraulic Turbines *

<table>
<thead>
<tr>
<th>Type</th>
<th>Time of Operation</th>
<th>Depth of Erosion</th>
<th>Material Used</th>
<th>Strain Energy</th>
<th>Intensity</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Francis Turbine</td>
<td>3 years</td>
<td>&quot;So Badly&quot; Assume 1&quot;</td>
<td>Cast Steel</td>
<td>15,000</td>
<td>3 x 10^{-2}</td>
<td>15</td>
</tr>
<tr>
<td>Francis Turbine</td>
<td>4 years</td>
<td>&quot;Hole Through&quot; Assume 1&quot;</td>
<td>Cast Steel</td>
<td>15,000</td>
<td>2 x 10^{-2}</td>
<td>16</td>
</tr>
<tr>
<td>Francis Turbine</td>
<td>3 years</td>
<td>1/64&quot;</td>
<td>Bronze</td>
<td>18,000</td>
<td>10^{-3}</td>
<td>16</td>
</tr>
<tr>
<td>Francis Turbine</td>
<td>&quot;Few Weeks&quot; say 10 wks.</td>
<td>1&quot;</td>
<td>Bronze</td>
<td>18,000</td>
<td>5 x 10^{-1}</td>
<td>17</td>
</tr>
<tr>
<td>Kaplan Turbine</td>
<td>4 years</td>
<td>3&quot;</td>
<td>Not Given</td>
<td>18,000</td>
<td>10^{-1}</td>
<td>18</td>
</tr>
<tr>
<td>Pelton Wheel</td>
<td>Two weeks</td>
<td>2&quot;</td>
<td>—</td>
<td>20,000</td>
<td>7</td>
<td>19</td>
</tr>
</tbody>
</table>

* These are some specific cases where cavitation damage data are available.
**TABLE 5**

Intensity of Cavitation Damage on Pumps *

<table>
<thead>
<tr>
<th>Detail</th>
<th>Liquid Pumped</th>
<th>Time of Operation</th>
<th>Depth of Erosion inches</th>
<th>Material Used</th>
<th>Strain Energy</th>
<th>Intensity</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid Potassium Pump</td>
<td>Liquid Potassium</td>
<td>300 hrs.</td>
<td>50 x 10^{-3}</td>
<td>Stainless Steel</td>
<td>Assume 15,000</td>
<td>10^{-1}</td>
<td>20</td>
</tr>
<tr>
<td>Sodium and Salt Fused</td>
<td>Liquid Sodium at 1200°F</td>
<td>2500</td>
<td>0.34</td>
<td>Inconel</td>
<td>Assume 18,000</td>
<td>10^{-1}</td>
<td>21</td>
</tr>
</tbody>
</table>

* These are some specific cases where cavitation damage data are available.
TABLE 6
Threshold Intensity of Cavitation Damage for Six Metals

<table>
<thead>
<tr>
<th>Metal</th>
<th>Threshold Amplitude cm x 10³</th>
<th>Threshold Intensity (Watts/(Meter² x 10³))</th>
<th>High Frequency Endurance Limit* at 10⁹ Cycles psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>316 Stainless Steel</td>
<td>0.54</td>
<td>2.50</td>
<td>42,000</td>
</tr>
<tr>
<td>Monel</td>
<td>0.54</td>
<td>2.50</td>
<td>47,000</td>
</tr>
<tr>
<td>2024 Aluminum</td>
<td>0.37</td>
<td>0.84</td>
<td>18,000</td>
</tr>
<tr>
<td>1020 SAE Mild Steel</td>
<td>0.44</td>
<td>1.20</td>
<td>38,000</td>
</tr>
<tr>
<td>Tobin Bronze</td>
<td>0.50</td>
<td>1.51</td>
<td>24,000</td>
</tr>
<tr>
<td>1100-F Aluminum</td>
<td>0.30</td>
<td>0.58</td>
<td>12,000</td>
</tr>
</tbody>
</table>

* Values obtained from Reference 23.
FIGURE 1 - CAVITATION DAMAGE INTENSITY ESTIMATOR

DEPTH OF EROSION INCHES

INTENSITY WATT/METER$^2$

DEPTH OF EROSION STRAIN ENERGY OF MATERIAL INCHES PSI

NOTE:

WATT/METER$^2$ = $1.25 \times 10^{-4} \text{ HP/foot}^2$

100,000
90,000
80,000
70,000
60,000
50,000
40,000
30,000
20,000
10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

HYDRONAUTICS DEVICE

ASME DEVICE

STAINLESS STEELS

MONEL

BRONZES

ALUMINUM ALLOYS

CAST IRON

COPPER

LEAD

EXAMPLE

STAINLESS STEEL

37,000

INCH OF EROSION

2

WATT/METER$^2$

10

2 WEEKS

1 WEEK

2 WEEKS

1 MONTH

3 MONTHS

6 MONTHS

1 YEAR

5 YEARS

10 YEARS
FIGURE 2 - EFFECT OF DISPLACEMENT AMPLITUDE ON CAVITATION DAMAGE INTENSITY [THIRUVENGADAM AND WARING (22)]
FIGURE 3 - THRESHOLD INTENSITY OF CAVITATION DAMAGE AS A FUNCTION OF HIGH FREQUENCY ENDURANCE LIMIT OF METALS
Figure 4—Range of Intensities for the Possible Application of Known Protection Methods
INTENSITY OF CAVITATION DAMAGE ENCOUNTERED IN FIELD INSTALLATIONS

A nomogram called "Cavitation Damage Intensity Estimator" is presented for estimating cavitation damage intensities of field installations. This simple approach is based on an earlier definition of cavitation damage intensity as the power absorbed per unit area of the eroded material. Using this estimator and the data published for field installations, the damage intensity is estimated for ships' appendages, ships' propellers, valves, Diesel engine cylinder liners, hydraulic turbine runners and pumps. These estimates show that the intensities for propellers and valves can be several orders of magnitude higher than that for laboratory test devices. A summarized analysis shows the field experience and laboratory experience in the proper perspective in terms of their intensities. The possible usefulness of various protection methods are projected for various intensity levels. The threshold intensity of cavitation damage is found to be proportional to the endurance limit of metals. These ideas are only preliminary in nature and further coordinated field and laboratory efforts are suggested in this direction.
1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether “Restricted Data” is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR’S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

1. UNCLASSIFIED

2. “Restricted Data” is included. Marking is to be in accordance with appropriate security regulations.

3. Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

4. Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

5. Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.

6. Enter the number of pages containing information.

7. Enter the total number of references cited in the report.

8. Enter the applicable number of the contract or grant under which the report was written.

9. Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

10. Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

   1. UNCLASSIFIED
   2. “Restricted Data” is included. Marking is to be in accordance with appropriate security regulations.
   3. Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
   4. Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
   5. Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.
   6. Enter the number of pages containing information.
   7. Enter the total number of references cited in the report.
   8. Enter the applicable number of the contract or grant under which the report was written.
   9. Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
   10. Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

UNCLASSIFIED

DD FORM 1 JAN 64 1473 (BACK)

UNCLASSIFIED
**DISTRIBUTION LIST**  
(Contract Nonr 3755(00))

<table>
<thead>
<tr>
<th>Address</th>
<th>Code(s)</th>
<th>Count</th>
</tr>
</thead>
</table>
| Chief of Naval Research  
Department of the Navy  
Washington 25, D. C.  
Attn: Codes 438  
Code 461  
463  
429 | | |
| Commanding Officer  
Office of Naval Research  
Branch Office  
495 Summer Street  
Boston 10, Massachusetts | | 1 |
| Commanding Officer  
Office of Naval Research  
Branch Office  
219 S. Dearborn Street  
Chicago, Illinois 60604 | | 1 |
| Commanding Officer  
Office of Naval Research  
Branch Office  
207 West 24th Street  
New York 11, New York | | 1 |
| Commanding Officer  
Office of Naval Research  
Branch Office  
Navy No. 100, Box 39  
Fleet Post Office  
New York, New York | | 25 |
| Commanding Officer  
Office of Naval Research  
Branch Office  
1030 East Green Street  
Pasadena 1, California | | 1 |
| Commanding Officer  
Office of Naval Research  
Branch Office  
1000 Geary Street  
San Francisco 9, Calif. | | 1 |
| Director  
U. S. Naval Research Laboratory  
Washington 25, D. C.  
Attn: Codes 2000 | | 1 |
| | 2020 | 1 |
| | 2027 | 6 |
| Chief, Bureau of Ships  
Department of the Navy  
Washington 25, D. C.  
Attn: Codes 300 | | 1 |
| | 305 | 1 |
| | 335 | 1 |
| | 341 | 1 |
| | 342A | 1 |
| | 345 | 1 |
| | 421 | 1 |
| | 440 | 1 |
| | 442 | 1 |
| | 634A | 1 |
| | Code 634(B. Taylor) | 1 |
| | Code 634(L. Birnbaum) | 1 |
| Chief, Bureau of Naval Weapons  
Department of the Navy  
Washington 25, D. C.  
Attn: Codes R | | 1 |
| | R-12 | 1 |
| | RR | 1 |
| | RRRE | 1 |
| | RU | 1 |
| | RUTO | 1 |
Chief, Bureau of Yards and Docks  
Department of the Navy  
Washington 25, D. C.  
Attn: Codes D-202  
D-400  
D-500  
Commanding Officer and Director  
David Taylor Model Basin  
Washington 7, D. C.  
Attn: Codes 142  
500  
513  
521  
526  
550  
563  
589  
Dr. M. Strasberg (901)  
Commander  
U. S. Naval Ordnance Laboratory  
Silver Spring, Maryland  
Attn: Dr. A. May  
Desk DA  
Desk HL  
Desk DR  
Commander  
U. S. Naval Ordnance Test Station  
China Lake, California  
Attn: Codes 5014  
4032  
753  
Hydrographer  
U. S. Navy Hydrographic Office  
Washington 25, D. C.  
Commander  
U. S. Naval Ordnance Test Station  
Pasadena Annex  
3202 E. Foothill Boulevard  
Pasadena 8, California  
Attn: Mr. J. W. Hoyt  
Research Division  
P508  
P804  
P807  
P80962 (Library)  
Mr. J. W. Hicks  
Superintendent  
U. S. Naval Academy  
Annapolis, Maryland  
Attn: Library  
Commanding Officer and Director  
U. S. Navy Marine Engineering Laboratory  
Annapolis, Maryland 21402  
Attn: Code 750  
Commander  
U. S. Naval Weapons Laboratory  
Dahlgren, Virginia  
Computation and Exterior Ballistics Laboratory  
(Dr. Hershey)  
Commanding Officer  
NROTC and Naval Administrative Unit  
Massachusetts Institute of Tech.  
Cambridge 39, Massachusetts  
Commanding Officer and Director  
U. S. Underwater Sound Lab.  
Fort Trumbull  
New London, Connecticut  
Attn: Technical Library
HYDRONAUTICS, Incorporated

Commanding Officer and Director
U. S. Navy Mine Defense Laboratory
Panama City, Florida

Superintendent
U. S. Naval Postgraduate School
Monterrey, California
Attn: Library

Commanding Officer and Director
U. S. Naval Electronic Laboratory
San Diego 52, California
Attn: Code 4223

Commanding Officer and Director
U. S. Naval Civil Engineering Lab.
Port Hueneme, California

Commanding Officer and Director
U. S. Naval Applied Science Lab.
Brooklyn, New York 11251
Attn: Code 9370

Commander
Norfolk Naval Shipyard
Portsmouth, Virginia

Commander
New York Naval Shipyard
U. S. Naval Base
Brooklyn, New York

Commander
Boston Naval Shipyard
Boston 29, Massachusetts

Commander
Philadelphia Naval Shipyard
U. S. Naval Base
Philadelphia 12, Penn.

Commander
Portsmouth Naval Shipyard
Portsmouth, New Hampshire
Attn: Design Division

Commander
Charleston Naval Shipyard
U. S. Naval Base
Charleston, South Carolina

Commanding Officer
U. S. Naval Underwater Ordnance Station
Newport, Rhode Island
Attn: Research Division

Commander
Long Beach Naval Shipyard
Long Beach 2, California

Commander
Pearl Harbor Naval Shipyard
Navy No. 128, Fleet Post Office
San Francisco, California

Commander
San Francisco Naval Shipyard
San Francisco 24, California

Shipyard Technical Library
Code 303TL, Bldg. 746
Mare Island Naval Shipyard
Vallejo, California

Superintendent
U. S. Merchant Marine Academy
Kings Point, L. I., New York
Attn: Dept. of Engr.

Commandant, U. S. Coast Guard
1300 E. Street, N. W.
Washington, D. C.
HYDRONAUTICS, Incorporated

Beach Erosion Board
U. S. Army Corps of Engineers
Washington 25, D. C.

Commanding Officer
U. S. Army Research Office
Box OM, Duke Station
Durham, North Carolina

Commander
Hdqs. U. S. Army Transportation
Research and Development Command
Transportation Corps
Fort Eustis, Virginia

Director
U. S. Army Engineering Research
and Development Laboratories
Fort Belvoir, Virginia

Office of Technical Services
Department of Commerce
Washington 25, D. C.

Defense Documentation Center
Cameron Station
Alexandria, Virginia

Maritime Administration
441 G. Street, N. W.
Washington 25, D. C.

Fluid Mechanics Section
National Bureau of Standards
Washington 25, D. C.

U. S. Atomic Energy Commission
Technical Information Service
Extension, P. O. Box 62
Oak Ridge, Tennessee

Scientific and Technical
Information Facility
Attn: NASA Representative
P. O. Box 5700
Bethesda, Maryland 20014

Director
Langley Research Center
National Aeronautics and
Space Administration
Langley Field, Virginia

Director
Ames Research Laboratory
National Aeronautics and
Space Administration
Moffett Field, California

National Aeronautics and
Space Administration
Lewis Research Center
21000 Brookpark Road
Cleveland, Ohio 44135

Director
Engineering Science Division
National Science Foundation
Washington, D. C.

Commander
Air Force Cambridge Research
Center, 230 Albany Street,
Cambridge 39, Massachusetts

Air Force Office of Scientific
Research, Mechanics Division
Washington 25, D. C.
<table>
<thead>
<tr>
<th>Institution</th>
<th>Contact</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYDRONAUTICS, Incorporated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Research Council</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Montreal Road</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ottawa 2, Canada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Mr. E.S. Turner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Societies Library</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29 West 39th Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New York 18, New York</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Prof. E.V. Lewis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Society of Naval Architects and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marine Engineers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74 Trinity Place</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New York 6, New York</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Prof. E.V. Lewis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Webb Institute of Naval Architecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glen Cove, L.I. New York</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Prof. E.V. Lewis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The John Hopkins University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baltimore 18, Maryland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Prof. S. Corrsin</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Director</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied Physics Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The John Hopkins University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8621 Georgia Avenue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver Spring, Maryland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Prof. J.J. Foody</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>California Institute of Tech.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pasadena 4, California</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Hydrodynamics Lab.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. T. Y. Wu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. A. Ellis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. A. Costa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. M. Plesset</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of California</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berkeley 4, California</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Dept of Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. H.A. Schade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. J. Johnson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. J.V. Wehausen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. E.V. Laitone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. P. Lieber</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. M. Holt</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The John Hopkins University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Los Angeles, California</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Prof. R.W. Leonard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. A. Powell</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Director</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scripps Institution of Oceanography</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of California</td>
<td></td>
<td></td>
</tr>
<tr>
<td>La Jolla, California</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iowa Institute of Hydraulic Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State University of Iowa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iowa City, Iowa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Prof. H. Rouse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. L. Landweber</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. P.G. Hubbard</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New York State University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maritime College</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Department</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fort Schuyler, New York</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Prof. J.J. Foody</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harvard University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cambridge 38, Massachusetts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Prof. G. Birkhoff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. S. Goldstein</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
University of Michigan
Ann Arbor, Michigan
Attn: Engineering Research Institute
   Prof. F.G. Hammit (Dept. of Nuclear Engr) 1

Director
Ordnance Research Laboratory
Pennsylvania State University
University Park, Pennsylvania
Attn: Dr. G.F. Wislicenus 1

Director
St. Anthony Falls Hydraulic Lab.
University of Minnesota
Minneapolis 14, Minnesota
Attn: Mr. J.N. Wetzel 1
   Prof. B. Silberman 1
   Prof. L.G. Straub 1

Massachusetts Institute of Technology
Cambridge 39, Massachusetts
Attn: Prof. P. Mandel 1
   Prof. M. A. Abkowitz 1

Institute for Fluid Mechanics and Applied Mathematics
University of Maryland
College Park, Maryland
Attn: Prof. J.M. Burgers 1

Cornell Aeronautical Laboratory
Buffalo 21, New York
Attn: Mr. W. F. Milliken, Jr 1

Brown University
Providence 12, Rhode Island
Attn: Dr. R.E. Meyer 1
   Dr. W.H. Reid 1

Stevens Institute of Technology
Davidson Laboratory
Hoboken, New Jersey
Attn: Mr. D. Savitsky 1
   Mr. J.P. Breslin 1
   Dr. D. N. Hu 1
   Dr. S.J. Lukasik 1

Director
Woods Hole Oceanographic Inst.
Woods Hole, Massachusetts 1

Director
Alden Hydraulic Laboratory
Worcester Polytechnic Institute
Worcester, Massachusetts 1

Stanford University
Stanford, California
Attn: Dr. Byrne Perry 1
   (Dept. of Civil Engr.)
   Prof. E. Y. Hsu 1
   (Dept. of Civil Engr.)
   Dr. S. Kline 1
   (Dept. of Mech. Engr.)

Dr. E.R.G. Eckert
Mechanical Engineering Dept.
University of Minnesota
Minneapolis, Minnesota 55455 1

Department of Theoretical and Applied Mechanics
College of Engineering
University of Illinois
Urbana, Illinois
Attn: Dr. J.M. Robertson 1

Department of Mathematics
Rensselaer Polytechnic Institute
Troy, New York
Attn: Prof. R.C. DiPrima 1
Southwest Research Institute
8500 Culebra Road
San Antonio 6, Texas
Attn: Dr. H.N. Abramson

Department of Aeronautical Engr.
University of Colorado
Boulder, Colorado
Attn: Prof. M.S. Uberoi

Courant Institute
New York University
New York, New York
Attn: Prof. P. Garabedian

Institut fur Schifffbau der
Universitat Hamburg
Lammersieth 90
Hamburg 33, Germany
Attn: Prof. O. Grim
Prof. K. Wieghardt

Max-Planck Institut fur
Stromungsforschung
Bottingerstrasse 6-8
Gottingen, Germany
Attn: Dr. H. Reichardt, Dir.

Versuchsanstalt fur Wasserbau
und Schifffbau
Gartenufer (Schleuseninsel)
1 Berlin 12, Germany
Attn: Prof. Dr. Ing. S. Schuster

Netherlands Ship Model Basin
Wageningen, The Netherlands
Attn: Ir. R. Wereldsma
Dr. J.B. Van Manen

Mitsubishi Shipbuilding and Engineering Company
Nagasaki, Japan
Attn: Dr. K. Taniguchi

Mr. W.R. Wiberg, Chief
Marine Performance Staff
The Boeing Company
Aero-Space Division
P. O. Box 3707
Seattle 24, Washington

Mr. William P. Carl
Grumman Aircraft Corporation
Bethpage, L.I., New York

Grumman Aircraft Corporation
Bethpage, L.I., New York
Attn: Engineering Library
Plant 5
Mr. Leo Geyer

Mr. G. W. Paper
ASW and Ocean Systems Dept.
Lockheed Aircraft Corporation
Burbank, California

Dr. A. Ritter
Therm Advanced Research Div.
Therm, Incorporated
Ithaca, New York

HYDRONAUTICS, Incorporated
Pindell School Road
Howard County
Laurel, Maryland
Attn: Mr. P. Eisenberg
(President)
Mr. M. P. Tulin
(Vice President)
HYDRONAUTICS, Incorporated

Dr. J. Kotik
Technical Research Group, Inc.
Route 110
Melville, New York

AeroJet General Corporation
6352 N. Irwindale Avenue
Azusa, California
Attn: Mr. C.A. Gongwer

AiResearch Manufacturing Co.
9851-9951 Sepulveda Boulevard
Los Angeles 45, California
Attn: Blaine R. Parkin

Astropower, Inc.
2121 Paularino Avenue
Newport Beach, California
Attn: R. D. Bowerman

Hydrodynamics Laboratory
Convair
San Diego 12, California
Attn: Mr. H.E. Brooke
Mr. R.H. Oversmith

Transportation Technical
Research Institute
No. 1057-1-Chome
Mejiro-machi, Toshima-ku
Tokyo-to, Japan

Baker Manufacturing Company
Evansville, Wisconsin

Oceanics, Incorporated
Technical Industrial Park
Plainview, L. I., New York
Attn: Dr. Paul Kaplan

Gibbs and Cox, Inc.
21 West Street
New York 16, New York

Director, Special Projects
Office
Department of the Navy
Washington 25, D. C.
Attn: Code SP-001

Electric Boat Division
General Dynamics Corporation
Groton, Connecticut
Attn: Mr. R. McCandliss

National Academy of Sciences
National Research Council
Committee on Undersea Warfare
2101 Constitution Avenue
Washington 25, D. C.

Mr. A. Grindell
Oak Ridge National Laboratory
Oak Ridge, Tennessee

Dr. Harvey Brooks
School of Applied Sciences
Harvard University
Cambridge, Massachusetts

ITT Research Institute
10 W. 35th Street
Chicago 16, Illinois

Professor Holl
Ordnance Research Laboratory
State College, Penn

Missile Development Division
North American Aviation, Inc.
Downey, California
Attn: Dr. E.R. Van Driest

National Physical Laboratory
Teddington, Middlesex, England
Attn: Head, Aerodynamics Div.
Mr. A. Silverleaf