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A KINETIC THEORETICAL INVESTIGATION

OF A FULLY IONIZED GASt

Part II - Some Aspects of Multiple Collisions

by

Toyoki Koga

Polytechnic Institute of Brooklyn
Farmingdale, New York

SUMMARY

The Brownian motion of a test body due to multiple interactions with

field particles is investigated within or almost within the framework of Markoff's

processes. First, Markoff's processes are studied as presenting such multiple

interactions. Based on the study and by means of Markoff's method of random

flights, we investigate the Brownian motion of an elastic test body submerged in

a rarefied gas constituted of elastic molecules, under the condition that mutual

interactions among field particles are negligible. It is shown that there is no

difference in effect between temporal repetitions of random binary collisions and

multiple collisions (random binary collisions superposed at one moment of time),

so far as the friction and diffusion of the test body in momentum space are con-

cerned. The situation is similar when a test body with electric charge is sub-

merged in an electron gas, if the mutual interactions among electrons are ignored.

This research wkas supported by the Office of Naval Research under
Contract No. Nonr 839(38), Project No. NR 0,1-135.

* Visiting Professor, Department of Aerospace Engineering and Applied

Mechanics.



It is not feasible, however, to ignore those mutual interactions of field electrons

and to.represent electronic multiple interactions by temporal repetitions of

random binary interactions, each of which takes place independently: Fluctua-

tions of limitlessly large amplitudes in the spatial distribution of electrons,

which may possibly take place in this approximation, do not seem realistic, be-

cause a limitless concentration of potential energy accompanying a concentration

of electrons in a local spot cannot be permitted. Amplitudes of such fluctuations

and/or microscopic disturbances must have a certain maximum limit. [The

situation does not change even when the interaction force law is of the Debye-

Hhckel type. ] A kinetic theoretical scheme of treating fully ionized gas in the

light of this fact is proposed.
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V

SECTION I

INTRODUCTION

The difficulty in kinetic theoretical treatments of an electron gas or

a fully ionized gas may be attributed mainly to the fact that we are not able to

treat precisely more than two body problems. In Part I of this report

we showed that methods of treating multiple interactions among electrons in

an electron gas in accordance with the B-B-G-K-Y hierarchy are not plausible.

In the present part, we attempt, by means of several "mental experiments",

to find characteristic effects which distinguish multiple interactions from superposed

binary interactions. Let us first suppose that the effect of multiple collisions

between a test body and field particles is divided into three parts: (i) the

effect of the forces exerted on the test body simultaneously by many field par-

ticles, (ii) the effect of reactive forces exerted by the test body on field par-

ticles, (iii) the effect of mutual interactions among field particles. Since we

do not know, in general, the way to synthesize the total effect from those par-

tial effects, that is, the many-body problem, the classification seems simply

conceptual with no definite physical meaning. We note, however, that it is

possible to conceive particular conditions under which effects (ii) and (iii) are

ignored either completely or partly, and yet interactions are multiple. By

studying such particular cases, we may obtain some aspects of statistical

effects of the multiplicity of interaction, and,we hope,may find some clue for
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considering multiple interactions among charged particles in a fully ionized gas.

We suppose, first, that a test body is an elastic body with linear

dimension D which is sufficiently larger than the average distance of two

neighboring molecules of the gas in which the test body is submerged. Further,

we suppose that D is much shorter than the mean free path of molecules of the gas,

and that the mass of the test body denoted by M is much larger than the mass

of a molecule m. Under these conditions, the interactions between the test

body and field molecules may be multiple. However, the mutual interactions

among field particles are negligible. We investigate the statistical behavior

of the test body by assuming that the gas is in thermal equilibrium. At first

glance, it seems possible to treat the particular problem by means of the usual

technics of kinetic theory based on the Liouville equation of those particles.

We note, however, that collisions are strong regarding field molecules even

though the collisions are weak for the test body. Under this circumstance the

coarse-graining of the Liouville equation deriving the statistical behavior of the

test body is still complicated. We wish to find some other approach;

We see that the collision processes under consideration may be Markoffian or

almost Markoffian. Markoff processes have been well studied as a mathematical

theory. * The Brownian motion of a test body in a fluid is well-known as a

typical example of the theory. Usually, however, the field particles are not

objects of direct investigation in the theory: Physical interpretations of the

Since Einstein's pioneering study of the Brownian motion in the beginning of
this centuxy, the theory has been developed by many authors. The names
of Smoluchowski, Fokker, Planck, Ornstein, Burgers,Fiirth, Uhlenbeck, and
Chandrasekhar are well remembered. 2, 3, 4, 5
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results are achieved by providing data of relevant physical quantities such as

friction and diffusion tensors from outside the theory 2 For instance,

the friction coefficient is often provided by Stokes' friction law. One of the

primary interests in those studies has been to show that the distribution of

the state of a test body finally becomes Maxwellian. It is noted, however,

that the theory itself has not proved the assertion that the temperature of

the final state of the test body is the same as that of the fluid. *

In this study by taking advantage of the simplicity of collision

mode as stated above, we attempt to include the dynamics of those collisions

within the framework of the theory of Markoff processes as stated in Section I.

In Section III we first consider a special case where the test body and the field

molecules are extremely rigid so that the period of each collision is extremely

short and hence collisions are binary. It is shown that the temperature of the

final distribution of the test body is the same as that of the gas. ** We then

assume that the period of each collision is finite so that many collisions occur

simultaneously. Physical quantities of interest are obtained by means of

Markoff's method of random flights under various conditions. In view of the

conclusion attained in this section, we consider some aspects of multiple

According to the principle of statistical mcchanics, we may say so. The
question is open, however, if the test body is much larger than molecules.

Related to the investigation in this section, it is shown that the Boltzmann
equation which is obtained under the assumption that collisions are binary
and Markoffian, is reduced directly to the Fokker-Planck equation by assuming
that interactions are weak. See Appcndix B.
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interactions in an electron gas in the following section. Finally, a set of

basic equations for electron gas is proposed. The detailed analyses of the

equations will be given in Part III.

SECTION II

COLLISIONS AS MARKOFF'S PROCESSES

First we remember Markoff's processes, well studied in the mathema-

tical theory. By taking p for a variable of state, t for time, and f (p, t) for theo

distribution, we assume that the evolution of f is a Markoff process.0

In other words, f is assumed to satisfy the Smoluchowski equation:
0

f (p, t + At) Ij f (5, t) 4(p t/p, t + At) d'p' (2.1)

where 4 is defined as transition probability. By putting

p 5 - A5 (2. 2)

we may write

6p',t/pt + t)dp'=- d(p -Ap, t/p - p + p, t + 't) d ap

= T (p - ,up,t; "p,.t) da ',p (2.3)

By expanding P in a Taylor series, we obtain

" (p', t15, t + t) d2 p'

S[ :p( ,t; ,At)- p + -• " p ap
1 2! P--d p

t- A/ p-' Pi + &''p (2.4)
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We put for cp

i~CP( t; A 5, A t) d AP 1 (2.5)

If we define <Ap> , <p~>At --- ,by

<AP > =jJ Ap( CP t; Apj, A t) d3 Ap,
A t

At p~dAp (2.6)

Eq. (2. 1) yields, as shown in Appendix A,

~f(p,t + 1 2 a3_ +

at At +-! t (A t)2 + T! at (At), + -

6 1 a' -

It is noted that <A5p> t' - - - - are, in general, functions of At. If
At <A t

<AP >AtAt, <Ap Ap > /At,.... have certain limit values, as At tends to decrease to
At At

a short period denoted by 'r,we may write for (2. 7)

- = T.(<AP >f 0 ) + - (< t~ tp>

-1 33 f<p + (2.8)
3! 56 . 0
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where

<A >= lir <AP>AtA t - t (independent of T)

<AVpj>= lim __p>_t ,e
At -. T 6t (independent of (29)

If they fail to have certain limit values, it is difficult to give proper physical

interpretations of Eq. (2. 7).

Secondly, we consider the same process as a physical problem. To

this end, we consider a test body whose momentum changes as a function of time

due to forces exerted at random from the outside. By considering similar

systems, we may define the distribution function of the test body fo, as a

function of its momentum and time. Each of the external foces, denoted by

is assumed to appear with its proper probability w r with respect to a unit

time, and to continue for its proper period T . The change of the momentum

of the test body due to ir is given by

t + T;r

5r =  tr+r j dt (2. 10)

t
r

where t is the initial time when r begins to appear. We assume that w isr r r

uniform during an elementary period Lt which is longer than Tr

At > T (2. 11)
r

6
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t

Fig. 1. Force7r begins at t=t r and ends at tt r+,rr

is partly outside the period A. Therefore

the process is not completely Markoffian.



We also assume

w r T « (2.12)r r

In this section, we do not consider the physical cause of each force; we simply

assume that Vr and wr do not change due to the change of momentum of the testr

body during At. To apply the result of the present section to physical

problems, it is necessary to choose cases where the assumption is satisfied.

The number of forces which occur during the period At is given by
N

t (2.13)
r r

where N is the total number of forces and it is assumed that a force does not

appear twice, due to some mechanism of the external cause. It is possible that

a force exists partly within the period At and partly beyond (before or after)

the period. Due to (2. 11) and(2. 12), however, the number of such forces is

negligibly small, otherwise the processes due to these forces are not Markoffian.

Under those conditions, the probable value of Ai At, the momentum gain of the

test body in At, is
N

<&P>t= Pr Wr At (2. 14)

It is noted that ApAt fluctuates, if similar experiments are repeated. The

probability distribution of ApAt is denoted by

cp(A;; (2. 15)

where p is the momentum of the test body.

8



Of course we have

rrr ( Ap; p) d A p = 1 (2. 16)

According to the definitions of f and CP, we write0

fo(p. t + At) = cp( £p; p-) f (F- ,t) d3 Ap (2. 17)

This is obviously equivalent to Eq. (2. 1), and hence Eq. (2. 17) yields Eq. (2. 7).

In the following, we consider CP(Ap;p itself. The probability of no force

appearing in At is
N

S(O) II (1- w At). (2.18)
r=l r

The probability of only one force appearing in I't is
I N N

1 r r r r A
r=l r=l 4

Similarly,

S (2) = s wAtw At r (l-w At,
S r1 r2 W r3 rn r2 r3$r1,r2  rA

r, < r2 r < r2

S~n) 1 --- r, r2 -- r

r , <r 2 < - - - < r  n

(2. 19)
: "-Z w w---w (W~ ~- At)

9 1 2 n rn+l
r , < r 2 -- - < r n

r n + l i r , r , - - - , r n
-~~~~ ~ ~ -



Case I. We first consider the case where

<V> = w A t < 1,
At/W r

(2. 20)
N >>

In this case, we may expect that

s =w At<<1 (2.21)

and the higher powers of w r At are negligible. Hence S(0) given by (2. 12) and

S(I) predominate. We may put for <p Ap>t

<LPAP > t . S pP (2.22)

Similarly,

<Ap Ap &>At s r p r p r p

(2. 23)

In order to satisfy condition (2. 21) under the restriction (2. 11), it is

necessary to assume that either r is extremely short or w is very small.
r r

When a rigid test body is submerged in a rarefied gas composed of rigid

molecules, T may be extremely short and \\ may be small. *
r r

*The Boltzmann equation is derived under the same conditions. Hence it is

expected that the Boltzmann equation may be reduced to (2. 8). This is shown
in Appendix (B).

I I)



Case II. If we assume

wr At >> (2.24)

we have to consider all the S's given by (2. 18) and (2. 19). In this case,

<Apt given by (2. 14) is still valid: we have, however, for <A- >t

N

r= l r.x < r2

rr re-r, r2--- rn rn n
n

S--(2. 2 5)

Considering the law of large number, it is expected that, as <V> increases,
At

the fluctuation in the number 'V decreases* and we may simply take
At

<ApAP> t -- Srx- - (Pr +---+ Pr_(p ----- +pr )

At r, --- r- r rrj
rl<r<- --- <r- n n

n

n= <V> (2.26)
At

We may consider <Ap Ap> ---- in a similar way. Those quantities so far
At,

obtained do not necessarily have definite physical meanings: For those quanti-

*By taking At extremely long, we may consider the forces appearing in At as a
"population". In the present argument, we are doing a random sampling from
the population. See any text book of "Statistics".

11



ties to have certain physical meanings, it is necessary that

<V> <A>t <Ap Ap Ap>
At At At

<Ap Ap Ap pAp>

<ApApApAp>At - (2.27)

must converge to certain values which are independent of At, as At decreases

toward its lower limit given by (2. 11). It is also necessary that

Pf af
2 -A <<I - (2.28)

- T-At / t0

at this limit.

We simply assumed that w r and g are invariant regardless of ther r

sequence of appearance of more than one force in At. As a matter of physics,

this assumption is feasible only under certain conditions. In the following

sections, we will pay special attention to this assumption in each case so that

the assumption will be feasible.

12



SECTION III

ELASTIC TEST BODIES IN A RAREFIED GAS

Our first question is as follows: Is there any difference between the

effect of binary interaction and that of multiple interaction when mutual inter-

actions among field particles are ignorable? In order to answer this question,

we investigate several physically conceivable examples within the framework

of the restrictive conditions considered in the preceding section. We consider

a mechanically elastic test body of linear dimension D and with mass M, sub-

merged in a gas composed of spherical particles (molecules) of one species with

diameter aand mass m, in thermal equilibrium. We assume

M >>M, (3.1)

D >>n (3.2)

X> D (3.3)

where X is the mean free path of field particles (molecules), n the number
1

density of field particles. It is noted that n- 3 is of the same order as that

of the. average distance between two neighboring particles. By (3.1) it is

assured that the collision between the test body and a field particle is weak

so far as the test body is concerned: by (3. 2) the number of collisions Vt in

't may be large, and by (3. 3) the effect ofr mutual interactions among field

particles are negligible. Due to the last condition, field particles are molecular-

disordered.



1. Binary Collision (T r.j

Case I-a. For the convenience of comparison, we first consider

binary collision. This condition may be realized by assuming that the test

body and field particles are extremely rigid so that the period of a collision

is extremely short or r =0. By taking a sphere of radius D for the test body,r

as obtained in Appendix C, the average number of field particles colliding with

the test body in At, which satisfies (2. 21) '% r At <1, is given by

<V> = 2 T1/2 2kT 1/2 R2 At (3.4)
At m

where

D + (35)
2 2

n = number density of molecules.

The average momentum given by those particles to the test body is

- 4<Ap>t ... v > (3.6)
At 3 At

where v is the velocity of the test body relative to the gas. Further we

obtain, according to (2.22),

> 4 2 2kT
m A

(3. 7)

6: unit tensor

In those derivations, it is assumed that

2
m <<1 (3.8)
kT

14



This assumption may be justified by considering (3. 1). Similarly, according

to (2. 23), we have

IComponents of <ispipAp> vc A3 (.i t,
At m

(3.9)

IComponents of <is isp A Apt - cc m' A.I24

By considering that

a 0 f 1' LV
p f0 kT k

62f

o ~ 0 V2

/i a0 El ) MkT (kT)2 )(jf

we may ignore those higher order moments as given by (3. 9). According to

these considerations, Eq. (2. 7) yields

I~m v t-

+ ' 61, 4 2U At f (3.10)

It is easily shown that the right-hand side of the equation vanishes if we put

f = O M )3/ 2ep M '2, (3.11)

p =M v

15



Case 1-bl. For the convenience of later comparison, we here

take for the test body a rigid cube moving with velocity v which is perpendicular

to one of the faces of the cube. In this case, D is the length of a side. The
-.

results obtained in Appendix C by taking v= (v, 0, 0) are

3 ZkT I/ n D "
<V> t ) 'i 1 / nDWAt, (3.12)

<Ap > 4 v >x>At 3 At'
(3. 13)

<Apy> t =<A pz>t = 0

<Ap &p > ~ pAp > t <Ap p
x x At = <,)py yAt Pz APz>At

4 kT <>(3. 14)

3 m At

Since Apl Apy and Ap are events independent of each other*, it is natural

that
<Ap Apy At =<APx> t <Apy)At=0 (3.15)

<AP AP > t 0

Taking advantage of the simplicity of treatments, we obtain

<AP AP AP > - m z (ZkT) , <V>

x x xAt 3 m At

(3. 16)

<Ap Ap Ap Ap >t 32 m4 ( 2k32T )2
x x x 3 m At

*The particles which contribute to APx are different from the particles which
contribute to Ap .

y
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The other components of <Ap Ap Ap >and <6p Ap Ap Ap> are shown to vanish. By

comparing (3. 12), (3. 13), and (3. 14) respectively with (3. 4), (3. 6), and (3. 7),

we may say that the above two cases are similar to each other. In other words,

Eq. (3. 10) is valid in this case too.

Case 1-b 2 . On each of the faces of the cube which are parallel to v, we

assign <V > /6 field particles (with no fluctuation) as colliding on the face in A t
At

-4 <Vt field
On the face which is toward the direction of v, !L D n At)

< -6 + - 2

particles are assigned*, and on the opposite face, ( -. Dan At) particles
6 2

are assigned. The distribution in the configuration space is then no longer at

random. Assuming that those particles are distributed according to the Maxwell

function in the momentum space, we obtain, at the limit T =At - 0,
r

<AP> t Amv<V>
At 3 At'

8
<Ap Ap > = mkT <v>t, (3. 17)x XAt 3At(.7

<APy APy>At -- 0.

Case I-b . We now assume that the distribution of field particles in the

configuration space is at random. However, each particle is assumed to have the

same magnitudes of momentum components

*See Appendix C, These are the average numbers of particles colliding on the
two faces which are perpendicular to v in Case 1 -b,

17



'lx'~f 3~ 1=1 =ifnCIf (3. 18)

In this case we obtain for ~=(v, o,o)

V> 6nD2 kT 1/2 A(2TO1) /2 m~ t

4
<A 3n mv~v (3. 19)

<Ap > t=<Ap > = 0
YAt z At

<Ap Ap >= <Ap Ap >= <Ap Ap z>

(Zip I)2<V>~~ /3 =j~mkT<V)>~t

CaseI -_b4  Suppose that by some mechanism controlling the field

particles, the number of field particles colliding on each face of the cube is

assigned as in Case 1-b. and further each particle has the same momentumn

components as given by (3. 18). In this case, <V> and <Ap >t are respec-

tively the same as those given in Case 1-b 3 . However, Ap shows no fluctuation,

and <Aj Ap>t completely vanishes.

18



2. Multiple Collisions ( 0

The conditions are similar to those considered in Cases 1, except that

the test body and the field particles are not extremely rigid and T r, the period of

a collision, is finite. In this case the choice of At is limited by (2. 11) and <v>
a~t

given by (2. 13) may be much larger than unity:

<>t wr At >>I (2.24)

In this case, Eq. (2.14) is still valid

< A'r W At. (2.14)

This is the same as what was obtained in Case 1. For <&pAP > however

we must take (Z.-26) instead of (2..22).

< A > --- r- + --- + r+ (.26

n 1n

Case Z-a. First we consider a spherical body with diameter D for the

test body. As in Case I-a, we have

1/2 2 kT 1/2R t<>t= Zn /n (-) t

A m

(3. 20)
<A > 4

At mv<V>,\Apt =-3 At

For calculating 'ApAp> <A Ap -p>At " it is convenient to use Markoff's

method of free flights as briefly explained in Appendix D. By this method, as

19



shown in Appendix E, the probability of Ap being between P and P + dP is given by,[ 1 7/211
W(P)d3 P <t>

3/2.< mkT) 32 A t
(3. 21)

x exp - 6d3P
-1 <v > mkT

3 AtI

See Appendix E, Eq. (E. 9). By means of W(P), we obtain

<6p Ap >= <6p Apy > = <Ap Ap >

x xAt y At z zAt
(3.22)

8 m kT <v
- At

as shown in Appendix E. Sofar as <V> , <AP> and<ApAp> are
At A t A t

concerned, there is no difference between two cases, one where <v > <I
A t

and the other <v > > > 1. However, as obtained in Appendix E, in the latter
A t
- 2

<ApAp Ap Ap > is proportional to <v> t . It is not simple to calculate <Ap Ap Ap >,

since this involves -, and hence A(6) is not uniform with respect to the direction

of P. In the following cases,where a cube is taken for the test body, we calcu-

late those quantities more easily.

Case 2-b In order to make treatments easier, we consider the same

test body as in Case I-b; that is, a cube. By so doing, as shown in Appendix E,

we obtain, by assuming v - (v, 0, 0),

20



<V> t n (4

<A- > 4
mv<v>t'

<px Ap>t= <p APAp>t = <Ap Ap>t= 8 mkT<v> (3.23)

<AP Apy> = <Ap Ap > = -- 0
x yAt y z t

and again

<Ap x  x AA x At (3.24)

So far as <Ap>t and <A' are concerned, there is no.difference between

the effect of binary collision and the effect of multiple collision. At first

glance, one might be puzzled. We note, however, that in these two preceding

cases, 2-a, 2-b) ,the distribution of field particles colliding with the test body

is at random twofold: (i) the random distribution in the configuration space (on

the surface of the test body); (ii) the random distribution in the momentum space.

It is possible to conceive that these disorders, or one of them, may cause such

results. In order to investigate the situation, we calculate <Ap A >in the

following three cases.

Case 2-b . On each of the faces of the cube which are parallel to V,

<V) >
At

6 field particles (with no fluctuation) are assigned as colliding in At; on the

- At v
face which is faced in the direction of v, + D n At) field particles*,

6 2

*These numbers are the same as in Case 2-b See Appendix E.
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are aesigned, and on the opposite face, -- D n At) field partir, s are6 2

assigned. The distribution in the configuration space is then no longer

at random. Assuming that those particles are distributed according to the

Maxwell function in the momentum space, we obtain again

ICAp Ap > = <Ap Ap > t < p Ap > t-mkT < v>
x x At y yAt z zAt 3 At

(3. 25)

'x Ay >At0

These are exactly the same as given by (3. 24).

Case 2-b 3. We now assume that the distribution of field particles in

the configuration space is at random. However, each particle is assumed to

have the same magnitudes of momentum components

Ipx 1 Ip 1= I 1p= JfffM I cx I fd3c /f fdc

=(mkT/Zr) 1 /2 (3. 26)

In this case we obtain for v=(V, 0, 0)

<>t 6102 2(-) 1/2t (3. 27)
At (2r) m

4 -

<Ap> t i <V> (3. 28)
A At

22



<AP Ap > = <Ap Apy> = <Ap p >A
x x At y y At z z At

= 2 mkT <V> (3.29)

<Ax py At =

Considering the relation between <Ap>t and <Ap p > we note that the
At At

temperature of the test body in equilibrium is no longer the same as that of

the gas. This conclusion is conceivable since we ignored the Maxwell distri-

bution of particles colliding with the test body.

Case Z-b . Finally we assume that the number of particles colliding

on each face of the cube is assigned as in Case 2-b 2 , and further each particle

has the same momentum component as giyen by (3. 26). In this case <V >
At

and <AP>t are respectively the same as those given in Case 2-b 3. However,

Aphas no fluctuation, and <Ap A>t completely vanishes.

These results, obtained so far through rather primitive (but precise)

treatments, reveal some aspects of multiple interaction. So far as <v>

at

<Ap>At and <Ap A >t are concerned, there is no difference in effect between

binary collision and multiple collision. The binary interaction is based on the

hypothesis of molecular disorder. Our treatment of multiple interaction is also

carried out by granting the same assumption. The assumption is justified by

assuming that mutual interactions among field particles are negligible. As a

matter of physics, the binary collision assumption and the assumption of no

mutual interaction among field particles are compatible. It is noted, however,
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that the multiple collision assumption and the assumption of no mutual inter-

action among field particles are not necessarily compatible, as considered

in the following section.

Another important aspect is that <Ap>At, (and also <AAp"Ap> At), is

directly related to the non-uniform distribution of field particles reflected

from the surface of the test body: In other words, <Ap>at is said to be caused

by the wake produced behind the test body. On the other hand, the wake has

2 

<1

no effect on <ApAp>At, so far as my /kT < <1: </pA> is caused simply by

fluctuations which appear in Ap, and are smoothed out in <AP> At. See the

details of calculation in Appendix E:

SECTION IV

AN ELECTRICALLY CHARGED TEST BODY IN ELECTRON GAS

In Section III, we obtained experimentally a rule that multiple inter-

actions are equivalent to superposed binary interactions, when mutual inter-

actions among field particles are ignored and so far as the friction and the

diffusion (in the momentum space) of the test body are concerned. In this

section, we assume that the rule is valid for considering interactions among

charged particles.

We consider for the test body a particle with electric charge Q and mass

M. The test body is submerged in an electron gas; a positive charge is
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assumed to be continuously and uniformly spread in the space so that the

positive charge neutralizes the charge of the whole electrons. We also

as surne

M >>electronic mass m (i)

Q < electronic charge e (ii)

and
2

my /kT <<I (iii)

where T is the temperature of the electron gas which is in thermal equilibrium,

v the speed of the test body relative to the electron gas.

As stated in the Introduction, the interaction among those particles is

due to (a) the forces exerted on the test body by field particles (electrons), (b)

the forces exerted on field particles by the test body, (c) forces among field particleE

Approximation A

Let us first ignore (b) and (c) and see the consequence of applying the

rule set forth at the beginning of this section.

Effect 1. <II > t 0. Consider the effect of an electron, with

velocity c which is parallel to v, encountering the test body with impact vector

r. C Here impact vector is defined as impact parameter together with its

direction. ] We may consider another electron with the same velocity with impact

vector -r. The effects cancel each other. Next we consider an electron, with

velocity which is perpendicular to v, passing by the test body with impact
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parameter r. We may consider another electron with the same velocity and with

impact parameter -r. The effects of these two electrons cancel each other.

See Fig. 2. Considering

Fig. 2. v.'_ the velocity of the test body
c: the velocity of two electrons
r: the impact vector.

The momentum given to the test particle by the two electrons
vanishes. Here the electrons are free from any of the other
particle s.

the density of electrons dependent only on I c 1, we may conclude*

< Ap>t= 0 (4.1)

Effect 2. <Ap AP> at = co. An electron with velocity c--v relative to the

test body and impact parameter r" gives the test body momentum

+o eQr dtPi -- co E-r2 + (F- )2 t-2

ZeQ

A test body suffers a deceleration drag in average when it moves through force
fields distributed at random, because the total period of deceleration is longer than
the total period of acceleration. The average drag is of the order of F21 /(Mv2 ) ,

where F is the average intensity of the force fields , i the correlation length. of the
fiFds, i. the mass of the test body, v the velocity of the body. It is assumed that
F9 <Iv v. This sort of drag is considered small and is ignored.
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Hence,

4e'Q2  (4.2)
pi = r2 c 2

by ignoring v /c 2 according to (iii). Remembering Cases 1-b and 2-b in the last

section*, and considering interactions as if binary, we may calculate <Ap rt

by taking f for the distribution function of electrons.

<Ap'AP>At 4e 2 Q' Zrr rdrfcd3 cAt

r c

(4. 3)

8 e2Q At f f d3c d r

c fr

Here

ff L d~c = n (m )3/2 ( m
c 2kT fffexp- 2 kTc)sinededco

nm )3/2 2kT

2 T~kZkT

4n m )1/2-J { 4.4)

r2 d

4T rlo

*In the approximation of ignoring mv 2/kT, we do not need to consider in the
calculation of <hp Ap>

At
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*

The result diverges either for r, = 0 or for ra = co.

Approximation B. Secondly, we ignore (c), mutual interaction among

electrons, and take into account (a) and (b). Here < a p >At and < A p A p>At are

calculated by taking all the interactions as binary and the results are well-known:

lir. <A p> = 0 log r2 00,
r2 -cOD

(4.5)
lim A A At0[log r 2 ]O

In the two cases stated above, spatial fluctuations in the electron

distribution are permitted with no restriction: Even the probability of all the

field electrons to come together at one spot is taken into account. On the other

hand, the interaction of the Vlasov type is conceived by assuming that there is

Fluctuations of the electric force field in an ionized gas were calculated by the

Markoff methof of random flights by J. Holtzmark [Ann. d. Physik 58, 577(1919);
Physik, Zeits. 20, 162(1919), 25, 73 (1924) ]. Later, Chandrasekhar and von
Neumann ' 4 used the same method for calculating fluctuating forces exerted on a
star by other stars. They considered not only the force but also its time derivative
due to an assumed distribution of star velocities. In the initial formulation, they
considered the correlation of the two quantities (force and its time derivative) of
each field star. Because of mathematical difficulties, they abandoned the precise
correlation between them and made the average of one at a given value of the other.
Then they calculated the correlation period of a force by

(a given value of force)/(the average time derivative of force at the
relevant value of force. )

The result apparently converges. We notice, however, that the convergence of the
result is not proved by such an approximate treatment as done by Chandrasekhar
et al.
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no spatial fluctuation in the electron distribution. The real (feasible) condition

must be between those two extreme conditions. In the following, we consider the

condition. This is somehow similar to a condition of turbulence, in which dynamic

characteristics of a fluid set restrictions to fluctuations appearing in the flow of

the fluid. 6

Approximation C. Finally, we conclude that the divergences (4. 5) are attributed

to the neglect of mutual interactions among electrons. The widely accepted

solution is to consider the polarization in the distribution of electrons due to the

potential field induced by each of the particles including the test body. As stated

in Part I, in general, this solution does not seem plausible. Then, what is the

effect of mutual interactions among field electrons by which the result converges?

We note that, by the Baltzmann type binary interaction, regardless of the type

of potential between two interacting particles, a limitless fluctuation in the spatial

distribution of field particles is permitted to appear. In other words, each of the

field particles interacting with the test particle is permitted to appear anywhere,

regardless of the distribution of the other field particles. Our assertion is that

such limitless fluctuations in the spatial distribution of field particles in inter-

action with the test particles are not permissible in an electron gas, since

potential energies among field electrons prevent those electrons being accumulated

at local spots. Such fluctuations may be permitted to appear only in the distribution

of neighboring electrons of the test particle.
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j 2

Fig. 3. 0: the test body, 1,2, 3, trajectories of electrons.
If the velocity of the test body with a large mass is zero,
each electron which passes by near the test body is rejected
toward the outside, and anomalies occur in the distribution
of electrons. Such a anomalous distribution near the test
body is not Maxwellian.

Considering these, we propose the following scheme of treating electrons

in an electron gas:

1. The interaction of a test electron with its mutual nearest neighbor

is treated as binary interaction.

2. When observed by an observer resting on the test electron, the

distribution of the mutual nearest neighbors, which come to

interaction with the test electron one by one, is not uniform in

general: If the test electron has no velocity relative to the average

velocity of the other electrons, the density distribution of the nearest

neighbors is lower with a spherical symmetry surrounding the test

electron. If the test electron has a velocity relative to the average

velocity of the other electrons, the density distribution tc the nearest

neighbors is lower behind the motion of the test electron. In other

words, there is a wake behind the motion of the test electron.
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3. Each of the electrons may assume a test electron. Thus each electron

has its own wake.

4. Except for the wakes, all the electrons are seemingly uniformly distribute

with no fluctuation in a similar manner as considered by Vlasov.

5. An electron accompanied by its mutual nearest neighbor exerts a fluctuat-

ing force on other electrons because of the anomolous distribution of its

nearest neighbor.

The kinetic theoretical treatment of an electron gas according to this model

will be formulated rather schematically in the following section.

SECTION V

A SCHEME OF KINETIC THEORETICAL TREATMENT

OF AN ELECTRON GAS

It is easily shown that the Liouville equation is reduced to

aF, (x i ;t) Pi F, (x i ;t)

at m aqi

1 -, -4

+ S V s  j''_ gr'(ii + '+ ik )p " Fs8+ (X ix j 'xk ;t )

j .--- k

dx.---dx = 0 (5. 1)

This schematic presentation lacks detailed correlation functions and is not
suitable for precise analyses. See Part III.
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k

i *j ~ k.

We define W.. as the probability of two particles, i and j, being

mutual nearest neighbors: Wij is a function of (qi - j) and of the number

density of electrons.

By putting

F 2 (ij) aF 2 (xixj;t),

F = Wij F 2 (ij), (5.2)

Fi/j = (l-Wij) F 2 (ij)

We have

F 2 (ij) = F(ij) + Fi/j (5.3)

Since the interaction between i and j is considered weak in the domain where

Fi/j predominates, we may put Fi/j = (l-W.) [ F 1 (i) F, (j) + F2(ij) ]

whe re

Fl(i ) -Fl (x i;t)

By ignoring F2 (ij), we have

Fi/j = (l-Wij)F1 (i) FI(j) (5.4)
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Hence we write for (5. 3)

F2(ij) F%(i) FI(i) + W FOODj -F(IM F1 ()J(5 5

With respect to FA3(x xk;t), we similarly define

F3 (ijk) SF 3 (Xxxjxk;t)'

F *i)/ W ijF 3 (ij k),

F (i)/ W ikF 3 (ijk), (5.6)

F (j)iW kF 3 (ij k)

F i// (l-W ii ~W k - Wjk )F3 (ijk)

In the same approximation as of (5. 4), we write

F k'W iiF 2 (ij) F1 (k).

F ik/ = Wi F 2 (ik) F, (j),

F k/ W ikF20k~) FI(i) (5. 7)

F i// (1- W ii - W jk - W ik )Fl(i) F1 (j) F1 (k).

or

F3 (ijk) F1 (i) FI(j) FI(k)

+ w. Ej F2 (ij) - F(i) FI(j) I F, (k)

+ w [ F2(ik) -FL(i) F1L(k) ] F, (j) (5. 8)

+ W j r F2 (jk) - F, (j) F1 (k) ]F 11 (i)
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=FI(i) Flo) Fl(k)

+F' (ij) Fl(k) + F2 (ik) Flo)
(5. 9)

+F2' jk) Fl(i)

If we take 3 for s in Eq. (5. 1) and substitute (5. 9) in the equation, we

obtain

aFl(i) Pi a Fl(i)
+ . + k + §+ §3+ § 4 0(5.10)

where

1 = r jFloj) dxj F I3 (i) (5.11I)

j p

(the effect of Vlasov type
force)

§ 2 V f( + " Fk '-(Jk) dx. dx k .  Fi 1 (i)

j k (5. 11)z

(the effect of fluctuations in the
field particle distributions)

3 ' F2 (ij)dx.
v P1  (5. 11)3

(the effect of Boltzmann type

interaction among mutual
nearest neighbors)

I 2 . " i F 2  (ij) d x .

J ik F I(k) dxk F-- - i j

j k (5.1)4

(the effect of Vlasov type force
on the correlation between
mutual nearest neighbors).
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By taking 4, 5, - - - for s in (5. 1) we may have more complex effects. The

detail will be investigated in Part III of this report.

SECTION VI

CONCLUDING REMARKS

1. According to the investigations carried out in Sections 1I and III,

it is most likely that the effect of multiple interactions of a test body with field

particles is the same as the effect of interactions as assumed to be binary,

so far as the friction and diffusion of the test body in momentum space is

concerned, and so far as the mutual interactions among field particles are

ignored. The difference between two modes of interaction, multiple and

binary, appears when the mutual interactions among field particles are taken

into account. We induce this conclusion from the results of our various mental

experiments. We might not be allowed to claim the conclusion to be a general

law. At least we may be allowed to propose the conclusion as a hypothesis.

2. In view of the above conclusion, we consider an electron gas. The

mutual interactions among field electrons prevent them from being in free

flight. Effective fluctuations in the distribution of field electrons are: i)

the fluctuations in the distribution of mutual nearest neighbors of the test

electron caused by the test electron; ii) the fluctuation of each field electron

caused by its mutual nearest neighbors.

3. A scheme of kinetic theoretical treatment of an electron gas based

on the Lionville equation is proposed. There, the assertion (2) stated above
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is formulated.

SECTION VII
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APPENDIX A

THE DERIVATION OF THE FOKKER-PLANCK EQUATION

FROM THE SMOLUCHOWSKI EQUATION

By assuming I Apl < Jpl and expanding functions in (Z. 1) in Taylor's

series, we have

73f a~f 63f

f (pt+At) = f ( t) + 0 2 (At) 2 + . 0 -+---
o 0 a bt 2  3! at

6f 
6pf0 (p- At, t)-f 0 - _ o + p P, 7_.-

0 +
3! p A. ... ara 8

( p I' , t +At) d 3p

(5, t;Ail, t)- + A- &

- a -' + .. ]d 3Ap

as given by (2. 4). On substituting these in Eq. (2. 1), we obtain

f(p, t) + fo 1 _ 2fo

0- At 2. J t2

2frrr~- 0 10
JJJLo - 65.T~l+!/p !

A- a 3f
- __2_0 + _ ) ,t; ,1\ t
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0a 1 P- -a

Af - . -f 0 p A b SC

+ f- + 2 Ap p:~ 2!1

--- d 3 Ap (A-1)

According to (2. 5) and considering that Ap is independent of p, we have

p- 
-

Hence (A-1) yields

At + t2 At. . . .

U 0> 2 f I a-f 0<+- 1 -F:7- 2! <p p>t g a

-f .<A6 + : <Ap iAp -

a n> 0I-<A 
. p-- +--

~~A t
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A0 2!pi ip

+ 1 a<~ £
Z- Fll a- al avp p p>A 0 ----

(A. 3)

If it is shown that

<Ap>At/At =<Ap>

At pP

are independent of At and that

( At? (AAt) < <1

<1f (A-4)

Eq. (A-3) is the Fokker-Planck equation.
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APPENDIX B

THE FOKKER-PLANCK EQUATION

DERIVED FROM THE BOLTZMANN EQUATION

The Boltzmann equation is based on the assumption of binary collision.

The collisions are Markoff processes. Hence, if most collisions are weak, both

regarding the test body and the field particles, the Boltzmann equation must be

reduced directly to the Fokker-Planck equation in the form as given in Appendix A.

Usually, * the derivation is carried out by means of equations of moments based

on the Boltzmann equation. Here is given a direct derivation: The Boltzmann

equation by means of the conventional notations is written as follows:

df

dtfo (p) fI (p) fo 6

x B db d e d 3 p

Here fl is the distribution function of the field particles, b the impact para-

meter of collision between the test body and field particles, e the longitudinal

angle of the plane on which the trajectory of a colliding molecule is present,

and B a function of b, the relative velocity and the force between the test body

and the colliding molecule. There are certain relations among pl , p ',P and

p: Suppose that the collision between the test body with p and a field molecule

with P, under the condition of impact parameter b causes the test body with p

*W. P. Allis: Motion of Ions and Electrons, in Handbuch der Physik, edited by
S. Flgge (Springer, Berlin, 1956), Vol. 21, P.430
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and the field molecule with pi'. Then the collision between the test body with P'

and the field molecule with p1 'under the same condition of impact parameter results A*

the test body with p and the field molecule with pl. This relation is shown by

considering that the collision process, according to Newton's equations, is

reversible. See Fig 4. Us

PP

(a) (b)

Fig. 4. In (a), a particle with momentum p and another particle with
momentum p, collide and their momenta after the collision
are p and PI • The relation is reversible as shown in(b).

By putting

p PI - PI=p P(B2

Ap is a function of pi, p, b, 0, and hence we may take for the independent

variables

A , p, b, (B- 3)

instead of

Piea p, b, ;
or we may write

p, p Ap, p, b, 9).(B4
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By considering the reversible relations between (P*, - and (P-,', P'), we may

say the following: If we define f*1 by

then, considering (B-2), (B-4). we have

f, (P.') = f)1 * (p'; AP f 1 *(p-Ap - AP (B-6)

By expansion, we obtain

f1 (j 1) = f1 *(P-;-Ap) - Ap. a

+1 A- A-: alf* 1(B-7)

2! p p -4 -T

af a12
f(PtP) f (p) - &i 0 + - Ap P ..2. (B-8
0 0 +p iT1 ~P p

Further we define B* by

B* =B a 044'l Yaz (B-9)

Equation (B-1) yields

d f
0 [ f ft(p -A) f.p API

dt
(B-10)

-f1 * (P; Ap) f 0(p) I B* bdbde d3 Ap

Substituting (B-7), (B-8), and (B-9) in (B-10), we obtain

d f
fff L~ f,*(-A5) f - f, * (A-) f
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~~a f
+ *() ai5:*( oA + i A. I t(

-- B* bdbded3 tAp
(B-i11)

Considering that

+OD ~ -OD

ftfj -) d3A= f dA

,JJO f,* (A _)dp

we have

rrrf,*-A; fo - (+ L-) fo B* bdbded 3 6p 0

Further we define

ffj p fl* (-A-p) B* bdbded 3 6p <
(B -12)

JjJ Ap fji'(-Ap) B* bdbdEd 3 &p -<A; A;>

Equation (B-11) now yields

df 4 <Ap)! + A- >f

dt 0 ! ap p 0(B- 13)

43



APPENDIX C

A SOLID AND ELASTIC TEST BODY IN A RAREFIED GAS

CONSTITUTED OF SOLID AND ELASTIC MOLECULES

I. A Spherical Test Body (C is almost zero)

We calculate <6p>, <Ap Ap>. ... by assuming that the test body and

the molecules constituting the gas are extremely hard. Due to the assumption,

each collision period is extremely short and we may take At as short as we like.

Consequently the collisions are binary.

First the test body is assumed to be a sphere of radius D/2, mass M

and velocity relative to the gas v, while the molecules are spheres of radius

0/2 and mass m. Further the gas is assumed to be in thermal equilibrium with

temperature T. Here

M > >m (C-l)

v < < (kT
m (C-2)

are assumed. By taking a spherical coordinate system with origin 0 fixed at

the center of the test body, the coordinates of the center of a molecule colliding

on the surface of the test body are (R, e, CD), where

R = (D + o)/Z

e the colatitude, and cPthe longitude. The number of molecules which have

velocities between c and c + d-'is given by

fdc = n m ) 3/2exp m (c 2 + c 2 + c 2) jd3c (C-3)
SrkT 2 k -T x y z
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where c is measured by an observer at rest with respect to the laboratory

(not to the test body which is moving with velocity v). The number of such

molecules which collide with the test body on an elementary surface area

dS = R 2 sin 0 d e dT (C-4)

during the period between t and t + At is given by

A n = fd3 c IVI cos edS At (C-5)

cs

where

V = c V (C-6)

and the z-axis (polar axis) is chosen so that the axis is parallel to V -in

the opposite direction.

|V

Fig. 5. ds Rs sin e dedf

By carrying out the integration with respect to e, from 0 to Tr/2, and Cpfrom

O to 2rT, we obtain

A n = TTR 2 IVI fd3 C At (C-7)c

By choosing a rectangular coordinate system ,, ) so that -axis is in the

direction of v, we have
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v (vI 0 ),

c-C
(C8

= 2rrkT ~ Z kCT

d 3 C = d 3 C

V= C 2 + C2 + C-2

Substituting these in (C-7), we may carry out the integration with respect to c.

A n TT rR2Atj'IfCfd 3C (C-9)

By considering (C-2), we have

rx m (C + V)23
exL kT

+x M * C2]X I_ (2C2  1 )+ (C-)
2 '2kT2k

=exp[ M CPP (I m 2Cv)

2kT C- 1 2C

Hence

An~ ~ rRt4n 2TrkT .J 2kT
1 0

j m CC, exp (C2 C 2+ C' Id3C

, 1/2 Zkl' 1/2 (C-i11)n n R 2  -) t
m
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(i)<APt Each of those molecules gives the test body momentum

5p in the direction of R:

, - 2 mlVi cos /R (C-la)

or

(p)x = 6p sine sine0,

(6p) = p sin 0 coscp, (C-13)

6p) z = p cos e.

By giving the direction of v in the present coordinate system by 8 = 0, e= 0,

we have

cos o= 2( V C v V (C-14)

and the component of 6p in the direction of v is

(6p) V  (6p)y sin 8o + (6p)z cos 0o

S- 2m lVI (cos2 ecos- + sin ecos ecoscwsine ) (C-15)
0

The momentum transferred to the test body from the field molecules with

velocities between c and'c + dc in At has its component in the v'direction

2rr nr/2
cIwS j 2 Zm IVI (cos 2 cos 8 + sin 8cos cosCPsin8)

Ic o
CPMo 8=0

xf IVI RI cos sin 0 ddcp d'c At

= -'rrni? VP" c cos f d3 c At
2-0

-i mR2 (V _) -;:L fd 3c At (C-16)
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For carrying out the integration with respect to c, we remember (C-8) and

obtain

A =-rmRAtJ - CFC (1- j- C V)

xn("MT)3/2 exp - M (C2+C2+C2) d3CZ~kT2kT 71+C 3

TT mR2 At n )3/2 m
2 rrkT kT

x Jjj CC v exp(- mCU')d&C

By putting

C = C sine1 sinco

d3 C C :"dC sin 01 de1 dP1

We have

eeff mk C- ) d 3CCfCC exp (- ~2kd"C

z r sin 3 01 sin'cpj dO, dcp1 ]

x [j C exp(- M- C 2) dC]

4 n 2kT

3--  m

Hence

A = - 8 mR'n ( )T v Lt + 0 [v2] (C-17)A i v 3 m

The component perpendicular to v does obviously vanish because of the axial

symmetry of the conditions with respect to the direction of v. According to

to the notation given in Section II, we may write
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<&P> t - mv An (C- 1)
3

(ii) <ipAP> We first calculate

< (Ap)2 > = < Ap x APx>+ <Ap y Ap y>+ <Ap z Ap z> (C-19)

According to (C-5) we have for this part of <Ap Ap> due to the molecules of

velocities between c and c + dc

<(AP)l > = At fd3 c (6p)P lVI cos 8 d S
s

where 6pis given by (C-12). By putting

dS=R 2 sin 8 dP deP

We obtain

<(Ap) 2> = 2 ym 2R2 V3 fd 3C At
c

or by considering (C-10)

i 2kT 3/2
<(AP)> 8 Rnm At +0 [v2. (C-20)

%t =m

Next, we calculate <Aptlv 2 >with respect to the component APnjv in the v -

direction. By considering (C-15) and (C-10), it is easily shown that

j(tplv)2 > = -1< 2> + o [V] (C-21)

Therefore, we may conclude that <ApApx > At,p ypy>At and <ApzApz>At are inde-

pendent of v, and 4 m 2  n kT
<APxAPX>At = <ApyApy>At = <6pzApz>At 3 m
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The other components are of the order of v-, and hence are ignored.

By means of similar ways, we may obtain <A- P A t, P

An essential and common feature of those results is that they are all proportional to

An or At.

II. A Cubic Test Body

In order to see in detail and more easily the mechanism causing those

quantities, An, <Aj>, < ApAp>, etc. , we suppose the test body to be a cube with

edge length (side length) D. We take the rectangular coordinate axes, x, y, z, as

perpendicular respectively to three paris of faces. By assuming that the direction

of v is. perpendicular to one pair of faces which is, for instance, perpendicular

to the x-axis

(v, 0, 0), (C-23)

it is easy to calculate those quantities of our present interest. The face which

faces to the x-direction is denoted by S+x and the face in the -x-direction by

S-x. All the quantities related to S+x are denoted by symbols with subscript

+ x, and so on. The number of molecules which collide on the side S in At is

given by
+0 cX =V

A n+x J Jr (v-c x)fd"c A tDr

c, I= -00 c X 
= 

-00

JIf Cn( 2"-k'-T exp - L (C -v) 2 +C+C CtD

S2kT x y z
X
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F

=(t ' m ) 1/2 P x m 2CV
= tI n2 nkT JC (0 1 + -- 2 C xxm

xexp(- M C 2) dCx1
2kT x

m 1/2 kT + T k )3/21
= At D 2n ( kT m 4 V-i k Y

=At D2n 1 2kT )1/2 + v

(C-24)

where, as before, mv2/kT < < 1 is assumed. The number of molecules which

collide on the opposite side, S-x, is given by

An =AtD 2 n I 2kT )1/2 v (C-25)-x 47 m T (-s

We see that the number of particles colliding on S is larger than those on+x

S-x. On the sides perpendicular to the y- and z-axes are respectively

An An = A =An (C-26)ny -y nz -z

At D 1 2kT )1/2

7n " m

The total number of those molecules is

An - 2kT )1/2 At (C-27)
47- m

(i) <AP > The total momentum transferred on S + x is
At

C C :+ OO C :v

<Apx >+ = f f2(v-F€fd3fAt D'

C , C = - 4f0 C =- Oy z x
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at 2 -2 ) ( m )1/2

x .M2Cv x C q) dCj

-- 2mnkT xZT kT x

(C-28)

Similarly we have

> 2ZmnD 2 ~t [T _v (ZT) kT)1
APx >-x = Y + 4 m (C-29)

Hence

&p>t=<Ap > =<Ap >
x At X4x x -x

4mnD2 At 2kT 1/2 (C-30)
-) v

y +y. y -Y z +z z -Z

=mn D 2 At ( h- ) (C-31)

and

<Ap >t < <Apz = 0 (C-32)

Summarizing these, we may write

A = >At= my An (C-33)
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V
We see the cause of < in the unsymmetry appearing in An and AnX -x

and/or in < Px >+x and <Apx> x

(ii) <Ap Ap >. Since the collisions are binary, we may write

< APx APx > t = <APx AP >+x + <~ A x >

Here =v
<AP > x 4m2 (V -C)3fd3c At D2

xc 0

= At DP 4mrn ( kT x Cx8 (I+ m 2 C x v )

C =0
x

x exp (- "T Cx) d C x

m 1/2 [1 2kT )2  m 3W( 2kT 3/21

4rn Dn( 2TtkT x • ( - v m

= 4m , At D' n I -- ) 3/2 + -- v (-]

Similarly

<APx APx >- = 4m2A t D 2n I (2kT)3/ - -3 v m

Hence

<AP \p >= 4m 2 At D2 n ( 2kT )3/2
x x m

4 M2 .2kT)4 (-. -' An (C-34)
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Similarly we have

Since 6p xand Ap yare due to two groups of particles which are independent of

each other, we have

<AP x Ap y>= < Ap > <Ap y>O=

(C-36)

< Apy Apz >= <Ap y <Ap z>= 0

-- y -z

(iii) < Ap Ap Ap >. By taking advantage of easy treatments regarding

this simple test body, we may have

<PA AP> t <AP p Ap > xA A-xP

<'x ~'x t~x x+i~ [2mv +xhvc fdac t

At 2 8 3 (m )1/2

r C4( + m 2 'C v) exp(- M~ C 2) dC

=x .1 x2T

t -tD28m n T4. 2')5/2+ ( M )Z(kT) 3] 1~/2

Lt D t2 8mrin [3 . kT) 12 + 2, v(2kT)3/2 x

Similarly

<&p 'IP ( P > =+ At D 2 8m 3 n (2k T 1/2 2 2 .kT 3/2 1

x x x -x 8 m (-;- 47v x
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V

Hence

<AP APx t = - 32 At D2 M 3 n (2kT) 3/2 v

32 m3 (ZkT) (C-37)
3 m

Similar calculations show that

< \p Ap Apy >t AP AP AP > t 0 (C-38)

All the other components where Api and Ap. (i # j) appear as mixed, vanish.

The reason is that each single collision is independent and each single

collision does not contribute both Api and Apj unles i = j.

(iv) <Ap L p Ap Ap>. The method of calculation is similar to the

preceding cases. It is simply noted that

<Ap p Ap AP > = <Ap Ap p Ap >
x x x x At y y y yA t

= <Ap Ap Ap Ap > (C-39)

oc At

The other components vanish.

Through those investigations, it is obvious that a molecule with

c =- Icx1, relative to the laboratory has velocity component Cx=- Ic xi -v

relative to the test body, and is reflected from S+x with velocity ICxI +v

relative to S+x or Ic x+2v relative to the laboratory. On the other hand, a

molecule c =+ Ic has velocity C = Ic xI-v relative to the test body and is
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reflected from S-x with velocity- Ic xI+v relative to S-x, or - ICx +2v

relative to the laboratory. We see that the test body accelerates molecules

towards the direction of v and is accompanied by a wake.

We may also note that the number of molecules colliding on S+x in At is

An = rrfx (cv) dc x dc dc
A +x(Cx-y z

where the domains of integration are

c -v: - OD to 0,
x

c

I:- OD to + 00y.

z

On the other hand

An =f fx (c-v) dc xdc dc ,-x (Cx" y

c -v: 0 to + cO,
x

c

Y : O to + O

z

Here all the velocity components must be given related to the laboratory.
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APPENDIX D

MARKOFF'S METHOD OF RANDOM FLIGHTS

Markoff's method of random flights is summarized for the convenience

of application in this article.

An elementary momentum given to a test body is pr with the probability

of appearance in unit time w . Here we suppose that p and w r are functions of

a set of independent variables qj., q 2 ,.... qs Also we assume that there are V

of such elementary momenta.

Let us denote the probability of the total momentum being between

1 and P + dP by

W (P) d 3P

Then

W(P) dP ... w n~ (q) dSq (D-l1)

Here j is a function which satisfies the following conditions

A = 1 whenever
V

P- dP< r < P r + d (D-2)

r=1

A =0 otherwise.

It is known that L is give,, by Di" tchlet's integral

r-r -  sin (1dPx p,) sin (dPy Py) sin (yd Pz Pz )

T7 jj y,2z
P P P

x y z
V

' P) jdp dp dp (D-3)xep p, r-x y z(D3
r=l

d:'P

P (2 . T xp 57 .
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Hence

(j f ---f exp(i- . P) A (-)d 3p

A(p) = 1 f [ exp (iaP. p) w . d~q (D-4)

If prand w r, as functions of the q's, do not depend oni subscript r,

we may have

A(P)= [fIexp (iP )w dsq I'~ (D-5)

For application in case of V >> 1, we may write

=exp Iv -vf Lexp (iP. P) ] w dsq~ (D-6)

APPENDIX E

MULTIPLE COLLISIONS OF AN ELASTIC TEST BODY

IN A RAREFIED GAS

As shown in Section II of Part 11, if vt is much larger than unity,

we have to calculate

A4 t r rr
r

< A > +------ 11 +

r, -- r v r, rv PrI r

(II. z. Z6)

Since <~ Ap> is linear with respect to p ,x there is no difference in <Ap >

between the case of binary interaction (v < 1) and the case of multiple interaction

At 
5



For calculating <p Ap ' in the approximation of neglecting the
my2

terms of 0 [--2i, we may assume that the velocity of the test body relative tokT

the gas is zero, as shown in Appendix C.

Case II-a. The test body is a spherical body submerged in a gas in

thermal equilibrium.

On an elementary surface in Fig. 5,

dS = sin Od 9d C R",

R= D + a---
2 2

we consider a local rectangular coordinate system (0, 1 ,) where the C-axis is

inwardly perpendicular to dS and the "-and fl-axes are parallel to the surface.

The distribution of the-field molecules is given by

fn m exp I-2 --T (c C 7 + c ) + C-)

frn(- 2kT 7 (-l

The number of field particles which collide on dS in t is given by

d w = f cC d .c d S St,

where

dS= sin PdedcR,

-. ; 0 to 2 T, (E-2)

0 to rT
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One may obtain < V> directly from (E-2)
At

V>= Jdw
At

ir 2 kT(E)

A particle gives the test body momentumpr

pr = 2 c CmR/R (E-4)

The total momentum is

_ At'Pr (E-5)

According to Markoff's method given in Appendix D, the probability of P

being between P9 and -P + dP is

W Jf)&P= T exp (-i P. P) A ()d3P dP (E-6)

A Lexp (i. d w , 1v>t (E- 7)
< At

Since A() is expected to be independent of the direction of -P (spherical

symmetry) we first calculate A(p) by taking pin the direction of the z-axis.

A I ex (i I. Z o fd 3 C c, R2 sin0d 0d cp At V>A

Att

By expanding sin(Zmc, p) in Taylor series, we have

si(mpc exp (- m c 2) dc~
Tp 4 k 16C
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Considering that <v>t >>1, we obtain for A(p)
4 16

A(p)= exp [<v> ( -1 mkT p 2 + L6 (mkT)2 p4 .... )

Remembering that A(P) is independent of the direction of p, we write for A($
4

A() = exp [-<v > mkT O]xAt 3
x I + L6 <v> (mkT) 2 4 + --- (E-)

x1+ 15 At(E8

By remembe ring

oexp (- ax ') sin 8x. x dx

I 4a exp ( 824

4'"(6 o 4'zo +.s)

exp (0 xa). sin 8x • x 5 dx =

6 4 11

x exp(--)

we finally obtain

W L) 8 '' exp (-iDP cos e) A() e d Lsin ed ad :

1 o sin (oP) 2A d

> 2 T)7/2= n 3 /'(v mk) /  + 0 I

xexp3 p
16 v>tmkT )

We may ignore the higher order terms of (-). It is shown that

W W(P) & P (E- 10)
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We calculate first <A5 5 A t

< Ap xApx >+ <AP Ap Y>+ <Ap zAp >

j'jf P2 W (P) d 3p (E- 11)

-8mkT<v

Since W(P-) is independent of the direction of 1P, it is a simple matter to show

that
<p V 4p > = < p AP > = <p AP >x x y y z z

T v k (E-l12)

< Ap Ap Ap >- It is conceivable that < A5 Ap Ap >is proportional to v.

It is not a simple matter to calculate <tp Ap Ap > according to the Markoff's

method, since A (f)) depends on the direction of *We write

-dw = f (c C + v cos d d3c ds At.

instead of (E. 2),and

pi = 2 (C + v Cos e)m R/R

instead of (E. 4) , by taking in the direction of the z-axis.

5i I Ip I Cos S

where "Ais a function of r, --and e 0 and the manipulation must be complicated.

It is a simple matter, however, to calculate - p x p x p xp x>, by ignoring the

terms of 0 Lv'] by means of W(P) given by (E. 6)



V
<p xAPx Ap x px >

= <  y Apy A py p y >

<AP z Pz z Pz >

=.frf(P cos 6) 4 W(P) d3P

S2rj cos 4 ede jP W(P)dP

It is easily shown that

00 V 7/2

Pc W(P) dP oc 6/t V <>2 (E-13)

3/2 At
At

Cubic Test Body. If the test body is cubic, and one of the faces is

perpendicular to the direction of v, the calculation is very simple. Here An and

< p > do not change from those obtained in the case of binary interactions

3 2kT) 1/2An- - .ttD~n(-
71 -m

/ . 4 - n (E-14)

3

Case II-b . The particles, the number of which is given by

\=j| fd" c cC TX 6D 2,

are distributed at random on the 6 faces. Because of the steady motion of the

test body perpendicular to one side, such as shown in the figure,

Fig. 6
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the number of molecules which collide on S +xis

c = v
D- Df x(-c +v) d'c A+

c ~ z

and the number of those which collide on the opposite side is

+00 c x+ 00

JIl, j D f x(c -v) d c=An -

cc

z

By ignoring the members of the order of mv2 /It we have

+ O + OD 0

An~~o c =- c D~f x( -cx+v) d 3 C

y

D2 n 2i~k T (-c 'X+ v) exp (- i- C2) dcx

c -00
x

mD'~fT kT ,v477 2kT

(z T- ) + T-V

Similarly,

A n~y n I~n n - n kT)2 t
_y +z z 2rr) m

and I kT
=, 6 D 2 n -i (-) t. (E- 15)

(2 T)~ 12 m
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The momentum due to An+, in the negative direction of the x-axis is

c
x= v

P+x = J -oD 2 f(- C + v)Zm(c - v)d 3 C

x

=n nkT (-c ' + 2 c v) exp ( c ) d c

'C = -

x

nD 2  m x 2k __ 2kT)3/2 V2k
2FT~ kT) 4~ - 17(-) - 2 m -

= 2,m ) - -V 0- I- 4 m m -

Similarly
+00K 2lj D2f (c - v)P 2m d3 c

x

= nD~ -~ I + Er -'-

Hence

- v nD 2 4m 2kT 1

4 -n

3 m~v(E- 16)

By taking the Maxwell distribution for f we have

VDn ( 2kT)* T (E-17)
m
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As before, we calculate A(P) obtaining

ri 2mc 
2 mc

A ~ exp Lip I~~L+ exp L- ip

+ xPL T+CP x1 T

+ex[+p mcc 2med

fd 3 Cc C D 2 T 1 V

4 p P 2 + P 2 fd3 c c 6 D2 T "

(-L[M--)'. C) 2 x +PS]

2 r C__ 3 1

2

W() pexp (- iF p) ep r 1x k
y y I p T

2  3 m

x exp (-iF p exp Y4 mkT]

xdp dp dp
x y z

- 1 1 F F 2

- 4! V M-Zn1, kT13/2 exp 42(Mrk

F F1 +00 rx F' ]
x W(F d 2 T 2m I kT F x ep 4v Zm 2kT JF X

~~) F 2  CX I -)-~-- - I d

3 i
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Hence

<'~ Ap > V kTAt/ T - kT An (E- 20)

Here again we see that

< "p x p xAp x p xc > v2  (E-21)

Case II-b 2 . On each side, the number of particles is assigned as

Tdue to some physical condition. In this case, we have to calculate <Ap Ap >on

each side. For example, by taking the side w~ich is perpendicular to the x-axis

on the positive side, we have only one finite component, <Ap tAp > .For
x X +

A(p) we have

P6 m x 6 Tr m X (-2

+00

W (F) ~ exp (-i F P) A(Q d p
x ITx x

F +v~r m 2kT

v2m 2 kT __p 4 Im
6 (-T1  6~ m J(E-23)

Noting that

[,r~ M 2k T TT8
T m

+ 2 kk 8

,F F +VJ - 2k(- ranges from -dD to + co as F~ changes from -oo toO0.
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Hence we have

.9 __ ,ZkT itj F+c WFx)+d~x6 T * g
0

V2m 2 kT m kT
F S W(Fx) dF x  -3"-') - + 2 T( ,-) -m+x x . E24

0

and for the opposite side

W(F) dF = 73 )- )JF- x M

0
SV 2m2 2kT M kT_xW(Fx) dF T( M mE 6 5 )

0

For calculating the total in the x-direction, we put

<PxX >t :p Ap < (F +x + F - )2 > X 1

St (<F(+X >+ <Fx >+ 2 <F +xF-x >)

Since F and F xare independent events, we nave

<'p LPx > t T t (<F - > + <F 2 >+ 2 <F ><F- >)
x-x +x x

2 2m 2 kT At
3 T m T

8 mkT n (E 26)
3

Case II-b 3 . We now assume that the distribution of field particles

in the configuration space is at random. It is assumed, however, that each

particle has the same momentum components
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lpi1 liyl lpi 1 - JTj.rn.c 1 d3c
IX PI~I I~~ 5]'fd 3C

M( m kT
2 TrkT rn

rnkT (E. 27)

In this case we obtain

-6D
2 n (E)'T~ (E 2 8)

(2r)7 m

< Ap > t D~n)(- l() 2 + v A t

ImkT + v x
x r2

x n( 9 2 - v 2

-8 mkl 2 ~ ~
2 r

4v. (E 2 9)
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In this case

+ 2 z 2Pz ("!" --) j (.jJ

(4mkT- 1 (Lj

--exp1 "vPa rnk" T 3 T  (E-.30)

A(P) 2 J exp(-iP e Cs 2 - T

+o

=2 cos(Px P) exp [v Pxp])V

2 rr 3

=~ ~ ~ ex vp k (-0

-D mkT. mkTS'(v-" 4 v 3 PE-31)
1r Cs( exp ImkT d

<s Px > = 1 1 mkT) 3/2~P x 23 v mkT) 2 (4v

2
- v mkT

v T 3 =r (E-31)

Case Il-b 4 . Each particle exerts the average force andi particles are as-

signed on each side. It is obvious that APx has no fluctuation and <Ap tip> vanishes.
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APPENDIX F

USEFUL INTEGRALS

The integrals which often appear in the present manipulation are listed

as follows 7 , 8

CO

x~ xp- X)dX=1, 3, - -- (2n- 1) TT1

jn + 2n+ I0 2

IX2 n+I exp (- XX2) d X n
i n+ 1

0~2 X

1TT*
Iexp (-XX 2 ) dX -

JX exp (- X X?) dX-

J.X'2 exp -X X') dX 4 X
0

jX 3 exp (-XLX 2) dX X

CP 3 njX' exp(-XX 2 )dX ~- ( T

0

~X5exp (-XX2) dX±
0

I A 15 TT
j X' exp (-X~V) dX 16j (-

0
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03

Jexp (-p2 X2 ) coo (qX) dX TT I exp q 
2p

0

jexp (-P2 2 sin (qX). XdX 4p2~ [~/42

0

jR eXp (p2X 2) Cog (qX). X2 dX =2202 ~ expI-q/4 p2 3

0

exp (pX)sin (qX). Xa dX "N 7 ep - ~
0

~'(I (1p 4  ~1Zp2 g'+g4 )_ TT

Tep(_p 2 X2 ) COS (qX). X4dX = 32p9  exp q 4p~

0

9X5 (6024q -2 We2g 3  exp q 24p2]

exp (-p 2 X 2) sin (qX). XdX 6 4p" x I i
0
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