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a A KINETIC THEORETICAL INVESTIGATION
OF A FULLY IONIZED GAS'
Part II - Some Aspects of Multiple Collisions
by

Toyoki Koga *

Polytechnic Institute of Brooklyn
Farmingdale, New York

SUMMARY

The Brownian motion of a test body due to multiple interactions with
field particles is investigated within or almost within the framework of Markoff's
- processés. First, Markoff's proceéses are studied as presenting such multiple
interactions. Based on the study and by means of Markoff's method of random
flights, we investigate the Brownian motion of an elastic test body submerged in
a rarefied gas con.stituted of elastic molecules, under the condition that mutual

interactions among field particles are negligible. It is shown that there is no

difference in effect between temporal repetitions of random binary collisions and
multiple collisions (rar_mdom binary collisions superposed at one moment of time),

50 far as the friction and diffusion of the test body in momentum space are con-

cerned. The situation is similar when a test body with electric charge is sub-

merged in an clectron gas, if thc mutual interactions among electrons are ignored.

* This research was supported by the Office of Naval Research under
Contract No. Nonr 839(38), Project No, NR 061-135,

* Visiting Professor, Department of Aerospace Engineering and Applied
Mechanics.



It is not feasible, however, to ignore those mutual interactions of field electrons

A

and to represent electronic multiple interactions by temporal repetitions of

random binary interactions, each of which takes place independently: Fluctua- v
tions of limitlessly large amplitudes in the spatial distribution of electrons,

which may possibly take place in this approximation,do not seem realistic, be-

caua.e a limitless concentration of potential energy accompanying a concentration

of electrons in a local spot cannot be permitted. Amplitudes of such fluctuations

and/or microscopic disturbances must have a certain maximum limit. [The

situation does not change even when the interaction force law is of the Debye-

Hutkel type. ] A kinetic theoretical scheme of treating fully ionized gas in the

light of this fact is proposed.

ii




TABLE OF CONTENTS

Section Page
I Introduction . . . . « « « ¢ + ¢ ¢ ¢ 0 . e 1
I Collisions as Markoff's Processes . . . . . . 4
uI Elastic Test Bodies in a Rarefied Gase. . . . . 13
v An Electrically Charged Test Body in an Electron
GaB + o v e s e e e e e e e e e e e e e e s 24
v A Scheme of Kinetic Theoretical Treatment of an
Electron Gas . . . . « ¢« « ¢ ¢ o ¢ o « o o » 31
VI Concluding Remarks . . . . . . . . . . . .. 35
vil References . . . . . . . . v ¢ ¢ 4 4« o o o & 36

Appendix A, The Derivation of the Fokker-Planck

Equation from the Smoluchowski Equation . 37
Appendix B. The Fokker-Planck Equation Derived

from the Boltzmann Equation . . . . . . 40
Appendix C. A Solid and Elastic Test Body in a

Rarefied Gas Constituted of Solid and

Elastic Molecules . . . . . . . . . . . 44
Appendix D, Markoff's Method of Random

Flights . . . . . . . . . . . . .. 57
Appendix E. Multiple Collisions of an Elastic

Test Body in a Rarefied Gas . . . . . . 58
Appendix F. Useful Integrals . . . . . . . . . 7

ii



SECTION 1

INTRODUCTION

The difficulty in kinetic theoretical treatments of an electron gas or
a fully ionized gas may be attributed mainly to the fact that we are not able to
treat precisely more than two body problems. In Part I of this report
we showed that methods of treating multiple interactions among electrons in
an electron gas in accordance with the B-B-G-K-Y hierarchy are not plausible.
In the present part, we attempt, by means of several ''mental experiments",
to find characteristic effects which distinguish multiple interactions from superposed

binary interactions. Let us first suppose that the effect of multiple collisions

between a test body and field particles is divided into three parts: (i) the
effect of the forces exerted on the test body simultaneously by many field par-
ticles, (ii) the effect of reactive forces exerted by the test body on field par-
ticles, (iii) the effect of mutual interactions among field particles. Since we
do not know, in general, the way to synthesize the total effect from those par-
tial effects, that is, the many-body problem, the classification seems simply
conceptual with no definite physical meaning, We note, however, that it is
possible to conceive particular conditions under which effects (ii) and (iii) are
ignored either completely or partly, and yet interactions are multiple. By
studying such particular cases, we may obtain some aspects of statistical

effects of the multiplicity of interaction, and,we hope,may find some clue for



considering multiple interactions among charged particles in a fully ionized gas,
We suppose, first, that a test body is an elastic body with linear

dimension D which is sufficiently larger than the average distance of two

neighboring molecules of the gas in which the test body is submerged. Further,

we suppose that D is much shorter than the mean free path of molecules of the gas,

and that the mass of the test body denoted by M is much larger than the mass

of a molecule m. Under these conditions, the interactions between the test

body and field molecules may be multiple. However, the mutual interactions

among field particles are negligible. We investigate the statistical behavior

of the test body by assuming that the gas is in thermal equilibrium. At first

glance, 'it seems possible to treat t};e particular problem by means of the usual

technics of kinetic theory based on the Liouville equation of those particles.

We note, however: that collisions are strong regarding field molecules even

though the collisions are weak for the test body. Under this circumstance the

coarse-graining of the Liouville equation deriving the statistical behavior of the

test body is still complicated. We wish to find some other approach;

We see that the collisian processes under consideration may be Markoffian or

almost Markoffian. Markoff processes have been well studied as a mathematical

theory.* The Brownian motion of a test body in a fluid is well-known as a

typical example of the theory. Usually, however, the field particles are not

objects of direct investigation in the theory: Physical interpretations of the

*Since Einstein's pioneering study of the Brownian motionlin the beginning of
this century, the theory has been developed by many authors. The names

of Smoluchowski, Fokker, Planck, Ornstein, Burgers,Fiirth, Uhlenbeck, and
Chandrasekhar are well remembered. 2, 3,4, 5
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results are achieved by providing data of relevant physical quantities such as
friction and diffusion tensors from outside the theory 2,3 . For instance,
the friction coefficient is often provided by Stokes' friction law. One of the
primary interests in those studies has been to show that the distribution of
the state of a test body finally becomes Maxwellian., It is noted, however,
that the theory itself has not proved thé assertion that the temperature of
the final state of the test body is the same as that of the fluid, *

In this study by taking advantage of the simplicity of collision
mode a8 stated above, we attempt to include the dynamics of those collisions
within the framework of the theory of Markoff processes as stated in Section II
In Section III we first consider a special case where the test body and the field
molecules are extremely rigid so that the period of each collision is extremely
short and hence collisions are binary. It is shown that the temperature of the
final distribution of the test body is the same as that of the gas. *%* We then
assume that the period of each collision is finite so that many collisions occur
simultaneously. Physical quantities of interest are obtained by means of

Markoff's method of random flights under various conditions. In view of the

conclusion attained in this section, we consider some aspects of multiple

¥
According to the principle of statistical mechanics, we may say so. The
question is open, however, if the test body is much larger than molecules.

*gltlelated to the investigation in this section, it is shown that the Boltzmann
equation which is obtained under the assumption that collisions are binary

and Markoffian, is reduced directly to the Fokker-Planck equation by assuming
that interactions are weak., See Appcndix B.
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interactions in an electron gas in the following section. Finally a set of

basic equations for electron gas is proposed. The detailed analyses of the

equations will be given in Part IIIL

SECTION 11

COLLISIONS AS MARKOFF'S PROCESSES

First we remember Markoff's processes, well studied in the mathema-
tical theory. By taking 5 for a variable of state, t for time, and fo(f;, t) for the

distribution, we assume that the evolution of fo is a Markoff process.

In other.words, fo is assumed to satisfy the Smoluchowski equation:

- _ e - = a
£t +ot) = r“ f (p.t) Up,t/p,t +At) d'p

(2.1)
where | is defined as transition probability. By putting
P=p-Ap (2.2)
we may write
V(P t/p, t +0t) d%p’ = - ¥(p - AP, t/p - Ap +4p, t+ .t)dAp
=9(p - “p.t; .p,At)d L p (2. 3)
By expanding ®in a Taylor series, we obtain
V(e t/p,t+at)d7p
P - 1 - - 3%
= [ P (p, t;Ap, At) - \p.sg + F\‘p/‘p'aﬁ*
1 - - = 3%y ]
- — '. + - d
3t BPAPEP I SEAR op P (2. 4)

b e o —— <l AP SRR



We put for @

ﬂ]'ep({;. t; Ap, At) d®Ap = 1 (2. 5)

. < —o> < - - > .
If we define <Ap At ApLp>,. , by
<Ap >At.= J]TAE @ (p,t; Ap, At) d°Ap,

< - -4> - - - a
AP 8B >, H AP AP ©d%Ap, (2. 6)

Eq. (2.1) yields, as shown in Appendix A,

- 3
' -a—f‘;%t—) At + 21_' a:;’ (At)‘°'+'3—l!‘ % (At)® + ---
= -gra-,-.( <Ap 3 L)+ -El-!-é%;—ﬁ: (<ap AP > f )
1 3 - e -
“31 3Fogop. (SAPAPAP f)+ --- 2.7)
It is noted that <A5 >At' <A;AS>M, ---- are, in general, functions of At. If
<Ap >At/At, <Ap Ap >'\t/M’ ... have certain limit values, as Ot tends to decrease to

a short period denoted by T,we may write for (2. 7)

of

-2 = -—a; (<A; >f )+—l- -i——..: (<f\;f4;>f )
ot 3p o 2! 3pa3p o
L2 s Bt + (2. 8)
T 313 apop . ¢ P P-PTR T e '



where

o <aps
<Ap >= lim At .
At =T At , (independent of T)

- . < -t b d
<Ap AP >= lim _SPAPA: deoendent of
At =T At (independent of T) 2. 9)

If they fail to have certain limit values, it is difficult to give proper physical

interpretations of Eq. (2. 7).

Secondly, we consider the same process as a physical problem. To
this end, we consider a test body whose momentum changes as a function of time
due to forces exerted at random from the outside. By considering similar
systems, we may define the distribution function of the test body fo, as a
function of its momentum and time. Each of the external foces, denoted by
Er' is assumed to appear with its proper probability W with respect to a unit

time, and to continue for its proper period Tr' The change of the momontum

of the test body due to 51‘ is given by
t

7 =J' 7, dt (2.10)
t

where tr is the initial time when 51' begins to appear. We assume that W is

uniform during an elementary period 4t which is longer than T

At > 1 (2.11)
r
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Fig. 1. Force Jr begins at t = tr and ends at t = tr+ T
Er:, is partly outside the period A, Therefore

the process is not completely Markoffian.



We also assume

w T <<1. (2.12)

In this section, we do not consider the physical cause of each force; we simply
assume that ffr and w do not change due to the change of momentum of the test
body during At. To apply the result of the present section to physical
problems, it is necessary to choose cases where the assumption is satisfied.

The number of forces which occur during the period At is given by
N

<y> =
v At z | WrAt (2.13)
r =

where N is the total number of forces and it is assumed that a force does not
appear twice, due to some mechanism of the external cause. It is possible that

a force exists paftly within the period At and partly beyond (before or after)

the period. Due to (2.11) and(2.12), however, the number of such forces is
negligibly small, otherwise the processes due to these forces are not Markoffian,
Under those conditions, the probable value of Ap At the momentum gain of the

test body in At, is

n
z

p> (2.14)

A
=4
©
[ad
ol
€
g
[ad

>

r r

Lo}
fi
—

-

It is noted that ApAt fluctuates, if similar experiments are repeated. The

probability distribution of ASA , is denoted by

% (Ap; P) (2.15)

where ; is the momentum of the test body.



Of course we have

Ml o (ap; p) d®ap= 1 (2.16)
According to the definitions of fo and ¥, we write

-t - -d. -o- -t —o- -t 3
£ (5.t +08) = ﬂ ®( AP: B-8P) f_ (B-AP, t) d*Ap (2.17)

This is obviously equivalent to Eq. (2.1), and hence Eq. (2.17) yields Eq. (2.7).
In the following, we consider ¢( Aﬁ‘;ﬂ itself. The probability of no force
appeari.ng in At is
N

S(O)=10 (1 -w Aat). (2.18)
r=1 i

The probability of only one force appearing in At is

[ N N
S(1) =Z 5 ‘Z. w_ At:.gr(l-wr,At)

r=1 r=1

Similarly,

S (2) =Z z sr; b ) =z, Z wr‘At wra bt 1‘3#;11. T2 (l-wl'a At)
r)<r; ry <re

S0V =0, 0L teyee s

ry <rp<-<r

n
(2.19)
. n
=Z§---y w w ---w (At) T(l-w At)
A 4 ry, 1z £ L
ry<rp---<r
S #ry, rg, ---, T



Case I. We first consider the case where

<v> = z w_ At<l,
At r
(2.20)
N>>1
In this case, we may expect that
s =w_ At<<] (2.21)
r r

and the higher powers of w At are negligible. Hence S(0) given by (2.13%) and

S(1) prédominate. We may put for <Ap AS>A1
< - —o> - - - .
Apbp At zsr PP, (2.22)

Similarly,

(2.23)

In order to satisfy condition (2. 21) under the restriction (2.11), it is
necessary to assume that either Tr is extremely short or W is very small.
When a rigid test body is submerged in a rarefied gas composed of rigid

molecules, Tr may be extremely short and w , may be small, *

*The Boltzmann equation is derived under the same conditions. Hence it is
expected that the Boltzmann equation may be reduced to (2.8). This is shown
in Appendix (B).
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Case I, If we assume

<y> = >>
NV At Zwr At 1 (2. 24)

we have to consider all the S's given by (2.18) and (2.19). In this case,

<Af>‘zt given by (2.14) is still valid: we have, however, for <Ap A;">'>At

N
<ApAR> = ) ingie +ZZ g = =
PAP At Z 8 Pr Py sr, rs ' 1ny +pr;) (prl +pr3
r=1 ry <rz
) ) NN - HE SRR (R e
ockic <;.,n ryrecctr rn r
N (2. 25)

Considering the law of large number, it is expected that, as <\)>At increases,

the fluctuation in the number vM decreases™ and we may simply take

< - _.> - . . - . - - +---- -
bp &P, zz an--- r;(p“+ +pr.6)(pr1 tp)

r1<r2<--.<r; 0
n=<v> 2.26
n A At ( )
We may consider <AEA§ A6>At ---- in a similar way. Those quantities so far
1

obtained do not necessarily have definite physical meanings: For those quanti-

*By taking At extremely long, we may consider the forces appearing in At as a
"'population'’. In the present argument, we are doing a random sampling from
the population. See any text book of ''Statistics''.

11



ties to have certain physical meanings, it is necessary that

V> . <Ap> <ap Ap 8p3,,
<v>=z —— >z — B AD Ap> = ————————2
V2= Tae o p At ~4plplp” At '
. e = - <plApdpbp3,
<ApApApAp>= Tt e eee-- (2.27)

must converge to certain values which are independent of At, as At decreases

toward its lower limit given by (2.11). It is also necessary that

Ff of
o

i At/ gp <<h -e-eeee- . (2. 28)

at this limit.

We simply assumed that W and ir are invariant regardless of the
sequence of appearance of more than one force in At. As a matter of physics,
this assumption is feasible only under certain conditions. In the following
sections, we will pay special attention to this assumption in each case so that

the assumption will be feasible,

~

12



SECTION III

ELASTIC TEST BODIES IN A RAREFIED GAS

Our first question is as follows: Ie there any difference between the
effect of binary interaction and that of multiple interaction when mutual inter-
actions among field particles are ignorable? In order to answer this question,
we i.nvestigate several physically conceivable examples within the framework
of the restrictive conditions considered in the preceding section. We consider
a mechanically elastic test body of linear dimension D and with mass M, sub-
merged in a gas composed of spherical particles (molecules) of one species with

diameter 0 and mass m, in thermal equilibrium. We assume

M>>m, (3.1)
1

D>>n ~ 3>-g, (3.2)

A>>D (3.3)

where ) is themean free path of field particles (molecules), n the number

density of field particles. It is noted that n~ % is of the same order as that

of the average distance between two neighboring particles. By (3.1) it is

assured that the collision between the test body and a field particle is weak

so far as the test body is concerned: by (3. 2) the number of collisions V/\t in

/t may be large, and by (3. 3) the effect of mutual interactions among field
particles are negligible. Due to the last condition, field particles are molecular-

disordered.

13



1. Binary Collision (T -0)

Case 1-a. For the convenience of comparison, we first consider
binary collision. This condition may be realized by assuming that the test
body and field particles are extremely rigid so that the period of a collision
is extremely short or 'rr=0. By taking a sphere of radius D for the test body,
as obtained in Appendix C, the average number of field particles colliding with

the test body in At, which satisfies (2. 21) ZWr At <1, is given by

1/2 2kT . 1/2 _2
> = arsa— t
<v At 20 n ( — ) R™ A (3. 4)
where.
D o
R = 2 + 2 ’ (3.5)

n = number density of molecules.

The average momentum given by those particles to the test body is

- 4 -
KAD> = - = <y> .
ApAt 3 mMV<V At {3.6)

where v is the velocity of the test body relative to the gas. Further we

obtain, according to (2. 22),

- - 4 2, 2kT -
< > z - <y>
bpAP7, = 3 m (TR SVI &
(3.7
4 : unit tensor
In those derivations, it is assumed that
va
<<
*T 1. ‘ (3.8)

14



This assumption may be justified by considering (3.1). Similarly, according

to (2.23), we have

|Components of <Ap A-.A; | oc m® ( ZkT) v At,

at
(3.9)

| Components of <Ap Ap Ap Ap> Joc ms (5'-‘-'13)a At

By considering that

o
/f:eO[. 73

aafo 1 - v
S— eve——— —— V2
5598 /o~ et * (i)

33

a—l-;rs-gs-. /f ~0 [ (

1

\'2 v
mier tiemye ) T ) )

we may ignore those higher order moments as given by (3.9). According to

these considerations, Eq. (2. 7) yields

of .
o __23 2 nv SV
= - s (- m f
=13 S; ( 3 M At ) o
L2 4 L BT <vyy .
tasmg (3™ S o §)1 (3. 10)

It is easily shown that the right-hand side of the equation vanishes if we put

M_ 3/2, M P

kT ) 2kT (3.11)

fo=91( 2kT M2’

p=Mv.



Case l-bl_.__ For the convenience of later comparison, we here
ta_.ke for the test body a rigid cube moving with velocity v which is perpendicular
to one of the faces of the cube. In this case, D is the length of a side. The
results obtained in Appendix C by taking ;= (v, 0, d) are

1/2

3 ,2kT
D> = e [ em— 2
<v> . Jﬁ( ) n D2 At, (3.12)
</\p > = a irn v<v>
x At 3 At'
(3.13)

< > =< > =
Bp Zpe = <AP %= 0

< > =< > =< >
Apx Apx At Apy Apy At Apz Apz At

- i m> ( __ZkT) <> (3. 14)
3 m at '’

Since Apx. Apy, and /&pz are events independent of each other*, it is natural
th-t
< > =< > < > =
APy APy Zpp = <8P, Ty SOPy % = O (3.15)
< ' > =
Apx Apz At 0

Taking advantage of the simplicity of treatments, we obtain

-32 a3 ,2kT
< > =z == —_— <v>
Apx Apx Apx At 3 m* ( m Jv<v At
(3.16)
32 2kT
< > =z = 4 2 <y>
Apx Apx Apx Apx At 3 m® ( m =<y At

*The particles which contribute to Apx are different from the particles which
contribute to lxpy .

16

e o v 4 e e <l



The other components of <AS A; A; >and <A5 A;—; A; A; > are shown to vanish. By
comparing (3.12), (3.13), and (3. 14) respectively with (3. 4), (3.6), and (3.7),
we may say that the above two cases are similar to each other. In other words,
Eq. (3.10) is valid in this case too.

Case l-bz. On each of the faces of the cube which are parallel to \7, we
assign <v >At/6 field particles (with no fluctuation) as colliding on the face inAt

On the face which is toward the direction of v, (%.t + .‘E’_ D2 n At) field
particles are assigned*, and on the opposite face, ( <:1t - %Dan At) particles

are assigned. The distribution in the configuration space is then no longer at

random. Assuming that those particles are distributed according to the Maxwell

function in the momentum space, we obtain, at the limit Tr=At =0,

<8Py, = - %m:’. Ve
8
< > = - <v>
AP, 8Py % = 3 MKT <V (3.17)
<Ap Apy>[\t = ee=-=0

Case l-b3. We now assume that the distribution of field particles in the
configuration space is at random. However, each particle is assumed to have the

same magnitudes of momentum components

*See Appendix C, These are the average numbers of particles colliding on the
two faces which are perpendicular to v in Case 1- b,,

17



Ip | =lp | = Ip,|

X
mfd"’c (3. 18)

2n

In this case we obtain for v= (v, 0, 0)

6nD? kT ,1/2
<V>At= le( m) M,

4
< > zZ e = <Vv>
Apx At 3 MV Y At (3.19)

< > =< > =
ApyAi: Apz At 0

<Apx Apx>= <Al;;Y Apy>= <Apz Apz>

2
= 2 <y > = — <v>
(zlpxl) v At/ 3 5o mkT e

Case l-b4 . Suppose that by some mechanism controlling the field
particles, the number of field particles colliding on each face of the cube is
assigned as in Case l-bz, and further each particle has the same momentum

components as given by (3.18). In this case, <\J>At and <Ap >At are respec-

tively the same as those given in Case 1-b However, A; shows no fluctuation,

3’

and <Ap AB)At completely vanishes.

18



2. Multiple Collisions (T # 0)

The conditions are similar to those considered in Cases 1, except that
the test body and the field particles are not extremely rigid and T the period of
a collision, is finite. In this case the choice of At is limited by (2. 11) and <\J>At

given by (2.13) may be much larger than unity:

< = > > ’
v L w bt 1 (2. 24)

In this case, Eq. (2.14) is still valid

< > = 5 \ .
bp>, zpr w At (2.14)

This is the same as what was obtained in Case 1. For <A;A; >At’ however ,

we must take (2.-26) instead of (2..22).

I IR (B, + === *+B,_ )@ +--- +3_) (2.26)

<A§A;>M =S\
n n

—

Case 2-a. First we consider a spherical body with diameter D for the

test body. As in Case 1-a, we have

1/2  2kT.1/2
<v> = —_— 2
\Y At 21 n ( — } T TReAt,
(3. 20)
<Af>'> .. 4 mv <v>
At 3 At
For calculating </\5 A;>At , <Ap-‘A; Ap—.>At' ..., it is convenient to use Markoff's

method of free flights as briefly explained in Appendix D. By this method, as

19



shown in Appendix E, the probability of AS being between P and P + dP is given by

1

= 1 7/2
W(p)dap = " +0 (<__
gn3/3(L<y> mem)/? Vot
3 At
(3.21)
) 2
xexp { - Tg d®pP
- <y >
3 Y At mkT
See Appendix E, Eq. (E.9). By means of W(I-s), we obtain
< > =< > =L >
Apx Aprt Apy Apy At Apz Apz At

(3. 22)

|
w.leo

<vy>
mkT <V At

as shown in Appendix E. So far as <V>M, <Af;>At and <Ap Ap >At are

concerned, there is no difference between two cases, one where <v >At <1
and the other <V.>At >>1, However, as obtained in Appendix E, in the latter
<A;AS A; Af; > is proportional to <\)>Z't . It is not simple to calculate <A5 A; A; >,
since this involves v, and hence A(a) is not uniform with respect to the direction
of . In the following cases,where a cube is taken for the test body, we calcu-
late those quantities more easily.

Case Z-bl. In order to make treatments easier, we consider the same

test body as in Case l-b; that is, a cube. By so doing, as shown in Appendix E,‘

we obtain, by assuming v = (v, 0, 0),
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8
< > =< > =< == <v>
Ap Apx At Apy Apy At Apz_ Apz> 2 mkT <v (3.23)

< > = b R e
Apx Apy At <Apy Apz At 0
and again

< > > )2
bp_Ap, AP, AP, 7 (SV7,) (3. 24)

So far as <A;>At and <A13‘ A6>At are concerned, there is no.difference between
the efgect of binary collision and tile effect of multiple collision. At first
glance, one might be puzzled. We note, however, that in these two preceding
cases, 2-a, 2-by,the distribution of field particles colliding with the test body

is at random twofold: (i) the random diQtribution in the configuration space (on
the surface of the test body); (ii) the random distribution in the momentum space.
It is possible to conceive that these disorders, or one of them, may cat.lse such
results. In order to investigate the situation, we calculate <A; Af;>in the

following three cases.

Case Z-bz. On each of the faces of the cube which are parallel to v,

<y >
At

6

field particles (with no fluctuation) are assigned as colliding in At; on the
<y>
At v

6 2 D? n At) field particles*,

face which is faced in the direction of ;, (

*These numbers are the same as in Case 2-b See Appendix E.

1
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<v>
are assigned, and on the opposite face, ( 6At - % D? n At) field partic'.s are

assigned. The distribution in the configuration space is then no longer

at random. Auuming that those particles are distributed according to the

Maxwell function in the momentum space, we obtain again

(3.25)

These are exactly the same as given by (3. 24).
Case Z-b3. We now assume that the distribution of field particles in
the configuration space is at random. However, each particle is assumed to

have the same magnitudes of momentum components

le, | = |py| = Ip,| =fﬂm | c | a /_m fdc

=(ka/Zﬂ)l/z (3. 2¢6)
In this case we obtair; for v = (v, 0,0)
cva, = 2B, 65 6. 27
<Ap>, = - 4 nv<v> (3.28)
At 3 At
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< > =« > =< >
Apx Apx At Apy Al."y At Apz Apz At

_ 2 (3. 29)
3 KT <V,

<Apx Apy >At Z e .- =0

Considering the relation between <A;>At and <A; A; Zt we note that the

temperature of the test body in equilibrium is no longer the same as that of

the gas. This conclusion is conceivable since we ignored the Maxwell distri-
bution of particles colliding with the test body.

Case 2-b g Finally we assume that the number of particles colliding

on each face of the cube is assignéd as in Case 2-b_, and further each particle

2
has the same momentum component as given by (3. 26). In this case <V >At
and <A;>At are respectively the same as those given in Case Z-b3. However,

A;has no fluctuation, and <A1-)° A;it completely vanishes.

These results, obtained so far through rather primitive (but precise)
treatments, reveal some aspects of multiple interaction. So far as <\)>At )
<A§>At and <AS A; >At are concerned, there is no difference in effect between
binary collision and multiple collision. The binary inferaction is based on the
hypothesis of molecular disorder. Our treatment of multiple interaction is also
carried out by granting the same assumption. The assumption is justified by

assuming that mutual interactions among field particles are negligible. As a

matter of physics, the binary collision assumption and the assumption of no

mutual interaction among field particles are compatible. It is noted, however,
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that the multiple collision assumption and the assumption of no mutual inter-
action among field particles are not necessarily compatible, as considered
in the following section,

Another important aspect is that <A§>At, (and also <A;A;A;>At), is
dirgctly related to the non-uniform distribution of field particles reflected
from the surface of the test body: In other words, <A6>At is said to be caused
by the wake produced behind the test body. On the other hand, the wake has

no effect on <A1;A;7> ¢ 80 far as mvz/kT < <1: <ApAp>

A At is caused simply by

fluctuations which appear in Af)', and are smoothed out in <Ai;>A ¢ See the

details of calculation in Appendix E:

SECTION 1V
AN ELECTRICALLY CHARGED TEST BODY IN ELECTRON GAS
In Section III, we obtained experimentally a rule that multiple inter-

actions are equivalent to superposed binary interactions, when mutual inter-

actions among field particles are ignored and so far as the friction and the

diffusion (in the momentum space) of the test body are concerned. In this
section, we assume that the rule is valid for considering interactions among

charged particles.

We consider for the test body a particle with electric charge Q and mass

M. The test body is submerged in an electron gas; a positive charge is
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assumed to be continuously and uniformly spread in the space so that the

positive charge neutralizes the charge of the whole clectrons. We also

assume
M >>electronic mass m (i)
Q < electronic charge e (ii)
' and
2 ‘s
mv /kT <<1 (iii)

where T is the temperature of the electron gas which is in thermal equilibrium,
Vv the speed of the test body relative to the electron gas.
As stated in the Introduction, the interaction among those particles is
due to (a) the forces exerted on the test body by field particles (electrons), (b)
the forces exerted on field particles by the test body, (c) forces among field particles

Approximation A

Let us first ignore (b) and (c) and see the consequence of applying the
rule set forth at the beginning of this section.

Effect 1. <Ap >At = 0. Consider the effect of an electron, with
velocity ¢ which is parallel to v, encountering the test body with impact vector
r. [ Here impact vector is defined as impact parameter together with its
direction. ] We may consider another electron with the same velocity with impact
vector -r. The effects cancel each other. Next we consider an electron, with

velocity ¢ which is perpendicular to v, passing by the test body with impact
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parameter r. We may consider another electron with the same velocity and with
impact parameter -T. The effects of these two electrons cancel each other.

See Fig.2. Considering

?
p———
—"—
__———'—";f’
==} -V
1\
T
I
-\ <
A =
L 4:’_-"
___—-”.’ c‘v

Fig. 2. the velocity of the test body
the velocity of two electrons

the impact vector.

#0151

The momentum given to the test particle by the two electrons
vanishes. Here the electrons are free from any of the other
particles.

*
the density of electrons dependent only on |c|, we may conclude

< ot =
Ap>,, = 0 (4.1)

Effect 2. <aAp Ap>At = . An electron with velocity c-v relative to the

test body and impact parameter r gives the test body momentum
+ -
- - I @ eQr dt 3/Z
Pi®)io Tr® + (c-vP 2]
1 2
rijc-v| r
*

A test body suffers a deceleration drag in average when it moves through force
fields distributed at random, because the total period of deceleration is longer than
the total period of acceleration. The average drag is of the order of 2 /] (Mv2),
where F is the average intensity of the force fields, % the correlation length of the

fields, M the mass of the test body, v the velocity of the body. It is assumed that
F¥< <Mv2, This sort of drag is considered small and is ignored.
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Hence,

. - = 4e”QP
pp-__e_gi (4. 2)

ii~  r3c2
. . 2,2 . . .
by ignoring v /c~ according to (iii). Remembering Cases 1-b and 2-b in the last
section® and considering interactions as if binary, we may calculate <A§A3>At,

by taking f for the distribution function of electrons.

<ASA§°>M = ‘[m‘ de?QF 2m rdrfcd®cat

r2 c®
(4. 3)
3
—sneaQ?Atﬂ —dcj’dr’
Here .
f .3 _ m 3/2 m 5
J]I cdc-n( Z—_ﬂkT Iﬂexp {- kT © )sinf8d 6 do
) m_ 3/2 2kT
_n(anT) 4m m
’ __4n m 1/2
T Lt (4.4)
T2
J. dr, = [log r] 2
r
ry

*In the approximation of ignoring mv3/kT, we do not need to consider v in the

calculation of </p Ap>/\
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The result diverges either for ry = 0 or for r; = .
Approximation B. Secondly, we ignore (c), mutual interaction among

electrons, and take into account (a) and (b). Here <A ; >At and <A ; A ; ¢ are

g
calculated by taking all the interactions as binary and the results are well-known:

lim <AB>At=0[logra ]= oo,
rs = 0
(4. 5)

lim <ApAp>,=0[logr; ]l=o0

At
In the two cases stated above, spatial fluctuations in the electron

distribution are permitted with no restriction: Even the probability of all the

field electrons to come together at one spot is taken into account. On the other

hand, the interaction of the Vlasov type is conceived by assuming that there is

* Fluctuations of the electric force field in an ionized gas were calculated by the
Markoff methof of random flights by J. Holtzmark [Ann.d. Physik 58, 577(1919);
Physik, Zeits. 20, 162(1919), 25, 73 (1924) ]. Later, Chandrasekhar and von
Neumann * 4 . used the same method for calculating fluctuating forces exerted on a
star by other stars. They considered not only the force but also its time derivative
due to an assumed distribution of star velocities. In the initial formulation, they
considered the correlation of the two quantities {(force and its time derivative) of
each field star. Because of mathematical difficulties, they abandoned the precise
correlation between them and made the average of one at a given value of the other.
Then they calculated the correlation period of a force by

(a given value of force)/(the average time derivative of force at the

relevant value of force.)
The result apparently converges. We notice, however, that the convergence of the
result is not proved by such an approximate treatment as done by Chandrasekhar
et al.
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no spatial fluctuation in the electron distribution. The real (feasible) condition
must be between those two extreme conditions. In the following, we consider the
condition, This is somehow similar to a condition of turbulence, in which dynamic
characteristics of a fluid set restrictions to fluctuations appearing in the flow of

the fluid. 6

Approximation C. Finally, we conclude that the divergences (4.5) are attributed

to the neglect of mutual interactions among electrons. The widely accepted
solution is to coﬂsider the polarization in the distribution of electrons due to the
potential field induced by each of the particles including the test body. As stated
in Part I, in general, this solution does not seem plausible. Then, what is the
effect of mutual interactions among field electrons by which the result converges?
We note that, by the Baltzmann type binary interaction, regardless of the type

of potential between two interactiné particles, a limitless fluctuation in the spatial
distribution of field particles is permitteﬂ to appear. In other words, each of the
field particles interacting with the test particle is permitted to appear anywhere,
regardless of the. distribution of the other field particles. Our assertion is that
such limitless fluctuations in the spatial distribution of field particles in inter-
action with the test particles are not permissible in an electron gas, since
potential energies among field electrons prevent those electrons being accumulated
at local spots. Such fluctuations may be permitted to appear only in the distribution

of neighboring electrons of the test particle.
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Fig. 3. 0: the test body, 1,2,3,---: trajectories of electrons.

If the velocity of the test body with a large mass is zero,
each electron which passes by near the test body is rejected
toward the outside, and anomalies occur in the distribution
of electrons. Such a anomalous distribution near the test
body is not Maxwellian.

Considering these, we propose the following scheme of treating electrons

in an electron gas:

L,

2.

The interaction of a test electron with its mutual nearest neighbor

is treated as binary interaction,

When observed by an observer resting on the test electron, the
distribution of the mutual nearest neighbors, which come to
interaction with the test electron one by one, is not uniform in
general: If the test electron has no velocity relative to the average
velocity of the other electrons, the density distribution of the nearest
neighbors is lower with a spherical symmetry surrounding the test
electron, I the test electron has a velocity relative to the average
velocity of the other electrons, the density distribution to the nearest
neighbors is lower behind the motion of the test electron., In other
words, there is a wake behind the motion of the test electron.
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3. Each of the electrons may assume a test electron. Thus each electron
: has its own wake,
4, Except for the wakes, all the electrons are seemingly uniformly distribute
with no fluctuation in a similar manner as considered by Vlasov,
5. An electron accompanied by its mutual nearest néighbor exerts a fluctuat-

ing force on other electrons because of the anomolous distribution of its

nearest neighbor,

The kinetic theoretical treatment of an electron gas according to this model

will be formulated rather schematically in the following section,

SECTION V

A SCHEME OF KINETIC THEORETICAL TREATMENT

%*
OF AN ELECTRON GAS

It is easily shown that the Liouville equation is reduced to

3F, (x, ;t) p. AF, (x, ;t)
3 -2
ot m a?;’i
1 - - 3
.- fo (o . 3 -
+S Vv y 2' J(-:Tij+ yxk) aﬁiFsh(xx xk.t)
j----k
-——- = 5.1
dxj dxk 0 ( )

* .
This schematic presentation lacks detailed correlation functions and is not
suitable for precise analyses. See Part IIl
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We define wij as the probability of two particles, i and j, being
mutual nearest neighbors: Wij is a function of (ai - Ej) and of the number
density of electrons,

By putting

. Fy (ij) =F3 (xixj;t).

F(ij) = wij F, (i), (5. 2)
Fi/j = (1-'Wij) Fj (ij)

We have
Fy(ij)=F +F,,. (5.3)

(1j) i/j

Since the interaction between i and j is considered weak in the domain where
Fi/j predominates, we may put Fi/j = (l-wij) (F,) F, (§) + Fé(ij) ]
where
F,(i) =F, (xi;t)
By ignoring F3 (ij), we have

Fi/j = (l-Wij)F1(i) Fi1() . (5.4)
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Hence we write for (5. 3)

Falif) = Fafi) Fa()) + Wy, [Falij) -Fai) Fy()) (5.5)

Withlrelpect to F:,(xixjxk;t), we similarly define

F3 (ijk) =F5 (xx.x,t),

j *Kk

= W.. F3 (ijk),

Fanr = Vs

F(ik )/ = ka F3 (ijk), (5. 6)

Fijie ™ Wy -Wog - W IFs (k)

In the same approximation as of (5. 4), we write

W Fa (ij) F, (k),

(lj /%
F(ik)/j = W, Falik) Fy (),

Flxyi = Wik Falk) Fa6) 5.7)
Fuie = s Wi = Wiy = W) Fy() Fak).

or

F3 (ijk) = Fy(i) Fy(j) Fy(k)

+ wij [ Fa(ij) - Fy(i) F1() JF, (k)

W, [Fa(ik) -Fy(i) Fa(k) 1F, () (5. 8)
t W [F2 (k) - Fy () Falk) JF, ()
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=F,(i) Fy(j) Fy(k)
+F 5 (ij) Fy(k) + Fj (ik) Fy(j)

, (5. 9)
+F3 (jk) F,(i)

If we take 3 for s in Eq. (5.1) and substitute (5. 9) in the equation, we

obtain
3 F,(i) P, 3F.i(i)
3¢ +;-—aq.i t H+ B+ ,+8,=0 (5.10)
where
1 = d
§, = 3 . Fi(G)dx. {. o= i .11
1: Y E[J §i; 1) xj} AR (5.11)
J
(the effect of Vlasov type
force)
1 I \ a 7 ‘ 3
== = z g 4+ ! s _ .
ik (5. 11),
(the effect of fluctuations in the
field particle distributions)
1 ¢ = 9 .
2 = = g . . = F, (ij) dx,
v %‘j ij  OF, j (5. 11),
(the effect of Boltzmann type
interaction among mutual
nearest neighbors)
) [ T d P
b= 3 ‘721 L4 T Falk)dx . 33 Fa (ij) dx,
i K °Py ) (5.11),

(the effect of Vlasov type force
on the correlation between
mutual nearest neighbors).
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By taking 4,5, --- for 8 in (5.1) we may have more complex effects, The

detail will be investigated in Part III of this report.
SECTION VI
CONCLUDING REMARKS

1, According to the investigations carried out in Sections II and III,

it is most likely that the effect of multiple interactions of a test body with field

particles is the same as the effect of interactions as assumed to be binary,

80 far as the friction and diffusion of the test body in momentum space is

concerned, and so far as the mutual interactions among field particles are
ignored. The difference between two modes of interaction, multiple and
binary, appears when the mutual interactions ameong field particles are taken
into account, We induce this conclusion from the results of our various mental
experiments., We might not be allowed to claim the conclusion to be a general
law. At least we may be allowed to propose the conclusion as a hypothesis.

2. In view of the above conclusion, we consider an electron gas, The
mutual interactions among field electrons prevent them from being in free
flight, Effective fluctuations in the distri:bution of field electrons are: i)
the fluctuations in the distribution of mutual nearest neighbors of the test
electron caused by the test electron; ii) the fluctuation of each field electron
caused by its mutual nearest neighbors.

3. A scheme of kinetic theoretical treatment of an electron gas based
on the Lionville equation is propcsed. There, the assertion (2) stated above
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is formulated.

SECTION vl
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APPENDIX A

THE DERIVATION OF THE FOKKER-PLANCK EQUATION
FROM THE SMOLUCHOWSKI EQUATION

'‘By assuming | Afﬂ < |;l and expanding functions in (2. 1) in Taylor's
series, we have
of d2f

= —— — - m—— + - o
f, Pttt = £ (p,t) + 5= At+ 21 Tage (B3 5 |

- oA$f L
fo(p—At. t)=f (p,t)-Ap. 3 +5~ :

“31 AP AP Spagep -

¥ (@t |p, t+at)d%p’

- - - - 3 1 - - 32
= (o, t; AP, At)- Ap . 3{,%*_27 APAPD: b

as given by (2.4). On substituting these in Eq. (2.1), we obtain

¥, 4, a2,
f (p,t)+ 2 — — 24 oe--
P at bt + 2! 3t® (81)

2! d3p dp
l had - aafo - -
- -3—T Ap AP Ap E a-i'—ap-;'-a—i)‘+ ---) QD(p, t;Ap, At)



3f LR

o l - = o - 3
-(Io-Ap. 35 +2! Ap Ap: W---')Ap'ﬁ
df 7§ 5 AD s
- _o 1l = = o ...) QLAE.: _2_2__.
+ (t’o -Ap . 35 + Z!Ap Ap: 35 3P 2 3p dp
---- Jdap (A-1)

According to (2.5) and considering that Af)‘ is independent of p, we have

mrA{o’. %;:;— d%p = a%"' m AP ©d%p

d -
= <
ap * <P, (A-2)
[ 67 05: 22 avnp- & <opop>
dp 3p At
Hence (A-1) yields
Bfo 1 62I°
3t Attzy Fpe (AT eoo--
Af d3f
= - <Ap + = <Ap Ap 2f -1-<ApAf5Ap> +---
At © 3p T 2! CPOP ¢ 3pap T al At: 3P o1 3F
o) o
[e] -
-f = . <Ap> — L 1 <A >
f 55 P, 5 3 P AP 2
2
o2 f 3

of
1 32 - - o a2
t= P =i < > {— . gl e
2! 0APAP bp Ap At “\3pF | Jpap <Ap Ap Ap >/\t+ ---
1
c= [ )+ ----



= - . < - .
=oap U R s (SR AR L)

1 33 - - -
. ——p—— (<
3! 3p dpdp . (<dpbplp >At fo)

2 L (<OPAPAP AP f )---e--

+ 3 _23°
41 dpapapop - At o

If it is shown that

<AD = <AD
Ap >AtMt Ap>

<Ap Ap > At = <Ap AP >

are independent of At and that

3%f a2 /(2L
ata(At) /(at At) < <1,

3°%f f
S AP/ (S < <1

----------

under certain conditions imposed by physical conditions of our interest,

Eq. (A-3) is the Fokker-Planck equation.
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APPENDIX B
THE FOKKER-PLANCK EQUATION

DERIVED FROM THE BOLTZMANN EQUATION

The Boltzmann equation is based on the assumption of binary collision.
The collisions are Markoff processes. Hence, if most collisions are weak, both
regarding the test body and the field particles, the Boltzmann equation must be
reduced directly to the Fokker-Planck equation in the form as given in Appendix A.
Usually, * the derivation is carried out by means of equations of moments based
on the Boltzmann equation. Here is given a direct derivation: The Boltzmann

equation by means of the conventional notations is written as follows:

df
== ltae) e 69 - 661 @]

x B db d € d%,

Here {, is the distribution function of the field particles, b the impact para-
meter of collision between the test body and field particles, ¢ the longitudinal
angle of the plane on which the trajectory of a colliding molecule is present,
and B a function of b, the xlelative velocity and the force between the test body
and the colliding molecule. There are certain relations among ;1', -f)l, S, and

f;: Suppose that the collision between the test body with p and a field molecule

with 5, under the condition of impact parameter b causes the test body with p’

*W.P. Allis: Motion of Ions and Electrons, in Handbuch der Physik, edited by
S. Flugge (Springer, Berlin, 1956), Vol. 21, P. 430
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and the field molecule with f:.;'. Then the collision between the test body with p’

and the field molecule with f;l'under the same condition of impact parameter results o
the test body with ; and the field molecule with 51. This relation is shown by
considering that the collision process, according to Newton's equations, is

reversible. See Fig 4. -

b = e
v Z
= { e ¥
' (b) |

(a)

Fig. 4. In (a), a pa:}icle with momentum 5 and another particle with
momentum P: collide and their momenta after the collision
are p’ and P1 . The relation is reversible as shown in(b),

By putting
R A (B-2)

A; is a function of 61,;, b, 8, and hence we may take for the independent
variables

AP, Pr b, © (B-3)
instead of

51: S» b, &
or we may write

P = P1 (8P, P, b, 9). | (B-4)
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By considering the reversible relations between (51, p) and (5,',5'), we may

say the following: If we define f*, by

%1 (5: 8p) = f1 ().
then, considering (B-2), (B-4), we have
f1 (py) = fo* (ps - AP) = f,*(p-Ap; - AP)

By expansion, we obtain

- = = A% (Bi- AF)
f1(p1) = f1*(pi-4p) - Ap.

3p
1 o= 32y 1
—_— P .
tZT AP AP SSRE T 3 ( )

of

- -~ - — o l - - o
fo(p-Ap) - fO(P) - Ap . I + Ap Ap . aﬁ ai + -

3p 2!

Further we define B* by
3 (P1x,P1y, Pz
B* = B ""i*‘s —
v 3(Ap_, AP s AP,

Equation (B-1) yields

df{
o

at - m‘[ff"(P - 4p; 8p) f_ (p - 4p)

-£# (p; 8p) {_ (p) ] B* bdbde d3 4p

Substituting (B-7), (B-8), and (B-9) in (B-10), we obtain

2= =[] taxape - nxnpe )
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= of
-+ af* 'A - - (<]
- L1 op. —-1—-(—1)-35. + i (-Ap) 8p. _ap]
- df
2 - - -
S2¥(-8p) 4 5 AP AP _.pg

dfX(-0p)
38 op Y Y

1 “ -
+2! [foApAp. 3

d2%f

d - - l
+f1*('AP)ApAp:‘a-p—§p]- 3 C ]

+--- | B* bdbded® Ap
(B-11)

Considering that
I od e [ B
- J[]'J'*: £,% (AP)AAp

we have

m[fl*(-ﬁf;) f_ - f*(+ 4p) {1 B* bdbdedsp = 0
Further we define

m AP f,* (-AP) B* bdbded®Ap = <AD>,

(B-12)

Jﬂ AP AP £2(-AP) B* bdbded ®Ap = <Ap AP>

Equation (B-11) now yields

: 2 <pp>f + = 2 <apsp e - Lol J4e---
- ) dp 3P o 3 (B-13)

2! 1
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APPENDIX C
A SOLID AND ELASTIC TEST BODY IN A RAREFIED GAS

CONSTITUTED OF SOLID AND ELASTIC MOLECULES

I. A Spherical Test Body (T; is almost zero)

We calculate <Af>'>. <Ap A;>, ... by assuming that the test body and
the molecules constituting the gas are extremely hard. Due to the assumption,
each collision period is extremely short and we may take At as short as we like.
Consequently the collisions are binary.

First the test body is assumed to be a sphere of radius D/2, mass M
and velc;city relative to the gas v, while the molecules are spheres of radius
0/2 and mass m. Further the gas is assumed to be in thermal equilibrium with
temperature T. Here

M>>m (C-1)
3

v<s< (%’ (C-2)

are assumed. By taking a spherical coordinate system with origin O fixed at
the center of the test body, the coordinates of the center of a molecule colliding

on the surface of the test body are (R, 6, ¢), where

R= (D +0)/2
9 the colatitude, and ¥ the longitude. The number of molecules which have

velocities between ¢ and ¢ + dc is given by

m 3/2

) exo [ - d3c
27kT XP

fd3c = n ( (c 2+ cy"'+ c: ) ] (C-3)

2k T ' x

+4



where ¢ is measured by an observer at rest with respect to the laboratory
(not to the test body which is moving with velocity ;). The number of such

molecules which collide with the test body on an elementary surface area

dS = R2sin 8d 6dy (C-4)
during the period between t and t + At is given by
b n= fd® | V| cos 6dS At (C-5)
where
V=c-v (C-6)
and the z-axis (polar axis) is chosen so that the axis is parallel to ‘7 in

the opposite direction.

<i
L)

Fig. 5. ds = R?® sing dedo
By carrying out the integration with respect to 6, from 0 to /2, and 9from

0 to 2T, we obtain’
8 n=TR? | vl £a3c at (C-7)
By choosing a rectangular coordinate system (£, 1, {) so that &-axis is in the -

-
direction of v, we have
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g g’
c =C_,
noon
€= C¢
(C-8)

f=n (= 3/2 2x - [(c +v)2+C 2+ C2]

21k T eXp ZkT n ¢

d3c = d°C

V?P=C2+C®+CP?
Cet G ¢

Substituting these in (C-7), we may carry out the integration with respect to c.

An = mR? Atm cid®C (C-9)

By considering (C-2), we have

exp [ - —(C +v)2 ]

2kT "€

= exp [ - Czjx[l (2C_. v + v?3)

ZkT ZkT 4

1 . 1 )
+2—!- (—Zﬁ) (2C5v+v2)2- 31 ( )+--1] (C-10)

=exp (- 313 €, 10 - 2kT2C€V)

Hence

An = TR2 At g4nn( ZmTkT 3/3J$DC3 exp (- %rc;) dcC
°

+0o

T

(C2+C3+C°)]d36

ZkT

--znl/‘)‘n R { QI)”‘7‘At (C-11)

m
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(i) <A5> " Each of those molecules gives the test body momentum

A
6; in the direction of ﬁ
6p = - 2m|V| cos 8 R/R
or
(E)p)x = 6p 8in 6 sin Q,
(6p) v = 0p 8in B cos o,

(6p) 2 bp cos 6.

(C-12)

(C-13)

By giving the direction of v in the present coordinate system by 6 = eo, ®=0,

we have

— -

v+ VE.o v - v.c
2iv] \V |v||V|

cos O =
o

and the component of 5p in the direction of v is

(69)l

w ((:o;:u)y sin 60 + (6p)z cos 90

The momentum transferred to the test body from the field molecules with

velocities between c and ¢ + dc in At has its component in the v direction

21

/2
= i - 2 3 : )
Ac p;j’y Q)io GJQ 2m |V| (cos? @ cos 90 + 8in 6 cos 0 cos P sin 60 )

. xf |V| R® cos 8 sin 6 dado d3¢ At

=-nmR2V’-coseofd3cAt

"

2--0 —Q--.
- nmR2 (v ‘;V? le-v] fd3c At

47

(C-14)

- 2m |V] (cos® 6 cos 90 + sin 8 cos 6 cos wsin @, ) (C-15)

(C-16)



For carrying out the integration with respect to ¢, we remember (C-8) and

obtain

A . R2 ree 1 .’I‘.
Ry, =-m AtJJJ-CFC( C 5T Cgv)

_m 3/2 2 2 2 3
xn (ST exp ‘ZkT(C tCytCl) rdc

3/2 m
- 2 Jm
mTmR Atn(2 kT) T

> e L el d3c
xﬂ C§Cvexp( KT )

By putting
C§= C sin 6, sin ¥,

d*C = C°dC sin 8, d6, do,

We have

mc:c exp (- 2=C7) d°C

"

[H sin® A, sin? ¢, d9; dy, ]
s JER2
x[JC exp ( KT C?) dC)

41 2kT,.
3 ( m)

]

Hence

8 1/2 . 2kT # .
T o — o —-—) 4 -
bR, 3 " mRn ( =—=)"vit+0 [v2] (C-17)
The component perpendicular to v does obviously vanish because of the axial
symmetry of the conditions with respect to the direction of v. According to
to the notation given in Section II, we may write
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. ;,;‘@

<pp> . = - § m v An (C-18)
(ii) <A;A;>At. We first calculate
<(ApyP>= <Ap Ap >+ < >+ < > -
(apP P, AP, >t <Ap Ap >+<Ap Ap, (C-19)

According to (C-5) we have for this part of <A]_>' A§>. due to the molecules of

velocities between ¢ and ¢ + dc?

<@pF > = atfd% J (6p)2 |[V] cos 8d §
8

where -6pis given by (C-12). By putting

dS=R? gin 6 dP dy
We obtain
<(@pr> =2 Tm2R? V3 £d3C At

or by considering (C-10)

R

2kT

)3/2At
m

<@p)y3, =81 "R nm?2( +0 [v3]. (C-20)

Next, we calculate <Ap,yv ° >with respect to the component Ap,,y in the v -

direction. By considering (C-15) and (C-10), it is easily shown that
1
Wpuv)? >= -3-<(/\p)= >+ 0 [v?] (c-21)

Therefore, we may conclude that <Aprpx>At’<ApyAp and <ApzApz>At are inde-

>
y At
pendent of ;, and
<Ap_Ap_ >, = <Ap Ap > . = <Ap Ap > =im2/\n(—zl<l)
x “x At y "y At z "z At 3 m

49



The other components are of the order of v°, and hence are ignored.

By means of similar ways, we may obtain <Ap Afa. AS <A5A;A;A;

> >,.
at’ At’
An essential and common feature of those results is that they are all proportional to
An or At.

II. A Cubic Test Body

In order to see in detail and more easily the mechanism causing those
quantities, An, <A5>, < A}_).Af;>, etc., we suppose the test body to be a cube with
edge length (side length) D. We take the rectangular coordinate axes, x,y, z, as
perpendicular respectively to three paris of faces. By assuming that the direction
of v is-perpendicular to one pair ot; faces which is, for instance, perpendicular
to the x-axis

v =(v,0,0), (C-23)
it is easy to ca1c1-11ate those quantities of‘ our present interest. The face which
faces to the x-direction is denoted by S+x and the face in the -x-direction by
S-x. All the quantities related to S+x are denoted by symbols with subscript

+ x, and so on. The number of molecules which collide on the side S, in At is

+x
given by
+ oo CX Vv
A n+x = jr J‘ (v-cx)fd“c A tD?
cys— Cy =-00
c (-
z
[oe]
- m 3/2 m_ 2 2 H 8 2
) J[I LS Uama) e L(C, -vP+ CR+ Co JdCAtD
x



m 1/2 {® m
=AtD"n(2ﬂkT) J Cx(l+ -Z—k—TZva)
C =0
x
S L2 2
x exp ( KT Cx ) dCx
%
_ 2 m 1/2 kT () m 2kT 3/2
=0t D%n ( o) m T2 "kt (T )
1 2kT .1/2 v
_ 2 1, ekl N
-AtDn‘zﬁ( -~ ) + Zt

(C-24)
where, as before, mvz/kT < <] is assumed. The number of molecules which

collide on the opposite side, S-x, is given by

1 2kT 1/2 _;:_ 2 (C-25)

= 2 L
An-x At D n; Zﬁ ( oy )
We see that the number of particles colliding on S+x is larger than those on

S-x. On the sides perpendicular to the y- and z-axes are respectively
An =An =An, =An (C-26)

1, 2kT.1/2
= At D?n Zﬁ( m)

The total number of those molecules is

bn = ;’—ﬁ Dfn(—?'l‘ml)”zm (C-27)

(i) <AS >At . The total momentum transferred on S + x is

c ¢ =too c_=v
PY, z X .
< > = - o 2
S| [ 2miv- piecnatD

c,c =-00 C =-o00
z x
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m )1/2

= At D2 {(-2m) n {( STET x

00
» m .m .,
x j G2 (1430 2C vixexp(-5py CAC,
C=0

2mn D? At Jﬂ (_z_l_g)+v(gl<;r)1/2
m

=- g 4 m
(C-28)
Similarly we have
2mnD?At il 2kT
<pp. > _=+ me T ( ).\,(ZkT)i
X -X ¥ 4 m m (C-29)
Hence
< =< =< >
Apx >At Apx :x Apx -X
- 4mnD? At (ZkT)l/Z v (C-30)
J'H' m
- < =< =z - < =<
Apy >+y. Apy >-y AI:’z >+z Apz >-z
- mnD?at (K2) (C-31)
and
< =< = -
épy >At Apz>At 0 (C-32)
Summarizing these, we may write
<ApP> = - — mv -33
Ap %t 3 ™V An {C-33)
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We see the cause of <Ap> At in the unsymmetry appearing in An and An_x
in < <
and/or in AP, > and bp_ >
(i) <A; AS >. Since the collisions are binary, we may write
<
x? Apx Apx %%

< = <
AI:.x Al:'x >At Apx Apx >+
Here
x 7
< = 2 - 3 3 2
Apx Apx >+x J:[r 4m°® (v cx) fd°c At D
c =
x
1/2 o . m
= ] 2 2 —_—
AtD?4m®n (ZkT x B Cx (1+ Zszcxv)
C =0
x
x exp (- ZkTCa)dC

1/2 |1 . ,2kT.2 m _ 3% 2kT, 3/2
A B 3D

= 2
4m?2 At D? n ( ZTTkT) x |3

1 2kT, 3/2 3 m
- 2 > —_ 2 = —
4m? At D”n [ZW ( ) + 2 v (ZkT ]

Similarly
1 2kT,3/2 3 m
< = 4m2 a - —
Aprpx>_x 4m® At D®n [zﬁ ( ) 4v(ZkT)}
Hence
<up, Ap, >= 4m?at D*n (L5 ZkT 2kT \3/2
k
2w (E—T) An (C-34)

3
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Similarly we have

4 2kT

< >=< ¥ - = (S22 .
Apx Apy Apx ﬁpz > 3 ™ ( - ) An (C-35)

Since Apx and Apy are due to two groups of particles which are independent of

each other, we have

< = < < >=0
/\px Apy > Apx > Apy

(C-36)
< =< >< >=
Ap Op > Ap Ap 0

...........

(iii) <A}—'; A; A;—; >. By taking advantage of easy treatments regarding

this simple test body, we may have

< > =< < >
AI:’x ,\px Apx At Apx Apx Apx >+x Al:'x Apx Apx -X

= . c . C 3 ]
<Ap_Ap_ AP >, ﬂ’ [2m(v-¢ ) 1(v-© ) fd At D?

1/2

= - At D”8m®n (=)

2 ﬂkT

o o)
r 4 it . Jan 2 .l
[A =0C (1+ KT 2 Cx v) exp ( KT Cx ) dC J

X

/2

28m 3 2kT.5/2 m
- At D?8m®n {85( =) (=2

m

] ZrkT
- atpPemen |2 .Y SOV va (kT3 L
- Iy
Similarly

3!11 2kT . 1/2 2kT . 3/2 1
< = 2 3 — - — b
Apx Apx Apx > + At D*8m®n 8 ( ) 2v| x| )

7

54



Hence

<Ap_4p, p %, = - 32 At D? m'n (%1)3/2 v Jl?—
= 32 (2T o an (C-37)
3 m
Similar calculations show that
<Apy /\py /\py >At = <Apz ApZ Apz >/\t =0 (C-38)

All the other components where /\pi and /\pj (i # j) appear as mixed, vanish.
The reason is that each single collision is independent and each single
collision does not contribute both Api and /\pj unles i = j.

(iv) </\B L.]-:; A-f) AS>. The method of calculzstion is similar to the

preceding cases. It is simply noted that

< [ ) > < >
Apx Lp, A P, Apx At Apy Apy Apy Apy At

<Apz Apz Apz Apz >t (C-39)
oc At
The other components vanish,
Through those investigations, it is obvious that a molecule with
c =" |cx|, relative to the laboratory has velocity component Cx=- |cx| -v
relative to the test body, and is reflected from S+x with velocity ‘cxl +v

relative to S+x or ch|+2v relative to the laboratory. On the other hand, a

molecule ¢ =+ |cxl has velocity Cx = lcxl-v relative to the test body and is
x
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reflected from S-x with velocity - |cx|+v relative to S-x, or - lcx|+2v
relative to the laboratory. We see that the test body accelerates molecules
towards the direction of v and is accompanied by a wake.

We may also note that the number of molecules colliding on S+x in At is
A n,.= JTr fx (cx-v) dcx dcy dcz

where the domains of integration are

c -v: -0 to0,

x
c

y

z: - o0 to + .

c

z

On the other hend

An =H fx (¢ -v)dc dc dc ,
-x x x y z

c -v:0to + o,
x

c
Yy
f:-ooto+oo
c

Z

Here all the velocity components must be given related to the laboratory.
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APPENDIX D

MARKOFF'S METHOD OF RANDOM F LIGHTS

Markoff's method of random flights is summarized for the convenience
of application in this article.

An elementary momentum given to a test body is ;r with the probability
of appearance in unit time W Here we suppose that Sr and w_are functions of
a set of independent variables q3, qz,..., q, - Also we assume that there are v
of such elementary momenta.

Let us denote the probability of the; total momentum being between

P and B + dP by
W(P) d°P

Then

w (q) a°q (D-1)

Here A is a function which satisfies the following conditions

A=1 whenever
V -
< < _— -
dP ler P+ dP, (D-2)
r =

P -

N -

A =0 otherwise.
It is known that A is giveu by Dirichlet's integral

1 ) 1
1 rr gin (l dPx py) sin {7 dpy py) sin ('2' d P, Dz)
=l &

x py pz

v
xexp Lip. ( Sr - f’)Jdpxdpydpz (D-3)
=1

r

g

—

= I“ (Zd;);, exp Lip. (L Sr - P) Ld%

P 7
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Hence

w(l":',) = (3%3 I---I exp (-ip . B) A (p) d%

Alp) = rﬁlf [ exp (ip. Sr) ] w dsq (D-4)

If p and w_, as functions of the q's, do not depend on subscript r,
r r

we may have
- - = Y
Alp) = “[exp (i . p) lwd®q f (D-5)
For application in case of V >>1, we may write

\Y
A(p) = 31 1 [v-vj [exp(ia. 5)]w dsq‘
v

= exp

v-vJ.Lexp (ip. P Iw dsq§ (D-6)

APPENDIX E
MULTIPLE COLLISIONS OF AN ELASTIC TEST BODY
IN A RAREFIED GAS

As shown in Section Il of Part II, if . vAt is much larger than unity,
we have to calculate VAt
< = \ 5
uP)At sr I:’r
r=1
< - -o> B ‘---_ , . $ooeot — iR
Ap Ap At z 2. er ----r, (prl‘ I3.1'\,) (prl * * pr\)
(1L 2. 26)

Since </,\i; >At is linear with respect to er , there is no difference in <AE >At
between the case of binary interaction (\)At <1) and the case of multiple interaction

(\)At >>1).
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For calculating <A]->. A; it, in the approximation of neglecting the
V3
terms of 0 [I-nﬁ—], we may assume that the velocity of the test body relative to
the gas is zero, as shown in Appendix C.

Case II-a. The test body is a spherical body submerged in a gas in

thermal equilibrium.

On an elementary surface in Fig. 5,
dS = sin8d 8dy R’,

- D
R=72

%
+ 5,
2

we consider a local rectangular coordinate system (5,m,{) where the {-axis is
inwardly perpendicular to d5 and the 5-and n-axes are parallel to the surface.

The distribution of the-field molecules is given by

f=n(;= exp [ -G (ef+ c2+ cf)] (E-1)

2kT " °F

The number of field particles which collide on dS in At is given by
dw:fcgda.cdSAt,

where

d S = sin Ad 6d ©R%,

2;0to 2, (E-2)

£:0tomm,
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One may obtain <v> directly from (E-2)

At
<v> = Pd
A > 9w
_ , (kT
= 4TR? n (55 At (E-3)

A particle gives the test body momentum Er

P, = 2 cng/R (E-4)
The total momentum is
Q')>At
P ZZ P, (E-5)
=]

According to Markoff's method given in Appendix D, the probability of P

being between Pand P +dP is

+00
W(B) &°P = glﬂ—a [l exp (3. Braacoap (E-6)
S
' Ed - <
A= [exp (5. ) 5T 17V (E-7)
At

Since A(E;) is expected to be independent of the direction of P (spherical

symmetry) we first calculate A(D by taking pin the direction of the z-axis.
<v>

fd®% c, R? sin 6d Ad pAt At
A(D) = [ﬂ‘f exp (ip .2m ce cos 8) L<V>M ]
w . ;
4 TTR’njm/Z nkT)I/ZAt sm(lmcip) m <y
= I exp( - >—. ¢, ?)dc ] At
<v> 2mp 2kT ¢ <
At °

By expanding sin(chC p) in Taylor series, we have

OE)sin(chco)

$ .m0
(J) ~—Zmp - *Pl- 3T c¢) de¢
- __kT 4 2 _16 ~ n4
*"m L1~3kap+ 15(ka)p
- . (mkT)® p" +---
3x5x7 P 4
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-

Considering that <v >At >>1, we obtain for A(p)
1

- 4
= < - - .-
A{p)=exp [ \)>At ( 3 mkT p2 +

o

(mkT)?p® - ---) ]

—
wn

Remembering that A(B) is independent of the direction of 3, we write for A(a

A(p) =exp [-<v> 4 mkT ®]x

At 3
x11+ 2 cus (mkTP o+ --- (E-8)
15 <Vt

By remembering

o
1[ exp (- a®x?) . sin gx . x dx

= 4az P (-7

m | \ ) . ]
lexP (- a®x?). singx . x5dx = {1(60a%s- 20F6%+85)
- 6 42

2
x exv(--i—,-)
we finally obtain

- 1 .
W = 5 m exp (-ip P cos 8) Alp) £ dpsin gd pd =
0

1 sin P
iw | °? Alp) do

nP
1 S S
;snm Vs, 3menr/e v 0 LS 1

3p2

16 <v >’\tka )

x exp ( -

1
We may ignore the higher order terms of (=). It is shown that
AV

i W(P) &P = 1 (E-10)
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We calculate first <Ap /\S g
< >+ < +<
) ) APy APY > /‘Pz APz >

= m P2 W(P) ¢°P (E-11)

= <
8 mkT \)>/\t

Since W(P)is independent of the direction of B, itisa simple matter to show

that
< A = <A >= €A
Ap P > Ap_ AP Z\Pz APz>

8
= 3 <V>"t mkT (E-12)

<1\_f) A; AE >: It is conceivable that </\5 A; AI—; >is proportional to -v.
It is not a .simple matter to calculate <[5 _Af; /\; > according to the Markoff's

method, since A (p) depends on the direction of 3. We write

dw =f(c, +vcosg)dic ds At.

¢
instead of (E. 2),and

§i=2(CC+vcose)mﬁ/R

instead of (E.+4), by taking V in the direction of the z-axis.

- ~

. p, = | cos €

e. by =olp,lcos

where “is a functionof ¢, ~and 8 , - , and the manipulation must be complicated.
o g

It is a simple matter, however, to calculate « Py Q.px /\px -_‘.px >, by ignoring the

terms of 0 L v®] by means of W(f‘) given by (E. ()
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<MPy BBy "Py AP, >= <IP AP LP AP >

<Ap2 Apz Apz Apz >

m'(P cos §)* W(P) d°P

r P
- zn_\ cos‘edelp‘s W(P) dP
[¢]
It is easily shown that
7/2
© < \:>At .
iPGW(P) dPoc ———___ = <v>u (E-13)
3/2
\)>At

Cubic Test Body. If the test body is cubic, and one of the faces is

perpendicular to the direction of v, the calculation is very simple. Here An and

</\s > do not change from those obtained in the case of binary interactions

, 3 . . 2KT 1/2
An = N 2’ D™n (——m ) ,
<pApS>* - % mv An (E-14)

Case II-b,. The particles, the number of which is given by

V= JT fd” ¢ cg Tx 6D2,

are distributed at random on the 6 faces. Because of the steady motion of the

test body perpendicular to one side, such as shown in the figure,

——l

Fig. 6
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the number of molecules which collide on S+x is

c =v

+00 X

2 -c + 3¢ =

U. I D?f x ( <, v) d°c An+x
c

V§=-mc ‘o
c x

z v>0

and the number of those which collide on the opposite side is

400 Cx=+°°

JJ I DPfx(c -v)d®c=4aAn .
x -x

< xzv

Y e

c

z

_+oo + 00 o
- -3 3
An+x—J [ l D x (-c_+v) dc
=-m ¢ =-m =-
y x x
e (o E 9 Mmoo
= D*n (e _[ (et Viexp (- 7 €7 acy
cC = -Q
X
1 1
5 2kT Jn. 2kt . 3 (
= D7n (5r) 3 om TV T2 ) zM
k T.?

|

o)

=]
——
™~ —
=

S~

~N

Similarly,
L
AN = An An n_ = D" n (Lr')2 't
- +y-/\ -y tz A -z (2n)2 m *
and 1
1 kT .5
- 2 ., —_— A
An=6D%n (2m) 2 ( m ) t

(E-15)



The momentum due to an in the negative direction of the x-axis is

[
X=v

Ap+x=m' ) mn?«f (-c +v)2m(c - v)d°C

X

i

[o]
a (. m B e .m_
nD* (3 7kT) ZmI (-el+2c viexp (-57r cf)de,

‘C._ = -
X

"

npe ( 2 )tx?_m; i J: 2kT3/2 _,  2kT

( 2k,
2kT m 2m

nD? ( ) - v

rn— B 4 m

]

2m 47, 2kT 2kT 3 t
(—;;')

Similarly
+00
= 2: - 3
bp_ [[)[ _on(cx v)? 2m d®c
i
. 2m {r , 2kT 2kT, }
=D = ¢ T (T v Ty
Hence
- v _  nD?4m  2kT %=
bpo= (Bpy top ) T F s (= 1V
= - 3 m‘m;
3 - (E-16)

By taking the Maxwell distribution for f we have

3. pen( L2 4 (E-17)
m

v = J—T_l_'D2 (
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As before, we calculate A(p) obtaining
2me 2mec

A(3)= expl_ipx -—,'_--g—]+expL-ipx '—FL]

2mc 2mec

+exp[+ipy—,r—£-] +exp[-ipy -—T—-g-]

2mc 2m¢
+exp|'.+ipz ] +expl-ip _T_(sz
fd% c_ D31 ]"
x ——&
Y
r 2 2 2 3 3 v
1 2m £’x+oy+pz fd®c c, 6 D31
= - 2 (52) ¢ 2
2 T ¢ 3 v
L
2 2 3 2 AY
_ rl l (Zm )3 p Cg deCQ6D T
- "2 T 3 v
- 4 P2
= exp t- 3 vka(T ) ‘ (E18)
o8
1 ree ) x 4
W(F):—s—n—a “J exp(-lFx px) exp [- v T2 3 ka]

X exp (-il"y py) exp [- Y 2

p 2
. z
X exp (-1szz) exp [- v p= 3

xdp dp dp
X 'y z

() : , F?
2T [2 2m .»ﬂ"]3/2 TP Ta2my kT

s TV 4 3 VT &
e . 1 +ao Fx"
JJJ F 2 W(F)d°F = —S S T b | Fulexp |- , dF
IJ x ZFLg( r)(T;[;)] ‘_[mx 43\){27)?1:1; x



Hence .

8 8
<A1:>x Apx>- 3 Y mkT At/T = 3 mkT An (E-20)

Here again we see that

<.’3px Apx Apx Apx >oc V2 (E-21)

Case II-bz. On each side, the number of particles is assigned as

% due to some physical condition. In this case, we have to calculate <A; A;>on

each side. For example, by taking the side which is perpendicular to the x-axis

on the positive side, we have only one finite component, <Apx A;')x >+ . For
A(p) we have
) VvV ,2m 3 kT _, .V m2kT§:$

Alp), = exp 2 - Y e f-ig AT T 6 ey (E-22)

1 +00

WE = e | exe iF, 00 AG) s,
-©
2

ZJT'T- v 2mz2 kT k3 =y ==
67 Tm ¢ ‘Tr) Tm (B-23)
Noting that
m_2kT 3}
[VJTT i ( m) ] = Lyt
2m? kT T8 ’
wETED

Fi=F + v[r'r'. = (-2-1-(-'1-‘)% ranges from -d to + o as F_ changes from -oo to 0.
X X T m X
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Hence we have

o V. m 2kT5
£F+xw(Fx)+de=-Jn -z- - (———)m
JSDF > W(F ) dF = _\i(g_r_rl)zﬂ+2n(_\)_)_3( ln_)a H
T Ax x'+ x 3T m 6 T m (E 24)
and for the opposite side
o v  m, 2kT
Jo F_WF ) dF =J7 (7))
(o)
¢ ” v 2m?3 2kT vi® m2 kT
2 — () S =) (=) —=- E
JoF_xW(Fx)_ dF = 5= (&) =~ +2n (g () = (E 25)
For calculating the total in the x-direction, we put
<Ap. Ap > =T18<(F, +F )3>x~@—t
“Fx TPx At +x -X T
-3 2
= <l < <
TM(\F+X >4+ F~x >+ 2 F+xF-x>)
Since F+x and F_xare independent events, we have
< = T/ < ~ < 2 < <
Apx Apx >f;t TAat F+x > + F_x>+ 2 F+x> F-x>)
. 2 ,(&m KT At
T3 T m T
8
= = mkT An (E 26)

Case [[-by. We now assume that the distribution of field particles
in the configuration space is at random. It is assumed, however, that each

particle has the same momentum components
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ﬂj m |cx | fdc
lp, | =

2 [[[ ta%

lpy, t= ey 1=

_m & kT
st T )

m (

= 1 m(ﬂ_)g
T (2m % m

mkT . 3

= E
(S50 (E.27)
In this case we obtain
~ " mkT ., %
<v>M-6nD At(—Zn )/m
6D?n , kT z, . E
T — (=) %2 28
Eri (E 28)
BN JELENY " I SR
x At (2m)z ' m

1]
'
©
—

= - = m <v> v (E 29)
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In this case

A(E) = 3 2 cos [Z

mkT % mkT .5
N ey )]+2co- [Z Dy(——Zn) ]

\%
2 cos [sz (m_k';’.)t] ; (v 6)\’

+

2

H

expf S 2 (8 vf

2
- expg - vp? ';“T‘TT ( (E-30)
+ oo
1 ? .» kT
= — <3 - P
W(P )= 57 Jmexp( iP_#) exp[ Vo' 3q ] do
+o
1 mkT
B -Z_Frf cos (P, p,) exp |:-v 3n pxa]dpx
o .
]
1w exp |k
2m , mkT % 4y MKT
3n 3n
1 1 -
"zn¥ [, mErE O [Hn_xk_T J
3m 3m (E-31)
1 1 n mkT, 3/2
<A A >= S— ——
P "%’ Znt —mr 3 2z “VTan)
= ?n— v mkT
v = <v >At (E-32)

v
Case II-by. Each particle exerts the average force and z particles are as-

signed on each side. It is obvious that Apx has no fluctuation and <Ap A;> vanishes.
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APPENDIX F

USEFUL INTEGRALS

The integrals which often appear in the present manipulation are listed

as follows 7, 8 &

o
1,3,---,(2n-1) : n %
2n - ) - 222 2 \
;[ X" exp (-2 X?) dX ,atl ()\Zn+1 ro
g '
| X20+l exp (-AX?)d X = ——
n+l
o 2 A ,
® 1 n.%
3 %3 - = (=
gexp()\x)dx 2()\),
P 1
JX exp (- AX?) dX = '::i
o . =
1 n #
2 -\ X2 - —
Ex exp( )\X)dX 4 ()\3 ) »
goxs (xxé dX-—l—-
CJ' exp (- ) =7,
@
- 2 3. 0m ¢
4 - < - — [ ——
gx exp(-1X®)dX P (X:)
P 1
2!; X% exp (-AX2) dX = e

<} - - "_E__n
X® exp (-AX7) dX = 16()\7)

[«] L__A,S
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® 3
JX7 exp (- 2X?) dX = YR
o
%
1 0 2 2
Texp (-p® X?) cos (qX) dX = > —;— exp [ -q /4p ]
o

4p2

OL._.,8

2
exp (-p® X?) sin (qX). XdX = T=%— exp [ -q / 4 p?]

@2p® - q7) 1t 2
2 2 . g2\ 17 _ 2
exp (-p?X®) cos (gX). X2 dX = 8p° exp [ -q /4 p?]

Oc__....,s

16p’

OL_-18

- a° t 2
exp (-p?X?) sin (gX). X3 dX = (6p°g - ) T exp [-q /4 p?]

o--—g

t 2
(12p* -12pg>+ql) ™ -0 Y ap?
exp (-p° X?) cos (qX). X4dX = 32p° exp [-q p*]

*
60p%q-20p3q®+q®) T -
exp (-p? X?) sin (gX). X°dX = (60p bap' exp [ - q'/ 4p°]

o :8
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