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ABSTRACT

This investigation considers three closely related problems: the

optimum filtering of stationary or near-stationary random processes with

unknown parameters from an infinite parameter set; estimation of the

state of a linear discrete dynamical system with nongaussian noisy inputs;

and applications of state estimation theory to detection. The form of

the optimum filter when t;he parameters are unknown is found to have

weights that are averages of simple functions of the signal and noise

spectra averaged over the parameter space. Practical methods for

implementation are given. The key problem in nonlinear state-variable

estimation is obtaining the joint density of the states and the observa-

tions in a convenient form. This problem is solved, and surface search-

ing is used to find the mode. The number of dimensions of the surface

is the same as the order of the dynamical system. A new approach to

linear state estimation is given; and this theory is applied to the

problem of detecting a gaussian signal in gaussian noise. A time-

invariant, near-optimum detector of small dimensions is derived.
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I. INTRODUCTION

A. OUTLINE OF THE PROBLEM

This investigation concerns the optimal estimation or detection of

a sampled, vector-valued stochastic process that may be generated by a

noisy discrete, linear, dynamical system. The system inputs are a

sequence of independent random variables, i.e., white noise. The system

output is corrupted with additive white noise. In the first part of

this report the white noise is assumed to be gaussian (linear estimation

is optimum); later, nongaussian inputs and output noise are assumed (in

general, nonlinear estimation will be optimum). The stochastic processes

may or may not be stationary and, for most of the report, the process

parameters will be assumed to be known a priori. In Chapter V, however,

consideration is given to the important problem of estimating the value

of the process when it is stationary or nearly stationary and when the

parameters are assumed to come from some infinite set with some a priori

distribution.

In this analysis, the word "estimation" will mean either filtering

or interpolation. An optimum estimate is defined as one that minimizes

a generalized mean-squared-error performance criterion or maximizes a

conditional density. Filtering is defined as the estimation of a present

value conditioned on all the past data. Frequently, the term "smoothing"

is used in place of interpolation or estimation of a past value condi-

tioned on all data to the present.

Engineering examples of the above processes are listed below. An

important example is a space vehicle in orbit. The equations of motion

when linearized correspond to a linear dynamical system. The atmospheric

drag may be represented as a noisy input. Range and velocity of the space

vehicle are measured over a noisy radio channel. This channel noise

constitutes the output noise. Usually, the noise, as it appears to the

velocity- and range-measuring equipment, is nongaussian.

An equally important example of this type of system is a rocket under

power. The noise inputs are caused by random variations in motor thrust

amplitude and direction. The trajectory information is also transmitted

over a noisy radio channel.
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An example of a stationary process with unknown paraneters from an

infinite set is a satellite or space vehicle transmitting on an unknown

frequency due to uncertainty in the doppler shift or drift in transmitter

frequency. Determining and tracking this frequency are the central

problems in space communications. For most types of modulation, tech-

niques similar to those discussed in Chapter V provide by far the best

solution known. An example of a near-stationary process is a signal with

known parameters and unknown jamming, where the jamming corresponds to

an unknown output noise. Use of the moon as a passive reflector for

communications from one earth point to another is another example of a

near-stationary process. We might also include in this class a tracking

antenna system using conical scan. Here, the system gain is directly

proportional to the unknown signal strength which slowly varies.

B. PREVIOUS WORK

Kalman and Koepcke in their pioneering work [Ref. 1) have considered

the optimal filtering and prediction of sampled gauss-markov stochastic

processes when the parameters of the process are known. Rauch [Ref. 2]

has extended this analysis to include interpolation when the input noise

is gaussian, when there is no output noise, and when the parameters are

a sequence of independent random variables with known means and variances.

Widrow [Ref. 3] and Gabor et al [Ref. 4] have independently investigated

and constructed systems that adapt by using a noise-free sample of the

signal. Since in many practical situations the noise-free sample will

not be available, this type of adaption was not considered in this

investigation.

Magill [Ref. 5] has used the Hilbert space approach (approximately

concurrently with this investigation) to simplify the derivation of the

filter and interpolation of gausa-markov processes. He has also given

the form of the optimal estimate of a gauss-markov process when a finite

set of parameters is distributed in general according to some arbitrary

density. Cox [Ref. 61 discusses state-variable estimation of nonlinear

systems with gaussian inputs. His approach involves a system linearization.
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Work in this investigation contains an extension of Magill's adaptive

estimation for a finite number of parameters to estimation where the

parameters may come from an infinite set. The theory of nonadaptive

estimation is extended to include dynamical systems with nongaussian

inputs and output noise.

C. OUTLINE OF NEW RESULTS

This investigation gives solutions to three closely related problems:

1. The theory of adaptive estimation is extended to stationary or
near-stationary processes with parameters from some infinite

parameter set.

2. The theory of nonadaptive estimation is extended to include
nonlinear filtering and interpolation of the state variables of a
dynamical system excited by nongaussian random inputs.

3. Methods are given for greatly simplifying the optimum detection

procedures when the signal can be considered as the output of a
linear dynamical system excited by random noise.

Chapter II contains a description of the two main mathematical methods

of system description that are used in this report. This chapter also

contains a detailed description of the random process.

In Chapter III a new approach to the linear estimation of the state

variable of a discrete linear dynamical system is presented which shows

the close relationship between state-variable estimation and pattern

recognition. The estimation theory in Chapter III was inspired by, and

is a straightforward extension of, the pattern-learning theory developed

by Abramson and Braverman [Ref. 7]. In both cases, it is desired to

learn the conditional mean of a gaussian vector-valued random variable.

The equations for the mean and the covariance matrices derived by

Abramson and Braverman are almost identical to the filtering equations of

Chapter III. The author feels that the new approach is far simpler and

gives a greater intuitive insight than other methods that have been

suggested earlier.

The chapter also provides necessary background for the three chapters

that follow. A new problem is solved in Sec. C: estimation of state

variables when the estimates are taken through a second dynamical system

(as will very often be the case). Equations derived by Magill may be

- 3 - SEL-64-131



used to make these estimates; however, the order of Magill's matrix

equations can be twice as great as those presented here. If a large

amount of data is processed, the reduction in calculation could be

significant.

Chapter IV applies the theory of linear state-variable estimation

to the problem of detecting a gaussian signal immersed in additive

gaussian noise. It is shown that a long-standing conjecture about the

possibility of simplifying the detection procedure is often true. In

Kailath's solution (Ref. 8], the optimum detector contains an operator

that gives the best estimate of each signal sample value during the

detection interval based on all the data observed during the interval.

If several thousand data points are observed, a matrix of the same order

must be inverted. When the signal can be represented as, or 6pproximated

by, the output of a noisy dynamical system, the estimation equations of

Chapter III may be applied directly. The matrices to be inverted will

be no larger than the order of the dynamical system regardless of the

number of data points. Further simplification results if the estimator

of a sample value is truncated when the error covariance matrix shows

that there will be little reduction in mean-squared error by conditioning

on additional data points. A near-optimum time-invariant detector is then

shown to exist. The advantages of time-invariant circuitry when analog

networks are used cannot be overemphasized. Time-variable analog

networks of the complexity required in this problem are extremely

difficult and expensive to build. This form of detector is the form

most convenient to instrument, using the newly developing and powerful

methods of optical data processing.

Chapter V describes optimum estimation when the process is stationary

or near stationary and when the process parameters are unknown but may

assume any one of an infinite number of possible values. The term "near-

stationary" is used rather loosely. In practice, the filter will adapt

so quickly that good results may be obtained on processes many persons

would call highly nonstationary.

The estimator weights are functions of the parameters, and it is shown

that the optimum estimator is formed by taking the expected value of

the weights over the parameter space conditioned on the observed values.

SEL-64-131 - 4 -



It is then shown that the parameters enter into the weights as functions

of the signal and noise spectrum in a very simple manner. The optimiza-

tion procedure thus involves learning these spectral functions conditioned

on the data.

It is believed that this device will have numerous applications in

the field of space communications. As mentioned in Sec. A, a fundamental

problem is the frequency tracking of a narrowband signal. The usual

approach is to use frequency modulation or to insert an unmodulated

carrier. In either case a phase-locked loop may be locked onto the

carrier and used as a frequency reference for a narrowband filter.

Frequency modulation very often is not the best way to modulate, nor

does the inserted carrier contain information, and thus their use lowers

th system signal--to-noise ratio for a fixed transmitter power. In

electronic surveillance work, the opponent is hardly ever considerate

enough to include a tracking carrier! One of his favorite tactics is

to shift his transmitter frequency in a manner unknown to the receiver.

Such "carrierless" situations show the filter of Chapter V off to good

advantage since, unlike the phase-locked loop, it will automatically

center itself about the signal in the form of a narrowband filter.

Chapter VI discusses nonlinear estimation (including the best nonlinear

predictor) of state variables of linear systems with nongaussian inputs or

output noise. With the exception of the types cf distributions, the model

of the process is identical to that used for linear estimation. First,

there is a proof of the necessary and sufficient conditions for the dis-

tribution of the state variables to converge to the gaussian. The esti-

mates found in Chapter VI are either Bayesian or maximum likelihood, and

the key problem is finding the conditional density in a convenient form.

The Markov property of the state variables is used to simplify this

rather complex density and then surface-searching techniques are used to

find the mode. An important result is proof that near-optimum (linear or

nonlinear) estimates of the state of many dynamical systems do not

require conditioning on all available data, but may be made using only a

short sequence of observations. The length of this sequence may be related

directly to the rate of decay of initial conditions in the dynamical
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system. The saving in computation time may be very significant. The

dimensions of the surface to be searched are the same as the order of

the dynamical system.

Use of this theory is envisioned in a situation such as the one

given below. Much of the ballistic missile work at Cape Kennedy is

concerned with measurement of missile accuracy. The trouble is that the

external ground-based measuring equipment is no more accurate than the

missile guidance and thus cannot offer any real check on the trajectory.

Any increase in guidance accuracy will completely swamp the measuring

equipment. (The seriousness of the problem has prompted the government

to issue a large contract for range modification, although it is the

opinion of many that the point of diminishing returns in measurement-

equipment accuracy has already been passed.) In data reduction the

standard procedure is to make a linear least-mean-squared estimate.

Since it is known that the statistics are nongaussian, nonlinear estima-

tion may offer a possibility of significant improvement. The asymptotic

behavior of the estimator as the output noise decreases is also discussed.
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II. STATEMENT OF THE PROBLEM AND MODEL OF THE PROCESS

It is desired to form an estimate of a sampled-data, random-message

process corrupted by additive noise. The random message or the additive

noise or both may be nongaussian. The observable process (the process

from which the estimations are made) is assumed to be sampled, either

in scalar or vector form, and for most of this report is assumed to be

generated by processes with known statistics. In Chapter V, however,

it is assumed that the estimates are made of a process with unknown

parameters and that these parameters may come from an infinite set.

A. STATZ-VARIABLE AND SAMPLE-VALUE REPRESENTATIONS OF DISCRETE
LINEAR SYSTEMS

Two mathematical methods for describing linear discrete dynamical

systems are used in this report. The first is called the state-variable

representation, and the second is known as the sample-value representation.

Since many engineers are familiar with one or the other, but not with

both, the methods are discussed briefly in this section.

Consider the transfer function

0(z Zl-l - (2.1)O(1 = -1 V IYS
(1 - aZ )(I - bZ 2

where u2 (Z) is a noisy control input and Y(Z) is the output. A block

diagram having this transfer function is shown in Fig. 1. The input

u1 (k) is a second input of noise alone. Let xl(k) be the value (or

state) of the output of the right-hand delay at the kth  sampling

instant, and let x2 (k) be the value at the output of the other delay.

Then the state or state vector of the system is defined as

r x1(k)
x(k) = (2.2)

[x(k)J

In general, any sampled-data transfer function may be reduced to block

diagram form with feedback around delays, and a state vector may be defined

with the values of the delay outputs at the sampling Instants as vector

elements.

- 7- SIL-64-131



Ui(k-1) :+

zY( k)

FIG. 1. AN EXAMPLE OF A DISCRETE LINEAR SYSTEM.

The vector X(k) may be found from a set of difference equations

that may be written as

X(k) = OX(k-1) + ru(k-i) (2.3a)

The matrix 4 is known as a "transition matrix" and is m x m where m

is the order of the system. This matrix may be time variable, but to

thsimplify notation, its argument will not be carried along. The ij t

element of 0, t is the gain between the output of the it h delay

and the input to the jth delay. The "input matrix" r is also m xm0 0
and it determines where the input vector U(k-l) is applied to the

system.

The system output may be a vector or it may be scalar, and it usually

is a linear combination of the states. The output can be written as

Y(k) = iX(k) (2.3b)

where H is a q xm matrix (vector outputs), with q the number of

outputs. The H matrix also may be time variable. The system equations

for the system of Fig. 1 will then be

SIL-64-131 - 8-



X(k =. + jc (2.4a)0- b 2(k1l1u 2(k-lJ

Y(k) = (1 0] [1 (k) (2. 4b)

X2 (k/I

The second mathematical description will be used when the input and

the output of the dynamical system are both scalar. The output of a

linear system is a linear combination of the inputs, or

k

c(k) = Ia (ik) r(k-J) (2.5)

j=o

where r(k) is the input and c(k) is the output. The system may be

thought of as a tapped delay line similar to the one shown in Fig. 12

of Appendix C. If r(t) is a bandlimited continuous function with

value r(k) at the kth sampling instant, and if the time between

samples, T, is less than 1/2B, where B is the bandwidth, the well-

known sampling theorem [Ref. 9] shows that there is a one-to-one cor-

respondence between the sequence r(k), k = 0,1,...,k , and r(t) over

the interval [0, k T]. There is also a one-to-one correspondence

between the sequence of c(k) and c(t) over the same interval. For

a time-invariant system, the a (k) are the coefficients in the series

expansion of the system Z-transform.

If the r(k), k = 0,1,...,k are the (ko+l) elements of a vector

called the "input vector," and if the c(k), k = 0,1,...,k o, are the

(ko+l) elements of the "output vector," the two vectors are related by

the following matrix equation. (The square matrix will be called the

"transfer matrix.")
"C(O) 'ao0(0) r(O)

c(1) a1(l) So () r(l)

= a2 (2) al(2) a(2) (2.6)

- 9 - SNL-64-131



B. MODEL OF THE PROCESS

The message process will be generated by random inputs, U(k), to

the system shown in Fig. 2. It is assumed that U(k) is independent of

U(j) for j # k. The element u (k) is also assumed to be independent

of ui(k) for i i.

FIG. 2. THE DYNAMICAL SYSTEM.

Much use will be made in this report of a characteristic of X(k)

called the (strict) "Markov property." This property is defined by the

relationship

F[X(k)IX(l),... ,X(k-l)] = F[X(k)IX(k-l)] (2.8)

where F(') is the cumulative distribution function (cdf). In other

words, the density of X(k) given all the X(J) up to X(k-1) is the

same as the density conditioned only on X(k-1). From Eq. (2.3a) it is

seen that if X(k-1) is given, then the only random variable on the

right is U(k-1). Since U(k-1) is independent of U(J) for j -. k,

the density of X(k) is entirely determined by X(k-1) and U(k-1).

If U(J) is a gaussian random variable, the process is known as a

"gauss-markov" process.

The message process is assumed to be transferred over a physical

channel (such as a telemetering link) and noise will be added. In our

model, this noise is indicated by the vector W(k), and Eq. (2.3b) will

be modified to

Y(k) = HX(k) + W(k) (2.3c)
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Estimations of X(j) will be made by observing (the observable process)

the sequence Y(1),... ,Y(k).

Both U(k) and W(k) are assumed (without loss of generality) to

have zero mean. The vectors U(k) and W(J) will be independent for

all j and k, and W(k) will be independent of W(j) for j k.

Two types of covariance matrices are used frequently in this study.

The first is called a "state-variable covariance matrix" and is denoted

by the letter K. For example,

E[X(k) X(k) t ] = KX(k) (2.9a)

E[Y(k) Y(k)t = KY(k) (2.9b)

ErW(k) W(k)t) = KW(k) (2.9c)

where superscript t means the transpose.

The second type of covariance matrix is called the "time-series

covariance matrix." An example would be

Ks  E :1 (2.10)

L(k),
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III. OPTIMUM LINEAR SMOOTHING AND FILTERING

This chapter discusses linear smoothing and filtering. The

estimators will be derived by assuming that the input random process

and the output noise are gaussian. So, the first section will contain

a brief discussion of linear filtering of nongaussian processes with

either gaussian or nongaussian output noise. Section A also contains

a comparison of the Bayesian and the maximum likelihood estimation of

state variables. Section B contains the derivations of the filtering

and smoothing routines. In many practical applications, the observations

will be made through a second dynamical system, and Section C contains

a derivation of the required modifications of estimating procedures.

A. LINEAR FILTERING

The two classes of estimators to be considered in this report are

Bayes estimators and maximum likelihood estimators.

Definition: A Bayes estimator X(Ji) is one that minimizes the

expected risk,

p(i) = f [Li()j,x(j)1 P(x(j)jY(l),...,Y(k)] dX(J)

where LtX(J),X(j)] is the loss and X(J) is the estimate of X(J)

given Y(l),...,Y(k).

If

L[X= 2 (3.1a)
itXC),X(J)] ij

it can easily be shown that

i(j) = E(X(j)IY(l),...,Y(k)) (3.1b)

The loss function for the Bayes estimate will always be that defined in

Eq. (3.1a), i.e., minimizing the mean-squared error.

SEL-64-131 - 12 -



Definition: The maximum likelihood estimate of X(J) is the X(J)

that maximizes P[X(j),Y(l),...,Y(k)].

It is frequently convenient to find this maximum by setting the

gradient of injP[X(J)jY(l),... ,Y(k)]) with respect to X(J) equal to

zero. The elements of the gradient vector are known as "likelihood

functions."

If P[X(J)IY(l),...,Y(k)] is symmetric about the highest mods, the

conditional mean and the maximum likelihood estimate coincide. Such

conditions exist if X(J) and W(j) are gaussian.

In Sec. B, the Bayes estimators for gaussian inputs are seen to be

linear. Now, if the actual states are taken from the dynamical system

and subtracted from the corresponding estimator output to obtain the

error, the system from the noise inputs to the error outputs is still

linear. Then, the error covariance matrix will be Just a linear trans-

form of the input covariance matrix plus a linear transform of the output

noise covariance matrix. The mean-squared error is the tace of the

error covariance matrix. In other words, the mean-squared error of the

filter that is optimum for gaussian input and output noise is a function

only of the input and output noise covariance matrices. If a filter is

designed to be optimum for a gaussian input process with a given covariance

matrix, the mean-squared error of this filter, when the input is non-

gaussian with an identical covariance matrix, will be the same as the

gaussian input mean-squared error.

In Chapter IV (for example) it is seen that if one asks the question,

What is the linear circuit that will give the minimum mean-squared error?

the answer is found to be a function Of the input variance and covariance

only. Then, the filters derived in this chapter are the best linear ones

for all densities with the same covariance matrix. If any improvement

is to be gained for nongaussian processes, it necessarily will be a

nonlinear operation. Nonlinear smoothing and filtering are discussed

in Secs. B and C, Chapter VI.
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B. OPTIMUM LINEAR FILTERING AND SMOOTHING

In this section, the optimum filter is first derived. Next, the

optimum smoothing routine is found and it will be seen that it contains

filtering as a subroutine. The model is shown in Fig. 2 with W(k) and

U(k) gaussian. The filtering problem then is to estimate X(k) given

all values of Y up to Y(k). As noted in the last section, the

optimum estimate is the conditional mean of the quantity to be estimated.

In other words, if it is desired to estimate X(k), write the density

P[X(k)IY(k),Y(k-1),...,Y(l)], and find its mean. Later, it will be

shown that this mean is identical to the mean of P[X(k)IY(k),R(k-1)],

where X(k-l) is the estimate of X(k-1) given Y(l),... ,Y(k-l). So

our problem is reduced to finding this second mean.

Using Bayes' theorem, write

P[X(k)IY(k),X(k-1)] = P[Y(k)jX(k),i(k-l)] P[X(k)IX(k-1)] P[i(k-l)l (3.2)

1'[X(k-l) ,Y(k)]

Since this density is gaussian, the mean will be the value of X(k) that

minimizes the exponent of the density.

Note that X(k) is contained only in PIIY(k)?X(k),X(k-l)] and

P[X(k)iX(k-)]. Referring to Fig. 2, it is seen that

P[Y(k)IX(k),i(k-1)] = P[Y(k)IX(k)] = N[HX(k),Kw(k) ]  (3.3)

where K W(k is the covariance matrix of W(k); [N(A,B) denotes a

normal density with a mean vector A and covariance matrix B]. The

vector X(k-1) is the mean value of X(k-1) given Y(k-l),...,Y(l).

Then the mean value of X(k) given X(k-l) *is X(k-1). Let the

covariance matrix of X(k-1) about X(k-1) given all data up to Y(k-1)

be K^ (The subscripts on the covariance matrices denote the
X(k-l)'

random variable.) The covariance matrix of tX(k-l) about X(k-l) is

K^ 4t ("t is the transpose of ) Since X(k-1 is independentx(k-l)
of U(k, we have

t t'
P[X(k'1X(k-1'' Nr.X(k-1 , _ + , k -l ( .

SEL-64-131 - 14 -



Assume that K W~)is not singular. Thus, the product can be written as

2w]tk)k

P(Y~k X~k]Pf ~k)Ii~k-)3 = (cost eXpE .)]tt(k) HX(k)]tKO ) (k )-H k

(3.5)
where

K A Oi 0t +rPt (3.6)
X(k) = x(k-1) U(k-l)

The exponent will be minimized when the gradient of the quadratic in

Eq. (3.5) is zero.

If Q is any syimmetric matrix, Tj is a vector, and if

= (HX- TI) tQ(HX- TI)

then the gradient of 4t with respect to X is

grad 0 = 2H Q(HX - TO (3.7)

Also, the gradient of a sun of quadratics is the vector sum of the

gradients of each quadratic. If the mode of Eq. (3.5) in found by

setting the gradient with respect to X(k) of the exponent equal to

zero, and solving for X(k), the optimum estimate of X(k) is:

X(k) H [li K )H + H~)] [11 KkY(k) + K- O)X(k-l)] (3.6)

The covariance matrix K^ Is found from Eq. (3.5) by taking theX(k)
inverse of the sum of the terms that are premultiplied by X and

postmultiplied by X or

Kick) = lt Vk~ + xk)]

Note that K^ is not a function of Y.X(k)
-15 - SZL-64-131



If the estimation procedure is stated at k = 1, KX(l) must be

known. Assume that the dynamical system is turned on at k =-M and

the initial conditions are zero at that time.

M +1

x(l) 1 0 M 0-i+l Pt(i-M 0-1) (3.10)

i _=0

Then,

M +1
0 M -i+l *M-i+l t (3.11)

1KX(l) 1 0 rKU(_M _) rt ( 0

i _=0

The one remaining quantity to be specified is X(i).

P(Xl~l(1) =pryf1) I x(Ij1pIx(l )1(.2

P[Y(l)IX(l)j PEX(l)] = (const) exp[.!I[Y(l) - HX(l)jt Kw11)(Y(l) - IX(l)]

+ tx(l) - i( 1 ))t KW(l)X(l) - i(l)l} (313

where i(l) is the a priori mean of X(l) f(i) is zero if the

initial conditions in Eq. (3.10) are zero]. Setting the gradient equal

to zero gives

=J [Ht Kw lH + K' ~ WjtK ( KxX(l
I~ l XWj I() 1 +(.4

The matrix K-(1 is obtained from Eq. (3.9).
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Equations (3.6), (3.8), (3.9), (3.11), and (3.14) completely specify

X~k) given i-(k--l) and Y(k). If it is desired to estimate X(k) given

Y(k),...,Y(l), write

P[X(k)IY(k),.. .,Y(l)] =P[Y(k)IX(k),Y(k-l),... ,Y(l))

P[X(k)jY(k-l),...,l)

P[Y~-l),..,Yl)](3.15)

The function OX(k-l) is the mean of x(k) given that Y(k-l),...,Y(l)

have occurred. Notice that K X~)is not a function of Y(k-l),...,Y(l);

therefore,

P(Xk~j~k-),..,YI)]= PCX(k)lX*i(k-l)]

Again, it io obvious that

P(Y(k)tX(k),Y(k-l),...,Y(l)) wNliX(k)IK W(k)] (3.16)

so that Eqs. (3.6), (3.8), (3.9), (3.11), and (3.12) also specify 1(k)

given Y(k),...,Y(l).

In the smoothing problem, it is desired to estimate the value of

X(I) given Y(k),...,Y(l). Following a similar method, the conditional

density is considered. To obtain the estimate in recursive form, It is

desired to express the gradient of in P(X(l)jY(l),...,Y(k)] with respect

to x(l) as a function of the gradient of In P[X(1)IY(l),...,Y(k-l)].*

=P[X(l)] P[Y(l)IX(l)] P[Y(2)IX(l),Y(1)1,... IP(Y~klI)IX(l),Y(l)I...,Y(k-2)1

(3.17)

Throughout the balance of this report all gradients will be taken with
respect to X.

-17 - 81L-64-131



Since on the right side of Eq. (3.17) X(1) is contained only in the

numerator,

grad [ n P[X(1)IY(l),... ,Y(k-l)]j'a grad J n P[X(l),Y(l),...,Y(k-I)]}

(3.18)

Similarly,

grad lin P[X(l)IY(l),...,Y(k)]j o grad [en PtX(l),Y(l),...,Y(k)1I

- grad [en P[X(1)IY(1),...,Y(k-l)]

+ grad 1ja P[Y(k)jX(l),Y(l),...,Y(k-l)]j

(3.19)

So the gradient conditioned on data to time k is obtained by a simple

addition of

grad [en P[Y(k)IX(l),Y(l),...,Y(k-1)]

to

grad [en P[X(1)!Y(l),...,Y(k-l)]j

Setting this new gradient equal to zero and solving for X(l) giv-s the

value of X(l) that maximizes P[X(1)IY(l),...,Y(k)].

The smoothing equations are given in Table 1. Because of the large

amount of algebraic manipulation required, the details of the derivation

are reserved for Appendix A. The flow diagram for smoothing is shown

in Fig. 3.

C. OBSERVATIONS THROUGH A SECOND DYNAMICAL SYSTEM

Very often the observations will be made through a second dynamical

system. For example, if state-variable estimation is used to estimate

orbital parameters of a space vehicle, the output of the radio link will

be fed to an analog-to-digital converter. These converters have a

limited dynamical (amplitude) range, and a narrowband filter usually must

be placed after the broadband i-f amplifier to reduce the noise variations.

The filter bandwidth may be small enough to influence the statistics of

Y(k) (i.e., the noise may no longer be "white" and the covariance matrix

of HX(k) will be changed).
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TABLE 1. SUMMARY OF THE ESTIMATION EQUATIONS

Filtering Eq.

X"(k) = [H tK- I)H + I ]k)1 [HtKW-kY(k) + K- 1 Ok(k-l) (3.8)

K1k HtWtk) HK-X~k)] (3.9)~k

[H t 4K-. 1 ~ H pt (3.6)Kx(k) x (k) (k]-l

u01M -i+1 u-

K =) 0 r%(,_, 0 _,)r (3.11)

=~l [HtK 1 )ui+K )]luK )Y ) + K-Xl)i(i )] (3.14).

Smoothing X(i)

~( k- =[~~~KY(k)(kklzk_ 1 k-l1]

[Ctl'btutK(k) (kIk-l+(k) - H0A(k-l) JX()+ Jkl] (A.8)

k- 1 IIHtKW'i)H + K.X'(1)-f (A .5)
1=2 I(i=2

K- [1 utc(klk-l)isCk + ~k](A.11)

in t_4tHtC I (kjk1l)jY(k) - H~s-(kl)IX(l)4+ Jkl (A.12)

aK1  + HtK.W'1 )H + OtHtK() +HrK r)t Ht I HO (A.9)

K Y(k) (k 1k-i) HIi (kl1) 0 + rxuK U-) r t]Ht + 1W(k) (A. .6)

With No Earlier Data

j 0 mt~iWz 8 HK )rtlt] - .Y(2) + HtKw'Y(iL) + K- 1I(1 (A.10)
2 t (2+'U2With Earlier Data -X

w 0 t t t[%2 Hr( )rtit1-l Y(2) + HtK4w,) + C .(o)
2 LW) u2) Jx)

where X(O) is the estimate of X(0) given all the data to k =0.
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FIG. 3. FLOW DIAGRAM FOR SMOOTHING.

In this section, methods for finding the optimum estimates of X(k)

of a function of the second dynamical system will be given. The two

dynamical systems will be combined and a single set of system equations

will be written. Noise will be added to the output of the second system,

and it will be shown that, as the variance of this noise is reduced to

zero, the variance of X(k) approaches the minimum mean-squared error

of 9(k) in a known manner. Then, some small output noise may be

assumed and an estimator may be designed using the combined system

equations and the estimation equations of the last section. This esti-

mator may have a mean-squared error as close to the minimum as desired.

Consider the two dynamical systems shown in Fig. 4. The matrix A

is an input matrix, VG is a transition matrix, and J is an output

matrix (or vector). Define the following quantities:

X(k)
M(k) =(3.20)

r.x(k)J
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(3.*21)

7 = [2L (3.22)

0

.(k(k)
N(k) - (3.23)

Lu(k)J

Lo '01lB1= I IJ (3.24)

Then, the system equations for the double dynamical system are

M(k) = Oh(k-l) + 7N(k-l) (3.25)

Y(k) = B'M(k) + C(k) (3.26)

The vector n(k) is independent of $(j) for k 4 J, and the

elements of a(k) are assumed gaussian. The elements of K A(k) ,

a diagonal matrix, are assumed to have a known, very small, upper bound.

This small noise generator, of course, is always present in physical

situations but Its parameters are usually unknown. If, for design pur-

poses, we choose a K (k) arbitrarily-whose elements are the bounds,

we are assured by the following argument that the mean-squared error in

estimating M(k) from Y is not greater than that error calculated

assuming the noise covariance was at the bound. Thus, a bound on per-

fornce can be found from the bound on noise power.

The block diagram for the error

1(k) = [M(k) - {Ck)] (3.27)

Is shown in Fig. 5. Let M(k) be the output of the best linear estimator

for K.(k) equal to its upper bound. The error covariance matrix is a

sum of a linear (matrix) transfor-aation on K (k) and a linear
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Wa~k)

FIG. 4. THE MODEL CONTAINING TWO DYNAMICAL SYSTEMS.
D is a unit delay.

MULTIDIMENSIONAL
POTENTIOMETER

y 0 9 INWIklkN~k) _. +v fl '

FIG. 5. THE DYNAMICAL SYSTEM FOR FINDING THE ERROR, E(k).

transformation on KN(k-). The mean-squared error is the trace of this

transformation which is the sum of the trace of the transformation on

K R(k and the trace of the transformation on K N(kI. Reduction in

the elements of K R(k) will decrease the mean-squared error since each

diagonal element of the transformation on Kn(k) is greater than or

equal to zero. Then, the designer knows that he can lower the upper

bound until the mean-squared error is within specifications.

If the physical situation assures him that the bound is higher than

is actually the case, the estimation equations of Sec. B may be used

directly by substitution of N(k), 7, 0, B', efT(k), and M(k) for

U(k', T, F, H, W(k), and X(k), respectively.
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D. ESTIMATION WITH PARTIAL DATA

In this section is given the form of the optimum linear estimate

when some of the data are missing. Many practical situations arise in

which a complete set of observations is not available. An example

would be estimation of a rocket trajectory where telemetry was temporarily

lost. Another example would be when telemetry is lost during a midcourse

maneuver. Frequently the system output is telemetered on a time-shared

basis, so that the data are available only periodically.

Assume that all the data are available up to time k and are lost

at time (k+l). Then X'(k) may be calculated using Eq. (3.8). Note that

x(k+i) - 01 x(k) + 0Z' r u(j+r) (3.28)

r=O

Taking the expected values conditioned on Y(l),...,Y(k) (since the

U(J+r) have zero mean and are independent of Y(l),. ..,Y'%k)] gives

i"(k+i) - 0iX(k) (3.29)

The covariance of X(k+i), Kf(kli)(k+ilk), conditioned on Yl,.,~)

is

i- 1

K^ (k+ilk) - )ix (it + 7 r(,rt (3.30)X(k+i)' Ix0k)U(j+r)(rt
r-O

Assume that the data are regained at time (k+j). Then the best

estimate of X(k+i) in the interval from (k+l) to (k+j-l) is given

by Eq. (3.29).

Since new data are available at time (k+j), write

P(X(k+j)IY(k+j),Y(k),.. .0()

=P[Y(k+J)IX(k+.1)]PfXik+j~iY~k : : : :: IPrY(k),...Y(l)] (3.31)

and

P(X(k+J)IY(k),...,Y(l)] N(4Oj2(k); Ki(k+j ) (k+jlk)] (3.32)
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Then the optimum estimate of X(k+j) is

^~ k j) IH FI  H -  +(k+jlk)(3h1 = (k+ + x(k+J) ('j

3.3 )+ j

The covariance of X(k+J) conditioned on the new data is now

-Ktl (3.34),(k+j) = [HK(k+J H  (k+j) 
K' L~~j) +K'(~ )(kJ k)j (.34

The estimation is continued using Eqs. (3.6), (3.8), and (3.9) until a

new loss in data occurs. Then Eqs. (3.30), (3.33), and (3.34) are used

again.

If smoothing is to be performed, Eq. (A.13) will, of course, not

contain the missing data; i.e.,

P(X(kiJ)IX(l),Y(2),...,Y(k)) - N[HOJR(k);Ilcj(k^ j)(k+Jlk)Ht + J(kJ)]

(3.35)

The new gradient added by Y(k±j) is

-2t(O Ht t[Kfl(k~jlk)Ht+Kk ) (Y(k+j) - HJ~)

Then

X(I) :(OJ)tt[H I( (k+jlk)Ht + w(k+J HO Ck + k)

.tc(,t)tH u~(~)(k+jtk)Ht +'wkaj (Y(k) - HA~(k)] + Jk(3.36)

When the next observation, Y(k+j+l) arrives, Eq. (A.8) is used. It

should be noted that

Ck+j 2 0Jc k (3.37)

and that

Ck+j+l V [ntK; +  -kJl) -k+j+l) Ck(
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E. AN EXAMPLE OF A SM007HING ESTIMATION

A simple (but typical) dynamical system will be assumed. The

matrices will all be scalar.

0 = 1, H =l1, r 1

The covariances will be

K =1, 1U~k) KW(k) - 4

It is desired to estimate X(l) based on the observations Y(l)-, Y(2),

and Y(3).

The random numbers u(k) and W(k) were obtained from a gaussian

random number table with the variance adjusted to 1 and 1/4 respectively.

The numbers chosen were:

k UkW(k)

1 0.77 0.41

2 -0.33 -0.11

3 -- -0.06

From Eq. (2.3a),

X(k) = 1 X(k-l) + u(k-l)

Y(k) = X(Ic) + W(k)

Then X(k) and Y(k) are:

k 3LJ Y(k)

1 1 1.41

2 1.27 1.61

3 0.31 0.25
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From Eq. (3.6) and Eq. (3.9),

IX(k) i KX(kJ

K -
1

x(k) - 4 ^ (k- 1 ) + 1

The variances used in calculating X(k) given Y(1),...,Y(k) and X(i)

equal to zero are then:

k Kxk ____
_____ x (k)

1 0 ---

2 1 0.2

3 1.05 0.202

4 1.05 0.202 (steady state)

From (3.8),

X(k) = K- k)[4Y(k) + "K-1 (k-1)

and

R(2)IX()l 0= -- 0.938

X(3)jX(l)-O = 0.297

From Eq. (A.5),

k-1 -

Ck k- j [4 + K-~) Kx-i 1

i=2

C 2 = 0.106

From Eq. (A.91,

S= +4*KX-- +  4 +
21-x-1) 4 14
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The matrix K 1 in Eq. (A.10) is the covariance matrix of X(i)

given that U(k) has been applied long enough for the dynamical system

to reach steady state at k = 1. From Eq. (2.3a),

00

x(1) = I OiU(-i)

i=O

Then the steady-s.tate variance of X(l) is

x(l) 2 l=

i=O

and

2 5.53

From Eq. (A.lO)

]~-'
2 =II + I Y(2) + 4 x Yl)

= 6.12

where X(l) = 0. Then

X[(ly(l),Y(2)] = 6 = 1.11

From Eq. (A.6)

KY(3 ) (312) = 1.30

From Eq. (A.i),

5.5323

From Eq. (A.12), J 3  6.11. Then

X[iIY(l),Y(2),Y(3)] 1.10

Equation (3.14) may be used to find X[IIY()3 = 1.16.
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The results are summarized in Fig. 6. The estimator reaches steady

state after only two observations. Further examination will show that

the weights of all Y(k) after Y(2) are very nearly zero. Such very

short estimator impulse responses occur in a large number of practical

problems with typical dynamical systems. As will be shown in Sec. D of

Chapter VI, the estimator may always be truncated after a small number

of terms except in the rare case of a dynamical system with an extremely

high Q. Usually, short impulse estimators for even these cases may be

found by choosing an equivalent model of the dynamical system with a

much lower sampling rate.

x(O)

1.22
0 h11 1.101,0-------o _ 0_

TRUE VALUE OF X(1)

I 2 3
NUMBER OF OBSERVATIONS

FIG. 6. THE ESTIMATES OF X(l).
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IV. APPLICATIONS TO DETECTION OF GAUSSIAN SIGNALS
IN ADDITIVE GAUSSIAN NOISE

In this chapter the theory of linear state-variable estimation is

applied to the problem of detecting a gaussian signal immersed in additive

gaussian noise. The optimum detector contains an operator that gives

the best estimate of each signal sample value during the detection

interval based on all the data observed during the interval. Typically,

several thousand data points may be observed. In the usual derivation

of the optimum detector (see Sec. A), a matrix of an order equal to the

number of data points must be inverted. When the signal can be repre-

sented as, or approximated by, the output of a noisy dynamical system,

the estimation equations of Chapter III may be apr'ied directly. The

matrices to be inverted will be no larger than the order of the signal-

generating dynamical system, regardless of the number of data points.

Further simplification results if tho impulso responsc of the

est.mator of a sample value is truncated when the error covariance matrix

shows that there will be little reduction in mean-squared error by

conditioning on additional data points. A near-optimum time-invariant

detector is then shown to exist.

The chapter begins with a definition of the likelihood ratio. Then

follows a derivation of the optimum detector that requires an inversion

of a matrix of high order. The final section derives the near-opti

time-invariant detector.

Let the observations Y(k) be

Y(k) - xI(k) + W(k) (4.1)

when the signal xI(k) is present (hypothesis w 1  is true), where W(k)

is additive gaussian noise. When no signal is present (hypothesis W2

is true),

Y(k) - W(k) (4.2)

The quantities Y(k), x (k), and W(k) are assumed to be scalar.
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When -a statistical decision is made between the presence of a signal

in noise, or noise alone, the best decision is based on the likelihood-

ratio test (Ref. 10, p. 3183. This ratio is defined as

L(Y(l), . .. ,~) [~),,Y(n) ~ 2  (4.3)

if

we say a signal is present, and if

L[Y(l),...,Y(n)) < 13(4.4b)

we say there is noise alone.

Assume the signal is gaussian with "zero mean" covariance matrix

Kx = E IxX t I
n

where

x l(l)

X X 1 (2)

x I(n)

Assume that the noise has zero mean and denote the covariance of the

signal-plus-noise vector by KY Then
n

K~ K% +K X (4.5)
a n n

P[Y(l),. .. ,Y(n)jw1 3 - (const) exp{ I~ Yt KY IY} (4.6)

and

(coat) x4 .1 Y1t ,~l Y.) (4.7)
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Since the logarithm is a single-valued function, one might just as well

consider

Ln Y(),...,Y(n)" (const) -Y KY-1 Y - Yt 41 Yn (4.8)
n n

Or, a signal is said to be present if

YKY Yn + Yt n lr Yn >70 (4.9)
n n

It is noticed that the dimension of Y equals the number of data points
n

used in the decision. The inversion of Kyn may be difficult or impossible

in problems involving a great deal of data.

A. TIit LIKELIHOOD DETECTOR

This section describes how to calculate the left side of inequality

(4.9). It will be shown shortly that this calculation requires finding

optimum estimates of the signal conditioned on the observed data. First,

the optimum smoother will be derived in a form different from that

derived in Chapter 11I.

A linear estimate of xI(i) given Yn will have the form

n

I aij Y(J) (4.10)

Jul

The error is

n

e(i) = XI() -I aj Y(J) (4.11)
Jul

and the man-squared error is

S2 (i) - R x(0) - 2 1 a 1jRx(iJ) + a aji~aklRX (J-k) (4.12)

Jul kal Jul

The following treatment is due to T. Kailath (Ref. 6].
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where

Rx(i-j) - E(x (i)x1(j)] (4.13)

and

R ,+W(J-k) - E i .j1) + w(J)1x 1 (k) + W(k)) ~ (4.14)

To minimize e 2(i), take the partial derivative
n

() n 02R (i-J) + 2 a kR +w(J-k) J - 1,2,...,n (4.15)
~kul

Thus there are n simultaneous equations giving a solution for the

n a t. If this process is repeated for each i, the result may be

written as a matrix equation

(a i] K.%

which has the solution

A - ,, (4.16)
Un

th
The dot product of the i row of A with Yn will give the minimum

mean-squared-error linear estimate of xI(I), given Y n or

1 .- (4.17)An "n

I I (n)J

Notice that

A (K% (4.18)

n n

n n
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Then

Ky1 K _ K; A (4.19)
n n n

Substituting Eq. (4.19) into Eq. (4.9), we can now say that a signal is

present if

yt Kl AY > 7 (4.20a)
n n 0n

or

ytK W Xn > 70 (4.20b)
n

As the length of the sample of signal and noise or the sire of n

grows, so does the dimersion. In practice, it is impossible to invert

matrices of dimension greater than four or five hundred. In a typical

planetary radar detection problem, the signal sample may be 30 &in long

with a bandwidth of 5 cps. Then, the dimension of Kn will be
4 Yn

1.8 x 10 . If such problems are to be solved optimally, a more efficient

design procedure must be found.

B. A NEAR-OPTIMWK DETBCT0R CONTAINING A TIME-INVARIANT FILTER

The remainder of this chapter will show that, for Y(k) stationary

and n sufficiently large, there exists another matrix representing a

time-invariant filter whose mean-squared error averaged over i is

arbitrarily close to the mean-squared error of A averaged over I.

Furthermore, the norm of the difference between the i t h  row of this
thnew matrix and the I row of A tends toward zero as i increases.

As shown in Appendix B, this implies that, as m increases, the detec-

tion error probabilities using the time-invariant filter are arbitrarily

close to those of the detector employing the filter represented by A.

The linear smoothing equations of Chapter III may be used to find

the time-invariant filter. It will be shown that only a small sequence

of the elements of Y are required at one time, so that computern
storage requirements may be considerably reduced.
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Assume that a filter with impulse response is represented by the

vector A(I) Let this filter give the optimum 6stimate of xI(i); i.e.,

A Y n (4.21)

Let another filter with impulse response vector B(i) give another

estimate of x (i). We now prove that a bound on the vector difference

between A(i) and B may be computed from the difference in mean-
_+(i ) -(i)

squared errors of A and B

Theorem: If [A(i) It Yn is the minimum mean-squared error estimate

of xI(i), given Yno and [-(i)It Yn is some other linear estimate

of xl(i) with an increase in mean-squared error of e 2  ovef that

of t (i)A t Yn' then

(4.22)2

S0 w(i)

where E WnW - w(i), and Ai) is defined as

(i) ().()

Proof: Let Aaij be the Jth element of Ai)

n n

2 (ai + As j)(ai +'A Ik)R a (Jk

Juk k=l

n n n

I- ,jl ~ (J-k - 2 a iR x(J-i)

J=l kul Jul

n n n n

I ' j ai R~4 X+ (Jk 2 1 6a i.jik R 1,W Ca-k)

Jul k-l Jul k-l

n

2 6aij R (-i) (4.23)

.6=1
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By Eq. (4.15),

n n

6e2 ()= 1 '1 6a a k R +W(J-k)
J=l k=l

= [6(i)]t Ky Y (1)

n

=[6A(i) t K + %

n2i) t i)aw (I) ]bA I A(M~) Z (i)lt A

for white noise since KX  is positive definite.
n

Next, a limit for e 2(i) given Y(i-m),...,Y(i+m) as m- 0 will

be derived. For m < -, the mean-squared error will be larger than

this limit by some arbitrarily small amount for arbitrarily large m.

The length of the impulse response of the filter represented 
by the ith

row of A is n. If the optima. filter with an impulse response 2

long has a mean-squared error Ae greater than the limit, then the

theorem above assures that the norm of the difference between the ith

row of A and this second filter is bounded by

/%W(i)

provided n > 2m. This bound will be used in Appendix 3 to show that

the difference in error probabilities between the detector of Sec. A

(whose estimator has an impulse response of length n) and a detector

containing an estimator with an impulse response 2m < n long, is also

bounded.

Most of the proof of the theorem is used to show that the mean-squared

error of the estimate of xl(i) conditioned on Y(i-m),...,Y(i+m)

(found by the methods of Chapter III or Sec. A) is identically equal to

the steady-state mean-squared error of the sampled-data smoothing filter
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(estimating back for a fixed increment m) with an impulse response

2m long derived using the more classical spectral-analysis approach.

This fact fits one's intuition, but it is not a trivial problem.

Theorem: As m -o

2 i+m /00 IS(f) 2

(i) = Rx(O) - a ijRx(i-J) -- R -J SX+)-(f) SX(f) df

j=i-m -00

(4.24)

where Sx(f) and SX+W(f) are the signal and noise power spectra,

respectively.

Proof: Consider the equation for the steady-state mean-squared

error of a sampled-data filter with an impulse response 2m long.

r J k=-m I
0

Is sz J d Zi (4.25)
-Sx(Z) I aj( z - + ZJ)E

where Sx(Z) and Sx+W (Z) are the sampled signal and signal-plus-
noise spectra, and r is taken to be around the unit circle. Since

o

Y(t) is bandlimited and if the aj are picked to minimize the mean-

squared error, e will approach the mean-squared error of the

optimum continuous noncausal filter as m -. -o. This latter mean-

squared error is well known (Ref. 11] and is

R(O) - 2S x(f)  df

Equation (4.25) may be rewritten as

2a 2m

-aR(O) + j 8 (z) a Z I %zk]
r "1 J , , O k O

S 0 2m a(Jm+ jm)I dZ (4.26)
- S(Z) -ai(zJ+m 
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Write

2m 2m 2m 2mT S~(/ j = IJ %J _ = "k=T SXwZ =Ok0"JZJk dZ

T-13 ~ ~ ku SXW(/I -2ij S+~)aJk
r P J=O

0 2n 0 2n

+ I~ a RxC(J-k)T]

J-0 k=O (4.27)

Using Parseval's theorem for discrete systems gives

+dZ -ml dZ
T Z~ + m + Zj ' m ]SX(2 Z + xZ

r J0
2m

= 2 1 a Rx((J-m)T] (4.28)

J-0

In Appendix E, it is shown that 0 is minimum if

2m

ak Rx+w[(j-k)T] = Rx[(JT)]

k=O

so that

2m
= Rx(O) - I aj Rxj(J-n)T3 (4.29)

j=o

Putting Eq. (4.15) into Eq. (4.12) gives

2m
e 2(1) - Rnx(0) - I all Rx(J'i) (4.30)

[in which e 2(i) is as defined in Eq. (4.12)], or

e e2(2 (4.31)

and the theorem is proved.
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If we are able to derive a filter giving an estimate of x (i) using

as data Y(i-j),...,Y(i+J),(i-m) > 0, (i+m) < n, with mean-squared

error e (i-m,i+m), then we know that the mean-squared error e (1,n),

of x (1), given Y(1),... ,Y(n), is bounded by

1S 2-i --i jc SSx~f ~F)T

ei(i-m,i+m) e 2 (l,n) ! R (0) - S W X df (4.32)

And if 22 a X )1
e= (i-mim) - Rx(0 ) +_ SX+W(f) ISS X + W (f) df

is very small, then A (i-m,i+m) will be very close to

where _(i)(j,i) is the impulse response of the estimator of J2 W

using data from time equals j to time equals 2.

The signal may be a gaussian output of a dynamical system witn random

inputs, or the signal statistics may always be approximated to any degree

by the statistics of such a system. Our signal generator model will be

a noisy linear discrete system.

The optimum estimate of a linear operation on a state vector is that

same linear operation on the optimum estimate of the state vector. The

Bayes estimate of X(i) is the conditional mean of X(k), X(i); and

the conditional mean of x (i) = HX(i) is

x lI W = - (i)

Equation (A.8) (smoothing with earlier data) may be used to find

R(i) and i (i), given Y(i-m),...,Y(i+m). The error covariance matrix,

KA(i(i-m,i+m) may be easily calculated. Then

e2(i-m,i+m) = HKI(i)(i-m,i+m) Ht (4.33)

The value of m is increased until the upper bound of Eq. (4.32)

approaches sufficiently close to the limit of the second theorem. This

will fix the length of the impulse response.
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Equation (A.8) may be written in the form

m

X(i) = EjY(i+J) (4.34)

J=-m

The scalar weight of Y(i+j) in the estimate of l(i) is

aij - HE

Notice that E is a function of m only and not of i. Thus, the

near-optimum filter is time invariant.

The calculation of Ej is greatly simplified by noting that, in Eq.

(4.16), the elements of A '(i-m,i+m) are symmetrical about i.

Then, only the first (*+l) E need be calculated, and it is much easier

to find these than to calculate the last m i directly. Ixaminatlon.

of Eqs. (A.4), 'A.8), (A.ll), and (A.12) shows that

ZI, M-L R tKl

Or -l - t -1

1 i(i-Jil) lt -l (42m)

xeamination of Eqs. (A.4) and (A.6) shows that.

+ t Cl t .tHt_-J (JJ-)H4QJ CJ] a
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where

-l

Q =K (Jl) K-j-1) 0 (4.37)J-1 x~ji X(j)

The procedure then is to calculate e (i-m,i+m) for successively

larger values of m until 6e is small. The weighting coefficients

are calculated according to Eq. (4.35), and the detector is connected

as shown in Fig. 7. Notice that the first and last m R (i) are

neglected. These, of course, could be calculated; however, for n m,

little is to be gained by the additional information.

FIG. 7. THE NEAR-OPTIMUM DETECTOR.
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V. LINEAR FILTERING OF SIGNALS WITH
CONTINUOUS UNKNOWN PARAMETERS

Magill [Ref. 5) has given the form of the general solution to the

estimation problem with unknown parameters, and has developed practical

methods of implementation for gaussian inputs and a finite parameter

set. No general implementation has been developed when the parameters

may be chosen from an infinite set or for the optimum linear filter with

unknown parameters and nongaussian inputs. This chapter modifies Magill's

,solution to allow practical estimation of the state variable or signals

with a dense set and stationary or near-stationary processes. The dis-

tribution over the parameter set is not restricted to gaussian in Magill's

solution or in this chapter.

A. MAGILL'S SOLUTION FOR A FINITE NUMBER OF PARAMETER VALUES

If the state of nature w is to be estimated, the Bayes estimate

for a mean-squared loss function is

AfW a IaID'] - WP(jID') dw (5.1)
f

where D' is the data. If a is a parameter or parameter vector

belonging to the parameter set A0,

P(wjD') f P(w&D',a) P(ajD') da (5.2)

A0
and

A o- J w J PGwjD1 a) P(al D1) dot d1  (5.3)

Ql A0
On defining

-(a) 1w P(- ! n * ) d6 (5.4)
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and interchanging the order of integration, Eq. (5.1) is found to be

W =f (a) P(a!D') da (5.5)

A

0

In other words, the best estimate of w is the estimate that assumes

Q is true-weightpd by the probability of 1 conditioned on the data

and integrated over A .0

Magill constructs his adaptive filter by building a number of

estimators-one for each member of the parameter set. Then

P[Y(1),...,Y(k)Ici ] is evaluated for each ai" The outputs of the

W( i ) are weighted by

P(aID') = P[aiiY(l),...,Y(k)3 = P [Y(l),...,Y(k)Ic ] P(a )
P iY ( 1),- .. .7Y~TT- (s.e)

and summed giving w. Practical methods for evaluating

P[Y(l), ,Y(k)lai] in the state-variable problem have not been worked

out for the dynamical system whose inputs are nongaussian. The best

linear w(a) can still be chosen, however.

B. FILTEING OF STATIONARY OR NZAR-STATIOKRY PROCESSES WITH
PARAMETERS FROM AN INFINITE SET

The estimator of a state variable or a signal with a given a (the

value of the signal or state variable at time k will be denoted by

xk(k,a)] is a linear combination of the observed Y(i); i.e.,

k

x 1 (ka) - k a'J(a) Y(J) (5.7)

j I=1

From Eq. (5.5)

k

A0  (s.s)

- Y(J)fakj() PjtY(l),...,Y(r)] dCt

A0
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In other words, the optimum weight is just the mean weight conditioned

on the observed data.

In Appendix C a filter is derived that has the form

k+k
0

S(k,a) = 'I J (a) Y(j) (5.9)

J-k-k
0

The theory of the last chapter shows that the estimate given by this

filter is arbitrarily close to the minimum mean-squared-error estimate

for stationary processes. The weight ak (a) is given by

n
(i) Si(a) (C.33)

akJZ akJ Si(a) + Ni
i=li

where Si  and N i  are the signal and noise power in the frequency

range [(B/n)(i-1)) to [(B/n)i] cps. The signal is assumed to be

in the range from zero to B cps. The constant is found from

(i) = - (C.32)
%J, li 'i(J-l)

sin 21M i(JT - koT)] 1

at = n- T kT(C.31)iJ g(JT - k 0T) 2

The noise-power spectrum is assumed to be known so that there is

correspondence between the elements of the parameter set and the possible

power spectra of x1 (k,a). Then the optimum weight for estimating xl(k)

will be

n
5kj = j) J i  Ni P[S 1iY(l),...,Y(r)] dSi (5.10)

Si

where the conditional density of S. is the sum of all the densities of
1
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Write G in transfer matrix form with q i(J) as the output; i.e.,

q (') Y(i)

q (2) Y(2)

G =(5.11)

qi(r) L Y(r)

The matrix 0 is causal and therefore triangular below the main

diagonal. Such matrices are nonsingular if there are no zeros on the

main diagonal. Since 0 is time invariant, this is always true, and

there will be a one-to-one correspondence between [Y(l),...,Y(r)] and

(q (1),... ,q I(r)]. Thus,

P(SiLY(l),...,Y(r)] = p[SilqI(,),...,qi(r)] (5.12)

P(qi(l),...,qi(r)jS i] P(S (
P[Sili(1)...,iPr) I pq(1),... ,q i (r )]  (.3

There are n G, each with bandwidth of B/n so that only every nth

qi(J) is needed to find the density of (qi(1),...,q (r)], or

P~qi (1),q i(n),q i(2),...,qi(r)) P(S

. , = (1),q i (n),q i(2n),... ,q (5.14)

The filter G is sharp-cutoff so that the q I(J) in Eq. (5.14)

are essentially independent and the following is true:

11[2q(+r)]xp 2 j+N73)i q[ I(nJ) PJSui]

P(S I I"I((),..., (r)- -/n

Sl

(5.15)
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The integral in Eq. (5.15) may be evaluated directly as a function2

of L q i(nj) and r, and stored ahead of time.

Since

S Ni=1-

Si + N S i + N

only the following need be calculated:

Ni dSNif 13 + Ni P[S~lq,(l),...,q,(r)] S = V2
S N" r i )r/n pqi(1,...,qi(r)

Si

N P 2 (nj) P(Sl dSi  (5.16)
S(Si Ni(+r/n)/2 e0 2(Si + N ) I Il

Equation (5.16) is a function only of [r,Lq2(nj) ] and may also be

calculated ahead of time and stored.

A less complex procedure usually giving almost as good results is

maximum likelihood estimation of (Si + Ni). This estimate is found

by solving for S in

o

s= (5.17)

Then

r/n
r - q2(nJ) =0

(SI+ Ni) 2(S +i J=l

and

r/n

(Si + Ni) = I q2(nJ) (5.18)

J=l

This estimate may be instrumented by an Integrate-and-dump circuit or

closely approximated by a square-law device followed by a lowpass filter

with a bandwidth of I/r.
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The variance of the estimate of (S1 + Ni) is [Ref. 10, p. 261]

2 = 2 (S + Ni)2  (5.19)eat r) Si

Take, for instance, a 100-tap line with 20 narrowband filters. This

adaptive filter can begin its estimating when r equals 100 and, for

all practical purposes, it will be converged to Weiner optimum when r

equals 200. If the system bandwidth is 100 cps, this convergence will

be obtained at the end of 1 sec of operation.
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VI. ESTIMATION W17H NONGAUSSIAN INPUTS

A. INTRODUCTION

In this chapter, the theory of Chapter III is extended to include

state-variable estimation when either the inputs to the dynamical system

or the output noise or both are nongaussian. The same general approach

used in Chapter III (finding the mode of the conditional density) is

used. Since this density is no longer gaussian, the mode is not neces-

sarily located at the mean. A unimodal density or one with a unique

maximum will be assumed. The state variable giving this maximum, of

course, is the maximum likelihood estimate. When Bayes estimates are

made, it will further be assumed that the density is symsetric about

some point.

Most of the discussion in this chapter is concerned with the

propagation of nongaussian statistics through a discrete linear dynamical

system. At first glance (with the central limit.theorm in mind), one

might conclude that the output density of a discrete dynamical system

with feedback would converge to a gaussian density since the output is

the sum of a largo number of independent random variables. If this

were the case, them linear estimation would be optimum for one or more of

the state variables. Unfortunately (as shown in the next section), this

is never true for a time-invariant discrete system. In Sec. B, necessary

and sufficient conditions for the output density to be of the "same form"

as the input density (i.e., the output density is the input density

translated and/or with a change in scale) are also derived.

Section C describes the calculation of the joint density of the state

variables and the observations. Section D contains a discussion of methods

for finding the estimate and it is shown that near optimum estimation may

be often obtained with only a short sequence of observations. The last

section describes the estimator's asymptotic behavior as the signal-to-

noise ratio is increased.

B. PlO PACTION Of FIRST-ORMDR STISTICS

The output of the linear system will be assumed scalar, or the

first-order density of only one of the outputs will be of interest.
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Then the output may be written as a linear combination of the input

random variables, i.e.,

m0 Jo

z(k,jo ) 1 aj u (k-j) (6.1)
,:i j=o

As before, it is assumed that the u,(k) are independent and have

zero mean with the additional assumption that for a fixed i, the u2 (k)

are identically distributed for all k. Also assume that for each Z

some a is not equal to zero (i.e., no impulse response Zrom any of

the inputs to the output is equal to zero for all time).

A theorem will now be proved showing that the cdf of the output of

a time-invariant linear filter converges to a gaussian cdf if and only

if the input is gaussian.

Theorem: Let a stable, time-invariant, discrete linear dynamical

system and its input be described by Eq. (6.1) and by the assumptions

given above. Then the cdf of the system output will converge almost

everywhere as jo -0 0 to a gaussian cdf if and only if the input

is gaussian.

Proof: It is well known that the output of a linear system is

gaussian if the input is gaussian. So only the "only if" proof

will be given here.

It is assumed that, for a fixed £, all u (J) are identically

distributed. Then

Jo mo mo jo
j0 m0 m0 0o

a2[~ ) 2[u,(])] a (6.2)

J=O ,=1 =0

If the system is stable,
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If the system is stable,*

Jo
jo i a 2 < 00 for all

0 I

Therefore,

jo m
o a

j=o 2=i

J #1

Define Zi (kJ o )

Z & (k,jo) = z(k,jo) - aLi u(k-i) (6.4)

Using Eq. (6.3) and Ref. 12, page 236, it is seen that z(k,J0 ) and

Zi(kjo) converge almost surely as Jo - Go.

The "Composition and Decomposition Theorem" [Ref. 12, p. 271] states

that the sun of the two independent random variables with finite

means and variances is gaussian if and only if both variables in the

sum are gaussian. Therefore, z(k,j0 ) and z(k,o) are gaussian

only if ul(k-i) is gaussian.

At this point it is appropriate to briefly examine a class of zero

man distributions with finite variances that have the interesting

*The impuls response of a discrete system is'bounded. If it is not
bounded, a bounded input (i.e., a s.top function) will give an unbounded
output (som of the coefficients in the series form of the output
Z-transform will be unbounded). Of course if

0 < then a <00

- j4o
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property of being invariant as they are passed through an arbitrary

discrete linear system. Here, "invariant" means only a change in scale

factor.

Definition: A Stable Law (Ref. 12, p. 326]. The cdf, F(u), is

stable if, to every a1 > 0, a2 > 0; and bl, there correspond

constants a3 > 0 and b3  such that

F(aIu2 + b1 ) * F(a2u, = b2 ) = F(a3u, + b3 ) (6.5)

It is clear the invariant distributions belong to the class of stable

laws since it is required that they do not change with an arbitrary

impulse response that is always positive. By a well-known theorem (Ref.

12, p. 327] the log of the characteristic function of a stable law is

given by

log fu Mt)- itra- bltlo 11 + ip t w(t,a)j (6.6)

where

tan if a 1
2

W(t,)= (6.7)

2 in t if a=1

and

a c the real line

b c (0,-)

0 < a 2
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The variance of u (k) may be found by taking the second derivative

with respect to t of the antilogarithm of Eq. (6.6) and setting t = 0.

This derivative is less then infinity only when a = 2. When C = 2,

w(t,a) = 0. Thus, the characteristic function of invariant cdf's must be

of the normal form

f (t) = exp (its - bjt 2) (6.)

C. FINDING THE JOINT DENSITY OF THE STATE VARIABLE AND THE OBSERVATIONS

Since

P[X(1),...,X(k),Y(1),...,Y(k)]

= PEX(l),...,X(k)IY(l),...,Y(k)] P[Y(l),...,Y(k)]

the X(l),...,X(k) that maximize the density on the left side of the

above equation also maximize the conditional density on the right. The

approach used here will be to first calculate in a convenient form the

joint density of the state variables and the observations for nongaussian

inputs. In Chapter III this was relatively simple because the joint

density of gaussian variables is gaussian, but for nongaussian inputs,

finding the joint density is really the heart of the problem. In the

next section methods are given for finding the density maximum (the

optimum estimate).

The joint density of the state variables alone is

P[X(1),X(2),...,X(k)j - P[X(l)] P[X(2)IX(l)]

P[x(3)Ix(l),X(2)] ... P[X(k)jxC1),.o.,X(k)]

(6.9)

The density of X(l) is just the density of PU(O), or

PCx(,)] . P(ru(o)] (6.10)
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The density of X(2) conditioned on X(i) is the density of PLJ(l)

translated by cOX(l). Write this density as*

PtX(2)IX(l)] = P(Pu(l)Imean = (Dx(li (6.11)

Because of the Markov property of X(i)

P(X(3)IX(l)X(2)] = P[XC3)IX(2)] = P[U(2)lmean = OX(2)] (6.12)

and

P[Xk)X~l,..,Xk-)]= P~ru(k-l)Imean - 'OX(k-l)] (6.13)

Since the elements of U(k-l) are independent, it is quite simple

to write down the right side of Eq. (6.13) if r is diagonal. Then

P(ru~k-l)Imean =X(k-1)] = P 7 iU (k-1)Imean o (k-1)] (6.14)

i

where 0,(k) is the it element of 41(k).

By this notation, we man that the zero man density of the random
variable rU(i) is shifted by an amunt equal to 4X(l).
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If r is triangular, there in dependence between the elements of

the noise vector added to OX(k-l) and therefore

P(ru(k)laean = X(k-1)] P~y 11 u1 (k-1)Iaean t = k-)

*P(7 22 u2 (k-1)Imean 0 s2(k-1) + y 21 u I(k-1))

*lw P~ 3 (k-3l)jmean - *3(k-1) + y 31 U1 (k-1)

+ y 3 2 (k-1)]

0

-P(x I I e(k)) P[x 2(k).O2 (k-1),x I(k))] .

P[xU3 (k)I. (k-)x(k),... 'x m-(k] (6.13)

Similar relationships may be written if r can be partitioned Into

triangular matrices, * or if the rows can be reordered to form a triangular

matrix or a matrix that has triangular partitions.

lo1re the matrices that are to be partitioned aust not have elements of
two different triangles in the sam row.
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It becomes more complex if no such partitions are possible. For

example, suppose

r = 71 1 (6. 16)
721 722]

and none of the 7jequals zero. Then

P[X(l)]= IP(711 u1(o)) * P(712 u2(o)]1 PIY 21 u2 (O)

+ 7 22u2(0)17 1 U 1(O) + 7l2u2(O)] (6.17)

The random variable 7 21 u1 (0) conditioned on -111 u1 (O) + 'Y iu2 (0) is

not independent of 72iu1 (0) conditioned on the same sum. Therefore,

convolution cannot be used to find

P(-Y21 u (O) + 72eu2(0)17 11 u1(O) + 7.2u2(0)1

Consider the matrix transformation

z(k) - X(k)

Then

z(k) OX1 4(k-1) + 1 ru(k-l)

-(k-1) + ru(k-1) (6.18a)

and

Y(k) H--- Z(k) + W(k) (6.16b)

are the equations of a system with state variable Z(k) having a

response identical to that of the system described by the equations

(2.3a) and (2.3c). it r is nonsingular, pick

r p (6.19)

Then the input matrix will be diagonal.
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If a Bayes estimate of z(k) in made, as noted in Chapter IV, the

Bayes estimate of X(k) is

X(k) =Ei(k) (6.20)

Since the Jacobian of a matrix transformation does rnot depend on the

multiplying vector (Ref. 13], the transform of the maximum likelihood

estimate of Z(k) will maximize the conditional density of x(k). So

Eq. (6.20) is also true for this latter type of estimate.

if r is singular, then a nonsingular . can be found that, when

multiplied with r, gives a triangular product. This is best illustrated

by an exa~le. Let

Yll Y12 01

2L 0 3 01O

and let

11 122 13 b 11 0 0

Y2 7'2 2 0 b b21  b 22  0 -B
21 0

31 32 33 1 .b 31b 320

where ij is the ij thelement of .

The first column of Bocan be arbitrary and the lIst colum is

obviously all zero. The elemients b 22and b 32can also be arbitrary,

but b 12  mit be zero. Then 9 1 and 9 1 most be picked so that

11 21
I712 + I Y2 a0

All he oher ijmay be chosen to make ---- nonsingular.

The joint density of the state variables will mow be used to derive

the joint densities of the state variables with'tbe observations. Two



cases will be considered. The first procedure will use convolution of

two independent densities, and is not applicable to all forms of dynamical

systems. The second is more general but in some cases requires more

calculation.

Case I: H (a vector) is different from zero in one dimension only,

or H (a matrix) is diagonal.

Any dynamical system with a scalar output may be put in a form where

the output is px (k) where V is some constant. For the moment

we will consider only these systems, or those where H is a diagonal

matrix. If the scalar or an element of a vector output is a linear com-

bination of several of the x,(k)'s, convolution usually cannot be used

to find the probability of the linear combination conditioned on the

x (J), for j less than k. This is true because, in general, the

conditioned x2 (k) will not be independent.

For convenience, the treatment in Case I will consider scalar outputs

only. Extensions to vector outputs will be obvious. Since P(X(i),...,X(k)]

is really a joint density, i.e.,

~~PI[x Wl,,--ll] ... (x (kl,...,x (kl]l

0 0

and W(l) is independent of x1(1), one can write

P[Y(l)x 2 (1),...,xI(k)] P(x 2(l),.,xm(k)]
0 0

- P[W(l)] * P[x l(l)x 2 (l),...,xa(k)] P(x 2(1),...,xa(k)]
o o

= P(W(l)] * P[xC1 ),x2(1),...,x (k)]  (6.21)
0

By successive convolution, the joint density

P1Y(l 'x 2 (1)....x a(1), Y(2),x 2(2),...,%(2), .. , (k-lI ...,#x a(k-l)
0 0 0

xl(k),...,x a(k)]

0
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may be found. If desired, all xI(J), j less than k, may be

eliminated by taking the marginal distribution giving

P[Y(l) ,Y(2),... ,Y(k-1) ,xI (k),... ,x(k)]

Then, note that

P[X~k)jYCI),Y(2),...,Y(k)] - P[Yk)IX(k)]Px 1 (k),...,X (k),Y(k-l),...,Y(l)]

0

- P[W(k)Imean - HX(k)]

P[Xl(k),...,xm(k),Y(k-l),...,Y(l)] (6.22)
0

Equation (6.22) must be used because another convolution would eliminate

xI(k). The convolution usually can be written down by inspection.

Case II: There Is no restriction on H.

The remainder of the derivation here is very simple.

P(Y(1),X(1),...,X(k)] P(Y(l)IX(l)]P(X(l),...,X(k)

P[Y(1) ,Y(2),X(),....,X(k)] PEY(2)IX(2)]P[Y(l),X(l),...,X(k)]

P[Y(1),...,Y(k),X(1),...,X(k)]- P[Y(k)I][(k)]P[Y(),...,Y(k-1L),X(1),...,X(k)]

k

- P(X(L),...,X(k)] Fi P[Y(2)Ix(J)]
J-1 (6.23)

where

P(Y(j)IX(J)] - PW(J) Iean - uX(j)] (6.24)

Notice that there are mre xI(J) in Zq. (6.24) than in Sq. (6.22), and

that there will be more integrations if the marginal densities are found.

Then Eq. (6.22) should be used if the dynamical system can be described

as in Case I and if arinal densities are to be taken.
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One other density will be needed in the next section. Assume that

the system is of the type considered in Case I but that Pf Y(l),...,Y(J),
X(l),...,X(j)J has been calculated by the procedures outlined in Case II.

*P(Y(J+l)IX(J))PEY(J+2)lX(a),Y(J+l)]

*P[Y(k)IX(j),Y(J+l),...,Y(k-l)) (6.25)

Note that

i-l

x(3+i) - X + I or(j41 ) (6.26)

ruO

The following set of equations can be written:

Y(a~l) - x I(J+l) + w(J+l)

W (0 1,.... 13 x(j) + (71,.,M)U(j) t w(J+l)

Y(J+2) - x 1(J+2) + w(J+2)

- (2) (2) +~l'*',*ruJ

II ...."~l %)r(j) + 11 j..$100
00

+~~i - 711 1i Ci) (i ) 1+ 1. , u2
00

+ ( 1 ,., 1 )U(J+i-l) + W(J+i) (6.27)

gth
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Note that

*P[Y(j+i)IX(j),Y(J+l),...,Y(j+i-l),u(j),...,u(j+i-i)]

- Pyjil~)UJ,.,(~-)

- Pfw(j+i)Imean - *()X()7 Uj~-)

(e. 28)

So, using all the lines of Eqs. (6.27) ad (6.26), we may find

Pl* y(j+i(+) ,u(J),. . . ,u(ai-81 x(j)I

-Plu(j)]p[(j+1)] ... PIu(j+i-i)3 Fi P(Y(J+n)IX(j),U(j),...,U(J+n-iL)]

D. FINDING =1 ESTIMA13

This section contains a brief description of several methods for

calculating the mode of the joint densities found by methods given In

* the preceding section. The problem Is to find the Bayes estimates of

X(l),...,X(k) from the observed data Y(l),...,Y(k). First, several

observations are made about the convergence of Bayes estimates of linear-

dynamic-system state variables. It In obvious that the man-squared

error of X(j) will converge to some value as the number of observations

increases, and that the man-squared error must be a nonincreasing function

of (k-J), where the estimate is conditioned on Y(I) to -Y(k). If the

(k+l) thobservation increased the man square, then the Bayes estimator

would ignore Y(k+l). Since the mean-squared error is never negative,

'It must approach a limit ". (k-J) -.

If the estimator is linear and the noise is white and stationary,

the estimator will be stable. For example, let the noise be scalar.

Then, the component of the mean-squared error of x I(j) due to the

noise will have the form
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k

2 2~aw a,(i)
i-i

where a,(i) is the value of the estimator input to x,(j) output

impulse response at time equal to i. Since the sum is finite (because

the Bayes error is finite), the estimator is stable. Similar reasoning

shows that a linear Bayes filter and a Bayes predictor are also stable.

In Chapter III there was an example of a linear smoother that obtained

near-optimum performance with a small.number of observations. In general,

nonlinear estimators also obtain near-optimum performance with a truncated

sequence of Y(k).

It will now be shor'n that the desire length of this truncated

sequence can be directly related to the rate of decay of an initial

condition in the generating dynamical system.

The optimum estimate may be written as

i( ) - f x(j) pfx(J)jv(i) . T(k)] dX(J)

*f f J J ()PX jIW).~)uj.~-)
u(J) U(k-1) X(J)

U(j) . .u(k-1) ()....(k)] dl(J) dU(j) ... dU(k-1)

. f.. J a[z(J)t(*) .. T(k).U(J)..u(k-1)] P[U(j)..u(k-1)fv(1) .. (k) ] dU(j) ... du~k-i )

u(j) u(k-.)

(6.30)

Then, the magnitude of the change in X(J), when it is conditioned on

one more observation, Y(k+l), is less than
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max max EKr )Y~)..,~~),~)..,p)

-E[X(J)jY(1),... ,Y(k),U(j),... ,U(k-l)]

The Value Of EEX(1)IY(l),...,Y(k+l),U(j),...,U(k)I may be found

by solving the set of simultaneous equations

3 [~)Yl,.,Y(k+l),U(j),. .. ,U(k)I 0 (.1

Consider the Z2t of those equations. From Eq. (6.29),

6x()PtX(i),Y(l). .. Y~k+l),U(j),.. .U(k)]I

k k-j

= IP!U(i)]P(X(J),Y(l),.. .,Y(j))1 P(Y(a+i)tx(a)u(j),...,u(j+i-l)1
i =j iJul

(x* P[Y(k+l)IX(J)U(j),.. .,k)

+ P[Y(k+l)IX(j),U(j),... ,U(k)] x()P(()Yl,.

k-j

7 PtY(a+i)Ix(a),u(a),--. u(j+i)j 0 (6.32)

From Sq. (6.29), it is seen that a change in X(j) of £6X(j) i;n

P(Y(k)IX(j).U(a),...,U(k-l)] changes only the mean of the conditional

density by an amount proportional to

0
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In any stable dynamical system,

as k-j -. o. In practice, it is found that this norm goes to zero very

quickly. For example, if a and b in the system of Fig. 1 both equal

1/2, for k-j = 8,

(8) 0(8)\ 1 (633
011x(j) = 1 6xl(j) + - Ax2 (J) (6.33)

11 102 512

Then, the magnitude of the component of the gradient of P(Y(k)IX(J),

U(k),...,U(k-1)], with respect to X(J) in the x1 direction, will be

1/1024 the maximum magnitude of the slope of PtW(k)] in that direction.

Clearly, a good engineering approximation is to set the first term in

the sum in Eq. (6.32) equal to zero, then the left side of Eq. (6.32)

is equal to zero.at exactly the same places

7 ) P(X(j),Y(l),...,Y(k),U(J),...,U(k-1) = 0

There will be no change in the conditional expected value, and a truncated

sequence gives very nearly the optimum estimate.

When actually obtaining the estimates, it is usually convenient to

use the logarithm of the joint density. From Eqs. (6.23) and (6.25),

inIP[Y(I),...,Y(k),X(l),...,X(J)]I = njP(X(l)1I + inIPY(l)jX(lf-+

" in$P(X(J)jX(J-1)]'+ ZnjPtY(iJ)X(iJf

" inPtY(J+l),...,Y(k)IX(.)]l (6.34)

Taking the derivative of Eq. (6.34) with respect to x (j) for all i

gives a set of mo equations of the form

n|J-)] u w iPYnIP[Y(j+l),... Y(kX) 0

' ((6.35)
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If the Bayou i(J-1), given Y(l),...,Y(k), is known, then X~j) is

the only variable in Eq. (6.35); i.e., the x(J-i) that maximizes (or

minimizes)

also maximizes

This can be seen from the following argument. The Bayes estimate of

X(J-i) obviously maximizes P[X(l),...,X(J-l),Y(l),...,Y(k)), and the

Dayes estimate of E-1
T1(0) -I

x(j) I

maximizes P(I),....X(J),Y(l),....,Y(j)]. The first n elements of

J()are the elements of X*(-)

If surface-searching methods are used to solve Eq. (6.35), the

surface has dimension in. When 1(j) is found, it is put in the like-

lihood functions for X(J+l), and the process is repeated until all k

of the x(j) are estimated. The first surface search (in the estimation

of X(l)] will use the Initial condition, x(o).

If only filtering is desired, the maximum likelihood estimate may

be made by using the density described In the last paragraph of Sec. C,

or surface searching miay be used to solve equations of the form

6 injP[X()()..YJ + JjYQj1 0 (3)
~3z2(S - o (6.36

notice that P(X(J)IY(l),...,Y(a)] has the property seen in Chapter

111. The observed Y1) will appear only In the man, ad the other

moments do not depend on Y(i). The surface to be searched Is again of

dismsion
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Also, the density necessary for maximum likelihood smoothing with

earlier data may be obtained by writing

=[~)Yl,.,~) P[x(J)jY(1),.....Y(J-1) p[Y(J)Ix(j)]

P(Y(J+l),...,Y(k)IX(J)] (6.37)

The surface is also m -dimensional.
0

If linear estimation of the X(J) are made, this should be a good

first guess for the surface search. In multiple-mode problems with

reasonably good signal-to-noise ratios, it would be an aid in starting

on the correct mode.

If the dimension of the input to the dynamical system is smaller than

the dimension of the state vector, it may be simpler to use Eq. (6.28)

directly and estimate the U(k). This would reduce the dimensions of

the surface to be searched, and there would be no need for taking marginal

distributions. Then, the optimum estimates of the xA(i) are given by

X(2) = Ox(l) + (1)

X 0 x(j-l) + O(j-l)

where X(I) is the known initial condition.

Another calculation aid is the fact that, with many input densities

and many dynamical systems, P[Y(k)IX(J),Y(J+l),...,Y(k-l)] will appear

very gaussian if k-j is greater than 4 or 5 and if W(k) is gaussian.

This is especially true for moderately high signals (see the next section),

or very high gaussian output noise. Then the methods of Chapter III may

be used to calculate the conditional density.

Several short co ents are offered on finding the mode when the

solution is not put in the form of Eq. (6.35). For example, perhaps

only a small number of data points are available and the joint density

is put into the form of Eq. (6.23). If none of the x (J) is integrated
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out, and a surface search is run over all the X(j), it is often helpful

to note that the mode will be at the origin for all Y(j) equal to zero

and P[u (j)] symmetrical about zero [W(J) is assumed gaussian].

Then the Y(j) can be moved out toward their observed values in small

steps, thus moving the mode in small steps from a known position. The

surface search will be over a much smaller area and the total calculation

will be greatly reduced. If there are multiple modes, the correct one

will be tracked.

Once Eqs. (6.23), (6.28), or (6.34) have been found, the surface

search id a routine problem for the computer programmer. A common

procedure is the method of steepest descent (or ascent). The gradient

is evaluated at a point and a move is made in the direction of the

gradient to a new point. The gradient is again evaluated and the process

continued until the gradient magnitude is small. Gradients of either

the log of the density or the density itself may be used. Another

common procedure is to move along a coordinate axis until there is no

increase in the density. This process is repeated in turn on each axis

until the mode is reached.

Z. 11Z ASYNPTOTIC BEHAVIOR OF THE ESTIMATORS AS THE SIGKAL-70-NOISZ
RATIO 18 INCRSID

This section contains a discussion of the asymptotic behavior of

estimates for systems with nongaussian inputs as the signal-to-noise

ratio is increased. It will be shown that linear estimation is very

nearly optimum for high signal-to-noise ratios for one or more states

of the dynamical system. In special cases, it can be shown to be nearly

optimum for all states of the system. This property of estimators

assumes special importance because, in the majority of cases, there

probably.will be a strong signal and weak noise.

Denote by Xo(0) all elements of X(j) that may be measured directly

or calculated exactly knowing Y(l),...,Y(k), k _ J, when the covariance

matrix of W is zero. Using the techniques of Sec. C,. one can find

P[Xo(j),Y(l),...,Y(k)]. Let (j) be the elements of the X (j)

estimation, X (j). Now, take a multidimensional Taylor series expansion

of AiP(X ),Y(l),...,Y(k)4 about fo ( j ) .

- 65S- 8L-64-131



njP(Xo0 (j ),Y (I ),...,Y (k ) -- injP(Xo0(J),Y(l,...,Y(k) (

I )2 in lP[Xo0CJ) ,y(1) ,.,Y(k) ]j

+ i ghxg) x h(J) [xg -( .(j)][xh(J) - kh(J) ]

xg(j) =9 (j)

xh(j) Rh(J)

+ higher order terms (6.38)

Notice that the term containing the first partial derivatives is

zero because these derivatives are evaluated at the mode. Let

QC) 
2  .in jP [x o(J ) Y (1) ,... Y (k ) ]

Qgh g ix(J)axh(j) x (j) = ft(j)

Xh(j) = '(J)

Then for small Ix (j) - (J)1

P[Xo (j),Y(1),...,Y(k)j -5 P(X (j),Y(1),...,Y(k)]

exp - 2 ( Qh[Xg(J) - *g(J)[Xh(J) 0)3

(6.39)

Or, over a small region about the mode, P(X(J)IY(l),...,Y(k)] follows

the gaussian density.

By picking the elements of K arbitrarily small and using

Tchebysheff's inequality, Ix (J) - 19 (J)l may be bound as small as

desired with any probability less than one. So, with high probability,

Eq. (6.39) will describe the Joint density. Under these conditions,

linear estimation is very nearly optimum.

*This treatment was suggested by the method used in Rot. 14.
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VII. CONCLUSION

A. SUMMARY

A solution has been given for the problem of filtering a stationary

process with unknown parameters when the parameters come from some

infinite set. It has been shown that the optimum estimator weights are

averages of functions of the parameters where the averages are taken

with respect to the parameter space conditioned on the observations.

It is seen that, for stationary or near-stationary processes, the

parameters enter into the solution in the form of simple functions of

the signal and noise spectrum. Optimum methods for measuring the spectral

averages were given.

The theory of state-variable estimation has been extended to include

nonlinear estimation for..nongaussian inputs. First, it was shown that,

even in steady state, the state variables are nongaussian for nongaussian

inputs if the discrete system is stable (a bounded output if the input

is bounded). Thus, in general, linear estimation is optimum only for

gaussian inputs. The estimation approach used. was to find the mode of

the state-variable density conditioned on the observations, in which the

key problem was to obtain the density in a convenient form. The Markov

property of the state variables was used to simplify this very complicated

density, and surface-searching methods were used to find the maximum. It

has been shown that near optimum (linear or nonlinear) estimates ay be

made of the state of many dynamical systems using only a short sequence

of observations, and the length of this sequence may be related directly

to the rate of decay of initial conditions in the dynamical system.

A new approach to linear estimation of state variables has also been

presented. It shows the close relationship between the theory of pattern

recognition in a random environment and state-variable estimation. The

theory is a straightforward extension of Abramson and Braverman's learning

theory [Ref. 7). Their mean and covariance matrix equations are almost

identical to the filtering equations presented here. The theory of

estimation for the case where the observations are taken through a second

dynamical system was presented and a suitable solution was given.
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The linear estimation theory was used to simplify the procedure for

detecting a gaussian signal in gaussian noise. The optimum detector

contains an operator that gives the best estimate of all sample values

during the detection interval. Ordinarily, a matrix of order equal to

the number of observation sample values must be inverted. It was shown

that with state-variable estimation these signal estimates could be made

by inverting small matrices of a fixed order independent from the number

of observations. A near-optimum, time-invariant detector was derived.

B. SUGGESTIONS FOR FUTURE WORK

Cox (Ref. 6] has investigated state-variable estimation when the

system is nonlinear and the inputs are gaussian. By contrast, the present

study discusses estimation when the system is linear and the inputs are

nongaussian. An obvious area for further work is estimation when the

system is nonlinear and the inputs are nongaussian. An approach similar

to Chapter VI might be fruitful.

A problem that is considered by the author to be one of the more

important unsolved practical problems is the detection of a signal when

the signal parameters are unknown and drawn from an infinite set. This

is the type of signal that is encountered In practically all space

communications. The receiver is not interested in the exact signal

or signal parameter, but only in knowing if the signal is present.

Intuitively, it is felt that a form of a near optimum detector would

correlate the signal and noise with the output of the adaptive filter of

Chapter V. This remains to be proven, however. This work should then

be extended to include two signals transmitting binary information,

where the parameters are drawn from two infinite but not necessarily

disjoint sets. An example would be frequency-shift keying when the

doppler shift was greater than the keying shift.
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APPENDIX A. DERIVATION OF THE SMOOTHIING EQUATIONS

This appendix gives the details of the derivation of the smoothing

equations. It is desired to find the solution of

*+ grad X(l) in PrY"kI X(l)Y(l),. ..,Y(k-l)]j = 0

(3.17c)

The density P(Y(k)IX(l),Y(l),...,Y(k-1)] may be specified by its mean

and covariance matrix. From Eq. (2.3a) it is seen that E(X(k)IX(l),

Y(l),...,Y(k-l)] is equal to $E[X(k-l)IX(l),Y(l),...,Y(k-1)], since

W(k-l) has zero mean. From Eq. (2.3c) B(Y(k)jX(l),Y(l),...,Y(k-l)]

Is equal to HOE[X(k-l)IX(l),Y(k),. .. ,Y(k-1)) since U(k) also has

zero mean. The solution to the filtering problem, Eq. (3.8), may be

used to find I(X(k-l)jX(l),Y(l),....Y(k-l)] with X(1) substituted

for i(1) as the Initial condition in Eq. (3.14), I.e., for k =2,

i(2) K; (ltK2) H + KX(2)]- [lit K;12)Y +X( 2)$l]

where

K X()- %,)r (A.2)

The matrix K X~)was given by Eq. (3.6) for k > 2.

7b simplify notation, Eq. (3.6) can be written as

X(k-l) a A k- 1 (k-1) + Bkl(k-2) (A.3)

Then, Iterating on Eq. (A.3), with (A.1) as a start, write the relations,

X(2) .A 2Y(2) + D2X(l)
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R(3) = A3 Y(3) + B3 2Y(2) + B3B2X(l)

(4 A4Y4 4 3A 3Y(3) +B4 B3A2Y + B4 B3B2X(l)

I x(i)= 3 2Xl

More generally,

R~-)= kl(k-l) 1xl-O+ C k- 1XW (A.4)

where

AA k-i wh-2 2~-li frmAhefite

and her X~kl)I(l)'O is the estimate of X(k-l)fomteile

equations when X(i) in zero.

It can easily be seen that the covariance matrix of Y(k) given all

observations to time k-i is

kY(k) (klk-l) = HI[MKX(k-1 4)t + PK U(k-1) rt]Ht + %() (A.6)

Then

grad £nfr(Y(k)jX(l),Y(l),...,Y(k-l)1I

t t t -1 (l-)(~)-H~~-)
-2 I KY(k)(ii Y)- Xki]

This gradient is added to the gradient of ZnIPEX(l)IY(l),...,Y(k-l))j

and the sum to set equal to zero to get a solution for X(i). The

equation to be solved has the form

~,X(l) - J + C; t i I 1 (kk1 ) HOC 1(l)
klk- _ k H KT( k)'' k-i

t 1 kk1 Y(k) a 0i (A.7)
S-i li KY(k)kki
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from which

[t tilt ]-1

X(i) = kl 0t
R lt Kyk)(klk-l) HOk-1 + @k-l

LCtt t Y'k)(klki){Y-k) - Hd(k-l) + k - l] (A.8)

The quantity 9 k-l is the part of the gradient of the exponent of

Pt(1)] ... P[Y(k-1jX(l),YC1),...,Y(k-2)]

that is multiplied by X(i), and Jk-1 is the part of the same gradient

that is not multiplied by X(1). For example,

S2K1 (1  1HK 1 H+ t['w(2) + U(2) tinr tMt]is (A.9)

and

J 2 = 'Alt Y(2) + 8 t ) + Ki1 )i(l) (A.10)

More generally,

a t [c t  1tyt'k)(klk-l) i4 Ckl + k] (A.11)§'k = _-1 ' aK~)kk1 1<k 1  -

and

t7k '~ltt-k(ktk-) Y(k) - NOX(k-1)j+jk (A.12)

If data before Y(1) are used, Eq. (3.13) can be modified to

-p~z(1)It(o),v(o).... . (-a)) ptT(1)IX(1),i(o),Y(o) .. (-m)] vffl(o),y(O) .....t-)

• ITl) Xl m{1 .(O ... (-a) ] .,. PtCkI (1 ) ,T(p) lr) .. T(k- 1)/(o) .. T(-a)I
P (o),T()....(k),T(O).....

(A.13
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Note that

P[X(l)IA(O),Y(O),.. . Y-n)] = P(1~j)1 (A(l4)

PtY(l)IX(l),X(O),Y(o),...,Y-n)] - P(Y(l)IX(l)1 A.5

Also,

has mean liX[k-lIY(-n),...,Y(k); X(-n-l) - 0], where X(k-l) is the

mean given in Eqs. (A.1), (A.2), and (A.3) (this can be seen by the

same reasoning as that used to derive Eqs. (A.1), (A.2), and (A.3)). The

covariance matrix was given by Eq. (A.6). Thus, the only term of the

gradient in Eq. (3.17) that will be changed will be the term due to
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APPENDIX B. 1111 CHANGE IN WhE DENS1 TY OF MhE CORRuIA70R (XJTPUT

This appendix presents the change with tAe (i) of the correlation

output density of the near-optimum detector of Chapter IV, and gives

a method for answering the very important question of how small to make

6e . The law of large numbers shows that the correlator density is very

nearly gaussian for large n so that only the change in the mean and

variance need be discussed.

Before proceeding further, we illustrate the well-known fact that

error is uncorrelated with and hence independent of the estimate. From

Eq. (4.31),

e 2(1) a a(0) - (AW I)t R A (i) (3.1)
x Z4+W

Since

z1x W W1 i +4 e*i (3.2)

then

e2(i I z()-*(i) - az(9 (i) eQi) (B. 3)

However,

9() [A(] R (' (3.4)

and therefore

IN[x1l) e*iM] 0 (3.3)
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1. Change of the Correlator Mean with 6o 2 (")

The output of the correlator is

n-m

C(n) 2 -;(ia) Y(i) (B.6)c~)=(n 2m)
J=M

Using Eq. (B.5), one obtains

I[XI(i) Y(i)] = SIxY1141) + e(i) + W(11

= I (i)] + Z[w(i) I:(')]

(B.7)

Since the signal and noise are independent,

EW(i) XI(I) 0 3[i M a~ ijIWO) + x 0a)]

a a 31W 2()3 (s.S)

From the first theorem in Chapter IV it is possible to bound the

change in .aiI I as a increases. It is also known that the change in

[2(1)] will be les than '. Then the change in the m.n of C(n)

can be bounded,

2. The Chan in Viawince with bs (i)

Write

E jbA(i)]t 2 (bM I))t R M~ (i)

&a Y A-Y- " a I £+w(k-J) (9.9)

k j
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Since IR x+w(t)f is maximum when t equals zero, the sum is maximized
for a constant IiIAj! by letting LA be different from zero at only one

place, i.e.,

tia. = II(i)ll (B.l0)

Then

max EnIn (i)It yn 2! _ A R +w(O)  (B.l1)

Now 11(M(i)]t Yn 1 can be specified to be less than some small
2

fraction of gl. i with a desired probability. For example, if
x i

Ila"A~l < I (B.12),(1)l 40

the probability that ll[ A ) I > ill0 q (i) is less than 10 5

'if 11At Ynl1 is specified to be less than 1/a ag (i) the magnitude

of the change in Z ~x i) Y2(i)1 a n -, will be less than

J( 0i 1  (i) )Y2(i) nF(Y) -i2(iY2(1)]

21) / 1) Y2W d

S a M(i) (noi) ' )

y i
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Using Eqs. (B.3) and (B.4) and noting that aii 1 1, the magnitude of

the difference is less than

2 4 2 3
S^ + (B.14)
aXl1(1 a li)(wi

A similar expansion shows that the magnitude of E9.I(i)Y(i) . I (J)Y(J)J

is changed by less than

22 (.15)

The techniques of Roe and White [Ref. 15] may be used to determine the

correlator variance, and Eqs. (B.14) and (B..15) may be used to bound

the total change. The two methods may be compared to decide whether

the ratio

11b (i) 11

A

and thus &e , is small enough. These methods will probably give an

unduly pessimistic answer. Usually, a ratio of 1/10 will be sufficient.
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APPENDIX C. DERIVATION OF THE FORM OF ThE NEAR-OPTIMM

FILTER FOR CONTINUOUS PARAMETER PROCESSES

This appendix contains the derivation of the equations for an

adaptive filter which may be synthesized from many narrowband filters.

This filter will have a particularly simple adaptive procedure. Consider

the system of Fig. S. The 0 are ideal nonoverlapping filters tAf in

bandwidth which completely fill the bandpass -B to B; the Goi are

iithe optimum smoothing filters following the G i . Appendix D shown that

the error for a steady-state smoothing filter is

e -- R,(o ) - ff2(t) at

0

1 IS as 2 s( 
.1

= R (0) - do (C.1

-jo0

where

fS(t) (C.2)

and R (T) is the autocorrwlation function of the signal; is

the Laplace transform of the inverse Fourier transform; S s(f) is the

signal power spectrum, and S t(f) is the spectrum of the signal plus

the noise. Assume that E. Gi equals an ideal filter of bandwidth B
ii

(equal to unity over the frequency range of interest).

Now, examine the error in the i t h  channel of Fig. 8. The signal

and noise spectra are

=s(,) =s Gi2 (C.3)

Snn(,) nn IGi2 (C.4)
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Assume no correlation between signal and noise. Then

S 2iW Ji Ss + S nn~ = il2 Sii (C.5)

SiiW S 171)

~~SiiiI

+ -44

FIG. 8. BLOM DIAGRAM OF XARROWBAXD PARALLEL FILTER SYSTEM.

Since there is no crosscorrelation between channels, the total error

for all channels is

- 0 n 12joo n n- I1 2

- f S.. I I G, df - f , ds (C.9)
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The first integral on the right is

00 n

f i an Gi, 2 df = Rs(O) (C.IO)

-0i

Now evaluate the second integral:

n S-{ SO 4C 2 e= S "Y{ ! G4  f ~ S SO ] G (C.1)

il i= j=l

Let 6f be small so that Sas(f) and Snn( ) are constant over the

interval. Then

E-l s O G S 0(f -( So(fi)=S- (o -I(0 )
Si i  [No(f i  + So(f i)0 [No(f i ) + S (f)] 

i

(c.12)

where S o(f i) and N (f ) are the spectral densities in the interval.

Also,

0Il] S 0 (C.13)
o siT C . .:So(f) + N (f:l G: (c, he

Note that if 0(f) 0 0, then G(f ) a 0; and if Gi(f) 0, then
G (f) = 0.

1 F I. 3("i
j J -0 I J 0, 1 (C.14)

-JOO

Assume that Ss8, Sii, and Oi  can be expressed as the ratio of

polynomials (they can always be approximated as closely as desired by

such a ratio). Then the partial fraction expansion can be made as

follows:
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Sss Gi  K(C.15)

S i Z S + aS - b mi

where a 0 and bmi 0 . The right-hand sum has an inverse Fourier

transform that is zero for t R; 0. So,

n S enK

SK (C.1e)

Thus,

I i= T I  ll

(C.17)

Using Eqs. (C.11), (C.14), and (C.17), one can see that the second

integral of Eq. (C.9) is

J0 0 .s 2 Joo
2 1'Si G11 do " S f l12 dS (C.18)

Also note that

G 1 s(f) 0 1 ] 0(f i)

0 °, G (N 0o(f + 0 1(f ,,)+S 0 (f) I ]4J 0 I + s0(f 1 )

Figure 9 and Eqs. (C.9), (C.16), and (C.19) show that If the outputs

of the parallel filters are weighted by

So(fd ) si
W(f ) + S() " + 8

a-1 01 1 1
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a. Block diagram for *
T

b. Block-diagram manipulation of Fig. 9c

c. Equivalent of Fig. 9b

FIG. 9. DIAGRAM FOR FINDING I1NS ERNRO 01 PARALLEL FILTERS.
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where S and N are signal and noise powers tsee Eq. (C.20)], and

summed, the resulting transfer function is Wiener optimum. If a number

of such narrowband filters can be constructed, and if estimates of the

signal and noise powers from the narrowband filters are made, then

weighting potentiometers with zero-to-one ranges can be adjusted to give

an adaptive Wiener filter.

Shortly, it will be shown how Fig. 10 may be modified to use nonideal

filters. But, first, the effects of a misadjustment of the potentiometers

will be investigated. A reasonable design objective would be an adaptive

filter that was some specified decibels worse than optimum. For example,

one might want the ratio of the mea-squared error in each channel to

the average signal power per channel to be "within 10 percent of that

obtainable if the signal spectrum were known exactly." Let K be the

nonideal potentiometer setting. The mean-squared error with this

setting is

CO
e[Sa + K 8ii - S2X],Gi,2 df (C.2o)

-00o

Again assuming nearly constant spectra,

Af Sit S + N

cAfS =8
hS

(The ith  channel is being considered, and for convenience the subscript

i will be dropped.) If ? z is the minimm mean-squared error, define:

[K (S + N)K- 28 +(C.21)

Then, solving Eq. (C.21) for K gives

K - [Do(S + N)] ' (C.22)

SEL-64s + '- 82
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and

[D (S + N)] 4

0K ~~ S + N

S S- >
S+N A

- (C.23)

,S A + A A<l
S+N 8 + N + l e + N

where e is the measurement error of S, and N is assumed to be

known exactly a priori (this is reasonable since there is usually an

arbitrarily long time to determine N). Then

2
D 0 ; (C.24)

a4t)
000)

a. Error spectrum due to signal and noise

b. Error spectrum due to noise

a1t)

c. Error spectrum due to signal

FIG. 10. 1HE BLOCK DIAGRAM FOR FINDING 1WE ERROR SPECTRUM OUT
op 7U 1 th WMzEL.
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The foregoing analysis has assumed ideal bandpass filters, i.e., no

crouscorrelation between filters. In practice, of course, it is not

possible to construct ideal filters. Assume that the ith  filter is

not ideal but is sharp and overlaps only its adjacent neighbors. Then

the additional cross-power error due to the i t h  channel is (see Fig. 10)

oI- o(r 1r[o , '0 " -l)]
e 2 - RGGo - I1 + G+ S df

I J i i i-
-00

O

Ri Gi l 0i- G+ N df

:5 4f Ji 0! [~G i- + 1IGi+l +max fS 0 N0  df (C.25)

0

Equation (C.25) provides a very simple means for determining how sharp

the filter cutoff should be.

There are now three conditions on the n narrowband filters that

will allow eT to approach ? arbitrarily closely:

1. The G i overlap an arbitrarily small amount,

n

2. 1 Gi(Jw) - Ke~ j Wr , where K is a constant and T is the delay

i=l

through each G i over the frequency range of interest.

3. The bandwidth of GI  is arbitrarily small, or the spectra into Gi

are nearly constant.

A synthesis procedure to meet these conditions will now be described.

If each G is to cover the frequency range

BB_ (i -1) to I
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the 0 1can be formed by taking the difference between two lowpame

filters with identical linear phase shift or delay; i.e.,

0i m (Hi H )(C.26)

where e- H Cs() passes from zero to (B/n)i, and H Iis the transfer

function of a zero-shift sharp-cutoff filter. Obviously,

1 0 - ST R (C.27)
i =1

thereby fulfilling condition 2.

if H is ideal, its impulse response Is

7he transfer function e*ST H i(s) can be made realizable by truncating

h (t) at *T. Then the Impulse response of the nnideal H (5) is

sin2t !I

where

bIt T 6l . t !S T
b !t -0 elsewhere

The transform of b(t) is a sine function; taking the transform of

h I (t), It Is seen that E I (a) is the convol ution of the sine function

with the Ideal lowpass filter (see Fig. 11). Then, In the vicinity of

2si(S/n)I,

'i (2siix Jm f sin x (C.30)
n a) Ta



The integral is tabulated, giving a simple method.for determining the

delay needed for a specified sharpness of cutoff.

A bandlimited filter with an impulse response 2T long may be

constructed with a tapped delay line and a lowpass filter [Ref. 16] as

shown in Fig. 12. The setting of the potentiometer on the jth tap,

aij, when synthesizing e- sT H (s) is

-sin[ l!!' (TT]T L
ii nTT - (C.31)

A practical form of the adaptive filter is shown in Fig. 13.

it) = a' -a' (C.32)a ij 10(-1)

The potentiometers in the ith  row correspond to the G of Fig. 10,

and the signal and noise measurements are made at the output of Go,.

However, if those measurements are made at the output of some other

narrowband filter, a great simplification of the adaptive filter is

possible. Block diagram substitution will reduce the form of the

adaptive filter shown in Fig. 13 to the form shown in Fig. 12, where

the jth potentiometer setting is given very simply by

n

= S i + N(c.3)

i =1

FIG. 11. THE CONVOLUTION.
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FIG. 12. SYNTESIS OF e- Hi AND OF TE
OOIWACT FORK OF THIE ADAPTIVE FILTER.

+

(2) * I)

FIG. 13. A PRACTICAL FORM Of TH3 ADAPTIVE FILTER.

If the filtering operations are to b,6 performed digitally, one may

go from the delay-line transfer function to numerical techniques in an

almost trivial manner. If f(mT) is the sample value, at t a in?. of

the output of the lowpass filter of Fig. 12, then the sample value at

the output of the sum of the weighted taps Is given by

k
0

c(mT) I a f[U. - J)T] (C.34)
JJ

since C(t) Is bendlimited, knowing c(mT) gives all Information about

c(t). it is also obvious how the set of difference equations appropriate

to the circuit In Fig. 13 Is used.
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In practice, the spectra will not necessarily be constant over the

range of 6. However, each channel may be considered as the sum of an

infinite number of infinitely narrow channels--each with the same

potentiometer setting, Go . Obviously, this potentiometer setting will

not be as good for some of these channels as for others. The equations

developed in the estimation part of this appendix may be used to determine

6f under an assumption of the possible slopes of spectra to be encountered.

The spectra can vary considerably from a constant value with little harm.
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APPENDIX D. STEADY-STATE ERROR IN A WIENER FILTER

For independent signals and noise, the mean-squared error from an

optimum filter is ERef. 17]

00

02 "f d{10d12 s + 10 1 [ (D.1)

-00

where

S s signal spectrum55

8 nn noise spectrum

S -S +8S 8+ -
ii -s nn ii SiT

- - O, t < O

SiT= (i

od = desired operation

O optimm filter given by GO(S) - so 0d4

Then

" Io , S8 + Si i, t Gd 1 d
~ f [oii.+81 ~IS-2 S4 iT 1 07 o

00

so -d 0d% d df (D.2)
s 9 -s %4-1
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Lot

and

f 2 (t) =E1{in G4 (D.4)

then

0 t < 0

By Parseval's theorem,

f il I~fsiG Od fit B-G f1il I4d

- J fl(t)-f2(t) dt J If 2(t) dt

1~ 
00S o 1

-f :L
-JOO (D.s)

Then

Go
e 2 f jdl2Sudf fi( t) dt (D.?)

-00 0
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APPENDIX E. THE STEADY-STATE MINIMUM-MEAN-SQUARED-ERROR
SAMPLED-DATA FILTER

Assume the filter is to be of the form shown in Fig. 13 and it is

desired to adjust the aI to give minimum mean-squared error. The

Z-transform of the tapped-delay-line filter is

k

0

0(z) = a n  (E.1)

0

The equation for the mean-squared error is well known [Ref. 18] and is

k k
e 0 T S Sw(Z )  an a

r 1 0 0
r0

k
0

- an(Z-n+, + zn-,)Sx(Z) dZ (Z.2)

n=O
- iT

The desired operation on the signal is e . If it is desired to solve

for the filter giving the best estimate of the delayed signal, I is a

positive integer. If the best predictor is desired, I is a negative

integer. The term R (T) is the signal autocorrelation function; S X+W(Z)

is the sampled noise plus signal spectrum; Sx(Z) is the sampled signal

spectrum; and the integration is around the unit circle. Uncorrelated

signal and noise are assumed.

The optimum setting for ai may be found by setting the partial

derivative of e with respect to at equal to zero and solving for a .

k
oe2 T ZIXW()- a n _ X

T - P0j Z 1(

0 
k

+ Zij I X a n _ Sx+(Z)/ 0 (9.3)

0
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where, for simplicity, I = 0. Parseval's theorem for discrete systems is

Z -zj 1 ( ) - (z)

xl(Z) 2(z-1) dZ = . dZ
r r

0 0

f 1(nT) f 2 (nT) (E.4)
-0

Then a solution to Eq. (E.3) is

k
I dZ IS ani 0 -n . X(Z)jr' sx+w~zl zi[ Sx¢) ]

r 0
0

ko

- 1117 x.,1+ - ,. j1-3 Sx() Z .o

r 0 r

Again, using Parseval's theorem,

k k
I 0 d ((n-i)T]n

2 SW Ia(Zn) n z i n  
T (2.6)

r n=O

and taking the inverse

1X(Z) Z = t(IT) ()

yfj T 2)
r0
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we have (ko+1) equations of the form

k
0

an Rx+w [(n-i)T ] = Rx(iT) (E.8)

n=O

which can be expressed in matrix form as

R xw(0) R x+w(T) R xw(2T) R x+w(ko0T) a0  R (0)

R X+w(T) Rx+w (0) Rx+w (T) a1  Rx(T)

Rx+w (2T) R x+w(T) R x+w(0) a2  = R x(2T)

R+w(k0T) ... R+w(O) a k  L R(k 0 T)

(1.9)
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