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ABSTRACT

This investigation considers three closely related problems: the
optimum filtering of stationary or near-stationary random processes with
unknown parameters from an infinite parameter set; estimation of the
state of a linear discrete dynamical system with nongaussian noisy inputs;
and applications of state estimation theory to detection. The form of
the optimum filter when the parameters are unknown is found to have
weights that are averages of simple functions of the signal and noise
spectra averaged over the parameter space. Practical methods for
implementation are given, Thq key problem in nonlinear state-variable
estimation is obtaining the joint density of the states and the observa-
tions in a convenient form. This problem is solved, and surface search-
ing is used to find the mode. The number of dimensions of the surface
is the same as the order of the dynamical system. A new approach to
linear state estimation is given; and this theory is applied to the
problem of detecting a gaussian signal in gaussian noise. A time-

invariant, near-optimum detector of small dimensions is derived.

- iii - SEL-64-131




II.

I1I1.

1V,

VI,

VII.

CONTENTS

INTRODUCTION . v v+ v v 4 o v o« o 4 4 4 s o o v o o o o« o »
A. Outline of the Problem ., . . . . . . + ¢ ¢« « ¢ « o « v o« »
B. Previous Work . ., . . . . ¢ « + « v v v v e v e e

C. Outline of New Results . . . . . ¢« ¢ v ¢« ¢ ¢ o ¢« o

STATEMENT OF THE PROBLEM AND MODEL OF THE PROCESS . . . .

A. State-Variable and Sample-Value Representations of
Discrete Linear Systems . . . . . . . « . ¢ v v v 0 e .

B. Model of the Process . . . . . Ce e e .
OPTIMUM LINEAR SMOOTHING AND FILTERING . . . . . . . . . + « &
A. Linear Filtering . . . . . « . « v v v v e v o e s e e
B. Optimum Linear Filtering and Smoothing . . . . ., . . . .
C. Observations Through a Second Dynamical System . . . . . .
D. Estimation with Partial Data . . . . . . . . . . . .

E. An Example of a Smoothing Estimation . . . . . . . . .

APPLICATIONS TO DETECTION OF GAUSSIAN SIGNALS IN ADDITIVE
GAUSSIAN NOISE . . . . & ¢ v v v o v o« o o v s o o o 2 s o o

A. The Likelihood Detector . . . . . + ¢« ¢« ¢ + « o o o o o

B. A Near-Optimum Detector Containing a Time-Invariant Filter

LINEAR FILTERING OF SIGNALS WITH CONTINUOUS UNKNOWN PARAMETERS
A. Magill's Solution for a Finite Number of Parameter Values

B. Filtering of Stationary or Near-Stationary Processes with

Parameters from an Infinite Set . . . . . . . . . . « . .
ESTIMATION WITH NONGAUSSIAN INPUTS . . . . + ¢ « v ¢ « ¢ o o &
A. Introduction . . . . « ¢ + . . 4 v e e e 4 e 0w e e
B. Propagation of First-Order Statistics ., . . . . . ,+ . . .
C. Finding the Joint Density of the State Variable and the

Observations . . . . . +« ¢« ¢ v 4 e v 0 v e e e e e e e

Finding the Estimate . . . . . . . . . . « « « « + o o @

The Asymptotic Behavior of the Estimators as the Signal-

to-Ncise Ratio is Increased . . . . . . . ¢« . « « . &
CCONCLUSION . . v v« v v v v v v e vt e e e e e e e e e e
A SUMMALY v 0 . e v e e e e e e e e e e e e e e e e e e e
B. Suggestions for Future Work . . . . . . . . ¢« « « « « + .

SEL-64-131 - iv -

W D -

29
31
33

41

41

42

47
47
47

52

59

65

67
67
68



APPENDIXES
A. Derivation of the Smoothing Equations . . . . . . . . . . 69
B. The Change in the Density of the Correlator Output . . . . 73
C. Derivation of the Form of the Near-Optimum Fiiter for
Continuous Parameter Processes . . . . . . . . + « « « +» . 17
D. Steady~State Error in a Wiener Filter ., . . . . . . . . . 89
E. The Steady-State Minimum-Mean-Squared-Error Sampied-Data
0 T 1 - o - ) |
REFERENCES . . . . ¢ 4 4 o o o 0 o s o o o o o o s o o o o v o o+ 94

. -V - SEL~-64-131




ILLUSTRATIONS

1. An example of a discrete linear system . . . . . . . . . . . . 8
2, The dynamical system . ., . . . . ¢« + + « « & + ¢+ o « + « « . . 10
3. Flow diagram for smoothing . . . . . . . . . . « ¢« + « 4+ . +« . 20
4, The model containing two dynamical systems . . . . . . . . . . 22
5. The dynamical system for finding the error, E(k) . . . . . . . 22
6. The estimates of X(1) . . . . . + v v v v v v v v v uw ... 28
7. The near-optimum detector . . . . . . . « . . . « . ¢+ ¢« .+ .. . 40
8. Block diagram of narrowband parallel filter system . . . . . . 78
9. Diagram for finding the error of the parallel filters . . . . . 81
10. The block diagrams for finding the error spectrum out of the
ith channel . .. .. ... ... .. ... .... 83
11. The convolution . . . . . . . . « v ¢ 4+ ¢ 4 o 4 s s s « o+ ¢+ o . 86
12. Synthesis of e~87 H;{ and of the compact form of the adaptive .
P 2 0 2 o - 14
13. A practical form of the adaptive filter . . . . . . . . . . . . 87 .
TABLE
1. Summary of the estimation equations ., . . . . . . . . . . . . . 19

SEL-64-131 - vi -




q,(r)
u,(k)
v, (k)
x,(k)

z(k)

IARITW)

SYMBOLS
value of the ith weight of a tapped delay line
the Jth element of K(i)
the error in estimating xl(i)
steady-state mean-squared error of a Wiemer filter

total mean-squared error of all the Go
i

(1)

increase in the mean-squared error of 3 over the

minimum mean-squared error
charscteristic function of “E(k)
order of the matrix ¢
th

output of Gi at the r sampling time

th
the £ component of U(k)

th
the £ component of W(k)

th
the £ component of X(k)
& linear combination of the uz(k)
optimum linear estimator of xl(k)

coefficient of Y(k) in filtering equation

optimum linear estimator of xl(x) given Y(3),...,Y(£)

- vii - SKL~-64-131




SEL~64-131

(1) =(1)

difference in impulse response between K and B
system bandwidth

output matrix for the two-system combination

matrix multiplying X(k-1) in the filtering equation
giving X(k)

matrix multiplying X(1) in the filtering equation
giving X(k) conditioned on X(1)

set of observed data

matrix multiplying Y(i+j) in the equation giving
the near optimum estimate of X(i)

error in estimating X(k)

cumulative distribution function (cdf)
tranlitiop matrix of the second dynamical system
the 1th narrowband filter

the optimum filter at the output of Gi(jw)

matrix multiplying X(1) in the equation for the
gradient of the exponent of P[Y(1),...,¥(k)|X(1)]

dynamical-system output matrix

output matrix of the combination of two dynamical

systems

- viii -




Ku(x)
Kw(x)

KX (k)

Kx(k)(i-m.i+m)

Kv(k)(k|k~l)

L{Y(1),...,¥Y(n)]
No(fi)

N(k)

P[]

R (1)

R, (1)

s i el

that part of the equation for the gradient of the
exponent of P[Y(1),...,Y(k)|X(1)] that is not
multiplied by X(1)

nonideal potentiometer setting

covariance matrix of U(k)

covariance matrix of W(k)

covariance matrix of i(k) conditioned on all data
to Y(k)

covariance matrix of ﬁ(k) conditioned on
Y(i-m),...,Y(i+m)

covariance of Y(k) conditioned on all data to Y(k-1)
covariance matrix of vn

covariance matrix of Yn

likelihood ratio

noise spectrum out of Gi(Jw)

noise input to the two-dynani;al-systen combination
noise power at the output of Gi(Jw)

probability density

autocorrelation function of xl(k)

autocorrelation function of scalar W(k)

C - ix - SEL~64-131




Rx+w(1T)

u(x)

w(k)

X(k)

X(x)

SEL-64-131

autocorrelation function of signal and noise
signal power at the output of Gi(Jw)
spectrum of signal and noise

see Eq. (D.1)

see Eq. (D.1)

spectrum of noise

signal spectrum at the output of Gi(jw)
spectrum of signal

sampled-data signal spectrum

sampled-data signal plus noise spectrum
ssmpling period

noisy input vector to the dynamical system
dynamical-system output noise

vector representing a sequence of scalar W(k),
k =1,2,...,n

dynamical-system state vector at the kth sampling

time

estimate of X(k)




(k)

i)

—
)
——.

(%)

the observed random variable at the kth sampling

time

vector representing a sequence of scalar Y(k),
k=1,2,...,n

parameter set

element of ¢

input matrix for the two~-dynamical~-system combination
element of I

a state of nature

the dynamical-system input matrix

path of integration on unit circle

input matrix for the second dynamical system

see Eq. (6.17)

dynamical-system transition matrix

output noise generator of the two-dynamical-system

combination

- xi - SEL-64-131




ACKNOWLEDNGMENT

Apprecintion is expressed for the guidance of Dr. Gene F. Franklin,
under whom this research was conducted, and for the many helpful sugges-
tions of Dr. Norman M. Abramson. Special thanks are also due Dr. Rupert
G. Miller of the Stanford Statistics Department for several helpful

conversations—particularly concerning the proof of the first theorem
in Chapter VI.

SEL-64-131 ' - xii -




I. INTRODUCTION

A. OUTLINE OF THE PROBLEM

This investigation concerns the optimal estimation or detection of
a sampled, vector-valued stochastic process that may be generated by a
noisy discrete, linear, dynamical system. The system inputs are a
sequence of independent random variables, i.e., white noise. The system
output is corrupted with additive white noise. 1In the first part of
this report the white noise is assumed to be gaussian (linear estimation
is optimum); later, nongaus;ian inputs and output noise are assumed (in
general, nonlinear estimation will be optimum). The stochastic processes
may or may not be stationary and, for most of the report, the process
parameters will be assumed to be known a priori. In Chapter V, however,
consideration is given to the important problem of estimating the value
of the process when it is stationary or nearly stationary and when the
parameters are assumed to come from some infinite set with some a priori
distribution.

In this analysis, the word "estimation" will mean either filtering
or interpolation. An optimum estimate is defined as one that minimizes
a generalized mean-squared-error performance criterion or maximizes a
conditional density. Filtering is defined as the estimation of a present
value conditioned on all the past data. Frequently, the term "smoothing"
is used in place of interpolation or estimation of a past value condi-
tioned on all data to the present.

Engineering examples of the above processes are listed below. An
important example is a space vehicle in orbit, The equations of motion

when linearized correspond to a linear dynamical system. The atmospheric

-drag may be represented as a noisy input. Range and velocity of the space

vehicle are measured over a noisy radio channel. This channel noise
constitutes the output noise. Usually, the noise, as it appears to the
velocity- and range-measuring equipment, is nongaussian.

An equally important example of this type of system is a rocket under
power. The noise inputs are caused by random variations in motor thrust
amplitude and direction. The trajectory information is also transmitted

over a noisy radio channel.
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An example of a stationary process with unknown paraneters from an
infinite set is a satellite or space vehicle transmitting on an unknown
frequency due to uncertainty in the doppler shift or drift in transmitter
frequency. Determining and tracking this freqﬁency are the central
problems in space communications. For most types of modulation, tech-
niques similar to those discussed in Chapter V provide by far the best
solution known. An example of a near-stationary process is a signal with
known parameters and unknown jamming, where the jamming corresponds to
an unknown output noise. Use of the moon as a passive reflector for
communications from one earth point to another is another example of a
near-stationary process. We might also include in this class a tracking
antenna system using conical scan. Here, the system gain is directly

proportional to the unknown signal strength which slowly varies.

B. PREVIOUS WORK

Kalman and Koepcke in their pioneering work [Ref. 1] have considered
the optimal filtering and prediction of sampled gauss-markov stochastic
processes when the parameters of the process are known. Rauch [Ref. 2]
has extended this analysis to include interpolation when the input noise
is gaussian, when there is no output noise, and when the parameters are
a sequence of independent random variables with known means and variances.
Widrow [Ref. 3] and Gabor et al [Ref. 4] have independently investigated
and constructed systems that adapt by using a noise-free sample of the
signal., 8Since in many practical situations the noise-free sample will
not be available, this type of adaption was not considered in this
investigation,

Magill [Ref. 5] has used the Hilbert space approach (approximately
concurrently with this investigation) to simplify the derivation of the
filter and interpolation of gauss-markov processes. He has also given
the form of the optimal estimate of a gauss-markov process when a finite
set of parameters is distributed in general according to some aibitrary
density. Cox [Ref. 6] discusses state-variable estimation of nonlinear

systems with gaussian inputs. His approach involves a system linearization.
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Work in this investigation contains an extension of Magill's adaptive
estimation for a finite number of parameters to estimation where the
parameters may come from an infinite set. The theory of nonadaptive
estimation is extended to include dynamical systems with nongaussian

inputs and output noise,

C. OUTLINE OF NEW RESULTS
This investigation gives solutions to three closely related problems:

1. The theory of adaptive estimation is extended to stationary or
near-stationary processes with parameters from some infinite
parameter set.

2, The theory of nonadaptive estimation is extended to include
nonlinear filtering and interpolation of the state variables of a
dynamical system excited by nongaussian random inputs.

3. Methods are given for greatly simplifying the optimum detection
procedures when the signal can be considered as the output of a
linear dynamical system excited by random noise,.

Chapter 11 contains a description of the two main mathematical methods
of system description that are used in this report. This chapter also
contains a detailed description of {he random process.

In Chapter III a new approach to the linear estimation of the state
variable of a discrete linear dynamical system is presented which shows
the close relationship between state-variable estimation and pattern
recognition., The estimation theory in Cyapter II1 was inspired by, and
is a straightforward extension of, the pattern-learning theory developed
by Abramson and Braverman [Ref. 7]. In both cases, it is desired to
learn the conditional mean of a gaussian vector-valued random variable.
The equations for the mean and the covariance matrices derived by
Abramson and Braverman are almost identical to the filtering equations of
Chapter III. The author feels that the new approach is far simpler and
gives.a greater intuitive insight than other methods that have been
suggested earlier.

The chapter also provides necessary background for the three chapters
that follow. A new problem is solved in Sec. C: estimation of state
variables when the estimates are taken through a second dynamical system

(as will very often be the case). Equations derived by Magill may be
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used to make these estimates; however, the order of Magill's matrix
equations can be twice as great as those presented here. If a large
amount of data is processed, the reduction in calculation could be
significant.

Chapter 1V applies the theory of linear state-variable estimation
to the problem of detecting a gaussian signal immersed in additive
gaussian noise. It is shown that a long-standing conjecture about the
possibility of simplifying the detection procedure is often true. 1In
Kailath's solution [Ref. 8], the optimum detector contains an operator
that gives the best e¢stimate of each signal sample value during the
detection interval based on all the data observed during the interval.

If several thousand data points are observed, a matrix of the same order
must be inverted. When the signal can be represented as, or approximated
by, the output of a noisy dynamical system, the estimation equations of
Chapter 111 may be applied directly. The matrices to be inverted will

be no larger than the order of the dynamical system regardless of the
number of data points. Further simplification results if the estimator
of a sample value is truncated when the error covariance matrix shows
that there will be little reduction in mean-squared error by conditioning
on additional data points. A near-optimum time-invariant detector is then
shown to exist. The advantages of time-invariant circuitry when analog
networks are used cannot be overemphasized. Time-variable analog
networks of the complexity reqguired in this problem are extremely
difficult and expensive to build. This form of detector is the form
most convenient to instrument, using the newly developing and powerful
methods of optical data processing.

Chapter'v describes optimum estimation when the process is stationary
or near stationary and when the process parameters are unknown but may
assume any one of an infinite number of possible values. The term "near-
stationary" is used rather loosely. In practice, the filter will adapt
8o quickly that good results may be obtained on processes many persons
would call highly nonstationary. )

The estimator weights are functions of the parameters, and it is shown
that the optimum estimator is formed by taking the expected value of

the weights over the parameter space conditioned on the observed values.
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It is then shown that the parameters enter into the weights as functions
of the signal and noise spectrum in a very simple manner. The optimiza-
tion procedure thus involves learning these spectral functions conditioned
on the data.

It is believed that this device will have numerous applications in
the field of space communications. As mentioned in Sec. A, a fundaméntal
problem is the frequency tracking of a narrowband signal. The usual
approach is to use frequency modulation or to insert an unmodulated
carrier. In either case a phase-locked loop may be locked onto the
carrier and used as a frequency reference for a narrowband filter.
Frequency modulation very often is not the best way to modulate, nor
dnes the inserted carrier contain informatiun, and thus their use lowers
the system signal-to-noise ratio for a fixed transmitter power. 1In
electronic surveillance work, the opponent is hardly ever considerate
enough to include a tracking carrier! One of his favorite tactics is
to shift his transmitter frequency in a manner unknown to the receiver.
Such "carrierless" situations show the filter of Chapter V off to good
advantage since, unlike the phase-locked loop, it will automatically
center itself about the signal in the form of a narrowband filter.

Chapter VI discusses nonlinear estimation {including the best nonlinear
predictor) of state variables of linear systems with nongaussian inputs or
output noise. With the exception of the types cf distributions, the model
of the process is identical to that used for linear estimation. First,
there is a proof of the necessary and sufficient conditions for the dis-
tribution of the state variables to converge to the gaussian, The esti-
mates found in Chapter VI are either Bayesian or maximum likelihood, and
the key problem is finding the conditional density in a convenient form.
The Markov property of the state variables is used to simplify this
rather complex density and then surface-searching techniques are used to
find the mode. An important result is proof that near-optimum (linear or
nonlinear) estimates of the state of many dynamical systems do not
require conditioning on all available data, but may be made using only a
short sequence of observations. The length of this sequence may be related
directly to the rate of decay of initial conditions in the dynamical
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system. The saving in computation time may be very significant. Tﬁe
dimensions of the surface to be searched are the same as the order of
the dynamical system,

Use of this theory is envisioned in a situation such as the one
given below. Much of the ballistic missile work at Cape Kennedy is
concerned with measurement of missile accuracy. The trouble is that the
external ground-based measuring equipment is no more accurate than the
missile guidance and thus cannot offer any real check on the trajectory.
Any increase in guidance accuracy will completely swamp the measuring
equipment, (The seriousness of the problem has prompted the government
to issue a large contract for range modification, although it is the
opinion of many that the point of diminishing returns in measurement-
equipment accuracy has already been passed.) In data reduction the
standard procedure is to make a linear least-mean-squared estimate.
Since it is known that the statistics are nongaussian, nonlinear estima-
tion may offer a possibility of significant improvement. The asymptotic

behavior of the estimator as the output noise decreases is also discussed.
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11. STATEMENT OF THE PROBLEM AND MODEL OF THE PROCESS

It is desired to form an estimate of a sampled-data, random-message
process corrupted by additive noise. The random message or the additive
noise or both may be nongaussian. The observable process (the process
from which the estimations are made) is assumed to be sampled, either
in scalar or vector form, and for most of this report is assumed to be
generated by processes with known statistics. In Chapter V, however,
it is assumed that the estimates are made of a process with unknown

parameters and that these parameters may come from an infinite set.

A, STATE-VARIABLE AND SAMPLE-VALUE REPRESENTATIONS OF DISCRETE

LINEAR SYSTEMS

Two mathematical methods for describing linear discrete dynamical
systems are used in this report. The first is called the state-variable
representation, and the second is known as the sample-value representation.
S8ince many engineers are familiar with one or the other, but not with
both, the methods are discussed briefly in this section.

Consider the transfer function

72 Y(z

1-a0)a-w)) Y

G(Z) = (2.1)

A
where uz(z) is a noisy control input and Y(Z) is the output. A block
diagram having this transfer function is shown in Fig. 1. The input
“l(k) is a second input of noise alone. Let xl(k) be the value (or
state) of the output of the right-hand delay at the kth sampling
instant, and let xz(k) be the value at the output of the other delay.

Then the state or state vector of the system is defined as

x, (k)
X(k) = (2.2)
x,(k)

In general, any sampled-data transfer function may be reduced to block
diagram form with feedback around delays, and a state vector may be defined
with the values of the delay outputs at the sampling instants as vector

elements,
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! (k)

%, (k)

J
FIG. 1. AN EXAMPLE OF A DISCRETE LINEAR SYSTEM.

The vector X(k) may be found from a set of difference equations

that may be written as
X(k) = #X(k-1) + r'u(k-1) (2.3a)

The matrix ¢ 1is known as a "transition matrix" and is nox mo where mo
is the order of the system. This matrix may be time variable, but to
simplify notation, its argument will not be carried along. The 1Jth

cij' izhtho gain between the output of the 1th delay
and the input to the j§ delay. The "input matrix" I’ is also n°><m°

element of O,

and it determines where the input vector U(k-1) is applied to the
system,
The system output may be a vector or it may be scalar, and it usually

is a linear combination of the states. The output can be written as
Y(k) = HX(k) (2.3b)
where H is a q matrix (vector outputs), with q the number of

outputs. The H matrix also may be time variable. The system equations
for the system of Fig. 1 will then be

SEL-64-131 -8 -



a 1 'xl(k-l) 1 0 ul(k-l)
X(k) = + (2.48)
0O b sz(k-l) c 1 uz(k-l)
¥v(k) = [1 0] 'xl(k) (2.4b)
[ x,(k)

The second mathematical description will be used when the input and
the output of the dynamical system are both scalar. The output of a
linear system is a linear combination of the inputs, or
k
o(k) = Y a(k) r(k-3) (2.5)
j=0

where r(k) 1is the input and c(k) is the output. The system may be
thought of as a tapped delay line similar to the one shown in Fig. 12
of Appendix C. If r(t) is a bandlimited continuous function with
value r(k) at the kth sampling instant, and if the time between
samples, T, is less than 1/2B, where B is the bandwidth, the well-
known sampling theorem [Ref. 9] shows that there is a one-to-one cor-
respondence between the sequence r(k), k = 0,1,....k°, and r(t) over
the interval [O, koT]. There is also a one-to-one correspondence
between the sequence of c(k) and c(t) over the same interval. For
a time-invariant system, the aJ(k) are the coefficients in the series
expansion of the system Z-transfomm.

If the r(k), k = 0,1,...,k are the (k°+1) elements of a vector
called the "input vector," and if the c(k), k = 0,1,...,k , are the
(k°+1) elements of the "output vector," the two vectors are related by
the following matrix equation. (The square matrix will be called the

"transfer matrix.")

[c(0) ] [a,(0) 7 fr(0) T
c(1) al(l) a (1) r(1)
= a2(2) 31(2) ab(2) . (2.8)
k)| |a (k) ey | ety
o L. © ° 4 L o
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B. MODEL OF THE PROCESS

The message process will be generated by random inputs, U(k), to
the system shown in Fig. 2. It is assumed that U(k) is independent of

U(j) for j # k. The element uz(k) is also assumed to be independent
of wu, (k) for [ £i.

FIG. 2. THE DYNAMICAL SYSTEM.

Much use will be made in this report of a characteristic of X(k)
called the (strict) "Markov property." This property is defined by the

relationship
F[X(k)|X(1),...,X(k-1)] = F[X(k)|X(k-1)] (2.8)

where F(:) 1is the cumulative distribution function (cdf). In other
words, the density of X(k) given all the X(j) up to X(k-1) 1is the
same as the density conditioned only on X(k-1). From Eq. (2.3a) it is
seen that if X(k-1) is given, then the only random variable on the
right is U(k-1). Since U(k-1) 1is independent of U(j) for j -. k,
the density of X(k) is entirely determined by X(k-1) and U(k-1).
1f U(j) is a gaussian random variable, the process is known as a
"gauss-markov" process.

The message process is assumed to be transferred over a physical
channel (such as a telemetering link) and noige will be added. 1In our
model, this noise is indicated by the vector W(k), and Eq. (2.3b) will
be modified to .

Y(k) = HX(k) + w(k) (2.3c)
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Estimations of X(j) will be made by observing (the observable process)
the sequence Y(1),...,Y(k).

Both U(k) and W(k) are assumed (without loss of generality) to
have zero mean. The vectors U(k) and W(j) will be independent for
all j and k, and W(k) will be independent of W(j) for j # k.

Two types of covariance matrices are used frequently in this study.
The first is called a "state-variable covariance matrix" and is denoted
by the letter K. For example,

t

E[X(k) X(k)) = Kx(k) (2.9a)
E(¥(k) Y(x)%] = Ky (k) (2.9b)
EIW(k) W) = Ky, ) (2.9¢)

where superscript t means the transpose.

The second type of covariance matrix is called the "time-series
covariance matrix." An example would be

8(1)7 (s(1),...,8(k)]
KS = E . (2.10)

s(k)
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I1I. OPTIMUM LINEAR SMOOTHING AND FILTERING

This chapter discusses linear smoothing and filtering. The

estimators will be derived by assuming th;t the input random process

and the output noise are gaussian. So, the first section will contain

a brief discussion of linear filtering of nongaussian processes with
either gaussian or nongaussian output noise, Section A also contains

a comparison of the Bayesian and the maximum llkelihood estimation of
state variables. Section B contains the derivations of the filtering
and smoothing routines. In many practical applications, the observations
will be made through a second dynamical system, and Section C contains

a derivation of the required modifications of estimating procedures.

A. LINEAR FILTERING

The two classes of estimators to be considered in this report are

Bayes estimators and maximum likelihood esfimatorn.

Definition: A Bayes estimator ﬁ(J) is one that minimizes the
expected risk,

p(X) = fr-[i(a),x(a)} P(X(3)¥(1),...,¥(k)] ax(J)

where L[{X(j),X(J)] 1is the loss and X(j) is the estimate of X(j)
given Y(1),...,¥(k).

1t

LIX(3).X(3)] = 1X(3) - x(3)12 (3.1a)

it can easily be shown that

X(3) = E[X(3)1¥(1),...,¥(k)] (3.1b)

The loss function for the Bayes estimate will always be that defined in

Eq. (3.1a), i.e., minimizing the mean-squared error.
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Definition: The maximum likelihood estimate of X(j) is the X(jJ)
that maximizes P[X(j),¥{1),...,¥(k)].

It is frequently convenient to find this maximum by setting the
gradient of /n{P[X(J)|¥(1),...,¥(k)]} with respect to X(j) equal to
zero., The elements of the gradient vector are known as "likelihood
functions.™

1f P(X(j)|¥(1),...,¥(k)] is symmetric about the highest mode, the
conditional mean and the maximum likelihood estimate coincide. Such
conditions exist if X(j) and W(j) are gaussian.

In Sec. B, the Bayes estimators for gaussian inputs are seen to be
linear. Now, if the actual states are taken from the dynamical system
and subtracted from the corresponding estimator output to obtain the
error, the system from the noise inputs to the error outputs is still
linear. Then, the error covariance matrix will be just a linear trans-
form of the input covariance matrix plus a linear transform of the output
noise covariance matrix. The mean-squared error is the tiace of the
error covariance matrix. In other words, the mean-squared error of the
filter that is optimum for gaussian input and output noise is a function
only of the input and output noise covariance matrices. If a filter is
designed to be optimum for a gaussian input process with a given covariance
matrix, the mean-squared error of this filter, when the input is non-
gaussian with an identical covariance matrix, will be the same as the
gaussian input mean-squared error.

In Chapter IV (for example) it is seen that if one asks the question,
What is the linear circuit that will give the minimum mean-squared error?
the answer is found to be a function 6f the input variance and covariance
only. Then, the filters derived in this chapter are the best linear ones
for all densities with the same covariance matrix. If any improvement
is to be gained for nongaussian processes, it necessarily will be a
nonlincar operation. Nonlinear smoothing and filtering are discussed
in Secs. B and C, Chapter VI.
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B. OPTIMUM LINEAR FILTERING AND SMOOTHING

In this section, the optimum filter is first derived. Next, the
optimum smoothing routine is found and it will be seen that it contains
filtering as a subroutine, The model is shown in Fig. 2 with W(k) and
U(k) gaussian. The filtering problem then is to estimate X(k) given
all values of Y up to Y(k). As noted in the last section, the
optimum estimate is the conditional mean of the quantity to be estimated.

In other words, if it is desired to estimate X(k), write the density

P(Xx(k)|¥(kx),¥(k-1),...,¥(1)), and find its mean. Later, it will be
shown that this mean is identical to the mean of P[X(k)]Y(k),ﬁ(k-l)],
where X(k-1) is the estimate of X(k-1) given Y(1),...,Y(k-1). So

our problem is reduced to finding this second mean.

Using Bayes' theorem, write

)] = BLYGO[X(k) X(k-1)] PIX(k)|X(k-1)] P[X(k-1)]

PIX(k)|¥(k),R(k-1 =
P[X(k-1),Y(k)]

(3.2)

Since this density is gaussian, the mean will be the value of X(k) that
minimizes the exponent of the density.

Note that X(k) is contained only in P[Y(k)|X(k),X(k-1)] and
P[X(k)|X(k-1)]. Referring to Fig. 2, it is seen that

PIY(k)IX(k),X(k-1)] = P[¥(k)|X(k)] ~ NHX(K) Ky ()] (3.3)

where K is the covariance matrix of W(k); [N(A,B) denotes a

w(k)
normal density with a mean vector A and covariance matrix B]. The

vector X(k-1) is the mean value of X(k-1) given Y(k-1),...,¥(1).
Then the mean value of X(k) given ﬁ(k-l) - is @i(k-l). Let the

~

covariance matrix of X{(k-1) about X(k-1) given all data up to Y(k-1)
be Ki(k-l)‘ (The subscripts. on the covariance matrices denotf the

random variable.) The covariance matrix of &X(k-1) about ¢X(k-1) is
®K§(k_1>®t (@t is the transpose of ¢). Since X(k-1) is independent

of U(k), we have

ot t
+ K2 1

[X(k IX{k-1" . N[:X(k-1 , . . V4
pX(k X\k 1 X \‘i‘(k 1, KU{\‘\"l X(k"li g

(3.4)
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Assume that Kw(k) is not singular. Thus, the product can be written as

PLY(k)|X(k) IP[X(k)|%(k-1)] = (const) expE%{[Y(k)-HX(k)] w(k)lv(k) -HX (k)]

+ [X(x)-0%(k-1)]% )[x(k) -0% (k- 1)]}]

(3.5)

X(k

vhere
N t t -.

The exponent will be minimized when the gradient of the quadratic in
Eq. (3.5) is zero.

I1f Q 1is any symmetric matrix, T 1is a vector, and if
= (X - )" Q(ix - n)
then the gradient of ¢ with respect to X is
grad op = ot Q(HX - 73) (3.7)

Also, the gradient of a sum of quadratics is the vector sum of the
gradients of each quadratic. If the mode of Eq. (3.5) is found by
setting the gradient with respect to X(k) of the exponent equal to
zero, and solving for X(k), the optimum estimate of X(k) is:

-1
X(k) = [ut '(k)u + "xtk)] [n Kw%k Y(k) + xx(k)ox(k 1)] (3.8)

The covariance matrix Kh(k) is found from Eq. (3.5) by taking the
inverse of the sum of the terms that are premultiplied by X and
postmultiplied by X or
-1
t -1 -1 ]
A K 3.9
K2(k) ‘[" ()™ * Kx(x) (3.9)

Note that K“(k) is not a function of Y.
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If the estimation procedure is stated at k =1, Kx(l) must be
known. Assume that the dynamical system is turned on at k = -Mo and

the initial conditions are zero at that time.

M°+1
M ~-i+l
3.10
x(1) = :S o ° ru(i-M -1) ( )
1=0
Then,
M +1
o]
_ :E ®M°‘i+1 - o f M 141\t (3.11)
*x(1) Ku(i-u -1) T (° )
i=0 °

The one remaining quantity to be specified is i(l).

Ply(1)jX(1)IP{X(1
_%—ll (3.12)

P(x(1)|¥(1)]

P[Y(1)]X(1)] P{X(1)] = (const) exp[-3{(¥(1) - mx(1)1* K3{,)(¥(1) - mx(2))

v [x(1) - X" x;,}l)[x(l) - i(l)]}] (3.13)

where X(1) is the a priori mean of X(1) [X(1) is zero if the
initial conditions in Eq. (3.10) are zero]. Setting the gradient equal

to zero gives

-1
A t -1 -1 t -1 -1
X(1) = [u Kw(1)“ + Kx(l)] [n Kw(l)Y(l) + Kx(l)x(l)] (3.14)

The matrix Ki(l‘ is obtained from Eq. (3.9).
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. Equations (3.8), (3.8), (3.9), (3.11), and (3.14) completely specify
X(k) given X(k-1) and Y(k). 1If it is desired to estimate X(k) given
¥(k),...,Y(1), write

P(x(k)|¥(k),...,¥(1)] = P[¥(k)|X(k),¥(k-1),...,¥(1)]

« P[X(k)|¥(k~1),...,¥(1)]

CP[Y(k-1),...,Y(1

PIX(R), ..., Y(i (3.15)

The function dX(k-1) is the mean of X(k) given that Y(k-1),...,Y(1)
have occurred. Notice that Kx(k) is not a function of ¥(k-1),...,Y(1);
therefore, ’

P(X(k)|¥(k-1),...,¥(1)] = P[X(k)|X(k-1)]
Again, it is obvious that
PlyY(k)|x(k),¥(k-1),...,Y(1)] = N[HX(k),K'(k)] (3.16)

so that Eqs. (3.6), (3.8), (3.8), (3.11), and (3.12) also specify X(k)
given Y(k),...,¥(1).

In the smoothing problem, it is desired to estimate the value of
X(1) given Y¥(k),...,¥(1). Following a similar method, the conditional
density is considered. To obtain the estimate in recursive form, it is
desired to express the gradient of fn P[X(1)|¥(1),...,Y(k)] with respect
to X(1) as a function of the gradient of /n P[x(1)|v(1),....Y(k-l)].*

P(x(1)|¥(1),...,¥(k-1)]

PIX(1),¥(1),...,¥(k-1
PlY(1),...,Y(k-1

(3.17)

*Throughout the balance of this report all gradients will be taken with
respect to X,
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Since on the right side of Eq. (3.17) X(1) 1is contained only in the

numerator,
grad {in P[X(1)|¥(1),...,Y(k~1)]} x grad {/n P[X(1),¥(1),...,¥(k-1)]}
(3.18)
Similarly,
grad {fn P[X(1)|Y(1),...,¥(k)]} = grad {in p[x(l).Y(i),...,Y(k)]}
= grad {4n P[X(1)|Y(1),...,¥(k-1)]}

+ grad {/n P(¥(k)}X(1),¥(1),...,¥(k-1)]}
(3.19)

So the gradient conditioned on data to time k is obtained by a simple
addition of

grad {/n P{Y(k)|X(1),¥(1),...,¥(k-1)]}
to

grad {/n P[X(1)|¥(1),...,¥(k-1)]} .

Setting this new gradient equal to zero and solving for X(1) giv~s the
value of X(1) that maximizes -P[X(1)|Y(1),...,¥(k)].

The smoothing equations are given in Table 1. Because of the large
amount of algebraic manipulation required, the details of the derivation
are reserved for Appendix A. The flow diagram for smoothing is shown
in Fig. 3.

C. OBSERVATIONS THROUGH A SECOND DYNAMICAL SYSTEM

Very often the observations will be made through a second dynamical
system. For example, if state-variable estimation is used to estimate
orbital parameters of a space vehicle, the output of the radio link will
be fed to an analog-to-digital converter. These converters have a
limited dynamical (amplitude) range, and a narrowband filter usually must
be placed after the broadband i-f amplifier to reduce the noise variations.
The filter bandwidth may be small enough to influence the statistics of
Y(k! (i.e., the noise may no longer be "white" and the covariance matrix
of HX(k) will be changed).
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TABLE 1. SUMMARY OF THE ESTIMATION EQUATIONS

Filtering Eq.
R(x) = [H ‘w(k)" + Kx%k)] l[u Kw(k)Y(k) + xx(k)ox(k 1)] (3.8)
Ki(k) [u Kw(k)ﬂ + thk)]-l (3.9)
a
Ky(x) = ¢xi(k 1)° * TRy 1)F (3.6)
-1+1 M ~-i+1\t
x(1) = Z °° FKU(i-Mo-l)Ft (" ° ) (3.11)
-1 J-1f.t.~1 -1 =
(1) = [u x'(l)u + "x(l)] [n‘xw(l)v(l) + xx(l)x(l)] (3.14)
Smoothing X(1)
R(1) a[C:_ltbtntl(y(k)(ﬂk-l)ﬂtbck_l s gk_l]'l
. E::_lotn‘;v(k)(qk-l){r(k) - n@i(k-1)|x(1)m}+ Jk_l] (A.8)
ot - -1 -1 -1
Cy-1 = ‘TI {[“t‘-h)“ + ‘x(t)] ‘x(1)°} (A.5)
g =E: o'n Ky(k)(kh{ 1)u0c + Qk_l] (A.11)
E: o a‘xv(k)(qk-l){v(k) - noﬁ(k-1)'x(1),o}+ Jk_l] (A.12)
o -1
92 = "x(x) + B x'(l)n + ot [x'(z) + nr‘xu(z)r"nt] HO |(A.9)
Kv(k)(lqk-l) = n[oxi(k_l)ot + mu(k_l)r“]u' + Ky(x) (a.6)
With No Earlier Data
3, - ¢‘n‘[x'(2) . mu(z)r‘n‘]‘lx(z) + n‘x;tl)v(l) + x;}l)i(l) (A.10)

With !g;ligg 2!35

-1
3, = o'n [;'(2) + HTRy o7 r*n t] Y(2) + H "v(1) + xx(l)oﬂ(o)

where X(0) is the estimate of X(0) given all the data to k = O.
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FIG. 3. FLOW DIAGRAM FOR SMOOTHING.

In this section, methods for finding the optimum estimates of X(k)
of a function of the second dynamical system will be given. The two
dynamical systems will be combined and a single set of system equations
will be written. Noise will be added to the output of the second system,
and it will be shown that, as the variance of this noise is reduced to
zero, the variance of i(k) approaches the minimum mean-squared error
of ﬁ(k) in a known manner. Then, some small output noise may be
assumed and an estimator may be designed using the combined system
equations and the estimation equations of the last section., This esti-
mator may have a mean-squared error as close to the minimum as desired.

Consider the two dynamical systems shown in Fig. 4. The matrix A
is an input matrix, G is a transition matrix, and J is an output
matrix (or'vector). Define the following quantities:

X(k)
M(k) = (3.20)
X(k)
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(6 ! ru
e=L_L (3.21)
0}0
o0 !
7 = --l-. (3.22)
a0

-

"W (k)

N(k) (3.23)

(k) ]

[310]
--.'.-. (3.24)

|
0,0

Then, the system equations for the double dynamical system are
M(k) = eM(k-1) + yN(k-1) (3.25)
Y(k) = B'M(k) + (k) (3.28)

The vector (k) is independent of Q(j) for k # j, and the
elements of Q(k) are assumed gaussian. The elements of Kn(k).
a diagonal matrix, are assumed to have a known, very small, upper bound,
This small noise generator, of course, is always present in physical

situations but its parameters are usually unknown, 1If, for design pur-
poses, we choose a Kn(k) arbitrarily -whose elements are the bounds,

we are assured by the following argument that the mean-squared error in
estimating M(k) from Y is not greater than that error calculated
assuming the noise covariance was at the bound. Thus, a bound on per-
formance can be found from the bound on noise power.

The block diagram for the error
E(k) = [M(k) - ii(k)] (3.27)

is shown in Fig. 5. Let M(k) be the output of the best linear estimator
for K“(k) equal to its upper bound. The error covariance matrix is a

de

sur of a linear (matrix) transforaation on K and & linear

a(k)
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FIG. 4. THE MODEL CONTAINING TWO DYNAMICAL SYSTEMS.
D is a unit delay.

MULTIDIMENSIONAL

POTENTIOMETER
k)
~ ¢
N(x) + A
BEST
b4 z D 8 % z LINEAR €
+ -
8 F L2

FIG. 5. THE DYNAMICAL SYSTEM FOR FINDING THE ERROR, E(k).

transformation on K The mean-squared error is the trace of thia

N(k-1)'
transformation which is the sum of the trace of the transformation on

K Reduction in
a(k)

the elements of K

the t f the t t K .
and race of the transformation on N(k-1)

a(k) will decrease the mean-squared error since each

diagonal element of the transformation on K is greater than or

equal to zero. Then, the designer knows thastl(:l can lower the upper
bound until the mean-squared error is within specifications.

If the physical situation assures him that the bound is higher than
is actually the case, the estimation equations of Sec. B may be used
directly by substitution of N(k), 7, ©, B', ¢u(k), and M(k) for

Uk}, I, F, H, W(k), and X(k), respectively.
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D. ESTIMATION WITH PARTIAL DATA

In this section is given the form of the optimum linear estimate
when some of the data are missing. Many practical situations arise in
which a complete set of observations is not available. An example
would be estimation of a rocket trajectory where telemetry was temporarily
lost. Another example would be when telemetry is lost during a midcourse
maneuver. Frequently the system output is telemetered on a time-shared
basis, so that the data are available only periodically.
Assume that all the data are available up to time k and are lost
at time (k+1). Then X(k) may be calculated using Eq. (3.8). Note that
i-1 .
X(k+1) = o1 X(k) + 25 o' Tu(j+r) (3.28)
r=0

Taking the expected values conditioned on Y(1),...,Y(k) [since the
U(j+r) have zero mean and are independent of Y(1),...,Y{k)] gives

R(k+1) = 0 %K) (3.29)

The covariance of X(k+i), xﬂ(k+z)(k+i|k)' conditioned on Y(1),...,Y(k),
is
i-1
xﬁ(k+1)(k+1|k) - °1Ki(k)(°1)t'* 25 orrKU(J+r)(°tF)t (3.30)
' r=0

Assume that the data are regained at time (k+j). Then the best
estimate of X(k+i) in the interval from (k+l) to (k+j-1) is given

by Eq. (3.29).
Since new data are available at time (k+j), write

P{X(k+3)| ¥(k+3),¥(k),...,¥(1)]

. P[Y(k+j)lx(k+1I]P[x§k+1;|15k;,...,Yil;]?[?szl...,Y(l)] (3.31)
PlY(k+3),¥(k),...,¥Y(1 *

P{X(k+3)|¥(k),...,¥(1)] = N[&IR(K); KQ (ke g) (K431 8)] (3.32)
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Then the optimum estimate of X(k+j) is

_ - -1
X(k+j) = [HKW%IH‘J)H + Kﬁ%k”)(ktj]k)]

(3.33)
: [ntx;,tl“ §)Ylkrd) + Ki—‘(tm 9 (k+j|k)®'jf((k)]
The covariance of i(k+J) conditioned on the new data is now
Ko = |utx:? H + Kb (k+j|k)]-1 (3.34)
Ked) = [ Eviren) * KR (key) '

The estimation is continued using Eqs. (3.6), (3.8), and (3.9) until a
new loss in data occurs. Then Eqs. (3.30), (3.33), and (3.34) are used
again.

If smoothing is to be performed, Eq. (A.13) will, of course, not
contain the missing data; i.e.,

PIX(k+3)1X(1),%(2),...,¥(k)] = N[ﬂ@”i(k);m{ﬁ(kﬂ)(kﬁlk)ﬂt + x'(kﬂ)]

(3.35)
The new gradient added by Y(k:j) is

: -1
-x:(oj)tnt[uxi(kﬂ)(mﬂk)ut + Ky(keg )] (Y(k+3) - KoIR (k)]

Then

-1 -1
x(1) = {C:(O")tﬂt[ﬂkg(k”)(k+J|k)Ht N "w(m;)] nole, +§k}

-1
'{C:(¢J)tﬂ[!n(g(k+J)(k+J'k)llt + "v(m;)] [v(k) ~ HOIR(k)] + Jk}
(3.38)
When the next observation, Y(k+j+l) arrives, Eq. (A.8) is used, It
should be noted that

J
c‘“J = ¢°C, (3.37)
and that
-1
t, -1 -1 -1 J
Crger = {[“ Ky * "x(kuu)] "x(kﬁ+1)°}° x (3.38)
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E. AN EXAMPLE OF A SMOOTHING ESTIMATION

A simple (but typical) dynamical system will be assumed. The
matrices will all be scalar. '

o
[
[S1L
o
"
-
-3
"
[

The covariances will be

ST

Ku(x) = 1 Kw(x) =

It is desired to estimate X(1) based on the observations Y(1), Y(2),
and Y(3).

The random numbers U(k) and W¥(k) were obtained from a gaussian
random number table with the variance adjusted to 1 and 1/4 respectively.
The numbers chosen were:

k u(k) w(k)
1 0.77 0.41
2 -0.33 -0.11
3 - -0.06
From Eq.'(z.sa),
x(k) = % X(k-1) + U(k-1)
Y(k) = X(k) + w(k)
Then X(k) and Y(k) are:
k X(k) ¥(k)
1 1 1.41
2 1.27 1.61
3 0.31 0.25
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From Eq. (3.6) and Eq. (3.9),

K2 (k) = [4 + x;tk)]-l

1
K(k) =2 ¥g(x-1) * 1!

The variances used in calculating X(k) given Y(1),...,¥(k) and X(1)

equal to zero are then:

oAk R

1 0 -—

2 1 0.2

3 1.05 0.202

4 1.05 0.202 (steady state)
From (3.8),

R(k) = Ko, dav(x) « 2 k2 1R(k-1)

X(k) 2 "x(k)

and

’A‘(z)'x(1)=o = 0.938
)‘((3)‘,‘(1)=0 = 0.297
From Eq. (A.5),
k-1 -1 X
-1 -1
Cx-1 = L. {[4 * Kx(x)] Ky(1) ° 5}
i=2
C. = 0.106

From Eq. (A.9},
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The matrix K;tl) in Eq. (A.10) is the covariance matrix of X(1)

given that U(k) has been applied long enough for the dynamical system
to reach steady state at k = 1, From Eq. (2.3a),

x(1) = z OiU(-i)
1=0

Then the steady-state variance of X(1) is

[*°]

) = O [(B)] %1 -4

i=0
and
92 = 5,53

From Eq. (A.10)

1l -1
J2=3[2+ 1] Y{2) + 4 x Y(1)

= 6.12
where X(1) = 0. Then

R[11¥(1),7(2)] = 3532 = 1.11

From Eq. (A.6)

KY(S) (3]2) = 1.30
From Eq. (A.11),

"’3 = 5.532

From Eq. (A.12), J3 = 6.11. Then

X[11v(1),v(2),¥(3)] = 1.10
Equation (3.14) may be used to find X[1]¥(1)] = 1.18.
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K -

The results are summarized in Fig, 6. The estimator reaches steady
state after only two observations. Further examination will show that
the weights of all Y(k) after Y(2) are very nearly zero. Such very
short estimator impulse responses occur in a large number of practical
problems with typical dynamical systems. As will be shown in Sec. D of
Chapter VI, the estimator may always be truncated after a small number
of terms except in the rare case of a dynamical system with an extremely
high Q. Usually, short impulse estimators for even these cases may be
found by choosing an equivalent model of the dynamical system with a

much lower sampling rate.

X(1)

TRUE VALUE OF X(I)

L Il i

2 3
NUMBER OF OBSERVATIONS

FIG. 6. THE ESTIMATES OF X(1).
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IV. APPLICATIONS TO DETECTION OF GAUSSIAN SIGNALS
IN ADDITIVE GAUSSIAN NOISE

In this chapter the theory of linear state~variable estimation is
applied to the problem of detecting a gaussian signal immersed in additive
gaussian noise. The optimum detector contains an operator that gives
the best estimate of each signal sample value during the detection
interval based on all the data observed during the interval. Typically,
several thousand data points may be observed. In the usual derivation
of the optimum detector (ueg Sec. A), a matrix of an order equal to the
number of data points must be inverted. When the signal can be repre-
sented as, or approximated by, the output of a noisy dynamical system,
the estimation equations of Chapter I1I may be app'ied directly. The
matrices to be inverted will be no larger than the order of the signal-
generating dynamical system, regardless of the number of data points,

Further simplification results if tho impulsc responsc of the
est.mator of a sample value is truncated when the error covariance matrix
shows that there will be little reduction in mean-squared error by
conditioning on additional data points. A near-optimum time-invariant
detector is then shown to exist.

~ The chapter begins with a definition of the likelihood ratio. Then
follows a derivation of the optimum detector that requires an inversion
of a matrix of high order. The final section derives the near-optimum
time-invariant detector.

Let the observations Y(k) be

Y(k) = xl(k) + W(k) (4.1)
when the signal xl(k) is present (hypothesis w, is true), where W(k)
is additive gaussian noise. When no signal is present (hypothesis Wy
is true),

Y(k) = w(k) (4.3)

The quantities Y(k), xl(k), and W(k) are assumed to be scalar.
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When -a statistical decision is made between the presence of a signal
in noise, or noise alone, the best decision is based on the likelihood-
ratio test [Ret.'lo, p. 318). This ratio is defined as

p[v(l),....v(n)|w1] .
L(¥(1),...,¥(n)] = PR, - ¥ (a)]o,] (4.3)
It
L{¥(1),...,¥(n)] > 8 ‘ (4.4a)
we say a signal is present, and if
L{Y(1),...,¥(n)] <B (4.4v)

we say there is noise alone,

Assume the signal is gaussian with "zero mean" covariance matrix

t
Kx“ = B{x X

where
'xl(l)q

x,(2)
n .

x, (n)
e -l
Assume that the noise has zero mean and denote the covariance of the

signal-plus-noise vector by KY . Then
n

K = K 4.5
Y "n i X (4.2)
P[Y(l),...,Y(n)!ul] = (const) exp{— % ; K;l Yn} (4.8)
n
and
P[Y(l)....,?(n)'uzl = (const) exp{- % Y; K'l Yn} (4.7)
n
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S8ince the logarithm is a single-valued function, one might just as well
consider

: t -1 t -1
In L(¥(1),...,Y(n)] = (const) -{Yn xYn Y - v an Yn} (4.8)
Or, a signal is said to be present if
t -1 t -1
- Y xYn Y o+ Y an Y. >, (4.9)

It is noticed that the dimension of Yn equals the number of data points
used in the decision. The inversion of Kyn may be difficult or impossible
in problems involving a great deal of data.

A. THE LIKELIHOOD DET!CTOR*

This section describes how to calculate the left side of inequality
(4.9). It will be shown shortly that this calculation requires finding
optimum estimates of the signal conditioned on the observed data. PFirst,
the optimum smoother will be derived in a form different from that
derived in Chapter I1II.

A linear estimate of xl(i) given Y will have the form

2, (1) = z 8, ¥(3) (4.10)
=1
The error is
n
o(1) = x,(1) - z 8, () (4.11)
=1

and the mean-squared error is

n ' n n .
ClU) =R (0 -2 D 4 R(1-1) ¢ ) ) s e R (oK) (412)
I=1 k=l 4=]

*The following treatment is due to T. Kailath [Ref. 8].
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where

R (1-3) = Elx (1)x,(3))] (4.13)

and

. R, ,(3°K) = E {[xl(J) + W(3)1x, (k) + W(k)]} (4.14)

To minimize ez(i), take the partial derivative

2 n

Je” (1

Ezzﬁ_% =0 = 2nx(1-3) + 2 E aikkx+w(j-k) J=1,2,...,n (4.15)
k=l

Thus there are n simultaneous equations giving a solution for the
n aij' If this process is repeated for each i, the result may be

written as a matrix equation

(a,] ‘vn - ‘xn
which has the solution

-1

A= xx KY (a.18)

The dot product of the 1th row of A with Yn will give the minimum

mean-squared-error linear estimate of xl(i), given Yn' or

&,(1)
Ay, =| ein (4.17)
R, (n)
Notice that
-1
Y (L
n ?1 n (4.18)
sl-l(' KY
n n
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Then

-1 -1 -1
K, =K, - K5 A ' (4.19)
n n n

Substituting Eq. (4.19) into Eq. (4.9), we can now say that a signal is

present if
v kay > (4.20a)
n Kwn n" 7o *
or
t. -1 2
Y an X >7, (4.20b)

As the length of the sample of signal and noise or the sire of n
grows, so does the dimension. 1In practice, it is impossible to invert
matrices of dimension greater than four or five hundred. In a typical
planetary radar detection problem, the signal sample may be 30 min long
with a bandwidth of 5 cps. Then, the dimension of Ky will be
1.8 x 104. If such problems are to be solved optim;llg, a more efficient
design procedure must be found.

B. A NEAR-OPTIMUM DETECTOR CONTAINING A TIME-INVARIANT FILTER

The remainder of this chapter will show that, for Y(k) stationary
and n sufficiently large, there exists another matrix representing a
time-invariant filter whose mean-squared error averaged over i 1is
arbitrarily close to the mean-squared error of A averaged over 1.

Furthermore, the norm of the difference between the 1th row of this

1th row of A tends toward zero as 1 increases.

new matrix and the
As shown in Appendix B, this 1mp13es that, as m increases, the detec-
tion error probabilities using the time-invariant filter are arbitrarily
close to those of the detector employing the filter represented by A.

The linear smoothing equations of Chapter 11l may be used to find
the time-invariant filter. It will be shown that only a small sequence
of the elements of Yn are required at one time, so that computer

storage requirements may be considerably reduced,
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Agsume that a filter with impulse response is represented by the

2{1)

vector ., Let this filter give the optimum éstimate of xl(i),

%, (1) = [_'(1)] (4.21)

n

=(1)

Let another filter with impulse response vector B give another
estimate of x (i) We now prove that a bound on the vector difference
between A i) and B( ) may be computed from the difference in mean-

squared errors of A(i) and E(i).

Theorem: If [K(i)] Y is the minimum mean-squared error estimate

[E(i) t is some other_linear estimate

of x (1), given Y , snd
of x; (1) with an increase in mean-squared error of Aez ove. that

of [A(i)]t Y » then

Z:z 2 [M(i)]t n{wnw:} M(i)

(4.22)
2
(1

) aalt)gt m(t)
where E{wnw:} = c:(i)l and AA(i) is defined as
) o g(1) (1)

roof: Let Aa 13 be the Jth element of AA(i).

o

Aa (jk

“

J)('ik +

n n
EDIPNC
I=k ksl
n n
zz LIPLI xw(J-)-zZm R_(3-1)
k=1
. .
2 2
3=1 k=l
n

3=1

n
1J ik x+w (3-k) + 2 Z 2 A‘ij ik x+w (3-k)
Jsl k=1

-2 z Aau R (3-1) (4.23)
J=1
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By Eq. (4.15),

se?(1) =

n
J=1

n
z A’iJA“ik Row (3-k)
k=1

- ()t Ky M)

[Mmfo+“]Mm
n n

[Muwﬁz§ﬂ

v

ﬁuﬂ““w:Mm

for white noise since l(x is positive definite.
n

Next, a limit for ez(i) given Y(i-m),...,Y(i+m) as m -+ o will
be derived. For m < », the mean-squared error will be larger than
this limit by some arbitrarily small amount for arbitrarily large =.
The length of the impulse response of the filter represented by the 1th
rowof A is n, If the optimum filter with an impulse response 2m
long has a mean-squared error Aez greater than the limit, then the
theorem above assures that the norm of the difference between the 1th

row of A and this second filter is bounded by

/"‘E 2
Ae/o'(i)

provided n > 2m. This bound will be used in Appendix B to show that
the difference in error probabilities between the detector of Sec. A
(whose estimator has an impulse response of length n) and a detector
containing an estimator with an impulse response 2m < n long, is also
bounded. '

Most of the proof of the theorem is used to show that the mean-squared
error of the estimate of x1(~1) _conditioned on Y(i-m),...,Y(i+m)
((ound by the methods of Chapter I1I or Sec. A) is identically equal to
the steady-state mean-squared error of the sampled-data smoothing filter
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(estimating back for a fixed increment m) with an impulse response
2m long derived using the more classical spectral-analysis approach,
This fact fits one's intuition, but it is not a trivial problem.

Theorem: As m - oo,

i+m = 2
2(1) R (0) Z R _(i-j) - R (0) f s. () Sx(f) ot
e = - a - - -
x Pyl ij x J x J_ X+W SX+W“$
(4.24)

where Sx(f) and SX+w(f) are the signal and noise power spectra,
respectively.

Proof: Consider the equation for the steady-state mean-squared

error of a sampled-data filter with an impulse response 2m 1long.

m m
el = nx(o) + 3{-3 &{Sxﬂ‘v(z)[ z an'J Z .kzk]
T J=-m k=-m
°m (4.25)
R _ sx(z) 2 ‘J(Z-J R ZJ)} %Z .
J=m

where sx(z) and SX+'(Z) are the sampled signal and signal-plus-
noise spectra, and Fo is taken to be around the unit circle. Since
Y(t) is bandlimited and if the aJ are picked to minimize the mean-
squared error, e will approach the mean-squared error of the
optimum continuous noncasusal filter as m —» ., This latter mean-
squared error is well known [Ref. 11] and is
2

df

o

s (f)
R (0) - s X

SX+' [ f 1

X+'(f )

-0

Equation (4.25) may be rewritten as

_ 2m 2m
e2 = nx(o) + 5-}3 ¢ s,'“'(z)[ z an'J z .kzk]
2 =0 k=0

© 2m (4.26)
%0 '
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2m 2m 2m 2m
T v S .z kT 3~k dz
205 Poxewl?) 2 8,2 2 %2 =35 ¢Sx+w(z) Z z 882" 3

T j=0 k=0 " j=0 k=0

o [+

2n 2n
+ z . 2 a, R [(3-K)T]
- 3=0 k=0 (4.27)

Using Parseval's theorem for discrete systems gives

2m 2m
. _2_:3¢[Z .J(Z'J«Hn + ZJ'.)]SX(Z) %Z_ -¢2[2 I.JZ-J"'.]SX(Z) %g_

p LI=0 ~ Li=0
o [«]
2m

= 2 z 8, Rx[(J-m)'r] (4.28)
J=0

In Appendix E, it is shown that e2 is minimum if

2m
> o R JG-0T] = R ()]

k=0
so that
— 2n
o® =R (0) - ) a R I(sm)T] (4.29)
J=0

Putting Eq. (4.15) into Eq. (4.12) gives

2
e’(1) = R(0) - D & R (3-1) (4.0)
J=0

{in which ez(i) is as defined in Eq. (4.12)], or

&2 .2 (4.31)

and the theorem is proved.
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If we are able to derive a filter giving an estimate of xl(i) using
as data Y(i-j),...,¥(i+3j),(i-m) > 0, (i+m) < n, with mean-squared

error ;?(i-m,i+m), then we know that the mean-squared error ;f(l,n),

of ﬁl(i), given Y(1),...,Y(n), is bounded by
2 "2 ) 5 (2)
ei(i—m,i+m) z ei(l,n) z Rx(O) - sx+w(f) w df (4.32)
=00
And if
.00
—_— - s ()
24 2 X
e = i(1 m, 1+m) - R (O) +[ SX+W(£) W df
-00

is very small, then A(i)(i-m,i+m) will be very close to K(i)(l,n),

(1)

using data from time equals j to time equals £.

where A'"’(j,4) is the impulse response of the estimator of ﬁl(i)

The signal may be a gaussian output of a dynamical system with random
inputs, or the signal statistics may always be approximated to any degree
by the statistics of such a system. Our signal generator model will be
a noisy linear discrete system,

The optimum estimate of a linear operation on a state vector is that
same linear operation on the optimum estimate of the state vector. The
Bayes estimate of X(i) is the conditional mean of X(k), X(i); and
the conditional mean of xl(i) = HX(1) is

2, (1) = BR(1)

Equation (A.8) (smoothing with earlier data) may be used to find
X(i1) and il(l). given Y(i-m),...,Y(i+m). The error covariance matrix,
Ki(i)(x-m,1+n) may be easily calculated. Then

e (1-m i+m) = HKg (1-m,1+m) ut (4.33)

X(1)

The value 0f m is increased until the upper bound of Eq. (4.32)
approaches sufficiently close to the limit of the second theorem. This
will fix the length of the impulse response.
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Equation (A.8) may be written in the form

%(1) = z E,¥(14) (4.34)

j=n
The scalar weight of Y(i+j) in the estimate of 21(1) is

8y = HE;

Notice that EJ is a function of m only and not of i, Thus, the

near-optimum filter is time invariant.

The calculation of E, 1is greatly simplified by noting that, .in Eq. .
(4.16), the elements of x(i)(i-m,i+m) are symmetrical about 1.
Then, only the first (m+l) EJ need be calculated, and it is much easier
to find these than to calculate the last =m EJ directly. Examination
of BEqs. (A.4), {(A.8), (A.11), and (A.12) shows that

E - g:u “t‘;l
Bar- g;lnx ‘;tx) ™3(1) LY

- - - -1
X2 =Sz Kx(1) ®R(1) 5x(1) %E(1-1) ¥ %

0= -1 -1
LI 92:1»1 Kx(1) ¥2(1) (1) %%(1-1)
Kg(1-g01) 1! (4.38)

Examination of Eqs. (A.4) and (A.6) shows that.

Ki(‘)(t~l,1+n) = ota'x;%i)on + ‘;21)

n -1 (4.36)
, t ot gtuty-1 )
. + Z C5-19)-2% H Ky(y) [9-1)HeQy_C, ,
=2
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where

Q (4.37)

-1
-1 = *%(3-1) ¥x(3-1) ¢

The procedure then is to calculate ef(i-m,i+m) for successively
larger values of m until Z;! is small. The weighting coefficients
are caléulated according to Eq. (4.35), and the detector is connected
as shown in Fig. 7. Notice that the first and last m ﬁl(i) are
neglected. These, of course, could be calculated; however, for n >> m,
little is to be gained by the additional information.

SAND-
M
FILTER
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V. LINEAR FILTERING OF SIGNALS WITH
CONTINUOUS UNKNOWN PARAMETERS

Magill [Ref. 5] has given the form of the general solution to the
estimation problem with unknown parameters, and has developed practical
methods of implementation for gaussian inputs and a finite parameter
set, No general implementation has been developed when the parameters
may be chosen from an infinite set or for the optimum linear filter with

unknown parameters and nongaussian inputs. This chapter modifies Magill's

solution to allow practical estimation of the state variable or signals

with a dense set and stationary or near-stationary processes. The dis-
tribution over the parameter set is not restricted to gaussian in Magill's
solution or in this chapter.

A. MAGILL'S SOLUTION FOR A FINITE NUMBER OF PARAMETER VALUES

If the state of nature w is to be estimated, the Bayes estimate
for a mean-squared loss function is

@ = E[wD'] = | wP(wD') duw (s.1)

Q
where D' is the data. If O is a parameter or parameter vector
belonging to the parameter set Ao,

P(w|D') = /P(w!b' ,a) P(a|p') da (s.2)
Ao
and
Q= [u / P(w|D',a) P(a|D') da dw (5.3)
QA
On defining
o(a) 2 ]w P(v|D",a) duw (5.4)
5
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and interchanging the order of integration, Eq. (5.1) is found to be

© =fa(a> P(a|D') da - (5.5)
o

In other words, the best estimate of w is the estimate that assumes
& 1is true-weighted by the probability of & conditioned on the data
and integrated overl Ao.

Magill constructs his adaptive filter by building a number of
estimators—one for each member of the parameter set. Then
P[Y(l),...,Y(k)|ai] is evaluated for each @ . The outputs of the
G(ai) are weighted by

P(Y(1),...,¥(k)|o] P(a,)
PlY(1),...,¥Y(k))

p(ai|n') = p[a1|v(1),...,v(k)] =
(s.6)

and summed giving @. Practical methods for evaluating
P[Y(l),...,Y(k)lail in the state-variable problem have not been worked

out for the dynamical system whose inputs are nongaussian. The best

linear G(a) can still be chosen, however.
B. FILTERING OF STATIONARY OR NEAR-STATIONARY PROCESSES WITH
PARAMETERS FROM AN INFINITE SET

The estimator of a state variable or a signal with a given O [the
value of the signal or state varisble at time k will be denoted by
xk(k,a)] is a linear combination of the observed Y(i); i.e.,

k
2,(k,0) = D a (@) ¥(3) (8.7)
J=1

From Eq. (5.5)

k
R,k = [ D a () Plal¥(1),....¥(r)] ¥(3) &

=}
“gj (5.8)
= 2 Y(J)fukj(o) Plal¥(1l),...,¥(r)] 4
=1 A
(o]
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In other words, the optimum weight is just the mean weight conditioned
on the observed data.
In Appendix C a filter is derived that has the form
k+k

2(k,0) = Y a (@) ¥(3) (5.9)

J=k-K

The theory of the last chapter shows that the estimate given by this
filter is arbitrarily close to the minimum mean-squared-error estimate

for stationary processes. The weight akj(a) is given by

- (1) s, (a) .
@ s D ay ST, (c.23)
i=1

where Si and Ni are the signal and noise power in the frequency
range [(B/n)(i-1)] to [(B/n)i] cps. The signal is assumed to be

in the range from zero to B cps. The constant is found from

(i) ] ]
%3 =% " 8i(3-1) (c.32)
2B
.. sin [-;—i(JT - koT)] . - 1 (c.31)
1 a(JT - k T) ' =

The noise-power spectrum is assumed to be known so that there is
correspondence between the elements of the parameter set and the possible
power spectra of xl(k,a). Then the optimum weight for estimating xl(k)
will be

i=1

n
s
Sy Z “E;) [E;__i_ﬁ.; P(s,[¥(1),...,¥(r)] a8, (5.10)
s
i

where the conditional density of Si is the sum of all the densities of
[o::si(a) = si}.
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Write Gi in transfer matrix form with qi(j) as the output; i.e.,

o, (1] [x)
q,(2) Y(2)

=G, | - (5.11)
q,(r) LY(r)

The matrix Gi is causal and therefore triangular below the main
diagonal. Such matrices are nonsingular if there are no zeros on the
main Jdiagonal. Since G1 is time invariant, this is always true, and
there will be a one-to-one correspondence between [Y(1),...,Y(r)] and
[qi(l),...,qi(r)]. Thus, '

P(s, |¥(1),...,¥(r)] = P[8,|q (1),...,q,(r)] (5.12)

Pla,(1),...,q,(r)|8,] P[8,]
Prqi(l) 1o 'qi(r)]

P(s,|q,(1),...,q,(r)] = (5.13)

There are n Gi' each with bandwidth of B/n so that only every nth

qi(J) is needed to find the density of [qi(l),....qi(r)], or

Plq,(1),q,(n),q,(2m),...,q,(r)] P[8,]
Plq,(1),q,(n),q,(2n),...,q,(r)]

P(8,|q,(1),...,q,(r)] = (5.14)

The filter G, is sharp-cutoff so that the qi(J) in Eq. (5.14)
are essentially independent and the following is true:

j=1

P{Silq‘(l).---.qt(!‘)] = r/n

r/n
1 1 2
[2n(8, +N )]l‘/zn "‘PL 2{314.315 i qi(“J) 9[31]
i i )
1l

1 2
f lza(simi)]r/?u it IO gl a;(ny)|P(8, Jas,
8

i

(5.15)
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The integral in Eq. (5.15) may be evaluated directly as a function
2
of X qi(nJ) and r, and stored ahead of time.
Since

only the following need be calculated:

N N
—— P[5, |q,(1),...,q,(r)] dS, = 1
sf": o, Pl : L W)™ pley (1), (1))
r/n
/s . N )T1+r/n)/§ expl- S . N Jz q (nJ) P[S ] dS (5.13)
8

i

Equation (5.16) is a function only of [r,qu(nJ)] and may also be
calculated ahead of time and stored.

A less complex procedure usually giving almost as good results is
maximum likelihood estimation of (s1 + “1)' This estimate is found
by solving for 81 in

o {P(8 |a,(1),....q,(#)]}

=, =0 (5.17)
Then
} &(81r+ N ¢ 2s, + )2 z q (“J) =0
and
@ o) - : r/f ay(n) (5.18)
3=1 -

This estimate may be instrumented by an integrate-~and-dump circuit or
closely approximated by a square-law device followed by a lowpass filter
with a bandwidth of 1/r.
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The variance of the estimate of (Si + Ni) is [Ref. 10, p. 261]

2 A% 2
Oogs = z(;) (s, +N,) (5.19)
Take, for instance, a 100-tap line with 20 narrowband filters. This
adaptive filter can begin its estimating when r equals 100 and, for

all practical purposes, it will be converged to Weiner optimum when r
equals 200, If the system bandwidth is 100 cps, this convergence will

be obtained at the end of 1 sec of operation.

SEL-64-131 - 46 -



VI. ESTIMATION WITH NONGAUSSIAN INPUTS

A. INTRODUCTION

In this chapter, the theory of Chapter III is extended to include
state~-variable estimation when either the inputs to the dynamical system
or the output noise or both are nongaussian. The same general approach
used in Chapter III (finding the mode of the conditional density) is
used. ASiueo this density is no longer gaussian, the mode is not neces-
sarily located at the mean. A unimodal density or one with a unique
maximum will be assumed. The state variable giving this maximum, of
ocourse, is the maximum likelihood estimate. When Bayes estimates are
made, it will further be assumed that the density is symmetric about
some point,

Most of the discussion in this chapter is concerned with the
propagation of nongaussian statistics through a discrete linear dynamical
system. At first glance (with the central limit.theorem in mind), one
might conclude that the output density of a discrete dynamical system
with feedback would converge to a gaussian density since the output is
the sum of a large number of independent random variables. I1f this
were the case, then linear estimation would be optimum for one or more pt
the state variables. Unfortunately (as shown in the next section), this
is never true for a time-invariant discrete system. In Sec. B, necessary
and sufficient conditions for the output density to be of the "same form"
"as the input density (i.e., the output density is the input demsity
translated and/or with a change in scale) are also derived.

Section C describes the calculation of the joint density of the state
variables and the observations. Section D contains a discussion of methods
for finding the estimate and it is shown that near optimum estimation may
be often obtained with only a short sequence of observations. The last
section describes the estimator's asymptotic behavior as the signal-to-
noise ratio is increased.

B. PROPAGATION OF FIRST-ORDER STATISTICS

The ocutput of the linear system will be assumed scalar, or the
first-order density of only one of the outputs will be of interest.
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Then the output may be written as a linear combination of the input

random variables, i.e.,

"o Jo
2k,3,) = D D gy uylked) (6.1)
£=1 3=0

As before, it is assumed that the uz(k) are independent and have
zero nean with the additional assumption that for a fixed /¢, the uﬁ(k)
are identically distributed for all k. Also assume that for each /
some aza is not equal to zero (i.e., no impulse response irom any of
the inputs to the output is equal to zero for all time).

A theorem will now be proved showing that the cdf of the output of
a time-invariant linear filter converges to a gaussisn cdf if and oply

if the input is gaussian.

Theorem: Let a stable, time-invariant, discrete linear dynamical
system and its input be described by Eq. (6.1) and by the assumptions
given above, Then the cdf of the system output will converge almost
everywhere as Jo ~» o to a gaussian cdf if and only if the input

is gaussian,

Proof: It is well known that the output of a linear system is

gaussian if the input is gaussian. So only the "only if" proof

will be given here.

It is assumed that, for a fixed £, all uﬁ(J) are identically
distributed. Then

j m m J

[+ [+ o o

v O\ 2l c2 L2

l 2 g [‘[LJ ue(k-J)] = >~ o [ul(i)] 2‘ ‘ﬁj (6.2)
J=0 i=1 £=1 j=0

1f the system is stable,
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If the system is stable,*

o
3 liﬁx zi '33 < for all £
o

J=0

Therefore,

JO mO
] e Z z 02[1“ uz(k-,j)] <w (6.3)
° J=O L=l

I

Define Z“(k,,jo)
2, (k,3) 2 2(k,3 ) - 8, uy(k-1) (6.4)

Using Eq. (6.3) and Ref. 12, page 236, it is seen that z(k.Jo) and

zu(k,_jo) converge almost surely as Jj - .

The "Composition and Decomposition Theorem" [Ref. 12, p. 271] states
that the sum of the two independent random variables with finite
means and variances is gaussian if and only if both varisbles in the
sum are gaussian. Therefore, z(k._jo) and z(k,©) are gaussian

only if uz(k-i) is gaussian.

At this point it is appropriate to briefly examine a class of zero
mean distributions with finite variances that have the interesting

”nn impulse response of a discrete system is bounded. If it is not
bounded, a bounded input (i.e., a step function) will give an unbounded
output (some of the coefficients in the series form of the output
Z-transform will be unbounded). Of course if

o0 N 0

2
zl‘u'““ then Zu“<w.
3=0 J=0
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property of being invariant as they are passed through an arbitrary
discrete linear system. Here, "invariant" means only a change in scale
factor.

Definition: A Stable Law [Ref. 12, p. 326]. The cdf, F(u), is
stable if, to every a, >0, a_>0; and b

there correspond

1 2 1’
constants 33 >0 and b3 such that
F(aluz + bl) * F(azuz = bz) = F(nauz + b3) (6.5)

It is clear the invariant distributions belong to the class of stable
laws since it is required that they do not change with an arbitrary
impulse response that is always positive. By a well-known theorem [Ref.
12, p. 327] the log of the characteristic function of a stable law is
given by

(o} t
log 1u£(t) = ita - b|t| {1 + 1B -rtT w(t,a)} (e.6)
- where
tan 3 @ if agl
wit,a) = (6.7)
2m | t] if a=1
n
and

a ¢ the real line

-2
L)

(0 ,w)
0 < as2

Bl s 1

'
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The variance of uz(k) may be found by taking the second derivative
with respect to t of the antilogarithm of Eq. (6.6) and setting t = 0.
This derivative is less then infinity only when O = 2. When « = 2,
w(t,@) = 0. Thus, the characteristic function of invariant cdf's must be
of the normal form

f“z(t) = exp (ita - b|t|2) (6.8)

C. FINDING THE JOINT DENSITY OF THE STATE VARIABLE AND THE OBSERVATIONS

Since
P(x(1),...,x(k),¥(1),...,¥(k)]
= P[x(1),...,X(k)|¥(1),...,¥(x)] P[¥(1),...,¥(k)]

the X(1),...,X(k) that maximize the density on the left side of the
above equation also maximize the conditional density on the right. The
approach used here will be to first calculate in a convenient form the
joint density of the state variables and the observations for nongaussian
inputs. In Chapter III this was relatively simple because the joint
dengsity of gaussian variables is gaussian, but for nongaussian inputs,
tinding the joint density is really the heart of the problem. In the
next section methods are given for finding the density maximum (the
optimum estimate).

The joint denaify of the state variables alone is
P[x(1),x(2),...,x(x)] = P[x(1)] P[x(2)|x(1)]

- P[x(3)]|x(1),x(2)] ... P(x(k)|x(1),...,X(k)]
(6.9)
The density of X(1) is just the density of I'U(0), or
P[x(1)] = P[ru(o)] (6.10)
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The density of X(2) conditioned on X(1) is the density of TI'U(1)
translated by ¢X(1). Write this density as

P(x(2)|x(1)] = P[TU(1)| mean = ¢X(1)] (6.11)
Because of the Markov property of X(i)
P[x(3)|x(1)x(2)] = P[X(3)|x(2)] = P[U(2)|mean = 9X(2)] (6.12)
and
P(X(k)|x(1),...,X(k-1)] = P[lU(k-1)|mean = ¢X(k-1)] (6.13)

Since the elements of U(k-1) are independent, it is quite simple
to write down the right side of Eq. (6.13) if I' is diagonal. Then

P[rU(x-1)|mean = X(k-1)] = [] Ply,,u, (k-1)|mean = ¢ (k-1)] (6.14)
i

th

where ¢ (k) 1is the i element of oX(k).

’By this notation, we mean that the zero mean density of the random
variable T'U(1) 1is shifted by an amount equal to ¢X(1).
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If ' 1is triangular, there is dependence between the elements of
the noise vector added to 0X(k-1) and therefore

P[I'U(k)|mean = 0X(k-1)] = P[7,,4,(k-1)|mean = ¢ (k-1)]
. P[yzzuz(k-1)|meln = oz(k-l) + 721u1(k-1)]
. P[733u3(k-1)|menn = 03(k-1) + 751u1(k-1)

+ Vaqug(k-1)]

lo"l
‘P17 m Y (k=1)|mean = o (k=1) + Z Ta ‘nz(k-l)
oo o o ja1 ©

= P[x,(1)] e, (k)] Plx (k)| 0g(k-1),x (k)] ...

P[%-o(k)|o.b(k-l),xl(k),...,x.o_l(k)] (8.15)

Similar relationships may be written if ' can be partitioned into
triangular utricu.* or if the rows can be reordered to form a triangular
matrix or a matrix that has triangular partitions.

*llcrc the matrices that are to be partitioned must not have elements of '
tvo different triangles in the same row,
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It becomes more complex if no such partitions are possible. For

example, suppose
711 N2
721 722

and none of the 7 equals zero. Then

i)
P[x(1)]= {Pl7,,u,(0)] * P[y ,u,(0)]} Ply, u,(0)

+ 79985(0)[71,4,(0) + 7,,u,(0)]

The random variable 721u1(0) conditioned on 711u1(0) + 712u2(0)

(6.18)

(6.17)

is

not independent of 722u1(0) conditioned on the same sum. Therefore,

convolution cannot be used to find

4
Pl75,u,(0) + y,0u,(0)}7,,u,(0) + 7,,u,(0)]
Consider the matrix transformation

zZ(k) = Eflx(k)

Then
O—'-l -—-1
Z(k) = = "0X(k-1) + = TU(k-1)
a ’.-:'10.?.(&-1) + ’::'lr‘u(k-l)
and

Y(k) = HE2Z(k) + W(k)

are the equations of a system with state variable Z(k) having a
response identical to that of the system described by the equations
(2.3a) and (2.3c). If I’ is nonsingular, pick

ET‘ = P‘l
Then the input matrix will be diagonal.
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If a Bayes estimate of Z(k) is made, as noted in Chapter 1V, the
Bayes estimate of X(k) is

X(k) = ZZ(x) (6.20)

Since the Jacobian of a matrix transformation does not depend on the
multiplying vector [Ref. 13], the transform of the maximum likelihood
estimate of 2Z(k) will maximize the conditional density of X(k). So

" Bq. (6.20) is also true for this latter type of estimate.

It ' is singular, then a nonsingular E-l can be found that, when
multiplied with I', gives a triangular product. This is best illustrated
by an example., Let

711 712 ©
T=l7rg 733 ©
o o0 o
and let
a2 st 1 [, o ol
n "2 11
21 .22 .33 :
€7 U U l17g) 739 O)=|by Py O|=B,
31 .32 .33
T e 0 0 o] |by By O )

where ¢l is the 1Jth element of = 1.

The first column of Bo can be arbitrary and the last columm is

obviously all zero. The elements b22 and bsz can also be arbitrary,
but bm must be zero. Then ;11 and !12 must be picked so that

11 2 :
877,448 75 =0

All the other g” may be chosen to make E'l nonsingular.
The joint density of the state variables will now be used to derive

the joint densities of the state variables with“the observations. Two
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A, e

cases will be considered. The first procedure will use convolution of
two independent densities, and is not applicable to all forms of dynamical

systems, The second is more general but in some cases requires more
calculation,

Case I: H (a vector) is different from zero in one dimension only,

or H (a matrix) is diagonal.

Any dynamical system with a scalar output may be put in a form where
the output is pxz(k) where u is some constant. For the moment
we will consider only these systems, or those where H is a diagonal
matrix., If the scalar or an element of a vector output is a linear com-
bination of several of the xz(k)'s, convolution usually cannot be used
to find the probability of the linear combination conditioned on the
xz(J), for j 1less than k. This is true becsuse, in general, the
conditioned xz(k) will not be independent.

For convenience, the treatment in Case I will consider scalar outputs
only. Extensions to vector outputs will be obvious. Since P[X(1),...,X(k)]
is really a joint density, i.e,,

-

P{[xl(l),....x-(l)] ces [xl(k)....,x-(k)]}
o o
and W(1) is independent of xl(l), one can write

PIY(1)]x,(1),...,x (k)] P[x,(1),...,x (k)]
o [+

= PIN(1)]) * Plx (1) x,(1), .. ox (6)] Blxy(1),0ne i (K)]
1] o

= P(W(1)] = Plx, (1),x,(1),...,x (k)] (6.21)
[+

By successive convolution, the joint density

P[Y(l),xz(l),....xm(l), Y(2),x2(2),...,x‘(2), cees Y(k-l),....x-(k-l)
o o o

x ()1 ey ()]
o
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may be found. If desired, all xz(.j), J less than k, may be
eliminated by taking the marginal distribution giving

P[Y(l) oY(z) peee .Y(k'l),xl(k) rees »xm(k)]
[

Then, note that

PIx(k)|¥(1),¥(2),...,¥(k)] = P{¥(k)|X(k)]P[x (k),...,x (k),¥(k-1),...,¥(1)]
[+

= P{W(k)|nean = HX(k)]

. P[xl(k),...,xm(k),Y(k-l),...,Y(l)] (8.22)

Bquation (6.22) must be used because another convolution would eliminate
xl(k). The convolution usually can be written down by inspection.

Case I1: There is no restriction on H.
The remainder of the derivation here is very simple.

P(¥(1),X(1),...,X(k)] = P{¥(1)|X(2)IP[X(1),...,X(k)
Pl¥(1),v(2),X(1),...,X(k)] = P(¥(2)|X(2)]P[¥(1),X(1),...,X(k))

P(Y(1),...,Y(k),x(1),...,X(x)] = P[¥(k)|Xx(x)IP{¥(2),...,¥(k-1),X(1),...,X(k)]

k
= P(X(1),...,X(k)] [] Pl¥(2)|x(3)]
=1 (6.23)
where
PIY(3)|X(3)] = P[w(j)|mean = HX(})] (6.24)

Notice that there are more xl(j) in Eq. (8.2.4) than in Rq. (6.22), and
that there will be more integrations if the marginal densities are found.
Then Iq. (6.32) should be used if the dynamical system can be described
as in Case 1 and if marginal densities are to be taken.
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One other density will be needed in the next section.

Assume that

the system is of the type considered in Case I but that P[Y(1),...,Y(J),
X(1),...,X(3J)] has been calculated by the procedures outlined in Case II.

Ply(1),...,¥(k),x(1),...,X(3)] = P[¥Y(2),...,¥(3),X(1),...,X(3)

« PY(3+1)|X(3)IP(¥(3+2)|X(3),¥(3+2)] ...

- PlY(k)|x(3),¥(3+1),...,¥(k-1)] (6.25)

Note that
i-1
X(y+1) = o‘x(;) + EE o' Tu(j+r)
r=0

The following set of equations can be written:
Y(3+1) = x1(3+1) + W(3+1)

= (g sg K90+ (e 7y JU0) + Wa1)

Y(J+2) = xl(J+2) + W(3+2)

- (o§f2....o§:3)x(d) + (oggaeneroy JNO(3)

+ (711,....71-°)PU(J+1) + W(3+2)

(1) (1-1) (1-1),

v(ge1) = (o830l x(g) 4 (o2 0
[+

pe ey l-o
+ (7qrer 07,0 0034151) + W(3e1)
o

(1)

gt

h

where ¢ is the gtt element of 01.
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Note that
PlY(3+1)]X(3),¥(3+1),...,¥Y(3+1-1),U(4), ... ,U(J+i-1)]
= P(Y(J+1)|X(4),U(4),...,U(4+1-1)]

= Pw(setimean = (o0),.olix(4), 0 (r e iy JU(se8- 1)
(]

lno
(e.28)
So, using all the lines of Eqs. (6.27) and (6.28), we may find
PlY(4+1),...,¥(3+1),U(3),...,U(3+i-1)| X(3)]
i
= P[U(3)IP[U(3+1)] ... P[U(3+1-1)) [ PI¥(3+n)|X(3),8(3),...,U(s+n-1)]
n=l (6.29)

D. FINDING THE ESTIMATE

This section contains a brief description of several methods for
calculating the mode of the joint densities found by methods given in
the preceding section. The problem is to find the Bayes estimates of
x(1),...,X(k) from the observed data Y¥Y(1),...,Y(k). First, several
observations are made about the convergence of Bayes estimates of linear-
dynamic-system state variables. It is obvious that the mean-squared
error of i(J) will converge to some value as the number of observations
increases, and that the mean-squared error must be a nonincreasing function
of (k-j), where the estimate is conditioned on Y(1) to -¥(k). If the
(k+1)th observation increased the mean square, then the Bayes estimator
would ignore Y(k+l). Since the mean-squared error is never negative,
it sust approach a limit a8 (k-j) - =,

If the estimator is linear and the noise is white and stationary,
the estimator will be stable. For example, let the noise be scalar.
Then, the component of the mean-squared error of x z(:j) due to the
noise will have the form
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k
o: EE aZ(i)
i=l

where az(i) is the value of the estimator input to xz(J) output

impulse response at time equal to i. Since the sum is finite (because
the Bayes error is finite), the estimator is stable. Similar reasoning
shows that a linear Bayes filter and a Bayes predictor are also stable.

In Chapter III there was an example of a linear smoother that obtained
near-optimum performance with a small number of observations. In general,
nonlinaar estimators also obtain near-optimum performance with a truncated
sequence of Y(k).

It will aow be shovn that the desircd length of this truncated
sequence can be directly related to the rate of decay of an initial
condition in the generating dynamical system.

The optimum estimate may be written as

X(y) = / x(3) Px(s)¥(1),...,¥(x)] dx(4)
x(3)
- / / x(3) Plx(3)}¥{1),...,¥(x),6(3),...,U(k-1)}
u(y) u(k-1) X(J)
< PLU(Y), ..., U(h=1)1¥(2),. .., ¥(k)) dX()) dU(y) ... dU(k-1)
- . ./- =(x(3)v(1),....v(x),0(3),...,0(x=1)) P{U(s),...,U(k=2)}¥(2},...,¥(k}] aU(y) ... aU(k-1)
u(y) U(k-1)

(6.30)

Then, the magnitude of the change in X(j), when it is conditioned on

one more observation, Y(k+l), is less than
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max max JEXCOY(), e ¥ (k1) U(S) e u(k) ]
u(g,,...,u(k),¥(1),..., Y(k+1)

- E[x(3)lv(1),...,¥(k),U(3),...,U(k-1))]

The value of E[X(1)|Y(1),...,¥(k+1),U(4),...,U(k)] may be found
by solving the set of simultaneous equations

5;;%37 P(x(3),¥(2),...,¥(k+1),U(y),...,U(k)] = O

&-%7 PIx(3),¥(1),...,¥(k+1),U(3),...,U(k)] =0 (6.31)
me,

Consider the £'" of those equations. From Eq. (6.29),

)

5, P(X(3),¥(1),...,¥(k+1),0(3),...,U(k)]
k k-3
=[] Plu(1)Iplx(3),¥(1),...,¥(3)] [* PIY(3+1)|X(3)U(4),...,U(3+1-1)]
i=j i=]

o) .
) PlY(k+1)|X(3)U(3),...,U(k)]

3
+ PlY(k+1)]X(4),0(4),...,U(k)] 3,03 PFX(J).Y(I).---.Y(J)]
k-3

c T OPIY(3+1)X(3),U(3),. .., U(4+1)] =0 (6.32)
i=l

From Eq. (6.29), it is seen that a change in X(j) of Ax(j) ‘£n
PlY(x)|x(3),U(J))...,U(k-1)] changes only the mean of the conditional
density by an amount proportional to

(oi'l‘"’) oi:"’)) ax(3)
[+]
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In any stable dynamical system,

(9 o)

as k=-j - ., In practice, it is found that this norm goes to zero very

|~

quickly. For example, if a and b in the iystem of Fig. 1 both equal
1/2, for k-j = 8,

(i:) ig)) MX(3) = Tog7 8%, () + 3 &, (3) (6.33)

Then, the magnitude of the component of the gradient of P[Y(k)|X(J),
U(k),...,U(k-1)], with respect to X(j) in the x, direction, will be
1/1024 the maximum magnitude of the slope of P[W(k)] in that direction.
Clearly, a good engineering approximation is to set the first term in
the sum in Eq. (6.32) equal to zero, then the left side of Eq. (6.32)

is equal to zero.at exactly the same places

5;;3%3 PIX(3),%(1), .00 ¥(K),U(3), v U(Ke1) =

There will be no change in the conditional expected value, and a truncated
sequence gives very nearly the optimum estimate.

When actually obtaining the estimates, it is usually convenient to
use the logarithm of the joint density. From Eqs. (6.23) and (6.25),

mi{PlY(1),...,¥(k),X(1),...,X(3)}} = in{P(x(1)]} + fn{PY(L){X(1))}+ ...
+ fP(X(3)1X(5-1) )} + in{PL¥(3)1X(4)}
+ mfPlY(y+1),...,¥(k)|X(3))} (6.34)

Taking the derivative of Eq. (6.34) with respect to xz(J) for all £

gives a set of m, equations of the form

3 znipjxg121x$1-13|}+ J 2niP|Y§1%|X$12# ) £niP|Y§1+1§I ..SYSk}[ S!!“
3x£ 3 X, J X,

(s. 35)
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If the Bayes X(j-1), given Y(1),...,Y(k), is known, then X(j) 1is
the only variable in Eq. (6.35); i.e., the X(j-1) that maximizes (or

minimizes)
P(x(1),...,X(3-1),¥(1),...,¥(k)]

also maximizes

P(x(1),...,X(3-1),x(3),¥(1),...,¥(k)]

This can be seen from the following argument. The Bayes estimate of
X(3-1) obviously maximizes P{X(1),...,X(3-1),¥Y(1),...,Y(k)], and the

Bayes estimate of
x(3-1)
n(3) = [ ]
x(J)

maximizes P[X(1),...,X(3),¥(1),...,Y¥(3)]. The first n slements of
f(J) are the elements of X(Jj-1).

1f surface-searching methods are used to solve Eq. (6.35), the
surface has dimension L Vhen Q(J) is found, it is put in the like-
lihood functions for X(j+1), and the process is repeated until all k
of the X(j) are estimated. The first surface search [in the estimation
of X(1)] will use the initial condition, X(0).

If only filtering is desired, the maximum likelihood estimate may
be made by using the density described in the last paragraph of Bec. C,
or surface searching may be used to solve equations of the form

3 tafe(x(3)|¥(1) . ..,¥ d zn]pgvg!2|xglz]}_
X, 5 + x, 5 0 (6.38)

Notice that P[X(3)|¥(1),...,Y(3)] has the property seen in Chapter
I11. The observed Y(i) will appear only in the mean, and the other
moments do not depend on Y(i). The surface to be searched is again of
dimension m,.
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Also, the density necessary for maximum likelihood smoothing with
earlier data may be obtained by writing

P[x(3),¥(1),...,¥(k)] = P[X(3)]¥(1),...,¥(3-1) P[Y(3)]|X(J)]

- PlY(3+1),...,¥(k)|X(3)) (6.37)

The surface is also mo-dimensional.

If linear estimation of the X(j) are made, this should be a good
first guess for the surface search. In multiple-mode problems with
reasonably good signal-to-noise ratios, it would be an aid in starting
on the correct mode.

If the dimension of the input to the dynamical system is smaller than
the dimension of the state vector, it may be simpler to use Eq. (6.28)
directly and estimate the U(k). This would reduce the dimensions of
the surface to be searched, and there would be no need for taking marginal

distributions. Then, the optimum estimates of the i(i) are given by

ox(1) + 0(1)

>
—~
N
g

i

ox(j-1) + 0(3-1)

Lo
—~
[ 9
S
]

where X{(1) 1is the known initial condition.

Another calculation aid is the fact that, with many input densities
and many dynamical systems, P[Y(k)|X(j),¥(j+1),...,Y(k-1)] will appear
very gaussian if k-j is greater than 4 or 5 and if W(k) is gaussian.
This is especially true for moderately high signals (see the next section),
or very high gaussian output noise. Then the methods of Chapter 1II may
be used to calculate the conditional density.

Several short comments are offered on finding the mode when the
solution is not put in the form of Eq. (6.35). For example, perhaps
énly a small number of data points are'avsilable and the joint density
is put into the form of Eq. (6.23). 1If none of the :E(J) is integrated
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out, and a surface search is run over all the X(j), it is often helpful
to note that the mode will be at the origin for all Y(j) equal to zero
and P[uz(J)] symmetrical about zero [W(j) is assumed gaussian].

Then the Y(j) can be moved out toward their observed values in small
steps, thus moving the mode in small steps from a known position. The
surface search will be over a much smaller area and the total calculation
will be greatly reduced. If there are multiple modes, the correct one
will be tracked,

Once Eqs. (6.23), (6.28), or (6.34) have been found, the surface
search i3 a routine problem for the computer programmer. A common
procedure is the method of steepest descent (or ascent). The gradient
is8 evaluated at a point and a move is made in the direction of the
gradient to a new point. The gradient is sgain evaluated and the process
continued until the gradient magnitude is small. Gradients of either
the log of the density or the density itself may be used. Another
common procedure is to move along a coordinate axis until there is no
increase in the density. This process is repeated in turn on each axis
until the mode is reached.

E. THE ASYMPTOTIC BEHAVIOR OF THE ESTIMATORS AS THE SIGNAL-TO-NOISE

RATIO IS INCREASED

This section contains a discussion of the asymptotic behavior of
estimates for systems with nongaussian inputs as the signal-to-noise
ratio is increased. It will be shown that linear estimation is very
nearly optimum for high signal-to-noise ratios for one or more states
of the dynamical system. In special cases, it can be shown to be nearly
optimum for all states of the system. is property of estimators
assumes special importance because, in the majority of cases, there
probably will be a strong signal and weak noise.

Denote by xo(J) all elements of X(j) that may be measured directly
or calculated exactly knowing Y(1),...,Y(k), k 2 j, when the covariance
matrix of W is zero. Using the techniques of Sec. C, one can find
P[xo(J),Y(l)....,Y(k)]. Let ﬁl(,j) be the elements of the xo(J)
estimation, io(J). Now, take a multidimensional Taylor series expansion
of Iafp(x (3),¥(1),...,¥(x)}} about k(1)
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nfPIX (3),¥(1),...,¥(k)]} = fn{PR (3),¥(2),...,¥(x)}}

L o 9% infRlx (3),Y(1),...,¥ ()}
+ 2 zh Bxg(J)Bxh(Jf [xg(J) - ﬁg(J)][xh(J) - ﬁh(J)]
g
xg(J) =2.0)
x,(3) =& (3)
+ higher order terms (6.38)

Notice that the term containing the first partial derivatives is

zero because these derivatives are evaluated at the mode. Let

32 zn{p[xo(J).Y(l)....,Y(k)
Sn = - 3 _(3)0%,13)

xg(J) = ﬁg(J)

x,(3) =& (3)

Then for small |xg(J) - gg(J)|

P(x_(3),¥(1),....¥(k)) = P[io(a).v(l)....,v(k)]

y exp{- % z Qnlxg(d) - 2.(1)1Ix, (3) - ﬁh(J)]}
&b (6.39)
Or, over a small region about the mode, P[xb(J)]Y(l).....Y(k)] follows
»*
the gaussian density.

By picking the elements of Kw arbitrarily small and using
Tchebysheff's inequality, |xg(J) - ﬁg(J)| may be bound as small as
desired with any probability less than one. 8o, with high probability,
Eq. (6.39) will describe the joint density. Under these conditions,
linear estimation is very nearly optimum.

*his treatment was suggested by the method used in Ref, 14.
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VII. CONCLUSION

A. SUMMARY

A solution has been given for the problem of filtering a stationary
process with unknown parameters when the parameters come from some
infinite set. It has been shown that the optimum estimator weights are
averages of functions of the parameters where the averages are taken
with respect to the parameter space conditioned on the observations.

It is seen that, for stationary or near-stationary processes, the
parameters enter into the solution in the form of simple functions of

the signal and noise spectrum. Optimum methods for measuring the spectral
averages were given,

The theory of state-variable estimation has been extended to include
nonlinear estimation for_ nongaussian inputs. First, it was shown that,
even in steady state, the state variables are nongaussian for nongaussian
inputs if the discrete system is stable (a bounded output if the input
is bounded). Thus, in general, lincar estimation is optimum only for
gaussian inputs. The estimation approach used was to find the mode of
the state-variable density conditioned on the observations, in which the
key problem was to obtain the density in a convenient form. The Markov
property of the state variables was used to simplify this very complicated

density, and surface-searching methods were used to find the maximum., It
has been shown that near optimum (linear or nonlinear) estimates may be

nade of the state of many dynamical systems using only a short sequence
of observations, and the length of this sequence may be related directly
to the rate of decay of initial conditions in the dynamical system.

A new approach to linear estimation of state variables hps also been
presented. It shows the close relationship between the theory of pattern
recognition in a random environment and state-variable estimation. The
theory is a straightforward extension of Abramson and Braverman's learning
theory [(Ref. 7]. Their mean and covariance matrix equations are almost
identical to the filtering equations presented here. The theory of
estimation for the case where the observations are taken through a second

dynamical system was presented and a suitable solution was given.
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The linear estimation theory was used to simplify the procedure for
detecting a gaussian signal in gaussian noise. The optimum detector
contains an operator that gives the best estimate of all sample values
during the detection interval., Ordinarily, a matrix of order equal to
the number of observation sample values must be inverted. It was shown
that with state-variable estimation these signal estimates could be made
by inverting small matrices of a fixed order independent from the number

of observations. A near-optimum, time-invariant detector was derived.

B. SUGGESTIONS FOR FUTURE WORK

Cox [Ref. 6] has investigated state-variable estimation when the
system is nonlinear and the inputs are gaussian. By contrast, the present
study discusses estimation when the system is linear and the inputs are
nongaussian. An obvious area for further work is estimation when the
system is nonlinear and the inputs are nongaussian. An approach similar
to Chapter VI might be fruitful.

A problem that is considered by the author to be one of the more
important unsolved practical problems is the detection of a signal when
the signal parameters are unknown and drawn from an infinite set. This
is the type of signal that is encountered in practically all space
communications, The receiver is not interested in the exact signal
or signal parameter, but only in knowing if the signal is present,
Intuitively, it is felt that a form of a near optimum detector would
correlate the signal and noise with the output of the adaptive filter of
Chapter V. This remains to be proven, however. This work should then
be extended to include two signals transmitting binary information,
where the parameters are drawn from two infinite but not nococsaril}
disjoint sets. An example would be frequency-shift keying when the
doppler shift was greater than the keying shift.
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APPENDIX A. DERIVATION OF THE SMOOTHING EQUATIONS

This appendix gives the details of the derivation of the smoothing
equations. It is desired to find the solution of

grad ){/zn P[x(1)|¥(1),...,¥(k-1)]

x(1

+ grad

x(1) @ PIY(R)[X(1),¥(1),... ¥(k-1)]} = 0

(3.17¢)

The density P[Y(k)|X(1),Y(1),...,¥(k-1)] may be specified by its mean
and covariance matrix. From Eq. (2.3a) it is seen that E[X(k)|X(1),
¥(1),...,¥(k-1)] is equal to ¢E[X(k-1)|{x(1),¥(1),...,¥(k=1)], since
W(k-1) has zero mean. From Eq. (2.3¢c) E[¥(k)|X(1),¥(1),...,¥(k-1)]
is equal to HOE[X(k-1)|X(1),¥(k),...,¥(k-1)] since U(k) also has
gzero mean. The solution to the filtering problem, Eq. (3.8), may be
used to find B[X(k-1)|X(1),¥(1),...,¥(k-1)] with X(1) substituted
for X(1) as the initial condition in Eq. (3.14), i.e., for k = 2,

-1
%(2) = [u‘ x;%z)u + x;tz)] [ut “;22)”(3) + x;tz)ox(l)] (A.1)

where

Kx(2) = ™y(1) ot (A.2)

The matrix l‘(k) was given by Eq. (3.6) for k > 2. .

To simplify notation, Eq. (3.8) can be written as
X(k-1) = A__ ¥(k-1) + B R(k-2) (A.3)
Then, iterating on Eq. (A.3), with (A.1) as a start, write the relations

X(2) = A¥(2) + BX(1)
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Hi

R(3)

Aav(s) + assz(z) + BB x(1)

X(4) ¥(4) + B,AY(3) + BB.AY(2) + B BB X(1)

432

= x(4)| + 848332X(1,

More generally,

- X(1) (A.4)

X(k-1) = %(k-l)l C,

x(1)=o

where

np

rn
Choq = B qByg -+ B (A.5)

and where i(k'l)‘x(l)ao is the estimate of X(k-1) from the filter

equations when X(1) 1is zero.
It can easily be seen that the covariance matrix of Y(k) given all
observations to time k-1 is

Ky(i) (KI%-1) = u[%xﬁ(k_l)wt + TRy 1) Pf]n‘ ¢ Kyyy  (A6)

Then
grad (n{P[¥(k)]|X(1),¥(1),...,¥(k-1)]}
= -2c,_ 0% B® Kt (K|k-1) (¥(k) - HoR(k-1)]

This gradient is added to the gradient of En{P[x(1)|Y(1),...,Y(k-l)]}
and the sum is set equal to zero to get a solution for X(1). The
equation to be solved has the form

8, K1) - + 610" B Ky, (k|k-1) Hoc, _ R(1)

-1

-
: 1¢ nt Ky(k)(klk- “°x(“">)x(1)=o
t
Cy-

1@ ' Ky(k)(k]k-l) Y(k) = 0 (A.7)
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from which

-1
(1) = [C:_l@t nt K;%k)(k|k-1) HOC, , + gk-l]

"

t t t '1 A
. [ck-1° H Kv(k)(I:'k-l){Y(k) - nox(k-1)|x(1)=o} + Jk_l] (A.8)
The quantity gk_l is the part of the gradient of the exponent of
P(x(1)] ... P[¥(xk-1|x(1),¥(1),...,¥Y(k-2)]

that is multiplied by X(1), and J.y 18 the part of the same gradient

that is not multiplied by X(1). For example,

-1
§p = l‘!-&l) ¥ “t“;%l)" * °t"t[‘w(z) ¥ lm‘u(z)r‘t"t] 1o (A.9)
and

-1
3, = o‘n'[x'(z) + nn:u(z)r‘n‘] v(2) + n‘x;tl) + x;%l)iu) (A.10)

More generally,

S, = [c:_lo‘nt‘;%k)(ﬂk-l) HeC, ¢ gk_l] (a.11)

and

t .t -1

= [c:_lo B Ky ) (k| %-1) {Y(k) - “i(k-l)‘x(x)-o}* Jk_l] (A.12)

If data before Y(1) are used, Bq. (3.15) can be modified to

Pix(1)1R(0),¥(1),¥(2), ..., 0%).¥(0),...,¥(-n)]

- 2(x(1)]8(0),%(0),....¥(~n)] PI¥(1)IX(1),%(0),%(0),....¥(-a)] P(R(0),¥(0),...,¥(-0)]

R (Y )
plR(0).¥{1),...,¥(x),¥(0),...,¥{-n))
(A.13)
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Note that
P[x(1)]%(0),¥(0),...,¥(-n)] = P[x(1)|X(0)] (A.14)

P[Y(1)|x(1),X(0),¥(0),..:,¥(-n)] = P[¥(1)|X(1)] (A.15)

Also,
PlY(k)|x(1),¥(1),¥(2),...,¥(k-1),¥(0),...,¥(-n)]

has mean HOX(k-1|Y¥(-n),...,¥(k); X(-n-1) = 0], where X(k-1) is the
mean given in Eqs. (A.1), (A.2), and (A.3) [this can be seen by the
same reasoning as that used to derive Eqs. (A.1), (A.2), and (A.3)]. Thg
covariance matrix was given by Eq. (A.6). Thus, the only term of the

gradient in Eq. (3.17) that will be changed will be the term due to
P[x(1)]|Xx(0)].
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APPENDIX B, THE CHANGE IN THE DENSITY OF THE CORRELATOR QUTPUT

This appen@ix presents the change with Ae“(i) of the correlation
output density of the near-optimum detector of Chapter 1V, and gives

a method for answering the very important question of how small to make

2

OHe . The law of large numbers shows that the correlator density is very

nearly gaussian for large n so that only the change in the mean and

variance need be discussed.

Before proceeding further, we illustrate the well-known fact that
error is uncorrelated with and hence independent of the estimate. From

Eq. (4.31),
e3(1) = R (0) - [A(i)]t B,+,A(1)
Since
x (1) = 8 (1) + o(1)
then
1) - x:(i) - -2_:-(7)- - B[R (1) o(1)]
However,

and therefore

![il(z) o(1)] =0

-78 -

(B.1)

(.2)

(B.3)

(B.4)

(B.S)
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1. Change of the Correlator Mean with Aaz(i)

The output of the coirel.tor is

n- .
oln) = gy 2 % (9) %) (.6)
J=m
Using Eq. (B.3), one obtains
E(%,(1) ¥(1)] = BIR (1){%, (1) + (1) + W(1)}}

= B[22(1)] + B(W(1) &,(1)]

(B.7)
Since the signal and noise are independent,
E(w(1) %,(1)] = l[w(i) 2 o, )+ xl(J)}}
3
-, Eiw3(1)) (B.8)

From the first theorem in Chapter 1V it is possible to bound the
change in |a . | as ®m incresses. It is also known that the change in
l[ﬁf(i)] will be less than Z:’. Then the change in the mean of C(n)
can be bounded.

2. The Change in Variance with A.z(i)

Write

l[{[AA(1)]‘ Yn}z] ) [A‘(x)]t R, AA(1)

B 2 2 oagy Oy R (K-3) (B.9)
k
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Since ||Rx+w(t)“ is maximum when t equals zero, the sum is maximized
for a constant |M| by letting M be different from zero at only one
place, i.e.,

fagg =t a4y (B.10)

Then
max B[{[M(i)]t vn}z] s a2 R, (0) (B.11)

Now II[AA(i)]t Yn|| can be specified to be less than some small
fraction of a; (1) with a desired probability. For example, if
1

My
ﬂ”—(—yﬁ 0 (B.12)

the probability that [[aa(l))t ¥ Il > 1/10 % (1) less than 10°°.

12 ||AA Y " is specified to be less than 1/a cg (1) the magnitude

of the change in E[x (1) ¥ (1)1 as n - o will be lou than

2
f({ % (1) * 31(1)lnw) v’(1) ar(v) - x[ﬁf(i)

Y

o

1 2
" f[_z B, (1) ¥+ L og (1) HO)
Y

o

20
R.(1) 2
= : /Y (1) z %, 21(1)
J

Y

o0

v’(x)]
n=oo

Yz(i)] ar(Y.)
nmoo

v’(1) ar(v) (8.13)

n=om
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Using Eqs. (B.3) and (B.4) and noting that a,, s 1, the magnitude of

it
the difference is less than

2 4 2 3
2 %% (1) "5 %R (1) w(1) (8.14)

A similar expansion shows that the magnitude of E[il(i)Y(i) . Rl(J)Y(J)]
is changed by less than

el

af (3.15)

2 (1)

The techniques of Roe and White [Ref. 15] may be used to determine the
correlator variance, and Eqs. (B.14) and (B.15) may be used to bound
the total change. The two methods may be compared to decide whether

the ratio
laat))
-A' i

and thus Aez. is small enough. These meihods will probably give an

unduly pessimistic answer. Usually, a ratio of 1/10 will be sufficient.
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APPENDIX C. DERIVATION OF THE FORM OF THE NEAR-OPTIMUM
FILTER FOR CONTINUOUS PARAMETER PROCESSES
This appendix contains the derivation of the equations for an
adaptive filter which may be synthesized from many narrowband filters.
This filter will have a particularly simple adaptive procedure. Consider
the system of Fig. 8. The Gi are ideal nonoverlapping filters Af in
bandwidth which completely fill the bandpass -B to B; the Goi are
the optimum smoothing filters following the Gi' Appendix D shows that
the error for a steady-state smoothing filter is

o0

? R (0) - / tz(t) dt

0
Joo 2
=R (0) - = §-1) s ds (c.1)
. 213 8,1 '
-Jw
where
=1 og-1 ssa
t(t) =F ~ £5 5= (c.2)
ii

and R'(T) is the autocorrvlation function of the signal; f?-l is
the Laplace transform of the inverse Fourier transform; s..(t) is the
signal power spectrum, and 811(1) is the spectrum of the signal plus
the noise. Assume that % Gi equals an ideal filter of bandwidth B
(equal to unity over the frequency range of interest).

Now, examine the error in the 1th channel of Fig. 8. The signal
and noise spectra are
s =s 61?2 (c.3)
"(1) ss ' 1
2
s'“‘(x) =S 1611 (c.4)
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Assume no correlation between signal and noise. Then

sii(i) ) |Gi|2 [ssa * snn] = |Gil2 sii (c.s)
JAR .
ﬁ(i) =G, 5,7 (c.e)
A
Sﬁ(i) =G, 51 (c.7)
and
-1 ss’gig -1 Sss
£5 5 — = £¥ T Gi (c.s)
11(1) ii
sit)
: <5 T
+
. S5s* S R
—-G‘ q” - 3 2:
oy I g gl

FIG. 8. BLOCK DIAGRAM OF NARROWBAND PARAILEL FILTER SYSTEM.

Since there is no crosscorrelation between channels, the total error
for all channels is

— o0 n Jo n s 2
2 2 1 ~1) ss
e,r.f S.. z |61 at ol v f 2 £5 {-51—_; 61} ds (C.9)
i=] i=] -
-0 -Joo
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The first integral on the right is

[+

n
/ 8.8 z |<‘.1|2 df = ns(o)

(c.10)
i=l
- 00
Now evaluate the second integral:

2

Sl -3 5wl fael] e

Let Af be small so that 8 (f) and S _(f)
interval. Then

are constant over the

s s (f,)
-1) ss8 o i
5 =2 s =
{sii i} [N (2

-1 8,(1,)
- £F “(q,) =
) + 8 (21"

% 1
[N (£,) + 8 (2,)]
(c.12)
where so(fi) and No(fi) are the spectral densities in the interval
Also,

bl

*

(c.13)

(s, (t)+x(t 7%
Note that if G, *(£) # 0, then 01(1) = 0; and if G (f) # 0, then

(f)

v 77 15 8 ' '
35 / eF 31; G, 5 {u oJ ds = 0, 149 (c.14)
i .
Assume that S

ss’ sit' and 01

can be expressed as the ratio of
polynomials (they can always be approximated as closely as desired by
such a ratio).
follows:

Then the partial fraction expansion can be made as
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8 K K
88 E: £1 § mi
=— G, = . + — (C.15)
Sii i 7 8 + "Ei - 8 bmi

where N 20 and l.vm1 2 0. The right-hand sum has an inverse Fourier
transform that is zexro for t 2 0. So,

n s n K
~-1) ss Q }; 21 \
£F =— G = (c.18)
12=1 {s“ i} 1};1 T |
Thus,
1 1 n 1 n s n 1 s
oF "} = £5° {——" G % = €5 { 2ael . eF - {——“ c}
{su 8,1 12-1 1 12_1 83 ¢ 12_1 83 ¢

(c.17)

Using Eqs. (C.11), (C.14), and (C.17), one can see that the second
integral of Eq. (C.9) is

Jo n s 2 oo T
:‘,—;3 f z 23-1{3_::1._ 61} ds --2—’1‘3- / 5" {E._{;} ds (C.18)
A 17 o
Also note that
6 = 1 -1 so_(‘x) 9 . 8,(2,)
°1 N (£,) + 8 (£,)1% [N (£,) + 8 (2,1 Nit,) +8,0¢,)

(c.19)

Figure 9 and Eqs. (C.9), (C.18), and (C.19) show that if the outputs
6! the parallel filters are weighted by

so(tt) - si
No(‘t) + so(:‘) Nt + 81
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gt o L L

(-
| gCl

uno——:‘,;'-':; 1 {e} ,
|
L =

a. Block diagram for e

b. Block-diagram manipulation of Fig. 8¢

u("o—g 2 G o
b 0 2 -Z ¢
m-—@ 4

A-32387

c. Equivalent of Fig. 9b

FIG. 9. DIAGRAM FOR FINDING THE ERROR OF THE PARALLEL FILTERS.
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wvhere § and N, are signal and noise powers [see Eq. (C.20)], and
summed, the resulting transfer function is Wiener optimum. If a number
of such narrowband filters can be constructed, and if estimates of the
signal and noise powers from the narrowband filters are made, then
weighting potentiometers with zero-to-one ranges can be adjusted to give
an adaptive Wiener filter.

Shortly, it will be shown how Fig. 10 may be modified to use nonideal
filters. But, first, the effects of a misadjustment of the potentiometers
will be investigated. A reasonable design objective would be an adaptive
filter that was some'specified decibels worse than optimum, For example,
one might want the ratio of the mean-squared error in each channel to
the average signal power per channel to be "within 10 percent of that
obtainable if the signal spectrum were known exactly.” Let K be the
nonideal potentiometer setting. The mean-squared error with this
setting is

:é = f [s" + xzs11 - 2s"x]|ci|2 daf (c.20)

Again assuming nearly constant spectra,

Af8u-=8+l€

Of 8 =8
ss

(The 1th channel is being considered, and for convenience the subscript

i will be dropped.) 1If :3 is the minimum mean-squared error, define:

—_— — 2
D =02-e:=[l(2(8+l()~-28l+ 8 ] (c.21)

S+ N

Then, solving Eq. (C.21) for K gives

8- [D(8+ N) )%

K=
S+ K

(c.22)
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and

K -G =
°1| 8+ N

s §-c¢ €

s €e>0
8+ N §-e+N §+N
= (c.23)
A Lol
8 __S+ el | Lel <0

AH A A
8 +N 8+|e|+N| 8+ el +N

where € 1is the measurement error of S8, and N is assumed to be
known exactly a priori (this is reasonable since there is usually an
arbitrarily long time to determine X). Then

(c.24)

alt)o- o : Z Soy -

4

olt)

sine Gi

a. Error spectrum due to signal and noise

n(t) O L) Go; °

b. Error spectrum due to noise

slt) L) Go; | .

¢. Error spectrum due to signal

FIG. 10, THE BLOCX DIAGRAMS FOR FINDING THE ERROR SPECTRUM OUT
OF THE iR CHANNEL.
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The foregoing analysis has assumed ideal bandpass filters, i.e., no
crosscorrelation between filters. In practice, of course, it is not
possible to construct ideal filters. Assume that the 1th filter is
not ideal but is sharp and overlaps only its adjacent neighbors. Then

the additional cross-power error due to the 1*®  channel is (see Fig. 10)

2 * *
e = R£{G, |G - 1116 G -1)+G (G -1)]Sd:t
ci / {il:o1 ][ 1-1( °1-1 i+l °1+1 o
% +*
+ RL{G,G [G G + G G ]$ N df
f { i o1 i-1 °1-1 i+l o“_1 o

s 4/ |6, | [|ci_1| + |°1+1’] max {8_,N |} af (c.28)

0

Equation (C.25) provides a very simple means for determining how sharp
the filter cutoff should be.
There are now three conditions on the n narrowband filters that

will allow :i

1. The 01 overlap an arbitrarily small amount,

to approach :! arbitrarily closely:

n

2. z Gi(,jw) = Ke-Jm. where K is a constant and T is the delay
i=l
through each G1 over the frequency range of interest.

3. The bandwidth of (":1 is arbitrarily small, or the spectra into (31

are nearly constant.

A synthesis procedure to meet these conditions will now be described.
If each (;1 is to cover the frequency range

8w
-

-:-(1-1) to
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Hr oo

the G1 can be formed by taking the difference between two lowpass
filters with identical linear phase shift or delay; i.e.,
-8T

G, =e (H, - H

s ' 1_1) (c.26)

where e ' Hi(') passes from zero to (B/n)i, and H, is the transfer

function of a zero-shift sharp-cutoff filter. Obviously,

2 G, = Pt H, (c.27)

thereby fulfilling condition 2.
 § 4 Bi is ideal, its impulse response is

o (3 2 1)

h (t) = prs (c.28)

The transfer function o-'T Hi(l) can be made realizable by truncating
hi(t) at +T. Then the impulse response of the nonideal ni(-) 1is

sin | 2xt B i
hi(t) = —— b(t) (c.29)
where
) | T a2atsT
b(t) = {
] elsewhere

The transform of b(t) is a sinc function; taking the transform of
ht(t)' it is seen that l‘(n) is the convolution of the sinc function
with the ideal lowpass filter (see Fig. 1l1). Then, in the vicinity of
2x(B/n)1,

H, (ﬂa-:-1+-$)-%/ -'-‘-3-’5 dx (c.30)
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The integral is tabulated, giving a simple method for determining the
delay needed for a specified sharpness of cutoff.

A bandlimited filter with an impulse response 2T long may be
constructed with a tapped delay line and a lowpass filter [Ref. 16] as
shown in Fig. 12, The setting of the potentiometer on the jth tap,

a when synthesizing e 5T Hi(s) is

ij’
sin [zﬁgi (3T - T)] 1
v = £ =
ajy T = %) , T= o (c.31)
A practical form of the adaptive filter is shown in Fig. 13.
(1) :
a =a!' - a! C.32
3 1y "1(3-1) (c.32)
The potentiometers in the 1th row correspond to the Gi of Fig. 10,
and the signal and noise measurements are made at the output of Goi.

However, if those measurements are made at the output of some other
narrowband filter, a great simplification of the adaptive filter is
possible. Block diagram substitution will reduce the form of the
adaptive filter shown in Fig. 13 to the form shown in Fig. 12, where
the Jth potentiometer setting is given very simply by

n

S

- (1) "4

.J = z aJ E;—-O-_N— (c.33)
i=1 !

FIG. 11, THE CONVOLUTION.
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FIG. 12. SYNTHESIS OF e ° H; AND OF THE
COMPACT FORM OF THE ADAPTIVE FILTER.

FIG. 13. A PRACTICAL FORM OF THE ADAPTIVE FILTER.

If the filtering operations are to Le performed digitally, one may
go from the delay-line transfer function to numerical techniques in an
almost trivial manner. If f£(mT) is the sample value, at t = =T, of
the output of the lowpass filter of Fig. 12, then the sample value at
the output of the sum of the weighted taps is given by

k
o

c(nT) = 2 o 2l(n - 3)1] (c.34)
Jj=0
Since c(t) 1is banduntod3 knowing c(mT) gives all information about

c(t). It is also obvious how the set of difference equations appropriate
to the circuit in Fig. 13 is used.
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In practice, the spectra will not necessarily be constant over the
range of Af, However, each channel may be considered as the sum of an
infinite number of infinitely narrow channels—each with the same
potentiometer setting, G°1' Obviously, this potentiometer setting will
not be as good for some of these channels as for others. The equations
developed in the estimation part of this appendix may be used to determine
Of  under an assumption of the possible slopes of spectra to be encountered.

The spectra can vary considerably from a constant value with little harm.
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G e,

APPENDIX D, STEADY-STATE ERROR IN A WIENER FILTER

For independent signals and noise, the mean-squared error from an
optimum filter is [Ref. 17]

e
2

where

nn

2 2
e n[ |Gd| Ss‘ + 811

o = [ at{qy

[o°]

2 2 * *
8, * 16,17 8y, - [GOGd + GdGo] s”} (p.1)

= 00

signal spectrum

noise spectrum

=8 + 8 =8

+
ss nn ii §

11

0, t<0O

sl

desired operation

i1 8

8 .
1 -1) "ss
optimum filter given by Go(s) =5 5 {-I§ Gd}

2

s 8 8

1 -1) ss s =1) as *
—_— 5 - G - - 5 {.... G } G
51 {aﬁ' } 8,1 8,1 4) ¢

_ e 25'1{-8—'- G } ¢ |at (p.2)
8,1 8,1 9y ¢
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Let

S .
2.(¢) =57183 1{{-5 Gd} (p.3)
ii
and
5-1 sss
fz(t) = -s-i-_i- Gd (D.4)
then
fz(t) tzo0
tl(t) = { (D.s)
0 t<0

By Parseval's theorem,

1l 88 -1) “ss 1 88  tog=-1) 88
rjf 5z %% {‘55%} dﬁf 5 04t {r-%}d-

i1 11
-Joo -Joo
2
-/ fl(t).tz(t) dt -f fl(t) dt
-0 0
1 I 1 pq1f8 :
- 28
am [ 811 's-;'fgs {-8—1_—{ Gd} ds
-Jm
(p.8)
Then
e = f |cd|2 8,4 4f - f f:(t) dt (p.7)
-0 (4]
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APPENDIX E. THE STEADY-STATE MINIMUM-MEAN-SQUARED-ERROR
SAMPLED-DATA FILTER

Assumg the filter is to be of the form shown in Fig. 13 and it is
desired to adjust the ai to give minimum mean-squared error. The

Z-transform of the tapped-delay-line filter is

k
o

6(z) = Z 8 z " (E.1)

0

The equation for the mean-squared error is well known [Ref. 18] and is

k k

o o
-2 T -n m
e’ = nx(o) * 39 ¢ {Sx+w(z)[ z s Z z a 2 ]
T 0 (1)
) o
k
o
-n+f n-4 dz
- z s (2 + 2 7)8y(2) } 7 (E.2)
n=0
The desired operation on the signal is e-ET. If it is desired to solve

for the filter giving the best estimate of the delayed signal, £ is a
positive integer. If the best predictor is desired, £ 1is a negative
integer. The term Rx(T) is the signal autocorrelation function; SX+'(Z)
is the sampled noise plus signal spectrum; sx(z) is the sampled signal
spectrum; and the integration is around the unit circle. Uncorrelated
signal and noise are assumed.

The optimum setting for a, may be found by setting the partial

i

derivative of e with respect to a equal to zero and solving for a

i i

k
o -
3¢ - -n_ (2
S, " m ¢ {xw )zn[Z‘nzn‘s_x'(zS}
0 +W
T
k

T az 2 x(2) ]
M T ¢ E—{sx“(z)z [2 8, 2" O] }"0 (E.3)
: 0
o
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where, for simplicity, £ = 0. Parseval's theorem for discrete systems is

P ¢ P (2) py(27h) =5 ¢ r (27h) Fy(2)

r T
o o

= z £,(aT) £,(nT) (E.4)

- Q0

Then a solution to Eq. (E.3) is

. 8,(2)
'2-31_.1 ¢ g_z {sxw(z)zi[z 8, 2 - ﬁ(ﬂ]}
2 0

L3

k
O
T dz i- T i dz
--2—"3¢-Z—SX+'(Z)z.nzn-m¢ Sx(Z)Z -2-30
T 0
° ° (2.5)
Again, using Parseval's theorem,
‘o o [(n-1)T)
R n-1i)T]sa
-2-‘,;3 ¢ 8, (%) z_n A0 2 T e S
T 0 ns0
o
and taking the inverse
R_(1T)
-2-:—.’- ¢ Sx(Z) z! %?- = _____xT (2.7)
r
o
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we have (k°+1) equations of the form

which can be expressed in matrix form as

Rx+v(°) Rx+v(T)
Rx+'(T) RX+W(0)
Rx+w(2T) RX+W(T)
Ln*+'(kOT)

k
()

EE . Rx+w[(n-i)T] = Rx(iT)

n=0

nx+'(2r)
(T)

X+w

Rx+v(o)

R
X+W

R (kT

X+w O

(0)

(E.8)

R (0)

nx(r)

= nx(zr)

Rk(koT)

(E.9)
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