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ABSTRACT

The techniques of decision theory are applied to the problem of
constructing machines that improve their ability to recognize patterns by
extracting pertinent information from a previously unclassified sequence
of observations; such machines are said to learn without a teacher.

A general system solution is obtained which includes the solutions
to the problems of learning without a teacher, learning with a teacher,
and no learning. The solution has been extended to include problems in
which the unknown parameter is time varying, as well as problems in
which the probabilities of occurrence of the classes are unknown
a priori and must be learned. The resulting systems are shown to be
stable and to have performance which converges to the performance of
systems which have a priori knowledge of the unknown parameters being
learned. It has been demonstrated that for most cases either the optimum
system, or a suboptimum system which performs within an arbitrarily small
tolerance of the optimum system, is realizable in the sense that it
requires a finite memory.

The techniques of this paper are applied to examples of learning
problems in the communications, radar, and electromagnetic reconnaissance

fields.
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n(-)

SYMBOLS
the amplitude of a narrowband signal, a scalar random
variable
the parameter of a Rayleigh distribution
a set of vector-valued unknown parameters

the event P(§|%k) > P(8i|kk) for all 6, £ 8 (see
Chapter III)

a known waveform of finite time-~bandwidth product

a known column vector with the sample values of b(t) as
elements

A
the event P(Slkk) s P(eilkk) for some 6, #6

an unknown scalar parameter; also used as an index to
indicate "current value of"

a constant = Az/(AzRf + 1)
divergence (see Chapter III)
a decision rule
tant =
a constan l/Sn(fi)
t
a column vector with the m'" element = exp (janimA)
the expectation of the quantity within braces
the frequency of a sinusoid
a function used to factor a statistic
the gain, or attenuation, of a randomly time-varying com-
munication channel. The index indicates the value is to
be taken at a particular time, KT.
a function used to factor a statistic
a complex constant used to represent the operation of a
fading channel on a signal. The modulus of G is the
channel gain and the argument of G 1is the channel phase

shift,

a function used to factor a statistic
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h(t,7) the response of a time-varying linear filter at time t
to an impulse applied at time 7y

t

Hi the i h hypothesis

i an integral-valued index used to distinguish members of
a set

J = /-1 ; also used as an integer

J(fi) a column vector with the mth element = cos (2nfimA)

k an integral-valued index used as a time index; e.g., gk
is the value of g observed at time kT

K covariance matrix

4y = 4(Xg|Mc-1), the k™ value of the likelihood ratio con-
ditioned on the past

L(s) the likelihood ratio

L the loss associated with a false alarm relative to the loss
associated with a miss when the loss associated with a cor-
rect decision is zero

m an integral-valued index

M the number of possible classes

Mc the memory capacity required of a learning system

n(t) a noise waveform

N the column vector with samples of n(t) as elements

pl,pz the a priori probability of occurrence of hypotheses 1 and
2 respectively

p(-) a probability density distribution

p(+) a cumulative probability distribution

Pr(-) the probability that the indicated event will occur.
Occasionally a subscript is used to indicate the event,
such as Pgs, which is the probability of a false alarm
occurring.

q an integral-valued index used to distinguish different pos-

sible values of the unknown parameter

SEL-65-011 - viii -



s,(f)

the number of possible values of the unknown parameter
the limits of the range of a
a generalized signal-to-noise ratio

a signal waveform of finite time-bandwidth product (may be
lowpass or bandpass)

the column vector with samples of s(t) as elements
the noise spectral density

the time variable; also used as a subscript on vectors to
indicate "transpose!

a constant, the period of one observation; the duration of
a signal waveform

a function called a statistic

the signal bandwidth if the center frequency of the signal
is known; the range of the center frequency if it is unknown

a set of weights on the taps of a delay line used to syn-
thesize a time-varying linear filter

the observed, or received, waveform which is to be classified
the column vector with samples of x(t) as elements

= Ayt by

a binary random variable

a dummy variable

an ordered k-tuple with binary-valued components

= pz/pl, the ratio of a priori probabilities

= Lpz/pl, the threshold; in one instance 7Y is used as
a dummy time variable

a dummy function used to obtain performance bounds
= 1/(2W), the sampling interval
th

= ek - ek—l' the k perturbation in the unknown parameter
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€ a small quantity; subscripts are used to distinguish one
small quantity from another as necessary

£(t) a complex, lowpass time waveform related to x(t) by the
equation x(t) = Re {£(t) exp (jabt)]

n(t) a complex, lowpass time waveform related to n(t) in the
same way that ((t) is related to x(t)

0 the unknown parameter
= [Xl,Xz,...,Xk] which is used as a shorthand notation to

indicate that a probability density is conditioned by the
values of the past k observations

u(e) a dummy function used to obtain performance bounds

v(-) a moment-generating function

p,p(-) the average risk, a performance measure

T a time variable

¢ a phase variable, used as the phase of a narrowband signal

and as the argument of the complex channel parameter G

[@i(-)} a set of independent functions
L\ the set of all possible values of §©
w = 21f, the radian frequency variable

OTHER SYMBOLS

indicates conditioning; e.g., p(Xle) is the probability
density of X conditioned on the value of 8

indicates the true value of a parameter; e.g., 6 is the
true value of 9

3nd1cates the real part of the associated symbol; e.g.,
n(t) = e (q(t))

~ indicates the imaginary part of the associated symbol; e.g.,
n(t) = (n(t)}
indicates "is a member of"; e,g., & * ? means @ 1is a

member of the set ¥

® indicates a corruptive noise operation; e.g., S ® N
indicates that a signal has been corrupted by the addition
or multiplication of noise
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I. INTRODUCTION

The purpose of this research has been to apply the techniques of
decision theory to the problem of constructing optimal machines which
improve their ability to classify patterns by extracting pertinent
information from a previously unclassified sequence of observations;
such machines learn without a teacher.

In recent years interest in classification problems and in machines
to automatically solve these problems has been intensified by the
development of a technology in which such problems occur more and more
frequently and the development of the analytical and physical tools with
which to solve the problems. As a particular example, the advent of the
intercontinental ballistic missile has made it mandatory that surveillance
systems operate as rapidly and accuratzly as possible; such systems
introduce a variety of classification problems. The development of
high-speed large-capacity digital computers has made it possible to per-
form extremely complex data processing in real time. It is anticipated
that both the number of classification problems and the capability of

the tools to solve these problems will increase in the next few years.

A. CLASSIFICATION PROBLEMS

In order to be more precise in the meaning of "optimum" and "learning
without a teacher,"” it is necessary to define the classification problem
in decision-theory terms: Given an object and a set of classes from
which the object may have been drawn, determine the class from which the
object was drawn. To get a reasonable solution (by some criterion of
reasonableness) one must also be given some knowledge of the losses
which will be incurred if an improper determination is made.

In order to solve the problem some set of measurements must be
chosen, A particular set of measurements will be called an "observation™
and will be represented by a column vector X. (Each element of the
vector represents the measurement of a particular parameter, such as "the
amplitude of a voltage at tinme to" or "the color of the object.”™ Thus

the speciflication of a set of measurements muy be thought of as the
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labeling of the coordinates of an observation space.) For the purposes
of this research it is assumed that the observation space is given (that
is, it is known which measurements to make), and the problem is to deter-
mine a way to process the observations to make a classification decision
which is in some sense "optimum,"

In order to come to a definition of '"optimum," some information must
be given regarding the losses associated with misclaésification. For
this purpose it is assumed that a loss function which provides this
information is given. This loss function depends both on the decision
to place the object observed in a particular class and the actual class
from which the object was drawn. Thus there is a risk asscciated with
each particular decision.

A reasonable definition of the optimum system is that system which
minimizes the expected or average risk. Such a system is a realization
of a Bayes decision rule, and throughout this report the Bayes system
will be considered to be optimum.

When phrased in these terms, classification problems may be charac-
terized in terms of the probability measures induced 6n the observation
space by the different classes of objects. Thus if an object being
observed is a member of class 1 the observation X will have a cumula-
tive probability distribution',f say pl(x); if the object belongs to
class 2 the observation will have a different cumulative probability
distribution, say P2(X), etc. Turee categories of decision problems
are possible:

1. The functional forms of the relevant probability measures may be
completely knowm.

*Throughout this report it is assumed that the cunalative probability
distributions are representable by probability density distributions;
e.g., for a scalar observation

. X
p(x) = [ pla) aa
where the integral is taken in the Lebesgue-Stieltjes sense [Ref. 1]

and the class of functions p(ax) includes the delta function defined
by Middleton [Ref. 2].
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2, The functional forms may be completely unknown.
3. The functional forms may be known except for some set of unknown
parameters.
Problems which lie in the first category do not involve learning
because the solution is defined once the relevant probability measures
are known [Refs. 2, 3, 4]. Problems in the second category are commonly

referred to as nonparametric. Although there are many important problems

in this category (e.g., speech recognition, medical diagnosis, weather
prediction) which have been investigated with varying degrees of success,
no systematic analytical approach his been developed for such problems.
Since it will be assumed that the functional forms of the probability
measures are known except for some set of parameters, the techniques
developed here will be applicable only to the third, or parametric, class

of decision problems.

B. DECISION MACHINES WHICH LEARN

A machine to solve the classification problem must be designed to
apply a decision rule to each observation. It seems clear that the deci-
sion rule should depend upon how much is known about the problem prior
to the time at which the classification decision is to be made. If the
problem is a parametric one, it is characterized by a set of probability
measures depending on an unknown parameter, say (pi(xle); i=1,2,...,M),
where & is the porameter. Suppose that this set is known, that an
observation is available, and that some & priori knowledge of the param-
eter [represented by an a priori distribution po(e)] is given. Then
a decision rule may be found using standard techniques [Refs. 2, 3, 4],

If, in addition, a sequence of observations, (xl,xz,...,xk] is
available, and if this sequence contains information concerning 8, this
information may be extracted and used to modify the decision rule. This
may be accomplished by using the sequence of observations (which shall be
called a learning sequence and designated by hk) to compute a sequence

of conditional distributions of

pls) = p(ela) o p(elng) = o p(slny)

O
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This sequence of distributions defines a sequence of decision rules, and
the resulting machine may be said to "learn.,"
It is desirable to make a distinction between two modes of learning,.

A machine which learns with a teacher is provided with two pieces of

information: (1) a learning sequence and (2) the correct classification

of each member of the sequence. A machine which learns without a teacher

is not given the latter information. Thus a machine which learns without
a teacher may utilize only that information which is available prior to
receiving the first observation or which is contained in the learning
sequence, In contradistinction, a machine which learns with a feacher
must be externally aided.

There are many problems in which our external means of classification
is either poor or nonexistent. If the machine which is built to solve
these problems must make repetitive decisions, then sooner or later an
observation sequence will become available. If there is any information
in one ebservation concerning other observations, and if we desire a
machine which takes advantage of this information, then we require a
system which learns without a teacher. (The nature of these problems
excludes machines which must be trained.)

There are also problems that require a machine which continues to
improve in performance after it has been placed in operation. Included
in this class are problems in which the characteristics of the pattern
to be recognized are changing with time. A machine could be trained
during operation only if the correct classification of each new observa-
tion were known, but if this were the case we would not need the machine.

These types of problems provide a compelling motivation for this
research which is concentrated on the synthesis of machines which learn

without a teacher,

C. RELATED WORK

One nf the first engineering problems which led to development of a
recognized adaptive system was that of communication through a random
channel, In 1956 Price [Ref. 5] and later Price and Green [Ref. 6],

using a unique combination of theoretical analvsis and engineering

SEL-65-011 -4 -



intuition, developed an adaptive receiver called RAKE which effec-
tively reduced the difficulty of communication through random multipath
channels by estimating some of the channel properties while receiving
signals, Kailath fRefs, 7 and 8] derived an optimum receiver for the
same problem and showed that it exhibited adaptive properties. He also
pointed out that the RAKE receiver was closely related to the optimum
receiver, Proakis and Drouilhet [Ref. 9] simulated two types of binary
communication systems using decision-directed feedback to learn the
unknown phase of a received signal; they have derived error probabilities
which verify that systems of this nature are in some cases superior to
nonadaptive systems, Scudder, in 1964 [Ref. 10], derived the optimum
learning receiver for the same communication problem; however, in the
form he derived, the receiver grows exponentially (see Chapter II). For
this reason Scudder proposed and analyzed a decision-directed learning
scheme,

In 1961 Glaser [Ref. 11] used a combination of decision-theoretic and
intuitive arguments to arrive at an adaptive machine to learn unknown
repetitive waveforms in a background of noise., Jackowatz, Shuey, and White
[Ref. 12] invented a machine for the same purpose in 1961. Both of these
machines learn with a teacher, using decision-directed feedback as the
teacher., Hinich [Ref. 13] performed an analysis of the Jackowatz machine
in 1962, and later [Ref. 14] modified the mathematical model to obtain a
more precise analysis.

The work which is most closely related to the research presented here
was initiated by Braverman in 1961 [Ref. 15]. Braverman examined the
problem in which a previously classified learning sequence is available
(1earning with a teacher), and established the fact that the solution
which uses all’ relevant observations to condition tlie a posteriori
probabilities, achieves the minimum average risk, He also established
the convergent properties of this solution. This work was extended by
Abramson and Braverman [Ref. 16] and applied to the problem of learning
the vector mean of a random vector whiqh was normally distributed. 1In
1963 Keehn [Ref. 17] solved the more general learning problem in which

the random vector is normally distributed with both unknown mean and
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covariance matrix, At the same time Spragins [Ref. 18] generalized the
approach of Abramson and Braverman in a different direction to obtain
the solution to the general parametric learning (with a teacher) problem
in which a fixed-size (nontrivial) sufficient statistic exists.

While work on the learning with a teacher problem was continuing,
Daly [Refs. 19 and 20] in 1961 used a decision-theory approach (the
"Bayes" approach used by Braverman) to attack the learning without a
teacher problem. Daly solved the one-dimensional binary detection prob-
lem and established the convergence of the solution; however, he also
demonstrated that his solution required a system which grew exponentially
with the number of learning observations. Both Daly and Scudder turned
their attention to systems which, like the majority of those proposed to
solve the learning problem without a teacher, use decision feedback as
a teacher to aid in the learning process. A more complete explanation
of the exponentially growing system will be found in Chapter II.

In this investigation we have taken the so-called Bayes approach
(explained in Chapter II) which was used by othe: investigators [Refs.
10, 15-20], and we have concentrated on the learning without a teacher
problem, One of the most important results is the fact that in many
problems this approach does lead to systems of fixed size. In problems
in which the system size must grow, a change in the formulation of the
problem will result in fixed-size systems. This change requires that we
approximate the space of the unknown parameter; however the performance
of the resulting fixed-size system is in an engineering sense equivalent

to the growing system,

D. ORGANIZATION, APPROACH, AND SIGNIFICANT RESULTS

In the first portion of this report (Chapters II and III1), the equa-
tions describing the learning system are derived and then applied to
signal-detection problems in which an important signal parameter is
unknown but fixed. The performance of such a system is discussed. In
the second part, which consists of Chapters IV, V, and VI, the equations
are applied to problems in which the important unknown parameter is time
varving. The stability, convergence, and realizability of the general

learning system are discussed,
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The investigation of the learning problem is initiated by defining
a suitably general, repetitive binary decision problem depending upon an
unknown parameter which is fixed. This parameter is treated as a random
variable, and an a priori probability distribution is chosen to describe
the initial state of knowledge of the parameter. As more and more
observations are received, more and more information concerning the
parameter is obtained; thus the observations 'condition" the probability
distribution of the parameter. By developing a recursive expression
which describes this unfolding sequence of conditional probability dis-
tributions, a mathematical description of the learning process is obtained;
and by utilizing this recursive expression, a learning system is synthe-
sized.

This technique is applied to two examples in order to illustrate the
types of problems that are readily sclved. The first exampie involves the
detection of a signal of known waveform but unknown amplitude embedded in
noise. It has been chosen to illustrate the technique as simply as pos-
sible. The second example involves the detection of a narrowband signal
of unknown frequency embedded in noise. It has been chosen as an example
of a problem which frequently occurs in the electronic-countermeasures
and reconnaissance fields, which is readily solved by the proposed tech-
nique, but which has not been attacked successfully by any other means
[Ref. 21].

The investigation is continued by extending the development to (1) the
"learning" problem in which the a priori probabilities of occurrence
of the alternative hypotheses are unknown, and (2) the repetitive multiple-
hypothesis decision problem.

In the third chapter Lechniques for the evaluation of system performance
are discussed briefly. An example is presented of the performance bounds
of a system that detects the presence of a narrowband signal of unknown
frequency in bandlimited white gaussian noise. Thus this latter example,
which is used in both Chapters II and III, may be used to present a sort
of overview of the major contribution of this research to the reader
familiar with the so-called Bayes approach to the decision problem.

Suceceeding chapters are extensions of the solution and developments

of the properties of the resulting system.
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In the fourth chapter the technique is extended to include problems
in which the unknown parameter is randomly varying in time. Depending
upon the model of time variations, the resulting systems are simple
modifications of the learning systems for fixed parameters. The syn-
thesis technique is applied to examples of communications, radar, and
electronic reconnaissance problems.

In the fifth chapter the size of the optimal learning system is
defined in terms of the number of elements required to construct the
system, It is shown that in many cases the optimal systemslare of
finite size. In the cases where the optimum systems grow as the learning
sequence lengthens, it is shown that a suboptimum system can be con~
structed from a finite number of elements. In the sixth chapter it is
shown that the finite suboptimum system has a performance which is not
measurably different from the optimum system. Thus from an engineering
standpoint the optimum learning system may always be realized from a
finite number of elements.

Other properties of learning systems are presented in the sixth
chapter. The systems are stable and converge in performance so that as
the learning sequence lengthens the performance of the learning system
is equivalent to the performance of a system which is given a priori

knowledge of the unknown parameter.
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II. DEVELOPMENT OF THE LEARNING SYSTEM

As was pointed out in Chapter I, there are many repetitive decision
problems in which an important parameter is unknown and in which external
aid is not available from which to obtain a representative set of properly
classified "learning" observations. Such problems require systems which
learn without a teacher, and it is the purpose of this chapter to develop
and explain a general technique for the synthesis of such systems. The
technique developed is based on the assumption that the unknown parameters
are either time invariant, or so slowly time varying that they may be
treated as being fixed. The more difficult time-varying unknown-parameter

problem is investigated in Chapter 1IV.

A. THE LEARNING PROBLEM MODEL (BINARY DECISIONS)

In order to explain the techniques involved in the synthesis of
learning systems, we first cohsider the binary decision problem. We
shall phrase the problem in terms of detection of a signal which depends
upon a set of unknown parameters; however, the result will be easily
generalized.

Assume that we are given an observation representable by the column
vector X and a learning sequence hk-l = [xl’XZ""'xk-ll’ consisting
of the first (k-l) such vectors. Each observation contains a signal
corrupted by noise, or it contains noise alone, and we desire to synthe-
size a system to decide whether or not the kth observation Xk contains
a signal, We assume that our system may make mistakes, and that each
mistake costs something which may be expressed in terms of a function
which depends on the actual situation as well as the decision. We ask
for a system which will minimize the average risk associated with each
decision; i.e., we require a system which is optimum in the Bayes sense

at every decision instant. The system which performs this minimization

computes the likelihood ratio and compares it to some threshold. To be

more precise, we let
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H, = the hypothesis that Xk

s(e) ® N

1

H, = the hypothesis that X

i}
2

k

where

s(e) = the signal vector (unknown parameters)
8 = unknown signal parameters
N = the noise vector

@® = the corrupting operation (addition,
multiplication, etc.)

Then, if the signal parameters were known, the optimum system would com~
pute the ratio of conditional probabilities, or likelihood ratio [see
Ref. 4]:

ﬂ(Xk|9) = —;(i;Tigy— (2.1)

and compare it to a threshold depending upon the relative loss associated
with the two types of errors (false alarm and miss) and the a priori
probability of occurrence of the two hypotheses.

If the signal were random with known distribution p(e), the optimum

system would compuie an average likelihood ratic'tsee Ref . 4]:

8(x,) = fz(xkle) p(e) de | (2.2)

In the problem at hand, when we wish to take advantage of all prior
information, we may easily show that the optimum system computes a con-
ditional likelihood ratio [Ref. 15, pp. 12-16], that is, a ratio of
probabilities conditioned on the past:

' (X, [ H))
(X N ) = CRENE (2.3)
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This may be rewritten in a more useful form as a conditional expectation:

ﬂ(xklxk_l) =_/}ka|e) p(elxk_l) e (2.4)

We have assumed that 6 is the only unknown parameter; hence, if we were
. ; t
L.pi thus x(xkle,xk_l)‘_ ﬁ(xkle).

The synthesis of a system which will compute this latter function is a

given € we could learn nothing from A

standard problem of detection theory, and solutions are usually known.

The problem of interest involves the synthesis of a system to compute
p(elA, ).

B. AN EXPONENTIALLY GROWING SOLUTION

In order to understand the difficulty which arises when we attempt to
synthesize a system to compute p(elkk_l), we may take the following
approach (suggested by Daly [Refs. 19, 20] and Scudder [Ref. 10]). Sup-
pose that we knew which members of the sequence [xl,xz,...,xk_l] con-~
tained a signal. Then we could use these members in a machine which
learned with a teacher (Refs. 14, 15, and 16 tell us how to construct
such machines). If we lack knowledge to learn with a teacher, we may
still build Zk-l machines which learn with a teacher, partition the
sequence into the Zk-l possible ways in which the (k-1) observations
might be classified, and feed one partition into each machine. Each
partition will have a known probability of occurrence; thus if we weight
the output of the Bk—l learning machines by the appropriate probabili-
ties of occurrence and sum, we will have solved the problem. Clearly,
the resulting system will grow exponentially as we add more learning

observations.

This amounts to an assumption of conditional independence which may be
written

A L1 ~ . ..
p(:\l’:\g,".’:\k ’Hl) e p(:\11~)Hl) p(z\zlblﬂl) L p(xk'elﬂl)
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To be more precise, we define a binary random vector Zik) such that
it has k components, Each component has the value 1 or O depending
respectively upon whether the signal is or is not present in the obser-
vation which that component represents, [The sequence <present, not
present, present> is represented by the vector <:101>> = Z(S).]

k
Zi is an ordered k-tuple with binary-valued components, and there

are 2k possible ng). These may be ordered by letting ng) equal
the binary expansion of i as i varies from O to 2k - 1. By con-
ditioning the distribution p(elkk_l) on the random vector ng), and
averaging over all 1, we obtain
21
_ (k-l)) ( (k-1) )
p(elA, ;) = 22 p(9|%k_1,zi plzy 71N (2.5)
i=0
Thus (2.4) may be rewritten as
_ 2k-1_1
_ (k-1) ) ( (k-l))
e(x N ) = :2 p(zi Ny ) J Ak le) pleln, ).z, de
i=0
(2.6)

Both of the conditional distributions in (2.6) may be expanded in terms

of known functions; e.g.,

p(Kk 1'Z§k-1)> p(z'k-1)>

p(zik-l)lkk-l) TSN - . (2.7a)
N ey )5 ) el V)
i=0

p(\k 1!Z§k-l)) = ]ﬁp(Ak_1|Z§k'1>,e) p. (&) de (2.7b)



(k1) ) (k1) o) o
j=1
p(Xj]HI,e) if jth component of ng-l) =1

gk"l) 0

p(Xj|H2) if jth component of Z

(2.74d)

Thus from (2.6) a system may be synthesized. Unfortunately, the system
will grow exponentially as the learning sequence lengthené. That is,
Zk computations are required for the optimum utilization of k learning
observations. As the length of the learning sequence increases, the
system grows in size very rapidly, and for this reason it does not seem
practical for large values of k. When we are interested only in small
values of k, however, this type of system may be quite practical, and
may even result in a less complex system than the one which we shall
describe in the next section.

The conclusion that optimal machines which learn without a teacher
are impractical for large k might seem to follow from the above argu-
ment. In fact, however, this is not the case as will be demonstrated in

the next paragraph.

C. A RECURSIVE SOLUTION

In order to obtain a system of fixed size, we return our attention

to p(elkk_l) and proceed as follows.

p(8lA, ) = p(olxX X, 00X, ) (2.8a)
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or by Bayes' law,

p<xk-1|9’X1""'Xk-z) p(elxl,...,xk_z)
p(xk_1|xl,...,xk_2)

p(e|n )

p(xk-lle’xk-Z) p(el%k_z)

) P(Xy g [Py (2.80)

Consider the conditional density p(Xk_lle,Kk_z). There are two possi-

bilities for Xk_lz Hl may be true or- Hz may be true. Thus

p(Xk_lle,%k_z) may be written as a mixture:

p(Xk-lle'Ak-Z) = p(Hl) p(xk_llﬂl’e'xk_z) + p(Hz) p(xk_1|H2'e)xk_2)
(2.9)

In Eq. (2.9) we have assumed that p(Hl) and p(Hz) are known a priori.
In many interesting problems this is not the case. The problem where

p(Hl) and p(H?) are not known a priori 1is treated later in this

chapter. If H1 is true and © is known, then Xk-l does not depend
on Ak_z. The noise is independent of the signal; therefore, if H2 is
true, Xk_1 does not depend on either @ or %k_z; thus

p(x,_ lo.A ) = p(r) p(x_ l6,1) + p(x,_,[8,) p(n,) (2.10)

By similar reasoning we may write
p(xk'lle’%k‘z) = p(Hl) p(xk'llﬂl’kk-z) + p(Hz) p(xk-l,HZ) (2'11)
Finally, by factoring and rewriting (2.8b), (2.10), and (2.11) we have

L(xk_lle) o
p(eln ) = (X, T ) + o p(eln.p) (2.12)
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where O = p(Hz)/p(Hl). The importance of Eq. (2.12) lies in the fact
that it has a recursive form. This fact will allow synthesis of a system
in delay-feedback form, As discussed in Chapter V, the system may be
realized if the number of usefully distinguishable possible values of
6 1is finite.

If we review the computations required of this system which learns
without a teacher, we find that we are in a position to synthesize the

system, The computations required are:

1. Compute k(X |6) for each possible 8
2. Compute p(9|%k_1) for each possible 6
3. Weight (1) by (2) and sum over all 6.

The third computation will result in E(Xklxk-l)' We have assumed that
we know how to compute 2(Xk|9). Suppose that somehow we could obtain
ﬂ(xk-1|Ak-2) and p(9|%k_2), then ihe system of Fig. 1 would provide
the desired p(QIKk_l).

p(8 |\
p(8|hk-2)
'((Xk-Ile) + n\—:'JF + {(Xk_dkk-z)
a a

33374
FIG. 1. A SYSTEM TO COMPUTE p(elxk_l).

In Fig. 1 and throughout this report, the symbol —‘(i)t— has been
used to indicate a zero-memory device which has as an output the ratio

of the two inputs. The input marked "' 4is the numerator, that marked
"q" jig the denominator. The multipliers ’@—’ and adders —-@-—
are also zero-memory devices.

If we simply store p(elkk_l), we will have it available for com-
putation of p(e’kk) when the next vector .Xk+1 is received. Similarly,

if we store L(Xkle), it will be available when Xk+1 is received, The

system shown in Fig. 2 is one form of the required learning system.
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L4
COMPUTE 2(x,|8) INTEGRATE
X f(xle) k‘ OVER ~——/o——-—-—((xk|xk_l)
/ 8
/ P8I\
===
VARY OVER i -
ALL 8 STORE __”iIN§%R{ | STORE
t "o |
PR |
f(xk—|l9) f(xk_")\k-z)
a a
33373

FIG. 2. A BINARY DETECTOR WHICH LEARNS WITHOUT A TEACHER
( SEQUENTIAL FORM).

There are severél facts concerning this system which, although self-
evident, should be considered. First, the computation of K(Xle) and
p(elkk_l) must be made for every possible value of 6. The integrator
must be synchronized with the sequential variation of 6. Second, when
the machine is started an initial distribution of 8, or po(e), must
be inserted. This distribution may be uniform over 8, or it may have
any convenient form consistent with our a priori knowledge of 0.

The fact that the computation of £(X|6) and p(elkk_l) must be
made for every possible value of 0 poses a difficult problem. If 6
varies in a continuous space, there will be an uncountable infinity of
possible values, and the various components of Fig. 2 will not be real-
izable exactly. We shall circumvent this problem by assuming that the
space of © can be quantized, so that the system need compute z(xle)
for only a finite number of values of €. Later, in Chapter V, we shall
demonstrate that a quantized space may always be chosen so that the per-
formance of a system based on this space will be arbitrarily close to
the performance of the theoretical system,

The assumption that the space of & has a finite number of points
allows us to represent the system in an alternative form as illustrated
in Fig. 3. In this form the system computes a(X’G) and p(&lkk_l) and

takes the product simultaneously for all values of &, The products thus
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formed are summed, and the result is B(Xk!Kk_l). Both the sequential
and the parallel forms of the system will be used in the various examples

in this and following chapters.

COMPUTE

2(xlg QZ[/

a

COMPUTE |
X 2ixlg?) éa — ED'/ 2xIx.)
)
INPUTS e
STORE TOTAL

|__jcomPuTE T
xje'M q9

STORE

33365

FIG. 3. A BINARY DETECTOR WHICH LEARNS WITHOUT A
TEACHER (PARALLEL FORM).

D. EXAMPLES

The system which has just been derived may be applied directly to a
wide variety of signal-detection problems. This application requires only
that we determine an expliicit expression for i(x]e) and synthesize a

system to compute the expression. The following examples demonstrate this

procedure.
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1. Detection of a Signal of Unknown Amplitude

In this example we shall consider the problem of detecting a signal
of known waveform but unknown amplitude embedded in additive noise, Such a
problem might arise if we were to use for a communication channel a medium
which faded so slowly that the attenuation could be considered constant.
(For a more realistic consideration of the fading-channel communication
problem, and an application of this example, see example 1 of Chapter IV.)

We assume that the.signal to be detected may be written as the prod-

uct of an unknown scalar and a known bandlimited waveform of duration T.
s(t) = cb(t)

where b(t) = known waveform of bandwidth W, duration T

¢ = unknown scalar
The signal is embzdded in a background of additive, gaussian noise of zero
mean and covariance matrix K,

In our hypothetical problem we are given a received waveform x(t)
(perhaps an i-f amplifier voltage) which starts at time zero and continues
to the present. For simplicity we assume tha the signal is of duration
T and may only start at instants separated from a known synchronization
instant by integral multiples of T. The signal is transmitted at inter-
vals chosen at random, and our problem is to look at the received waveform
for a duration- T ({x(t); (k-1)T s t £ kT) and decide whether or not the
signal is present.

In order to easily manipulate the appropriafe variables we shall
take advantage of the representation of continuous bandlimited waveforms

by vectors of the sample values of the waveform. We shall denote

[s(0) ] (b(0) ] (n(0)
() () »( )
S = B = : N =
LS(T - —2-lw>‘ Lb(T - ‘21TV)‘ Ln(T .- 5%)_

where n(t) is the noise waveform.
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We divide the received waveform into 'observations' of duration

T, and denote these by the indexed vectors Xk:

We define two hypotheses which apply to each observation:

j==1
1

the hypothesis that X

Kk cB + Nk

o=t
)|

the hypothesis that X

1]
Z

k k

The optimum learning system must compute the likelihood ratio, A(X|[c),

which is given by

p(xlcy}{l)

, 1 2 -1 -1
HX[e) = = ex (- - ¢ B,.X B + ¢X K B)
(x]e) prlc,HZS P\"2°¢% t

In order to vary the computation over all ¢, we restrict c¢ to some
range, say Ty sc v T, To easily construct the system we make c a
function of time, and integrate over time instead of <c¢; that is, we
sweep ¢ linearly from rl to T, If we make the sweep period 'T
the same as the observation interval, synchronization will be much more
easily aéhieved. The resulting system is shown in Fig. 4.

In this system the input vector -X 1is transformed by the matrix
operator Kul/2 to yield the vector K_l/zx. This vector is multiplied,
term by term, by the vector K_l 2B and the terms summed (accumulated
for T sec) to provide XtK-lB. This product is a scalar and is the
value of the accumulator sampled at the appropriate instant. This sample
is held for T sec while the gains c are swept through the range.

During this period the contents of the accumulator are dumped and the
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x(0)

x(4) 12 “lg | SAMPLE
X = [x(2a) |-~ K" accumuLaTe j1K 8 AND
. HOLD
x(T)

|

I
] 2X[¢c)
GAINS ARE EXP(:) p——=

SWEPT OVER|

nscsq:

[}

1728,K™'8
a. The sweeping likelihood computer
7 INTEGRATE SAMPLE | (x|
X 4xle) OVER T AT o7 k-
AND DUMP AND HOLD
1]
SWEEP OELAY DELAY
GENERATOR T T
N INVERT -—(?‘——
a [ ]
b. The detection system
33364

FIG. 4. A LEARNING SYSTEM FOR DETECTION OF SIGNALS OF
UNKNOWN AMPLITUDE.

product involving the next observation is accumulated. Thus once every
T sec the parameter ¢ is swept through its range (r1 to rz) and

the output .(X|c) 1is swept through the range of c.

2. Detection of a Narrowband Signal of Unknown Frequency

A problem which arises often in the different phases of electronic-
countermeasures, reconnaissance, and communications fields is the detection

of a narrowband signal of unknown frequency £, random amplitude, and
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random phase, The problem of detecting such a signal when only the
current observation is used has been discussed by Helstrom [Ref. ZZ]T

and Wainstein and Zubakov [Ref. 23] among others, These authors suggest
the use of a receiver which uses a bank of narrowband filters centered

at each possible frequency. The filter output which is maximum is com-
pared to a threshold to determine whether a signal is present or not,

The performance of such a receiver (called a "maximum likelihood"
receiver by Helstrom) is evaluated by Wainstein and Zubakov. Such a
receiver is shown to have performance which is nearly as good as the
performance of the Bayes or average-likelihood receiver [Ref. 23] without
learning. In many cases, however, this performance is not adequate (see
Fig. 10 of Chapter III) and it is desirable to take advantage of the fact:
that the signal is recurring at the same frequency; that is, it is
desirable to apply the techniques of learning to the problem.

If we did not desire to use more than k past observations to
learn £, we could use 2k receivers constructed to learn the frequency
with a teacher as explained in Sec. B, (see also Refs. 19, 20, and 24.)
However for even moderate k such a receiver would be impractical.

In the following paragraphs we shall derive the optimum learning
receiver for this problem., We shall see that it consists essentially of
a bank of periodogram calculators (which are approximately narrowband
filters) whose outputs are the inputs to a bank of antilog devices. The
antilog device outputs are weighted by the learned probability distribu-
tion of frequency and summed. The sum is the desired likelihood ratio.
Mathematically, we proceed as follows.

Assume that the signal s(t) mav be represented by a sample
function of a narrowband gaussian random process over the interval T
when the signal is present, The sample functions are independent from
one interval to the next, and the occurrence of a signal in one interval
is independent of its occurrence in other intervals. We also assume

that the signal can start onlv at times which are separated from a known

T
For other discussions of this problem see Refs., 21 and 24,
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synchronization instant by integral multiples of T, Thus over any

interval T the signal may be described by Eq. (2.13).T

s(t) = a cos (wt + ¢) (2.13)

where a is a random variable with Rayleigh distribution:

2
2 exp |- 2. az20
A2 2A2
p(a) = (2.14)
0 a<o
$ 1is a uniformly distributed random variable
L 0= ¢ = 2x
2n
p(¢) = (2.15)
0 elsewhere

f = u/Zﬂ is unknown, except that it must be one of a discrete

set of frequencies [fl,fz,...,fQ]

The assumption of synchronization may be relaxed, and the syn-
chronization time treated as an unknown parameter., The problem becomes
much more complex, and would not serve as a good illustration at this
point, An alternative technique when synchronization is unknown is to
choose the interval T to be very short compared to the signal duration,
and to take into account the resulting signal dependence from interval
to interval, This latter approach may be accomplished by treating the
probability p(Hl) as a time-varying random parameter, thus combining

the techniques of this and the next chapter,

+See Refs. 25, 26 for a description of the properties of narrowband
gaussian random processes., Equation (2.13) merely expresses the fact
that such a process may be described in terms of two independent
random variables, the amplitude and the phase.
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The noise is assumed to be additive and normally distributed
with covariance matrix K,

Because the problem is to observe the received waveform over
intervals of duration T and to make repetitive decisions at the end
of each interval, we define two hypotheses which apply to each obser-

vation:

<]
1]

the hypothesis that x(t) = s(t) + n(t)

=]
i

the hypothesis that x(t) = n{t)

where x(t) = received waveform
n(t) = noise
The optimum learning system must compute the conditional likeli-

hood ratio:

Q
E(xklkk_l) = :S z(xklfi) p(filxk_l) (2.16)
i=1
where Xk is the kth 2TW~dimensional column vector of samples of x(t)

sampled at the interval A = 1/(2W), and W is the bandwidth within
which the frequency must fall,

To synthesize a system to solve this problem, we must express
ﬁ(X]fi) and P(filhk_l) explicitly. This may be done as follows.

First we express E(Xkla,¢,fi) explicitly and then average over
a and ¢. To this end we may use p(a) and p(¢) as defined in Eqs.
(2.14) and (2.15) since the current (kth) values of a and ¢ are
independent of each other and of previous and future values of a and

¢. Thus

» 27
L(Xklfi) = J; p(a) J; p(¢) ;(xkla,¢,fi) d¢| da (2.17)
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Because of the normality of the noise, this integral may be carried out

to yield
C C
i i -1 2
ﬂ(xk[fi) =3 exp | 5 [Xe, X E(fi)l (2.18)
where
C. = Az
i~ 2.2
A Ri + 1
- 1 7 - 1 -
exp (JZﬂfiA) cos(aniA>
E(f,) = ; 3(t,) = :
Lexp (jzﬂfiT) cos(éﬂfiT)

R, = Jt(fi) K-lJ(fi)

If the noise is stationary, K-lE(fi) represents the sampled-
data form of the output of a linear filter with system function the
reciprocal of the noise spectral density when exp (jwit) is the input.
Thus the effect of assuming that the noise is not white may be taken
into account by the introduction of a multiplicative constant (depending

on fi) in the exponent. Let SN(f) be the noise spectral density, then

4 4 2
d(x l£,) = Al & p, Ix.E(£,)] (2.19)

where D, = 1/(SN(fi))' The quantity lxtE(fi)l may be recognized as
being proportional to the sampled-data form of the periodogram of x(t),

since
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2TW - 2
|XtE(fi)| = 2 x(ma) exp (joma)| = aw? fo x(t) exp (j(nit) dt
m=1
(2.20)

and the periodogram (at f = fi) is defined as

T 2
Jf x(t) exp (ja&t) dt (2.21)
0

\ 1
Per, [x(t)) = T

Hence the system is required to compute the periodogram of x(t) at

each of the frequencies (f i=1,2,...,Q), to weight each of these

§)
computations by ciDi/z, t; take the antilog of the result, and to .
weight the antilog by Ci/Az. This operation may be performed sequentially
by a single circuit or in parallel by a bank of Q circuits. (If it is
performed sequentially and if the frequencies are taken to be a set within
the band W separated by 1/2T cps, the circuit required may be identi-
fied as a form of time-compressive sweeping receiver which sweeps the
band W in time T with resolution l/T [Refs. 23, 24]. The construc-
tion of such a receiver is quite possible; however it may be somewhat
confusing to introduce the concept at this point and therefore we shall
utilize the parallel form of receiver.)

Since we have found the form of i(X'fi), the problem is solved
in the parallel form by inserting the Q(lei) computer, defined by
Eq. (2.18) and illustrated in Fig. 5, into the appropriate box in Fig. 3
(identifying ei of Fig., 3 with fi of Fig. 5). The result is the
system of Fig. 6.

E. LEARNING THE A PRIORI PROBABILITIES

In the model originally proposed it was assumed that the a priori
probabilities p(Hl) and p(Hz) were known but that some other parameter
was unknown. ' In many problems only the a priori probabilities are
unknown, and in other problems both the a priori probabilities and

other parameters are unknown.
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FIG. 5. A COMPUTER FOR Jl(xlfi).
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FIG. 6. A LEARNING RECEIVER.
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The solution to such problems cannot be obtained by treating p(Hl)
and p(Hz) as signal parameters because they do not appear in the equa-
tions in the same manner. Since it is the purpose of this section to
outline the proper solution, we shall begin by assuming that p(Hl) = p,
and p(Hz) = p2 are the only unknown parameters, If they were known,
the optimum system could be realized by computing ﬁ(Xk) and comparing
it to a threshold Lpz/pl as previously noted. However, another optimum
system is one which computes (pl/pz)ﬁ(xk) and compares it to L. By
utilizing this latter system we may show that when p(Hl) and p(Hz)
are unknown but a sequence of learning observations xk-l is available,
the optimum system computes the conditional expectation of (pl/pz)ﬂ(xk),
defined in (2.22), and compares it to the threshold L [Ref. 14]. The

conditional expectation is

L(Xklxk-l) = J{E(Xk) i_2151 p(plfkk_l) dp, (2.22)

where we have taken advantage of the fact that p2 =1 - pl. Now fol-
lowing the procedure which led to Eq. (2.12) we have by Bayes' law

(x WA A
p(pl‘xk-l) ) P k-llpl k-2) PPy o) (2.23)

p(X ;PN ) p(p [N, ) dp,

Since p1 is the only unknown variable, we may write
p(Xk_llplykk_z) = p(Xk_llﬂl,Ak_z,pll p(Hllpl.%k_z)
+ (%, [H N o0p)) (IR A ) (2.29)

But when we know that X comes from the class of observations which

“k-~1
contain signal, we know the probability density function of xk-l; hence
X / = 3 .25
p(X, 11 A _oupy) = p(x, 1) (2.25a)
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Similarly,

p(xy B0 50p,) = p(X, o[Hy) (2.25b)

that is, the observations are conditionally independent of the pasf and
of the value of p1 when either Hl or Hz is given. When the value
of Py is known, p(Hl) and p(Hz) are known, so that

Py (2.26a)

p(Hllpl,Ak_z)
p(Hylp A _,) =1 - b, (2.26b)

From Eqs. (2.24), (2.25a), and (2.25b) we may write p(pllxk_l) in terms

of the likelihood ratios as follows:

£(x,_Jpy + (1 - b))

p(p, N ;) = p(p, [N )
Jeaes, ey + (4= ) ploy Iny) ap,

(2.27)

Thus (2.22) may be rewritten in the form

P
-fZ(sk) 0 '1p1 (2(x__ )y + (1 - p)) p(p, [N, ;) dp,

L(xklxk-l) =

_/kﬂ(xk_l)pl + (1 - p)) p(py [N _,) dp,

: (2.28)
and a system may be synthesized in the form of Fig. 7.

The solution when other parameters are also unknown is very similar

since in this case we have the basic equation:

P
L(X [N ) = fﬂ(ka ——, p(p,, 61N, _y) dp, de  (2.29)
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But p(e,plh\k_l) may be written as
p(8,p 1N 1) = p(8lp, A ) p(p N ;) (2.30)

and its computation performed by the systems of Fig. 3. Therefore by

writing

L(X, Py A _y) = fﬂ,(xkle) p(8lp A, _,) 40 (2.31)

(which is computed by the system of Fig. 3 with a suitable choice of a),
Eq. (2.29) becomes

P
: 1
L(X A ) = fL(xklpl,xk_l) — p(p, [N _y) dp, (2.32)

which is functionally very similar to (2.22). Thus the system of Fig. 7
with f(X) replaced by L(Xklpl,)\k_l) is the required system.

SAMPLE DECISION
th AND THRESHOLD |—=
HOLD
L
1-p,
—ef £(X) ~
S~
~
R| O
7 SAMPLE
Ve .
N
VARY OVER ALL p'/ Jog 1:01?0
(SYNCHRONIZED)
STORE STORE
n®d

33362

FIG. 7. A SYSTEV DESIGNED TO LEARN THE A PRIORI
PROBABILITIES.
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F. EXTENSION TO THE MULTIPLE-HYPOTHESIS DECISION PROBLEM

.In the multiple-~hypothesis problem we are given M possible classes
into which we must categorize the vector X. There are (M-1) possible
errors associated with each of the M classes. The Bayes optimum solu-
tion depends upon the M2 different weights which may be assigned to
each error; that is, a general solution requires the comparison of weighted

a posteriori probabilities
p(X|Hi) i=1,2,...,M

where

Hi = hypothesis that X 1is in class 1
A general form of the optimum system is shown in Fig. 8. From this solu-
tion it can be seen that in multiple-hypothesis testing the conditional
probability p(xlhi) plays the same role as the likelihood ratio plays

in the binary detection problem. In order to obtain a learning solution

COMPUTE
p(le,)

COMPUTE
p(X|Hy)

DECISION
i

mMp®P» DTOO

— e =g
00 — e i

(o]
o
o0 00

P

COMPUTE

p(x|Hy) =

33378
FIG. 8. A MULTIPLE-HYPOTHESIS MACHINE.
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we assume that each class is characterized by an unknown vector Ai’
and apply the same reasoning that was applied to the signal-detection
problem, (We assume that the Ai are independent, that the Xi are

conditionally independent, and that the p(Hi) are known.,) That is,

p(Xl,...,XklAi.Hi) p(xl[Ai,Hi) p(leAi,Hi) e p(Xk|Ai,Hi)

p(Al,...,A p(Al) p(Az) e p(AM)

M)
The solution is given by
M

p(xk-l|Hi’Ai) p(Hi)-+ EE p(xk_llnj,xk_z)p(ﬂj)
J#1

M

> p(xylu ) p(H,)
j=1

- p(agIn, ) aa, (2.33)

This equation shows the same recursive form shown by Eq. (2.12), and
leads to a similar system as depicted in Fig. 9. Since this system com-
putes only one of the required M conditional probabilities, there must
be (M—l) more systems that are identical except for initial probability
distribution po(Ai) and probability of occurrence p(Hi). These will
in general be different; but in the case where the p(Hi) are all the
same, the po(Ai) must be different, or all computer branches will
"learn"” the same thing, and the system as a whole will learn nothing.

It is interesting to note that Eq. (2.33) verifies our intuitive
feeling that if we do not have some initial knowledge that the patterns
to be recognized are somehow different, we are not able to learn without

some external aid,
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FIG. 9. A MULTIPLE-HYPOTHESIS MACHINE WHICH LEARNS WITHOUT A TEACHER.

G. SUMMARY OF CHAPTER II

In this chapter we have mathematically described a class of decision
problems in which the pertinent probability measures are known except for
some set of fixed parameters., We have developed a class of systems which
will solve such problems when a sequence of "learning" observations is
available that contains information about the unknown parameter. This
class of systems may take the form of either the 'sequential" or the
"parallel™ canonical systems of Figs. 2 or 3. The resulting systems are

optimum at each decision instant in the sense that of all possible sys-

tems based on the same a priori information and utilizing the same set
of observations, these systems will provide the minimum average risk
decision, The systems are also fixed in size for arbitrary learning
sequences. The optimality and fixed size represent important advantages

over both conventional and prior learning systems.
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III. PERFORMANCE OF LEARNING SYSTEMS

It is the purpose of this chapter to investigate techniques for
determining bounds on the performance of the previously developed learning
system in specific cases, and to gain some insight into the way in which

this performance depends upon the number of samples in the "learning" set,

A. PERFORMANCE MEASURES

This chapter is concerned with two aspects of system performance.
Tl - first is the average risk associated with a decision, the second is
the rate at which the system converges to the optimum system given
a priori knowledge of the parameter,

The average risk for ihkc hinary decision problem [Ref. 3} may be

defined as
p = PPy + Lp,Pp, (3.1)

where pl = a priori probability of hypothesis 1 being true
p2 =1 - p1 = a priori probability of hypothesis 2 being true

P_ = probability of deciding that H2 is true when Hl is

actually true

P = probability of deciding that Hl is true when Hz is

actually true

L = cost of a type II error relative to a type I error

It will be convenient to discuss performance in terms of the signal-
detection problem. In this case PI becomes the probability of a miss

PM and PII becomes the probability of false alarm P

present, H2 = signal absent).

The rate of system convergence may he measured in terms of the

FA (Hl = signal

decrease of the difference between transient average risk and steady-
state average risk as a function of the number of observations (k).

This measure will be called the "risk error" and defined as
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e = p(d*(xk)) - p(d*(@)) (3.2)

o

where p(d*(kk)> average risk of the system in the transient state

after k learning observations

p(a%(8))

average risk of the system given a priori knowledge

of ©

B. A TECHNIQUE FOR BOUNDING THE PERFORMANCE

Although there are several possible apprsaches to the evaluation of
performance, only one will be presented. This approach is applicable to
the class of learning probhlems restricted to those which may be expressed
in terms of the detection of one of a finite set of signals embedded in
noise, If the noise is additive, white, and normally distributed and if
the signals are orthogonal, this approach results in some remarkably
simple results which are in good agreement with intuition. For more
general problems, the results are so dependent upon the particulér prob-
lem that no useful or enlightening information has been uncovered.

Assume we have synthesized a system to detect the presence of a
signal of unknown waveform which must be drawn from a set of m signals
[Sl,Sz,...,Sm] depending on a discrete set of parameters (61,62,...,9m};
i.e,, Si = s(ei). Let the signals be embedded in noise. Then the

optimum learning system will compute

m

(xInd = D e(e, 1) ixley) (3.3)

L
i=1

and compare it to a threshold 7

Lpz/pl. Let

2

“ = true value of @

d*(hy) = the Bayes decision rule based on A,
d*(g) = the Bayes decision rule given knowledge of &
d'(\k) = any non-Bayves decision rule based on kk

v(d)

average risk associated with decision rule d
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The average risk after k observations will be greater than the

risk given that the @ were known:

o(a*(n) = o(a*(®)) (3.4)
The risk will be less than the risk of any other system based on %k:
* t
p(a*(n) = ofar(n) (3.5)

These properties follow from the Bayes nature of the decision rule. The

optimum system is sketched for convenience in Fig. 10.

l(xleﬂ

THRESHOLD
Y

b—sz

P(ezlxk)

=] 2(x|8,)

P(G-.xk)

33380
FIG. 10. AN OPTIMAL LEARNING SYSTEM.

To evaluate a bound, consider a suboptimum system which computes
P(Gilkk). and i(xlei), Let this system determine the 8, for which
P(eilkk) is largest and compare the corresponding L(xlei) with the
threshold 7 to make a decision.f If P(élkk) is greater than 1/2

e

"This suboptimum system is closely related to the "maximum-likelihood
receiver"” of Helstrom [Ref. 22, p. 238] and to the "type II1I" receiver
of Wainstein and Zubakov [Ref. 23, p. 297]; however it is different in
that it takes the past into account,
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it will be largest, and the suboptimum system will have the same average

risk as the system based on knowledge of §. If P(é!%k) = 1/2, it may

not be the largest, and an incorrect likelihood computer may be chosen.
If the wrong 6, is chosen, the risk may be bounded as follows.

Define Péi)(g) an; P&i)(g) as

(1) A _ . ~ A
Ppy (8) = Pr (z(xlei) > 7IH2,9] 0, {8 (3.6a)
p)(8) < o (a(xle,) < 7w, 8) ey 48 (3.6b)
M - i 1’ i :
where sFA = Pr [ﬂ(X|§):>7IH2,§] is the probability of false alarm when
§ is known. Let
Yy . (i) AN A
eFA(e) = max PLa (8) PA (3.6c)
i=1,...,Q
Y (1) ~ A
eM(e) =  max Py (8) -1 + P (3.64)
1=1: ,Q

These two latter quantities are small in many interesting problems.

For example, . eFA(é) = 0 whenever the distribution of Z(x!ei) con-
~

ditioned on Hz and 6 1is independent of ei, as is the case in the
detection of a set of signals in additive normal noise when the signals
are orthogonal after whitening (i.e., let K be the covariance matrix
of the noise), then the whitened signals are orthogonal if
s(ei)tx'ls(ej) = ain, where sij =1 if i=j, and 5 . =0 if

J
i ¥ j. In this particular case we may write

-1
R + s(ei)tx x]

o=

((x]e,) = exp [-
i
But since we may replace X by

~
s(@) + N vhen H ~is true
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and by

N when H2 is true

then the orthogonality of s(ei) and S(8) allows us to write, for

both Hl and Hz,

E(xlei) = exp [- % R + s(ei)tx'ln] (3.7)

Thus the distribution of ﬂ(Xlei) will be the same whether Hl or H2

is true, and eM(g) will be zero.

Next, we define two events, Ak and Bk as:

>
i
D>

event P(el%k) > P(eilkk) for all 6, £

®
"
@>

event P(elkk) H P(eilkk) for some 6, #

The risk of the suboptimum system, when § is true, is bounded by

o(ar 0 18) = o(*(8)18) »(a) + (3) max [p,2{H(B) + 10,2{)(8)
(3.8)

~ ~ a) ~
Inserting the definition of eM(e), eFA(e), and p(d*(e)le) in this

expression gives
p(d'(xk)lé) s p,BP(A) + Lp, P [P(A,) + P(B,)]

B_ ) (3.9)

+ P(Bk)[pl(l + eM) + Lpgen, - P,

where
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is the miss probability when 6 is known, and the dependence of ¢

M
and EFA on @ has been suppressed.
For most problems we are interested in the region where ﬁM and
ﬁFA are small compared to 1, and P(Ak) is nearly one, so that by
combining (3.5) and (3.9) we obtain
* AN < [a*A A)
p(d (Xk)l?)..p<d (8)[8) + pyP(B,) + pyey + Lpjer, (3.10)

Thus we may identify the risk error ep as

€, = plp(Bk) + P&y + LpyEp, (3.11).

Because the system performance is dependent on 6 through P(Bk),
eM(g), etc,, the application of this bound to any particular problem
is difficult; and as the performance becomes more and more dependent on
@, the bound becomes less useful because it is more and more difficult
to obtain an evaluation of P(Bk). To obtain some insight into the nature
of this bound, let us evaluate the bound for the problem of detection of
a signal embedded in additive white gaussian noise when the signal wave-
form is unknown. The signal may take on one of m orthogonal waveforms.
As noted previously, the normality of the noise and the orthogonality of
the signals insure that when the signal is not present the choice of

the proper ei does not affect false-alarm probability; that is,
pl1)

FA (8) = Pea for all o,

so that EFA(a) = 0. Similarly, the normality of the noise and orthog-

onality of the signals insure that

p(i)<a) =1 - péi)(é) for all 6, + 8
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so that eM(g) = 0, Thus we have

€, = plp(Bk)

In Appendix A we apply a Tchebysheff-type bound to show that
(hence ep) is bounded as

4(1 + p,p.R)

1P2

e, = p1P(Bk) s

/2
]1

m -1
p;kR - 4 [ — kR(1 + plsz)

where
E(s(e,), s(e,))
R = > is a constant signal-to-noise ratio
.
n
m = number of orthogonal signals
p, = probability of signal occurrence

1
p2 =1 -~ P, = probability no signal will occur

k = number of observations in the learning sequence

For large k this bound is asymptotic to

4(1 + p,p,R)
plkR

(3.12)

p,P(B,)

(3.13)

Thus the system performance converges to the performance of the system

which has a priori knowledge of the signal waveform at least as fast

as inversely with plk, the average number of learning samples which

contain a signal in a sequence of length Kk,

C. EXAMPLE

The problem of detecting a signal of unknown frejuency in white

gaussian noise, which was used as example 2 of Chapter II, is an example
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of a problem in which the system performance may be evaluated by the

preceding procedure. In this example, the set of possible signals is

A
-+
HA
-

a cos (wit + %) 0
S. = ) (3.14)

0 elsewhere

where ¢

a uniformly distributed random variable

a

2
a Rayleigh-distributed random variable with parameter A

In this case all of the preceding conditions are met, We identify

R = N W (3.15)
0
where No/z = noise spectral density
W = total band to be searched

and we can compute p(d*(g)lg) using standard procedures [Ref. 23,
p. 173ff}, and evaluate €, using Eq. (3.13). Parts (a) and (b) of
Fig. 11 show the results for the case where there are 200 possible fre-

quencies within the band W, Also shown are the following:

1. The performance of the optimum system given a priori knowledge
of S for L= l, and for Py = 1/2 as a function of the signal-

to-noise ratio, R.

S~

The performance curve of p(d*(g)lg) shifted by 3 db on the R

axis.,

3. Bounds for the performance of the learning receiver for 1,000 and
10,000 samples.

"4, The performance of a near-optimum, 200-channel receiver (Wainstein

and Zubakov "type III" receiver [Ref. 23, p. 300ff]) which does

not learn.

It is clear that for case 3 above, the incremental risk introduced by
lack of knowledge of the signal frequency is very small after 10,000

learning observations, and that it is not much different--after 1,000
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observations--from the incremental risk introduced by doubling the noise
power when the frequency is known', It is also clear that for almost any
task the nonlearning receiver would be virtually useless at the signal-

to-noise ratios shown.

D. OTHER TECHNIQUES TO OBTAIN PERFORMANCE BOUNDS

A second technique to obtain bounds on system performance may be
based on the use of Chernoff bounds for the tail probability of a sum
of random variables. This technique is applicable to Bayes optimum
systems which learn either with or without a teacher, since they may

both be described by

b = M5 p) = [atx o) aleln ) as (3.16)

This sequence of likelihoods '[ﬂi; i=1,2,...} is a martingale
sequence as shown in Appendix C, It may be centered at its expectation
by considering the "gain" at each new observation, Let v, = g, - ﬂi_

i 1’
then

K
kT z Yi
i=1

Shannon [Ref. 27] has applied Chernoff's bounding technique to such
martingale sequences, and his work is almost directly applicable in this
case,

Bounds on the tail probabilities may be written as inequalities
involving bounds on the semi-invariant generating functions for the
martingale sequence. For example, we may let Vv (uIHj) be the moment-

k

generating function for "k conditioned on Hj being true for Xk

(H1 = hypothesis that signal is present; H2 = hypothesis that signal

is absent). That is,

' — . o 03 y 1
.k(u HJ) = -/1..—/.exp (u.dyi) dp (&i’}i-l"'f’jllﬂj)- (3.17)
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Now define bounding functions by the relations

7w 2 fem (uy,) @ (yyly, ooy (3.18a)
7 (ulny) 2 erxp (uy, ) dp‘(ykiyk_l,...,yl,uj) (3.18b)
and
1y (u) = log 7,(u) (3.198)
m(ulH,) = 108 7, (uln) (3.19b)

Suppose that we can find a single bound for all i £ k - 1, and call

this po(u). Then we can show that, for some a, b > 0, real:

)

Pr (£, z (k-1)p!(u) + u;(UIHj)} s exp ((k-1)[p (u) - up!(w)!

+ uk(UiHJ) - uu&(ﬂlﬂj)3 (3.20a)

for 0 2= u = b, and

Pr (ﬁk

A

(k-1)p!(u) + uk(UIHj)] s exp ((k-1)[p (u) - uué(ﬂ)]

+ o (ulB) - u(ulg)) o (3.200)

for -a ¢ u = 0,
One technique for finding a suitable gO(U) is to find two cumulative
distribution functions ¢1(y) and ¢2(y) which bound P(yi[yi-l""’yl)

above and below for all yi. We then choose @O(y) such that

- 43 - SEL-65-011



—
P
~—
=2
—
<
~—
Il
<
=
—~
~<
~
~«
A
Q

(2) o (y) = o,(y) yzB
(3.21)
(3) ¢ (y) = ¢ (a) = ¢,(B) asysB

Define
po(u) = log feuy d@o(y) (3.22)

Then po(u) is a bound of the desired type. We can use this same
approach to bound pk(ulﬂj) by conditioning ¢l(ylﬂj) and ¢2(y,Hj)

on Hj' Unfortunately at this point the technique requires specification
of the particular problem in more detail; i.e., the distributions of

lim ﬂk and ﬁo must be specified. Although this is in general possible,
k-w

for the case of detection of an unknown signal in gaussian noise, both
distributions are log-normal and the moment-generaling funclions do nol
exist for any u interval., This problem may be overcome by noting that
any practical system to compute ﬂk has a finite dynamic range, and by
truncating the distribution at this limit. Such truncation makes evalua-
tion of the bounds very difficult. Numerical solutions may of course be
found for any particular problem by means of a computer solution; however
the results can only be expressed numerically and will most likely shed
little light on the question of performance in general.

There are two other methods for determining system performance which
should be considered by anyone setting out to decide whether or not a
learning system is worth the cost in time, complexity, and money for any
particular problem. These methods involve either a direct evaluation of
the cumulative probability distribution of i(Xl%k) from the known
statistics of X and Ak’ or a determination of the statistics of
L(X‘Ak) by simulation of the system and design of an experiment to deter-

mine the desired performance measures. Both of these approaches seem to
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be complex for reasonably large k; however in certain problems, particu-

larly where convergence is rapid, either approach may be useful,
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IV. LEARNING TIME-VARYING PARAMETERS

In the previous chapters a technique has been developed which will
allow the synthesis of systems which learn without a teacher when the
unknown parameter is fixed. This technique was accomplished by treating
the unknown parameter as a random variable. In this chapter the same
problem will be examined for the case where the unknown parameter is not
fixed, but varies wi£h time. A synthesis technigue for systems to solve
this problem will be developed by taking an approach similar to the
previous one and treating the unknown parameter as a random variable

which is time varying.

A. MODELS FOR THE TIME-VARYING PARAMETER PROBLEM

As in Chapter II the problem considered will be the binary decision
problem phrased in terms of detection of a signal which depends upon a
set of unknown parameters. The results may be generalized to obtain the
extension to multiple-hypothesis testing as in Chapter II.

The data to be used consist of an observation X and a learning

k
sequence [Ak-l = X ,X ...,Xk_l}. Each observation contains a signal

Ay ’

corrupted by noise,lorzit contains noise alone, and it is desired to
synthesize a system to decide whether or not the kth observation (Xk)
contains a signal. The Bayes-optimum system making optimal use of the
learning sequence is required, This problem differs from the problem of
Chapter II in this sense: the values of the unknown signal parameters
are not the same from observation to observation. This fact is indicated
by indexing the parameter set with a lowercase letter '"c"; 1i.e., the
signal parameters defining the signal present (if any) in the current
observation (Xk) are designated o .

Formally, we let

o]
1l

hypothesis that X s(ec) O

[}

==
1}

o

hypothesis that X = N



where S(ec) is the current signal vector (unknown parameters) and . N
is the noise vector,.

For a particular problem the statistical nature of the noise and the
corrupting operation are assumed to be known so that the only unknowns
are the signal parameters. In order to solve the problem a statistical
model of the signal-parameter variations from observation to observation
is required, The statistical model must include a description of the
way in which the current values of the parameters depend upon past values,
and a descripfion of the statistics of the times of occurrence of changes.T
The former description will be called '"value dependence" and the latter
"time dependence."

The value.dependence of the signal parameters may be described by
the probability density of the cth realization of the §igna1 condi -

tioned on all of the past realizations:
p(e,le,_ 1,8, g0 ---18))
In some problems, particularly the frequency-hopping signal reconnaissance
problem to be described in example 2, the cth realization will be
independent of the past, so that
P(6, 16, 118, gr---10,) = p_(6) (4.1)
In other problems the dependence may be Markov so that

p(e, 18, 118, g ---,8,) = p(e_lo_ ) (a.2)

In yet other problems the entire past may enter; however, these problems
lead to systems which grow in size with k. For this reason the value

t
dependence will be restricted to be at worst M h-order Markov,

-,.
Throughout this chapter it is assumed that changes in parameter value
can take place only at a (countable) set of discrete instants in time,
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The time dependence cannot be described as generally as the value
dependence; however there are two types of time dependence which are of
particular intérest because they occur frequently in physical problems.
The first type will be designated the '"general random walk," since we
assume that a change takes place at the start of each observation. The
amount of change, as well as the direction, depends on the past history

c-l’ec-z""’ec-M)'
time-varying parameter which may be approximated by this model is the

and is described by p(ecle An example of an unknown
complex gain of a communication channel which is slowly varying with
respect to the duration of one signal (see example 1 of this chapter).
The second type of time dependence will be designated a "binomiall
dependence, In this model the changes in the parameter occur at moments
which coincide with the start of an observation, but changes do not
occur at each new observation. The probability that n changes will

occur in j trials is the binomial distribution,
. o\ n-i
P () = <j)p3(1 - p)"7d (4.3)

where p is the probability of a change in one trial. Once again the

c-l’ec-z’

). An example of a parameter which has a '"binomial" time depen-

value dependence is described by the conditional density p(ecle
o foom
dence is the frequency of a frequency-hopping signal as explained in

example 2 of this chapter.

B. SOLUTION TO THE PROBLEM

In order to obtain a solution to the learning problem, ec is treated
as a random variable and the a posteriori distribution of ec is
learned. As before, the Bayes system will compute the conditional likeli-

hood ratio

l(xklxk_l) = -/l(xklsc) p(eclxk_l) de (4.4)
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and compare it to the appropriate threshold. Since it is assumed that
Z(Xklec) has known form, the problem again reduces to the computation
of p(ec|%k_1). In order to compute this function, a time-dependence

model must be given; hence the problem may be treated for two cases:

1., Case 1, General-Random-Walk Time Dependence

a. General Solution

In this case the index ¢ will coincide with k since ©

will change with each new observation; therefore,

K k-1

Jf. L{ [T »o le, 1oovene )y € IT w(x,l6,)pd0, o ... o,
{ =1 =
P(8i M) = : p(kk_l)i :

(4.5)

Thus if the value dependence is not at least as simple as Mth-order
Markov (i.e., if p(ek[ek_l,...,el) may not be written as p(ek[ek_l,
...,ek_M)], then the system to compute p(Ok]Kk_l) must grow in size
linearly with k. The complexity of the system would grow much more
rapidly. This is the reason for restriction of the statistics describing
the value dependence of the parameter to be Mth-order Markov with M

finite.
b. First-Order Markov Value Dependence--Vector Parameters

For simplicity in obtaining a system from this equation,
assume that the value dependence of the parameter is first-order Markov

so that

?(eklkk~1) = }fp(eklek-l) p(ek-llxk-l) 41
p(x, ;18 1)
=.}rp(ek'ek-l) p(Xk_i Moo p(ek-likk-z) 48y (4.6)
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Equation (4.6) illustrates once again the recursive nature of the compu-
tations; that is, once p(ek-llxk-z)’ p(Xk_llek_l), and p(xk-llkk-z)
are computed (all of these quantities will be computed during the previous
observation-decision cycle), p(ek,%k_l) can be computed.

Equation (4.6) may be rewritten in terms of likelihood ratios

as follows:

£(X lek )t

p(0, 1A 1) =_[p(ek|ek-1) z(xk_ln.k_z 75| POk M) 9y (47)

where as before ( = p(Hl)/p(Hz). After rewriting Eq. (4.4) as shown

below, the required system may be conveniently synthesized.

-

2(x,_le +Q
g(xklkk-l) = f’é(xklek) fp(eklek-l) z(xk_lhi_: ocJ

. p(ek_ll?\k_z) de, , o (4.8)

From (4.7) ard (4.8) the system shown in Fig. 12a may be
synthesized. This system operates in a manner similar to that described

in Chapter II. It performs three operations:

1. Compute (X, ! for each possible @

k' k)
2, Compute p(ek'Ak-1> Tor each possible @

3. Weight (1) by (2), and sum over all &,

It is in the performance of the second operation that the time variation
of ¢ is taken into account by including the three components [the

p(¢ k’tk 1) generator, the multiplier, and the integrator] in the prob-
ability loop. The ;(X‘é) computer must "sweep" through all values of
t, and the p(-k S 1) generator must "sweep" through all combinations
of values of Gk and }k-1° If there are only a finite number of values
of +, the system may be realized in a parallel form by utilizing a set
of parallel computers {a(X'G(i)): i = 1,2,...}, where i indexes the

possible values of ., 1In this case the two integrators are replaced by
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7 INTEGRATE SAMPLE gy Ix, ()

= 2(xl8) ST°RE\F——§>————— OVER oo
d T ALL ek AT nT+21

—
VARY OVER r————ﬂ
ALL 8 =
sTore| |sTORE 'Ngf,‘éz £ STORE
T Tt ALL 8 T2
P /
74
P(9k|9k-l)
7’
VARY OVER
T ALL 6y» Bk~
= T =
a, Case lb

SAMPLE

DELAY T >
2/( o) v E ’ro( YT e w2 204he)

Ve
SWEEP l
THROUGH

ALL 8 DELAY DELAY FILTER  DELAY
IN TIME T T-1 hit) = p,(1) T-2r
a + ol - Y- + a
:
33377 n—d

T = TIME OF ONE OBSERVATION
T = TIME TO SWEEP THROUGH ALL ©
ASSUME ALL Gk, ek_l SWEPT IN 2T < T

b. Case 1lc

FIG. 12, LEARNING SYSTEM FOR GENERAL-RANDOM-WALK TIME DEPENDENCE.

summers with inputs from the parallel circuitry. A block diagram of
such a general parallel system is difficult to draw; however the parallel

form is used in the solution of example 2 later in this chapter.
¢. First=Order Markov Value Dependence--Scalar Parameters

If the unknown parameter is scalar and has a randomewalk type

of dependence on the past, the system of Fig., 12a simplifies somewhat,
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In this case, we may represent 0 as a perturbation of ek_

Kk 1’
let

0, = O,y + & (4.9)

where Ak is independent of 9 Let the distribution of Ak be

k-1’
pA(z). Then a simple transformation will provide Eq. (4.10).

p(e,l8, 1) = pA(e, -8, ) (4.10)

Equations (4.7) and (4.8) may be rewritten as

A(X, le 4) +a
p(8, 1N ) = pr(ek " On) z(x:_h?\i_:) v o

p(ek_llkk_z) de, , (4.11)

wx _le, 1) +o

{X N y) = f£(xklek) _[p[.\(ek " 81) | IR

k-1|M-2) + O

p(e,_ N _,) de, | do (4.12)

When © 1is a scalar, the system can be realized by sweeping through the
range of & in some interval T (which must be less than half the obser-
vation interval T/2 for real-time operation). In this case © and

k
=) are two different time variables, and Eq. (4.11) represents a con-

vglition. For this reason, the system may be realized as shown in Fig.
12b, where the only difference from the system with fixed parameter is
the filter with impulse response pA(t) in the probability loop. In’
order to insure that this filter may be realized, the delay of T in

the forward loop has been added. This concept of the filter pA(t) will

be useful in the solution of the second example.

wy
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If the parameter value dependence is first-order Markov, but
not representable as an independent perturbation, then p(eklek_l) will
not lead to a time-invariant filter as above, Instead it will lead to
a time-varying filter as a replacement for the filter with impulse
response pA(t) in Fig. 12b. The replacement will have a time-varying

impulse response
h(t,y) = p(e, = tlo, , =) (4.13)

The output of this filter at time t, for an input z(t), is defined by

eo(t) = foo h(t,y) z(y) dy (4.14)

Methods for the realization of such filters are beyond the scope of this
study; however one method for a particular form of h(t,y) is suggested

in example 1. For other methods see Refs. 25, 26.
d. Mth-Order Markov Value Dependence--Vector Parameters

If the unknown parameter is Mth-order Markov, the same
general approach to system synthesis may be taken. Equation (4.5)

becomes

L9y
p(9|7\k1)—I f | )\kl (B3 Ny

« (8, 18y _yre-ei8y ) A0 L. odey (4.15)

The change which this requires in the block diagram is simple
enough; however, the complexity of the system, even for scalar @,
rapidly becomes intolerable. To see that this is true, assume that @
is scalar and M = 2, Then somewhere within the system, the function

p(@klé must be stored for all possible combinations of Bk,

k-l’ek-z)
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k10 20 Oy

3
take on, the storage required is N . In general, the storage increases

as NM.

2. Case 2, Binomial Time Dependence

If there are, say, N possible values which 6 may

a, General

In the case of binomial time dependence the integral-valued

variable j is defined as follows:
J = number of obseérvations since the last change in ©

Then since the changes occur at moments which are binomially distributed,

j will be exponentially distributed as follows:

p(j) = p(1-p)77! (4.16)

where p 1is the probability of a change in 0.
In order to obtain a recursive relation from which a system
may be synthesized, the distribution of © 1is conditioned on j as

well as on the last value of ©0; 1i.e.

’

pe In_1) = > P(3) ple_la,n_,) (4.17)

Ay
J
But
p(e l3,A ;) = SO p(e,3) (4.18a)
or
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k-1
[T »(x,le,) p(h_;ylo..3) »le,l3)
k-j

p(6, 13,7, ) —

H p(XiP\i_l) p(%k_j_llj)
k-3

U p(xle,)
mi')\i-l) (9 l?\k -j- 1)3)

k-3

k-1 z(xle)+a

= H Ix, p\ 5 p(e !7\k -3- ) (4.18b)

Also,

P8 IN _j.109) = er(eclec_l.xk_j_l,j) P(8 1N joqrd) 0y (4.29)

Hence (4.17) may be rewritten as

Fan

k-1 UX. |8 ) +a
I [z(xi[xi_l) ; a] er(eclec-l’kk-j-l’j)

p(o A, ;) = Ez P(J)
3 k-

. p(ec_llkk_j_l,j) e, (4.20)

Note that p(ec-llkk-j-l’j) is the value of p(ec|%k_1)
calculated j observations ago, so that Eq. (4.20) is in some sense

recursive, This fact will be exploited in the following paragraphs.

- 85 - SEL-65-011



b, First-Order Markov Value Dependence--Vector Parameters

In order to interpret Eq. (4.20) as a system block diagram,
the problem is simplified by assuming that the value dependence of ©

is first-order Markov. 1In this case

p(9c|7‘k-j-1'j) = fp(eclec_l) p(ec_1|7\k_j_1,j) de__,  (4.21)
Call this Pk-j-l' In order to rewrite Eq. (4.20), denote
ﬁ(xi1ei) + O
L, = (4.22)
17 (XN ) + o

Then Eq. (4.20) may be expanded and written as

. p P
p(2) "k-3 P(3) k-4 :
{1+ —= L 1+ —— L (1 +...) :}
{ P(1) P, k-2 pézg P k-3

(4.23)
This function is recursive in the sense that once Lk-l and
Pk_2 are available, Lk and Pk may be computed from Xk and xk-l'

A system to realize this computation in delay-feedback form is shown in

Fig. 13.
c¢. Independent Values--Vector Parameters

When the value of ec is independent of the past values of
8 (which will occur, for example, in the frequency-hopping problem),
Eq. (4.23) simplifies and the resulting system is more manageable. In

this case,

(2 e, 1) =p.(8,) (4.24)

SEL-65-011 - 56 -



hence

p(8 1A 1) = po(8) P(1) 1y {} * § f L2 {1 * g g Ly (1 + "'J}

A computer for this equation may be realized as in Fig. 14,

p(9¢|>\k_|)

STORE

[616.18c.,) (148,

Lg-
33381
p = PROBABILITY OF A CHANGE IN ©
q=1-p=p2)/P(1)

FIG. 13. PROBABILITY COMPUTER, CASE 2b.

P( 9(;' xk_|)
pp,(6)
STORE
T

+

+

+

FIG. 14. PROBABILITY COMPUTER, L !

CASE 2c. 33368 k-1
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d. Independent Values--Scalar Parameters

When the unknown parameter is scalar (such as in the frequency-
hopping problem), the system to compute ﬂ(Xklkk_l) may be realized in

the sweeping form shown in Fig. 15.

7 SAMPLE

—1 £xl6) AND = L (XN yop)

~ HOLD

VARY OVER

aLL 8 IN

TIME T

+

33367

FIG. 15. LEARNING SYSTEM, CASE Z2c.

C. EXAMPLES

In order to demonstrate the utility of this synthesis technique when
applied to problems in which the unknown parameter is time varying, con-

sider the solution to the problems described briefly below.

1. The Fading-Channel Problem

In order to obtain a system which will be simple enough to illus-
trate the application of the foregoing technique, and at the same time
realistic enough to demonstrate the utility of this technique, we shall
utilize the following mathematical model of a data link using on-off
keying for binary-coded transmission of data through a fading channel.

Figure 16 illustrates the channel.

b

"The channel model used is, according to Turin [Ref. 28], representative
of propagation through the ionosphere above the MUF, or through the
troposphere.,
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SIGNAL INPUT | Faoine | ¥(D) RECEIVED SIGNAL
s(t) CHANNEL x(t)

-

ADDITIVE NOISE
n(t)

33366
FIG, 16, THE FADING-CHANNEL MODEL.

a. On-0Off Keyed (OOK) Signals

(1) Signal. The information is transmitted as a sequence
of marks and spaces. The signal is on for a duration T when a mark
is being transmitted, and off for a duration T when a space is be‘n:g

transmitted. When the signal is on, it has the form

g(t) = Re (s(t) exp (jwbt))

where «  is known; s(t) is a known, real, lowpass modulation wave-
form of duration T; and he denotes '"real part of."

(2) channel. The "nonselective, slow-fading" channel model
used by Turin [Ref. 28]f will be assumed. This channel is represented
best by its operation on the signal. The channel output y(t) may be

represented as
v(t) = We (gs(t - 7) exp [j(uBt - ¢)))

(Thus by ignoring the modulation delay T, we may think of the channel

as a multiplicative medium with constant G = ge_j¢). The medium is
characterized by the three quantities: g, the attenuation; T, the
modulation delay; and ¢, the carrier phase shift., We assume that T

is known to the receiver, g is Rayleigh distributed and ¢ 1is uniformly

distributed over the interval O to 2n. The channel is assumed to vary

+
Turin discusses this model and the physical justification in considerable
detail and therefore no attempt is made here to repeat his discussion,
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slowly so that g and ¢ may be treated as constants over at least one
signal duration T. More detailed time-variation assumptions will be
made later as they are required.

The additive noise is assumed to be gaussian with con-
stant spectral density N0/2 over the narrow band of interest. Since
n(t) is a narrowband gaussian random process (NBGRP)T it may be written

in terms of a complex modulation process as
n(t) = Re (n(t) exp (o t))

where n(t) is a lowpass, complex, gaussian random process (GRP).

(3) Problem Formulation. The problem is to process the

received waveform in a manner which will result in a minimum average
risk decision. Because g 1is Rayleigh and ¢ 1is uniform, the quantity
gs(t)e-‘j(D isa lowpass complex GRP, and the quantity gs(t)e-j¢ + n(t)
must be a lowpass GRP. We may note that x(t) under either hypothesis
may be written as the cissoid exp (jabt) modulated by a complex, low-
pass GRP; hence x(t) 1is an NBGRP.

If we utilize the complex notation
x(t) = Te (£(t) exp (Ju t))
we may reformulate the hypothesis in terms of §(f) as follows:
Hy = 5(t) = gs(t) e %4 n(t)

Hy = 5(t) = 7(t)

£

"A comprehensive discussion of the properties of narrowband gaussian
random processes may be found in Refs. 25 and 26,
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(We note, parenthetically, that we may obtain ((t) to a very good

approximation from x(t) utilizing the following equations:

t
Re (&(t)) = % j? x(t) cos Wt dt (= x(t))
2 t vl
dm {&(t)) = ¥-/;: x(t) sin o t dt [= x(t)]

where a is short compared to time variations in s(t) and long compared
to variations in cos abt. We dencte these two real quantities by §(t)
and x(t) respectively.)

It is shown in Ref., 26 that the real and imaginary parts
of the lowpass complex envelope of an NBGRP are indepcndent if they have
symmetric spectral distribution; hence x(t) and xX(t) are independent
GRP's if we assume that the spectrum of the fading medium meets these
requirements,

For brevity we denote by (v) the real part and by (~)
the imaginary part. We note Lhalt s(t) may be considered to be zero for

on-off keyed signals, and denote

Je

g ="e ge

im ge-3¢

g

We may identify E and E as the in-phase and the quadrature channel

gains. Then when H is true,

1
x(t) = g8(t) + n(t)
“(t) = 83(6) + (1)
We represent the k'"" observation of x(t) and x(t)

as the column vectors Rk and ik which have as their rows the 2TW
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samples of x(t) and x(t), [(k-1)T s t < kT], sampled at the rate

2W samples per second [W is the bandwidth of the envelope s(t)].
Then the likelihood ratio, conditioned on Ek and Ek’ may be written
as in Eq. (4.26) (ék and Ek are the values of the unknown parameters

E and E during the kth observation).

~

['(Xk|§k’§k) = 'p/(\ik’%klék”ék) = (4.26)

But ik and are independent vhen H is true, Ek and Ek are

2

ik
ﬁk does not depend on Ek' and ik does not depend on

independent,

Ek; therefore we have

p(¥, g, 1)) p(X, |&,. 1)

2k X g, ,8,) =
k’ k k, k b v ~ ~

]

0% J5,) 3,15, (1.27)

where, due to the normality of the noise,

] ~

-g g
Y v k k v
L(Xk,gk) = exp 2N_W S¢S+ N W 5%k

~92 ~
-g g
| k ko
‘(kklgk) =exp{oyvw 55 v w Scfk
0 0
[ . h [ h [ A
xk(O) xk(O) s(0) W
V4 _1-> -~ _L) A i)
5 ‘k(zw N xk(zw S(zw
\k = , Xk = , S =
4 1 ~ L l\( L
ka(T i zw) % (T zw) | s\T )
- - - -
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The fact that the likelihood ratio factors into a part depending on Ek
and a part depending on Ek will be useful in the synthesis of the sys~
tem since it will allow synthesis of two independent systems, one to
learn Ek and one to learn Ek’

The optimum system computes

15 In ) = [[ BN ) S T8) KRR, o, 6, (.28)

thus we require p(ék’gklkk-l) in order to synthesize the system. It
may be shown that Ek and Ek are conditionally independent:f

where Ak-l = (Xl’xz""’xk-l)
Aeq = (xl,xz,...,xk_1

Hence the system may be synthesized in the form shown in Fig. 17,

TThe left-hand element of Eq. (4.29) can be written as

p(g, 8 1N ) = Pl & A ) P(EIN )
Since knowing the value of xk-l
A¢-y 2nd A |, we may replace p(gklgk,%k_l) by p(gk[gk’xk-l'xk-l)'
Alternatively,

is the same as knowing the value of

[ 3

v

Since both ék and Ak-l are independent of Ek and xk-l’ then

(g e A y) = p(ELIA, ) and p( 1A ) = p(g, IR, )
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FIG. 17. LEARNING RECEIVER FOR FADING ON-OFF KEYED SIGNALS.
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To determine the block diagram form of the box which
computes p(éklik-l)’ " a model of the time variations of Ek and Ek
is required. Two possibilities will be considered.

Case 1: The first and simpler of the two models
involves the assumption that the fading process is a random-walk process;
that is, assume that changes in E and E take place slowly enough so
that each new value of either E or E is a small independent pertur-

bation of the preceding value, so that

(4.30)

where Ek is independent of Ek—l; gk is independent of Ek-l; and
both are distributed according to pz(z) = pz(z).

In this case, the box to compute p(éklik—l) or
p(Elek_l) may be realized as shown in Fig. 18a.

Case 2: The second model is more involved, and allows
the correlation between present and past values of E and E to be
taken into account by treating the processes as Mth-order Markov vari-
ables. To be specific, assume that the correlation of E or E

decreases exponentially with time back MT sec, and then becomes zero.

In this case

(B |80 ) B ) = —— exp {- 5 82+ 288, _,q +
k'®k-1’ "1 Pk-M 2 k k®k-1
210 20
v v i VoV M
+ 28,8 9 + ...+ 28,8 M ] (4.31)
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FIG. 18,

Mth-order Markov case

PROBABILITY COMPUTER.
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so that [see Eq. (4.15)]

M
p<gk‘}\k-1) = f"'f p(gklgk_ll"”gk_M) H p<gk-ih\k~i) dgk'l LA dgk'M
i=1
v2 M
1 -gk v :Li v oV v
= exo (—5 ) |l Jﬂp(gk 11y o (= g8y ) By
V 270 20 [ i g

The system shown in Fig., 18b will compute this function. 1In this case

it is necessary to utilize M time-varying, linear filters h_ ,...,h

1’ M’

These filters have an impulse response
v - i v
hi(t’gk) = exp :?; g, (4.33)

Such time-varying filters can be realized with a tapped delay line of
delay length 2T (where T 1is the time required to sweep through the
range of E). If the range of E is quantized into Q 1levels, the
filter will require 2Q taps, as shown in Fig. 19.

INPUT
—

TAPPED DELAY LINE

=
]

1,2
exp [-(ng /o“)8]
=1,2,...,2Q

INCREMENTAL DELAY = T/Q

=]
§

]

33382
FIG. 19. TAPPED-DELAY-LINE REALIZATION OF TIME-VARYING LINEAR FILTER,
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b. Frequency-Shift Keyed (FSK) Signals

A somewhat more complicated, and perhaps more useful, example
results when the signal model is modified so that the modulation is
frequency-shift keying instead of on-off keying. Such a signal model is

described below,

(1) signal. The signal is on continuously; however it is
shifted between two frequencies depending upon whether a mark or a space
is being transmitted. This shift occurs at multiples of T. During
transmission of a mark signal, sl(t) is transmitted; and during a

space, sz(t) is transmitted, where:

n
~
o
S
n
A
ct
A
=

Re (s exp (jwlt)} 0

A
ct
1A
L]

sz(t) = Re (S exp (jwzt)) 0

We assume that wl and wz are chosen so that the signals are orthogonal

over the interval T; 1i.e.,

jET sl(t) sz(t) dt = 0 (4.34)

(2) Channel. We make the same assumptions concerning the
channel as for the on-off keyed signal. In this case, however, there
are two channels of interest, one at ai and the other at wz. We
assume that the two channels fade independently and that the multipli-
cative constants G, = g, exp (-j¢1) and G, = g, exp (-j¢2) are
independent, complex gaussian random processes with symmetric spectral

distributions.

(3) Problem Formulation. 1In this case there are two

hypotheses:

=]
il

hypothesis that x(t) = Glsl(t) + n(t)

=
to
]

hypothesis that x(t)

stz(t) + n(t)
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By

writing x(t)

in the complex modulation form at

the two frequencies and taking advantage of (1) the narrowband nature of

the processes and (2) the independence of the channels, it is readily

shown that the likelihood ratio factors.

Similarly,

the joint condi-

tional probability density p(E1 k'El k’Ez k’Ez klkk-l) factors, so
? 1 ’ !

that

o

z(xk{Ak-l) = [z(il,klil,k-l) E(i1,k,X1,k-1)} [E(i2,klxz,k-1) E(iz,k{xz,k-l)

where

and where

E(xl’klxl,k_l) Z(xl,klgl’k) p(gy [N ) 98
x, (0) W %, (0) W
x, (A) x.(a)
3’( = ’ % = 1
1,k 4 i,k
x, (T - ) %, (T - 4)
L i L d
. t
x (t) = J{ x(t) cos w,t dt
i i
t-a
t
x (t) = f x(t) sin @, t dt
i i
t-a
Mok = Ry X Xy )
A ™ B 0%y gre Xy )
i=1,2,

~ 69 -

(4.35)

SEL-65-011

]



Thus the solution to the independent fading-channel
problem when FSK modulation is used is the ratio of the output of two

of the previous systems. (See Fig. 20.) .

P, Xy

2ix,19,) e,

e R e e L m
P \ U
A PG| Kj-p) |
xh—{ R -?)—~—l(xdxk4)
A
T p(gzkl)‘\'k-ﬂ
)
v
R 2UXa|93) — [4s,
G ARA) [fd3.
L {p@, I5,)
33371

FIG. 20. LEARNING RECEIVER FOR FADING FREQUENCY-SHIFT KEYED SIGNALS.

2. Frequency-Hopping Signal Reconnaissance Problem

There are many reconnaissance problems in which it is desired to
detect the presence of a signal with unknown or randomly time-varying
parameters. Such problems are often readily solved by the procedures
outlined above. One such problem involves the detection of a frequency-

hopping signal embedded in noise. The model for this example follows.
a. Signal

The signal is assumed to be a narrowband signal which may be
represented over an interval of duration T by a sample function of a
narrowband gaussian random process with center frequency . which is an

unknown, time-varying parameter. Hence
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s(t) = a cos (wt + ¢)

where a 1is Rayleigh distributed, p(a) = (a/Az) exp (-a2/2A2), and
¢ is uniformly distributed over the interval from O to 2xn, The fre-
quency is assumed to change only at integral multiples of the interval
T, The probability of a change in frequency is p << 1 independently
of when the last change occurred, and the frequency is equally likely to

change to any value within a specified band W,
b. Noise

The noise is normally distributed, with constant spectral
density No/z over the band W,

c. Problem Formulation

The problem is to examine intervals (of duration T) of the
received waveform and to make a signal-presence decision at the end of
each interval; hence signal-present and signal-absent hypotheses are
defined as in example 1. Because the unknown variable is a scalar with
zero-order Markov value dependence and binomial time dependence, the
system for detection must take the form of the system of Fig. 15, with
8 replaced by £f. To complete the solution, an expression for E(le)
is required. This expression is (see Chapter II)

)

L(X|f) = 1 A”

IxtE(f)lz (4.36)

2N W anw !
o] (v}

where

Px(o) ] (1 1

x(A) exp (j2nfA)

>4
)
o]
—
o]
~—r
1]

Lx('l‘ - A) exp [j2n£(T - A)]
. L -
x(t) = received signal, A = gw = sampling interval
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The quantity lXtE(f)l2 is proportional to the periodogram of the input
at frequency f, which in turn is closely related to the spectral density
of x(t) at f.T From these facts it may be shown that the likelihood
computer (which must sweep over the range of f) consists of a time-
compressive sweeping spectrum analyzerT followed by an antilog device

and an amplifier, as shown in Fig. 21. Here the sweeping analyzer must

cover the band W in the time T, and repeat periodically.

/

/
TIME-COMPRESSIVE ANTILOG AMPLIFIER
—={ SWEEPING ANALYZER DEVICE 2 —=Lxln
- G= 337,
(BAND = W) EXP (-) A2RZ+|

/

33372
FIG. 21. LIKELIHOOD COMPUTER.

A receiver of this nature will optimally detect frequency-
hopping signals for which the model proposed is a suitable representation,
Although it is more complicated than many receivers, such an adaptive

receiver should not be particularly difficult to construct.

D. SUMMARY OF CHAPTER IV

In this chapter we have investigated the learning problem in which
the unknown parameter is time varying. By utilizing two specific models
for the way in which the parameter may vary in time, we have demonstrated
that the same techniques which are applicable to the solution of learning
problems when the parameter is fixed are applicable when the parameter
varies in time. Furthermore, through the use of two examples, we have
demonstrated that the models proposed are applicable in a variety of

physical situations,

For a general discussion of the periodogram see Ref. 25; for a discussion
of a time-compressive spectrum analyzer see Ref. 29; and for the rela-
tionship between spectral analysis and the periodogram see Ref. 30.

SEL-65-011 - 72 -



V. SYSTEM REALIZABILITY

The purpose of this chapter is to investigate the physical real-
izability of the optimum learning systems developed in the previous
chapters. The realizability of a system will be defined in terms of the
number of elements required to construct the system rather than in terms
of the realizability of the individual elements. A system which requires
a finite number of perfect elements such as amplifiers, multipliers,
adders, storage elements, etc,, will be considered to be realizable,

It is important to recall that very few, if any, mathematical models
are exact representations of a physical problem, although the models may
be accurate enough that the difference between physical and theoretically
predicted events cannot be measured. Such models are considered to be
adequate representations in an "engineering' sense. It is in this
engineering sense that the individual elements of the learning systems
are physically realizable, and it is in this sense that we shall demon-

strate the realizablity of many learning systems.

A. SYSTEM MEMORY CAPACITY

Learning systems extract and store information from a sequence of
observations. They are useful if the information storage required is
less than the storage required to store the observation sequence., 1In
the systems developed in Chapters II and IV the system size (number of
elements) depends directly on the number of information~storage elements
required. From the mathematical description of the systems, it is clear
that the information stored is used to compute p(el%k); thus to investi-
gate system size we investigate the memory capacity MC requiréd to com-
pute p(e[Kk). We define the required Mc of an optimal learning
machine as the minimum number of functions Qi(kk) of the observation
sequence Ak which must be stored by the learning machine.

In order to investigate the theoretical information-storage capacity
required, we shall examine the concept of necessary and sufficient
(minimal sufficient) statistics, and the dimensionality of the linear

space spanned by these statistics. We shall utilize the definitions of
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Dynkin [Ref. 31] and Grettenberg [Ref. 32} to prove the following state-
ments:
1. The system which computes p(e|%k) computes a minimal sufficient
statistic,

2. No optimal learning system may be constructed with a memory capacity
less than the memory capacity required to compute p(elkk).

3. If the set & of all possible values of the unknown parameter ©
consists of Q points 8y, 05, ..., SQ, the memory capacity of
an optimal learning machine is less than or equal to Q-1.

We shall show in Sec. C that in many learning problems a discrete

model for ¢ exists which is adequate in an engineering sense,

B. MINIMAIL SUFFICIENT STATISTICS

Systems to solve the classificativn problem when an importan® param-
eter is unknown must extract and store certain information from a sequence
of observations. The information to be stored is that which will alldw
the selection of the conditional probability distribution p(XIe) (from
which the observation X was drawn) from a family of distributions
indexed by 8., Systems which perform this selection are computing func-
tions of the learning observations which partition the observation space
into a set of decision regions. It is well known that certain functions
of the learning sequence lead to Bayes decision regions regardless of
the loss functions and a priori probabilities [Ref. 33]. Such func-
tions are sufficient to make a minimum average risk decision, hence they
are called sufficient statistics,

Some sufficient statistics are more desirable to compute than others
because they require the storage of less information. Since the learning
problem under study requires a sufficient statistic, it is desirable to
choose that one which requires the least information storage. A function
within this class is called by Dynkin [Ref. 31] a necessary and sufficient
statistic; however a more descriptive name, which has been used by

Grettenberg [Ref. 32], is a "minimal sufficient statistic."
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A sufficient statistic, in the above sense, may be definedf as

follows.

Definition: A statistic T(X) is sufficient for the family
{(p(x|8) : & ¢ ®} if and only if p(X|6) may be factored as follows .

p(x|8) = n(x) f(T(X),O) (5.1)

where h(X) depends only on X and f£(T,0) depends on X only
through T.

In order to study minimal sufficient statistics, we first define

these functions in terms of functional dependence as below.

Definition: A sufficient statistic Tl(x) is dependent on another
sufficient statistic T2(x) if Tz(Xl) = T2(X2) implies Tl(Xl) =
Tl(Xz). that is, if Tl(x) may be written as a function which
depends on X only through TZ(X).

Definition: A minimal sufficient statistic T(X) is a sufficient

statistic which depends on all other sufficient statistics,

From these definitions it is clear that the function p(O[%k) is a
minimal sufficient statistic for the family [p(Xie) : 9 £ ¢), and a
sample of size k. That is, it is sufficient because p(Xl,...,Xkle)

may be factored as

. p(eA)
D(Xl,...,xkle) =—;0—(57—p(x1,...,xk) (5.2)

and it is minimal since it depends on every other sufficient statistic.

To show this, let T(Xl,...,Xk) be a sufficient statistic, then

Sx le) = n(x,..0x) f(T(Xl,...,Xk),G) (5.3)

The concept of sufficient statistics is only interesting when we observe
more than one sample, We may define minimal sufficient statistics for
the sample of size n by replacing T(X) by T(xl,xz,...,xn) in each
of the definitions given,.
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so that

p(Xl,--.,kae) p.(0)

) =
k fp(Xl,...,Xkle) p_(6) de

(8, ..., X

h(Xl,...,Xk) f(T(Xl,...,Xk),e) po(e)
h(Xl,...,Xk) ff(T(xl,...,xk),e') po(e) de

(5.4)

Hence p(e|hk) depends on (Xl,...,xk) only through T(Xl""’xk)'

Thus the optimal learning system computes a minimal sufficient
statistic, and the first statement of Sec. A has been demonstrated. To
demanstrate the second statement we proceed as follows,

An optimal learning machine for the observation sequence %k and
the family (p(xle) : 5 £ ®}) must compute a sufficient statistic of
Ak. A minimal sufficient statistic of Kk is a many-one transformation
on all other sufficient statistics (except other minimal sufficient
statistics) because it is functionally dependent on all other sufficient
statistics. Thus the number of functionally independent functions of Ak
which must be computed to compute a minimal sufficient statistic must be
minimal, No optimal learning machine can be constructed with a memory
capacity less than that of a machine which computes a minimal sufficient
statistic,

Finally, we shall demonstrate that the memory capacity Mc of a

machine to compute p(elkk) is finite whenever the set ¢ of all pos-

sible values of © consists of Q points 81’92""’9Q’ and that
M_ S Q-1. The function p(8[A ) may be written
Q
p(eln) = D 1.(6) g () (5.5)

i=1
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where

1 8 = 61
Ii(e) =
0 elsewhere
But
k
p(o, ) = [ »(x,le;) 2 (o))
j=1
k
= exp ES In p(leei) P (e,) (5.6)
j=1

Thus it is su“ficient to store the Q@ functions

k
> tn p(x, 0, )
j:

o

in order to be able to compute p(el%k) and M s Q-1.

If we have the case where the functions p(XIei) are functionally
independent, then it is necessary to store the Q functions, and the
inequality (Mc £ Q-1) becomes an equality (Mc = Q-1).

It is clear that once we are given a decision problem involving
{p(x]8) : @ - ), we may readily construct a finite-sized system so
long as ¢ 1is a set of Q points. In fact, by taking advantage of
any functional dependence which may exist between the functions p(xlei),
we may always construct a system which reqﬂireg»a minimum of information

storage capacity,
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The problems in which & does not consist of a discrete set of
points may often lead to systems in which Mc is not finite, Thus the

systems will not be realizable,

C. PRACTICAL CONSIDERATIONS

We have just noted that the memory size of the learning system is
finite so long as the unknown parameter space is discrete, and that in
many cases of interest it is infinite when the parameter space is not
discrete. Since it is not usually considered possible to construct sys-
tems with infinite memory capacity, we may draw the conclusion that we
cannot construct the theoretically optimum system in these cases and can
then set about either changing the theoretical model, or looking for a
suboptimum finite system.

One reasonable way in which to modify the model is to ask for the
optimum (Bayes) system under a finite memory constraint., Such an
approach, although logical, is difficult to apply to the learning prob-
lem and will not be attempted in this study.

Instead of attempting to modify the model we may find it more useful
to examine the results of simply using the model to synthesize optimum
systems, and then to approximate these systems as well as we can. Although
this approach is much less pleasing mathematically, it has the advantage
of being practical, and has some precedent in other applied decision-
theory fields.

A similar situation exists whenever we represent a continuous func-
tion x(t) in the interval (0,T) by its sample values x(O),x(tl),...,
x(tm) taken in this interval. 1In an engineering sense for some large
m these samples adequately specify x(t) H A (O,T); however, strictly
speaking, unless m - x this is only an approximation [see Ref . 20].

The fact that in most cases there is some finite set of discrete
values of the unknown parameter which in an engineering sense represent
all of the usefully distinguishable values that the parameter may assume
is stated in the following theorem. A system based on this set of pos-

sible parameter values requires a finite (fixed) memory capacity.
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Theorem 1, Designate by & the space of all possible values of
the vector parameter 6, and let the range of each coordinate of
g be bounded, Then if p(Xle,Hz) is independent of 6, and
p(Xle,Hl) is a continuous function of 6 for all 6 € & and all
Q= [61,92,...,9Q}, with

a finite number, Q, of discrete values of 6 such that for any

X, there exists a subset of ¢, say &

€ >0 and all @ ¢ ¢ there is a Gq € ¢Q which satisfies
A A ~ ‘
p(d*(eq)le) = p(d*(6)|8> + €

where p(d*(@q)l@) is the average risk of the Bayes decision rule
based on the assumption that eq is true (d*(eq)) when o is

true.

This theorem is proven in Appendix B. The condition that p(Xfe,Hl)
be a continuous function of @& is not particularly restrictive and could
be removed by first extracting the set of § at which any discontinuities
exist, provided this set is finite. The condition that p(Xle,Hz) be
independent of @ has been introduced primarily to simplify the proof
of the theorem, 1In most applications this condition will be met, If it
is not, it can be replaced by the requirement that p(Xle,Hz) be a con-
tinuous function of ©. These conditions are all usually met in appli-
cations so that a finite set QQ will almost always exist in practice,

This theorem demonstrates that in many binary decision problems we
may quantize the space of the unknown parameter in such a way that if a
learning system is constructed on the basis of this quantization, and if
the learning system converges so that it utilizes d*(eq), the ultimate
system performance will be arbitrarily close to the ultimate system per-
formance of a system based on the unquantized space. In Chapter VI we
shall demonstrate that in most binary decision problems the 'quantized"

system will converge to d*(eq) such that

(476 18) = min v (a%(e,)1?)
Q
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In order to illustrate the choice of quantization coarseness, consider

the following example,

Example: Suppose that we wish to detéct an unknown signal in gaussian

~
noise. Let S

signal vector

K = noise covariance matrix

S = unknown parameter
Then we know [see Ref, 3 or 23] that the quality of performance of a
system which is given a priori knowledge of § is dependent on the

"divergence" defined by

The quality of performance of any other linear system using a slightly
mismatched filter can be measured by the ratio of divergences.

The difference in performance of two systems is a continuous monotonic
function of this ratio, and is zero when the ratio is 1, If we require

that
(gl) >1 -¢€ (5.7)

where € 1is a small quantity, the performance difference will be small.
Thus if we have a system in which the S-space is quantized so that the
nearest point to S is, say, S§* = S + A, then [Ref. 3, p. 45)

1 a2
a2 <StK 1s*>
(7)) - oo
(stx s)(stx s )
2 2
(§ x'1§) + 2(§ K'1§)(§ K'IA) + (§_K'1A)
t t t ) ¢
= A -1a ~ ~1 A -1 1 (5'8)
(stx s)(stx S+ 28K A+ AK A)
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Relations (5.7) and (5.8) require that

(§tx'1§> (s*t*x’ls*) - <§tx"ls*) < e(é‘tx*1§) (stx'ls*) (5.9a)

This relation may be simplified, if (§tx'1§><szx'ls*) is greater than

one, to yield
(é‘tx’lé‘)(ax'l/_\) - (§x‘1A) <g! (5.9b)

We may use any quantization interval in S-space which satisfies (5.9a)
or (5.9b) as appropriate. The resulting system will be capable of per-
forming nearly as well in the steady state as a system with a priori

knowledge of §.

D. SUMMARY OF CHAPTER V

In this chapter we have discussed the question of system realizability
in terms of the number of information storage elements required of an
optimal learning system. We have been able to prove two important facts
about learning problems.

1, Learning systems to solve problems in which the unknown parameter

may take on only a finite number of values are always finite in
size.

2. Most learning problems in which the unknown parameter may take on
an infinite number of values may be adequately represented by
problems in which the number of values is finite.

In the second statement an adequate representation is one which leads to
a system which will perform almost as well as the system based on the
infinite model, The second statement depends upon the fact that the
system based on the finite model will converge even though the infinite
model is the best representation of the physical problem,

In the second statement the existence of an adequate representation
means that for every possible value of the unknown parameter in the

infinite set there is a value in a finite set which is arbitrarily "close"
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when "distance" is measured in terms of the difference in performance of

the corresponding systems., This latter statement will become particularly

meaningful in the next chapter when we show that learning systems based on
the finite-set representation will converge to the finite system which is

"closest" in a performance sense to the optimum system based on the
infinite set.
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VI. SOME PROPERTIES OF LEARNING SYSTEMS

Systems which have been synthesized as proposed in Chapters II and
1V have several interesting properties., Such systems are stable, and
they converge to the system which would be optimum if the unknown param-
eter were known, Furthermore, systems which are constructed as suggested
in Chapter V, by quantization of the unknown parameter, also converge to
the discrete point in the quantized space which is nearest the convergence
point of the equivalent nonquantized system. A most interesting property
of the recursive expressions developed in Chapters II and IV is the fact
that in addition to being applicable to the problems of those chapters they
are also generally applicable to problems in which learning with a teacher
is possible and to problems in which no learning is possible.

It is the purpose of this chapter to formalize the statement of
these properties, and to specify the conditions under which they hold.
For convenience, we shall carry out the following discussion in terms of
the binary decision problem since with a few obvious changes the dis-

cussion would apply equally well to the more general solution.

A. SYSTEM STABILITY

Because the system requires both delay feedback and feedforward loops,
the question arises whether or not there is an input sequence which can
cause an output which will be unbounded. Although we cannot answer this
stability question in the normal control-system manner, we can provide a
satisfactory answer in probabilistic terms; that is, we can show that the
probability that the output will grow without bound is zexro. We can
obtain this answer by showing that the sequence of outputs L(xklkk-l)
is a bounded martingale (Appendix C) when i(X|e) is bounded for all
@ and fixed X. Since bounded martingales have the property that they
are bounded for all sequences {Xk'xk-ll with probability one [Ref. 31],
we will have answered the stability question if we can show that E(xle)
is bounded. But certainly this must be true unless the signal is "per-
fectly detectable,” and this is a pathological situation which seems to

occur only in textbooks.
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As an example of the boundedness of E(xle) consider example 1 of

Chapter II. In this case we identify @ with the unknown amplitude, c.

((x]e) = exp (- % cthK-lB + cXtK-lB) r, scsr, (6.1)

A
|78

Given any input vector Xo’ this function is certainly bounded by

2 -
o (-1 oy

B 4r, xotx'13|> (6.2)

for all values of c.

B. CONVERGENCE OF THE CONTINUOUS SYSTEM

In Chapter II we described systems for the solution of problems in
which an important parameter was fixedwbut unknown. An important prop-
erty of such systems is the fact that they converge, so that in a sense
they '"learn" the fixed value of the parameter. In Chapter IV we described
similar systems for similar problems in which the difference was the fact
that the parameter was time varying. Since the parameter varies with
time, we cannot discuss the steady-state performance of these systems, and
therefore the following discussion is applicable only to the systems of
Chapter II.

We investigate the convergence by again appealing to the martingale

nature of the output. In Appendix C we show that if a sequence of

functions [¢k(x1,...,xk)} exists such that
lim ¢ (X.,...,X ) = @ with probability one (6.3)
k'l K
ko0
then
lim (X |A_ ,) = :(X|8) with probability one (6.4)
N T

where & is the true value of &. Thus the system (in the limit) per-

forms as well as one which was designed with knowledge of the signal.
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As an example of a problem in which the sequence {@k} exists, we
may consider the problem of detection of an unknown signal in noise.

Consider the linear estimate of S (the signal) given by

k
a 1
Sk = E;(ﬁ;7 ES Xi (6.5)

i=1
The observations X1 may be written as
X, =N, + VS, (6.6)
where
1 if the signal is transmitted
Yi =
0 if the signal is not transmitted

Thus the Xi are identically distributed, independent random variables,

and by the strong law of large numbers,

Kk
pr { 1im = Z X, = E(X'}) =1 (6.7)
k i i
k= ia1

But E{Xi] = p(Hl)S; therefore, the sequence (8§ is an example of

W
the required sequence [®k].

C. CONVERGENCE OF THE QUANTIZED SYSTEM

In the previous chapter we pointed out that in many cases the set ©
of all possible values of the parameter & may not consist of a finite
number of discrete points and the optimal learning system may not be

realizable. In these cases under very general conditions (see Theorem 1,
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Chapter V) a subset of &, say @ exists and has the following

Q!

properties:T

(i) For every 6 £ ® and € > 0 there exists a 6_¢ &_ such that
A~ AN A q Q
p(d*(eq)|6> s p(d*(e)!e) + €.
(ii) There are only a finite number of points Q(e) in ®Q for any
€ > 0.

In this section we shall determine a sufficient condition that a

system based on @Q will converge in the following sense:

Lim Py |8) = p(d*(eq)lﬁ) (6.8)

with probability one, where pQ(kk|§) = average risk of system based on

¢ after k observations when 8 1is the true value of 9, and

Q

p(d*(eq)lé‘> = en‘\:n@ p(d*(ei)l'é). _ (6.9)
i Q

We shall show that this condition is met for most binary learning prob-
lems. Thus we will demonstrate that the suboptimum system is realizable
and has a performance which is arbitrarily close to the performance of
the optimum (unrealizable) system.

In order to determine a sufficient condition for. convergence, we first
note that the system based on ¢ computes the functions

Q

2(X|ej) i=1,2,...,Q

+ N a X * A
As previously defined, # 1is the true value of ©, and p(d (eq)le)

is the average risk of Bayes decision rule based on the assumption that

A
eq is true when # 1is actually true.
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and

k

[T ex,ley) » (e

i=1

Q k
DRI CACREACH
i=1

j:l 1=

A

p(ejlkk) =

(6.10)

The system takes the sum of the products of z(x]ej) and ﬁ(ejlkk) as
the likelihood ratio:

Q
ro(xlng = D BleyIn axley) (6.11)
j=1

The Bayes decision rule based on eq requires a comparison of ﬂ(xleq)
to a threshold. Thus if ﬁ(eqlkk) converges to 1 when 8 1is true,
lﬂq(xikk) will converge to ﬂ(x|eq) and the performance of the suboptimum
system will converge to p(d*(eq)lg). Theorem 2 states that if a minimum-

risk solution exists, the system will converge to this solution.

Theorem 2: If there is a eq)s ®Q such that

p(d*(eq)lé) < ejm:n®Q p(d*(ej)lé) (6.12)

and if the distribution of the observation under one hypothesis is

independent of the unknown parameter o [i.e., p(X|8,H2) = p(xlﬂz)ﬁ,

then
1im P(8 lxk) =1 with probability one
koo 4
(6.13)
lim ﬁ(e,lkk) =0 with probability one for
ko Y all 6.- 0, 6.#6
J Q J q
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This theorem is proven in Appendix C. From the proof it is clear that

when a unique minimum does not exist, then

lim EE Ble_In) =1 with probability one
ko © € 0 d
q M

where ®M is the set of all points eq £ ¢Q which have minimum average

risk. Since the points are equivalent from a performance standpoint, it

makes no difference in performance whether the system converges so that

2Q(X|Kk) > E(Xleq ) for some eq e ®

i i M

or so that

e @
qi M

£ (xX|N) > jz £(x|a, ) B(e, |A

QXIND =~ 2 alxleg) Beg In,)

Thus we may summarize by stating that if 6 1is an important parameter
in the sense that knowing © allows the design of a better system, then

a system based on a discrete model for ¢ will be finite, will exist,

and will converge in performance.

D. RELATIONSHIP BETWEEN LEARNING WITH A TEACHER AND LEARNING WITHOUT
A TEACHER

A very interesting relationship may be noted by referring back to

Eq. (2.12). By writing the recursive form as a product, we find that

k-1
pefn, )= [’

i=1

ﬁ(xile) +Q
e(X [N ) +a

p,(8) (6.14)
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Thus Eq. (2.4) may be rewritten as

k-1 4(x,le) +a
B(x N ) = fz(xkle) p(8) ] TE A v % (6.15)
i=1

When a teacher is available, we may choose to train the system on the
subset of the X which are known to contain a signal. 1In this case
p(Hl) = 1, p(HZ) = 0; hence ( = 0, and the system computes a simpler

form

' 2(x, o)
2(x N ;) =f£(xkle) p_(8) il ZEATYN) de (6.16)
i=1

On the other hand, when we let ( - © the system becomes the usual

nonlearning system
2(x N ) = A(x) = fﬁ(xk|e) p,(0) do (6.17)

This is as it should be, since as p(Hz) -1, p(Hl) - 0 and we cannot
learn anything from the past,

Thus Eq. (2.12) describes a system applicable to all (parametrically
expressible) binary decision problems. It applies even to those in
which a learning sequence does not exist and to those in which a properly
classified sequence does exist. For this reason the systems of Figs. 2
and 3 may be thought of as canonical decision systems. These figures
provide the engineer with an insight into the relationship between the
solutions to many binary decision problems, just as the tapped-delay-
line canonical form of the linear filter provides an insight into linear

filters.
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E. SUMMARY OF CHAPTER VI

In this chapter we have applied the results of Appendix C and Refs,.
15, 18, and 20 to demonstrate that the learning systems are stochastically
stable and converge, and we have pointed out that the proposed systems
are generally applicable to the entire parametric class of decision prob-
leme including the 'no learning," '"learning with a teacher," and "learning
without a teacher™" categories of problems.

We have also shown that in the cases where the unknown parameter is
useful in the sense that knowledge of the parameter makes it possible to
make more accurate decisions, a finite system always exists and converges
in performance to a point arbhitrarily close to the performance of a sys-
tem with knowledge of the parameter.

Thus a system to learn without a teacher which has, from an engineering
viewpoint, all of the properties of the optimum system may be constructed

from a finite number of elements.
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VII. SUMMARY OF RESULTS AND SUGGESTIONS FOR FUTURE WORK

A, RESULTS

The primary results of'this investigation have been summarized in
detail at the end of pertinent chapters, and are briefly described in
the form of the following four major contributions of this work. In the
first two items, a statistical model has been obtained which fits a large
class of interesting decision problems, and a method has been developed
to solve these problems, The third and foarth contributions have been

related to the practicality of the theoretical systems.

1. A recursive relation has been developed which describes the struc-
ture of learning systems which are optimum for any length of
learning sequence. The problems which may be solved by such sys-
tems are restricted to the parametric class of decision problems
in which the functional form of the underlying probability measures
is known; however this class includes problems in which the learning
sequence is not previously classified, as well as problems in which
the a priori probability of occurrence of different classes of
observations is unknown.

2. The solution has been extended to problems in which the unknown
parameter is a time-varying random variable. It has been shown
that solutions to the time-varying problem are straightforward
modifications of solutions to fixed parameter problems,

Thus we have obtained a statistical model which fits a large class
of interesting decision problems and have developed a method to solve
tliese prcblems. The method results in a theoretical and functional
description of decision systems to solve the problems. Our third and
fourth contributions have been related to the practicality of the theo-
retical systems.

3. It has been demonstrated that in the case where the unknown param-
eter may take on only a finite number of values, the optimum

learning system requires a finite memory and is therefore real-
izable with a finite number of elements.

4. It has also been demonstrated that so long as the underlying prob-
ability measures are either discrete or absolutely continuous in
the observation space, and so long as the Bayes decision rule
depends upen the unknown parameter, a finite-memory suboptimum
system exists which has performance arbitrarily close to the per-
formance of the optimum system,
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B.

PROBLEMS FOR ADDITIONAL RESEARCH

There are many interesting and important applications of decision

machines which learn, just as there are many important general problems

involving such machines. Some of the more outstanding problems are

given below as suggested areas for future research:

1.

It is clear that in many applications the functional form of the
underlying probability measures is unknown, and thus many problems
may not be treated as parametric learning problems., A systematic
technique for the solution of such problems would be extremely
useful, and an investigation of the possibility of treating such
problems by expanding the probability measures in a series of
known functions with unknown parameters and coefficients might
lead to such a technique.

In this study a finite-memory system which is optimum in an
engineering sense has been found by approximating the space of
the unknown parameter with a discrete space. An investigation of
the structure of the optimum system under a finite-memory con-
straint might lead to additional insight into the solution of
learning problems.

The investigation of performance bounds has been incomplete and
the bounds determined have been undesirably loose. This is .due
primarily to the fact that such bounds depend very much on the
particular learning problem being solved. It is presently neces-
sary to apply difficult, time-consuming numerical computation
techniques or to build or simulate the system in order to deter-
mine whether the resulting performance will be acceptable or to
compare the optimum system with some suboptimum system. It seems
clear that a simpler procedure for obtaining tighter bounds on
performance would be very useful.
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APPENDIX A. EVALUATION OF P(B,)

In order to evaluate P(Bk) we first note that Bk may occur only
when p(§|7\k) S 1/2; therefore P(B,) = Pr [P(§|7\k) s 1/2). To evaluate
this bound we shall determine bounds on the moments of the distribution
of the random variable P(§|%k) and apply a Tchebysheff type of bound.
Thus in any particular case the resulting bound may be very loose;
however for the example of Chapter III it is clear that the bound is a
useful one.

Consider the estimate of § given by

m

Sy = z sip(sil)\k) (A.1)

1

Eﬁ§ - sﬁlz} = Eﬁ's‘ - oklz} (A.2)

for any other estimate Qk based on Ak because S: is the least-mean-

square error estimate of s based on Kk. In particular, consider the

Then

estimate
k
1
= T z X, (A.3)
i=1
Now, if
(1) S+ N with probability p,
X =
N with probability P, = l-p1

(1) Signal and noise are independent,
(1i1) E(8) = E(N) = 0, and '
(iv) The noise is bandlimited and white with variance U:,
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then

2
E((S -.¢k)t(s - % )] = —l% + —17§ E[StS] (A.4)
kp, kp,

and therefore

2 A A
g’ + p,p.E(S,S)
* & . o n 172 t
s, ), (8 - s¥)) = 5 (A.5)
kpl

E((S

A
We may evaluate E[(S

S:)t(g - S;)] as follows. From (A.1) and the
5 R [see text following Eq. (3.6)], we have

2
fact that (sitsj)/crn

i3
that
E[§ts:] = E(§8) p(s[A,) (A.6)
and
m m
E[s* s¥) = E p(s, [A,) 25 5 p(silxk) (A.7)
i=1 . =1

Because of the symmetry, E{IP(Silkk)]z} is constant for all S1 ¥ §,
so that

B(s} s} = E(8,8) [E{[p(§lxk)]2} + (m-1) E{[p(silxk)]z}] (a.8)

By factoring and collecting terms we have

E((8 - s%) (S - s%)) = E(8,8) [ {(p - } + (m-1) E(?fk}] (A.9)

SEL-65-011 - 94 -



where

>

P

Now (m-1) E{pfk}g 0 and is small, so that

2
{(1 - ﬁk)z}s. n

or

(1 - 6k)2}§

~A 2
where R = E(StS]/on.

In order to obtain a bound on P(Bk)

moment of ﬁk. To bound this we write

m
Zpik=1

i=1

Hence

therefore

- 95 -

= P(S[\,) (A.10a)
= p(sih\k) (A.10b)
o, + PP, E{§t§} ( )
A.11
kpf E(5,8)
1
x + PP
R 172
- (A.IZ)
kp1

we also require the first

EA P =1-P (A.13)

i1

A (2

pk) (A.14)
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But

2
m m
2
Z Pi| ~ z Pik t ZA 2 Pik Pik (a.15)
1 1 141 341
i1 i
so that
e{(1 - B )2} = (m-1) E{Pz )+ (m-1)(m-2) E2(p, ) (A.16)
‘ kW J= ik ik .
From Egqs. (A.5) and (A.6) we have
A (2 2
(1 - B) ) s - - (m-1) e{pik) (A.17)
kp.R
1
where
R
R' = —m——— (A 18)
1 + plsz
so that
2 1 - 2
(m-1)(m-2) E°(P,,) = —5— - 2(u-1) E{Pik} (A.19)
kp. R
1
But since
2 2
var (P, ) = E{Pik> - E°(p,) 20 (A.20a)
2 2
E<P1k> 2 E(P,,) (A.20b)
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we can write

2 2 1
(m-1)° E (pik} s —— (A.21)
kle'

Finally, by utilizing (A.13) we may bound the first moment as

1/2
m-1

A
E(Pk] £1 - >
mkle‘

(A.22)

By utilizing this first-moment bocund and the previous bound on the second

moment and applying a Tchebysheff-type bound [Ref. 34, p. 93}, we have

pr(f, s2)s 4
* gpﬁn'+8)-4ﬁﬂ%¥ﬁqlﬁ}pl (A.23)

which is valid so long as kpiR' > 16, By using (A.18) we have

4(1 + pyp,R)

Pr {ﬁk s %} s

1/2
1 + p;P,R)
m

(m-1)kR(
P,(P, KR + 8(1 + plsz) - 4

(A.24)

Because p kR >> 8(1 + p,p,R) for large k, we may take as our bound

for pIP(Bk),

1P2

4(1 + p.p,R)
plp(Bk) s 12 17 (A.25)
(m-1)kRr(1 + plsz) ‘
p.kR - 4

1 m
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APPENDIX B. PROOF OF THEOREM 1

For convenience in presenting this proof, Theorem 1 of Chapter V

is repeated below,.

Theorem 1, Designate by ¢ the space of all possible values of
the vector parameter 6, and let the range of each coordinate of
6 be bounded. Then if p(Xle,Hz) is independent of 6, and
p(Xle,Hl) is a continuous function of © for all 6 € ¢ and all
Q= [el,ez,...,eQ], with

a finite number, Q, of discrete values of 6 such that for any

X, there exists a subset of ¢, say ¢

€>0 and all 6 ¢ ® there is a 64 © 8o Which satisfies

p(d*(Sq)’@) s p(d*(@)l@) + €

where p(d*(@q)l@) is the average risk of the Bayes decision rule
based on the assumption that eq is true (d*(eq)) when 8§ is

true.

Proof. If p(Xle,Hl) is a continuous function of 6, then so also is

the integral over any range of X. That is

jr; p(xle,ﬂl) dx

is a continuous function of 6. Therefore, given any €' > 0, there is
a B > 0 such that if 91 and ej both lie within a sphere of radius
8, then

- 1
pr(x!ei,nl) dx Lp(xlej,nl) x| < e

We may therefore choose as a possible set {QQ], all the points in &
which are distance § along some coordinate from an arbitrary point.

Since the range.of values of each coordinate is bounded, there will be

SEL-65-011 - 98 ~



only a finite number of points in this set; furthermore for every §

in ¢ there will be a member, say eq, in ¢Q such that

< €'

.}; p(xleq,ﬂl) ax - j£ p(xlé,ul) dax

The Bayes decision rule based on eq, d*(eq), divides the observation
space into two mutually exclusive regions Rq and Rq. If XE:Rq,

then decision rule d*(eq) results in the decision to accept hypothesis
1. If X Eﬁh, then the decision is to accept H
risk p(d*(eq)leq) when eq, is true is given by

2 Hence the average

u ) _
p(d (eq)!eq) = p,P(x ¢ queq,nl] + Lp,P(X ¢ queq,ﬂz]

But P(Xx ¢ queq,ﬂz} = P(X ¢ quuzl because the distribution of X 1is

independent of 6 when H2 is true, Hence we must have
p,P(x € E&I@,Hl] + LpP(X ¢ quuz) - pe’ < p(d*(eq)qu)
and
p(d*(eq)leq) <pPlxce E&|§,Hl} + Lp,P(X € qunz] + pye’
or
|p(d*(eq)leq) - p(d*(eq)lﬁ)l < pye’ (B.1)
Similarly, by starting with p(d*(@)l@) we have

|o(*(®)18) - pfa®)le,)| < nye (5.2)
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Because d* 1is a Bayes rule, the following must hold:

A

p(ci*(@) | 9q>

o(a*(e) o)

A

p(a*(8)18) = p(a%(e ) 15)

By inserting (B.2) in (B.3) we obtain
* *AY|a 1
p(d (eq)leq) s p(d (e)le) + pe

and inserting (B.1) in (B.4) we obtain

p(d*(@)lg) < p(d*(eq)leq) + pye’

so that
» B 212
|p(d (o )l0,) - p(a%(®)18)| = pye-
The combination of (B.1) and (B.7) yields
|e(av(eg)18) - oex(®)18)] = 2pye

and thus by choosing €' < e/2p1 we have proven the theorem.
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APPENDIX C. PROOFS OF STABILITY AND CONVERGENCE

1, System Stability

In order to prove that the system is stable we first prove a more
general theoremT regarding a property of the probability measure pk(e) =
P(elxl,...,xk), which is the cumulative distribution function correspond-
ing to the density p(elkk).

Theorem 3, Any sequence (gl,gz,...,gn+1] such that
+
g, = ff(e) ap, (8) (c.1)
'
where
P, (6) = p(elxl,...,xk) 1 =ks n+l (c.2)

is a bounded martingale if
(1) f£(6) 1is any nonnegative Lebesgue measurable function,

(i1) max £(8) = M < o,

Proof. A martingale is defined [Ref. 35, p. 293] as a sequence of random

variables {xl,xz,...,xn,z} such that

(ii1) E (|z]|} < o,

(iv) x = E{z{w.,w_,...,w ] for some set of random variables (w,}.
n 1’72 n i

Thus to prove the martingale property, it is sufficient to prove

TThis theorem is due to Daly [Ref. 20]; the proof is repeated for con-

venience,

¢In order to include the case where Pk(e) is a step function, the
integral here is meant in the Lebesgue-Stieltjes sense (see, e.g.,

Ref. 1).
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First we prove (a). Since f(8) is nonnegative and bounded by M

on ¢, and f dPn+1(e) =1, then g is nonnegative and bounded by

n+l

0=g = ff(e) dp_,(8) = fM dpn+1(e) =M fdPn+1(e) =M<

(c.3)
hence
lg | sm<o (c.4)
and
E(lg 1) sm<o (c.5)
Since this is true for all n, we also have
lim E[lgnl] SlimM=M<® (c.6)

n—x n-»0

This relation will be required in the proof of the boundedness of the
sequence.

To prove (b) we must showT

E{.[D £(e) p(elxl,...,xml) as le,...,xn} = j; £(6) p(elxl,...,xn) do

(c.7)
where the expectation is over the space Y of Xn+1' We may write
E[gn+1lxl,...,xn] =f ff(e) p(G!Xl,...,Xn+1) de

X UU¢
) p(xm~1|x1""’xn)'dxn+1 (c.8)

In this case, since we are only interested in finite n, we need not
contend with step functions, hence we write pk(e) = de(e)/de for
easier manipulation,
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Interchanging the order of integration over ¢ and X, we have:

Blg_ . |x %] < f (o) f p(elx), ..., x ) p(xp, ..o X [x )
p v ey =
n+li ol n o X ﬁ(xl,.,,,xn)
= }F £(e) p(olx,,...,x ) do
Q
= &n (c.9)
Thus the sequence [gn; n=1,2,...}) is a martingale. Doob [Ref. 35,

p. 319] shows in theorem VII, 4.1 that if the sequence (gn; n 21} is
a martingale, and if 1lim E {lgnl] =M< o, then 1lim 8, = 8, exists
with probability one. Thus the sequence {gn; nz ?T» does indeed con-
verge to a 1limit with probability one.

This theorem is directly applicable to the proof of system stability.
We make the identification £(9) = ﬂ(XIG). Then £(6) will be a non-
negative Lebesgue measurable function of 6. If in addition E(Xle) is
a bounded function of ©6 for all X, then the sequence ﬁ(xkihk_l) is

a bounded martingale and 1lim £(X ’Ak ) <o with probability one.
k0 Kk -1

2. Convergence of the Optimal System

In order to find the limit to which the system converges we first

state a theorem due to Braverman [Ref. 15].

Theorem 4. If there exists a sequence of functions [@k(xl,...,xk)]

such that 1im ®k =8 with probability one, where § 1s the true
k-0
value of B8, then

lim P(8]X,,...,X.) = (c.10)
1 K
k~x0
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B{ B < 6 we mean that every coordinate of 6 1is less than every

coordinate of @ since 6 may be a vector-valued parameter.

Proof. Braverman proves this theorem for the case of learning with a
teacher, drawing on the fact that if the sequence {Xi] is known to

arise from a particular class, then

g = L g(9) dpl'((e) (c.11)

is a bounded martingale if g(6) 4is bounded and Lebesgue measurable

on O,
We have already proven that 8L is a bounded martingale even when
(Xi] does not arise from a single class. Thus if we consider the

sequence of functions

Pk(Ee) .-.j]; de(e) (c.12)

6

this sequence will be a bounded martingale because it can be written as

Pk(Ee) = f I de(e) (c.13)
®
where
1 o€ E
IES = (c.14)
0 8¢ E,

is the indicator function of the set {Ee]; hence

1im P (E.) = P (E_) with probability one (c.15)
N w0\ g
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Loéve [Ref. 36] points out that if the sequence [Xl,Xz,...,Xn,z]
is a bounded martingale, then E{lel,...,Xn) converges with probability
one to z. If welet z = I, then the sequence [Pk(Ee)] must con-
G

verge to either 1 or O.

The existence of the convergent sequence (Ok(%k)] must imply that
Pk(Ee) converges to 1 when 8 is contained in Ee, and converges to O
when 6 is not in Ee.

Thus P (6) must be a (multidimensional) step function with a dis-
continuity at 6 with probability one.

We may extend this theorem to the following corollary.

Corollary. If there exists a sequence (¢k(x1,...,xk)] such that
lim 6, =8 with probability one (c.18)
K00
then
}I(im L £(e) dp, () = £(8) with probability one (c.17)
00

if £(6) is continuous on O.
This follows from the above theorem and the fact that

lim f £(9) de(e) = f £(e) dap_(8) with probability one (C.18)
® . ®

k-0
if f£(8) is continuous on ® and P (6) has bounded variation on 0.

By definition of the Lebesgue-Stieltjes integral, if gm(e) is a step

function at §, then

f £(e) dp_(8) = £(8) (c.19)
o
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Hence if E(Xle) is a contintious function of 6, we have the fact that

lim _/.ﬂ(x|e) de(e) = 4(X|6) with probability one (C.20)
k-0 "

(where 6 1is the true value of ©) if the sequence {®k} exists.

3. Convergence o” the Quantized System

~In order to prove Theorem 2, Chapter V we first determine a sufficient

condition for convergence as follcows.

Theorem 5, If

E(log p(Xqu> - log p(XIeJ)lél >0 (c.21)

for some eq e ¢ and every ej e ¢ 6 ¥ eq, then

Q Q’ J
1im B(e 7)) = 1 with probability one (c.22a)
q' k
k=0
lim P(6.|A ) = 0 with probability one (c.22b)
'k
k-0
Proof. If
E(log p(x|e ) - 1log p(x[e )] =B >0 (c.23)

f 11 9.¢ &, 6. 486 ¢ &, then
or @ J Q J # q Q

k
p(Xile )
lim EE log STQ—T§S7 = kB with probability one (c.24)
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That is, for every € > 0, there exists a k such that

S et le )}
Pr (LUB 25 log D X ej -kBl<e)=1

where LUB means least upper bound. But

k
LUB 22 log [Eé——+§3;} -kB|<e

implies that

p xi[e

(c.25)

(c.26)

-k
LUB | exp 25 [%(X e )] - exp (-kB)| < e'kﬁ(ee -1) (c.27)

Therefore, for all 8 > 0, there exists a k such that

p(X, le.)

k
Pr { LUB H —T-i—r;)-y <B%)=1
i=1

or, for every 8' > 0 there exists a k such that

K
p(xilej)

<B%'") =1
szi qu

Pr ( LUB

-—

i=1
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(c.28)

(c.29)
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The function being computed is ﬁ(ejlxk) which may be written as below,

p(x;[6) P (0),)

I 5wy morey

1

B(e_.|A) = 1= (c.30)
Kk K
) & T oe(xgle)) P (s))
1o ) I 5wl mey
P
j=1i:1 14 od
For each 6_.¢& & and each k, define (. such that
J Q Jk
K
p(x,[e,)
LUB H m_e-l’<§jk (C.31)
i=1 q "
then
P (6,)
o
|80, I, EaA {2y
LUB |B(e < <
j K !
] 2 p(xgle)) p(e) TPt
Y
“op(xfe ) P (e )
=131 4 o
(c.32)
Hence for every { > O there exists a k such that
pr (LUB lﬁ(ejlkk)l <f)=1 (c.33)
Similarly,
K ) Q
p(x,le ) P (e)) P (0.)
A i i J (o] ‘j [¢)
LUB = ‘ -
1 - Ble I <1 - s f{ p(X,Je )P (67| = 2 S5k p_(e
j=1 i=1 q q j=1 q
(c.34)
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so that by choosing

P (e )
£ o' g
max L < Q1P (5.
3 0]
we obtain
LUB |1 - ﬁ(eqlkk)| <t (c.35)

Therefore, for all { > 0, there exists a k .such that

Pr {LUB |P(eq!xk) -1 < C} =1 (c.36)
So that
1im P(e _|A.) =1 with .probability one (c.37a)
q k
k-0
lim ﬁ(ejlxk) =0 with probability one (c.37pb)

k0

which proves Theorem 5,

Theorem 2. If there is a eq £ ¢Q such that

p(d*(eq)lé) < Gjmzn®q p(d*(ej)lﬁ) (6.12)

and if the distribution of the observation under one hypothesis is

independent of the unknown parameter o [i.e., p(Xle,Hz) = p(Xle)],

then
A
lim P(® |Ak) =1 with probability one
K0 q
(6.13)

lim ﬁ(@.’hk) =0 with probability one for
koo Y all 6.¢ &, B.48

J Q J q
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Proof, Condition (6.12) implies that

foo pq(ﬂ) at > foo pj(ﬂ) al (c.38)

where pq(ﬂ)

probability density of z(xleq)

a

any real number > O

To prove this, we observe that (5.12) implies

00 V4 00 .
Lpzj pq(E[Hz) df + P, f pq(ﬁlHl) di < Lpzf pj(ﬂ/lﬂz df
4 -® 7
7 '
+ plf py(4[H,) af
=00
(c.39)
where 7y = Lpz/p1 4
pi = a priori probability of Hi being true

By rearranging this inequality, and changing limits, we have

o0

plL [pq(ﬂlnl) - pj(ElHl)] df > Lpzf7 [pq(zlnz) - pj(flﬂz)] al

(c.40)
for all 7 > 0., Now assume that
7 o0
f p (&) dd 5] p.(&) d& (c.41)
a 4 a J
o o
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for some real number ao. Then

[0

J

o0
[plpq(£|H1) + pzpq(zlﬂz)] al s J; [plpj(ﬁlﬁl) + p2p3(2|H2)] al
(o) o)

(c.42)

or

by [ Teg(tln) - wyaln)] et s - m, [ Doy(alm,) - o (eln)) g

a a
o o
(c.43)
Combining (C.40) and (C.43) yields
(o] [
Lpz.f [pq(ﬂlﬂz) - pJ(Z’HZ)] dt < - p, J; [pq(zlﬂz) - pj(EIHZ)] df
7 o
(c.44)
for all 7y > 0. Suppose that a_ > 0, then we can choose Y = ao,

hence L p, = a_p,, and (C.44) becomes

3Py < 7 Py
Hence ao cannot be positive, and for all positive real numbers a,
(C.38) must hold.

Consider the function

E(}og p(XIGq) - log p(Xléj)l@} = Eq,j
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It may be written as

Eq,j = E(}og [a + E(Xleq)] - log [o + E(Xlej)]|§>

+ E{log [pp(x|0_,H,)] -log[plp(xlej,ﬂz)]|§>

where o = pz/pl. But since p(X]eq,Hz) = p(xlej,nz) = p(Xle), the
second term on the right is zero. The function 1log B} + ﬂ]; £ 20 is
monotonically increasing and continuous; hence it may be approximated by

a sum of simple functions:

N
lim 25 BiQi(ﬁ) = log [0 + 4] almost everywhere
N-%0
=0
rmo 1
where
1 when /£ z iA
@i(z) =
0 when [ < iA
B, = log [a + i) - 1log [a + (i-1)a]
so that

E fo 108 [0 + 2] (p,(£) - p,(£)) as

lin By ¢, (£) [pq(ﬂ) - pj(i)} ds

no-
S
3
h‘[ /q s
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N

Sun Y B fm (pg(4) - py(D)) o

im
N> a1

L0

But the sum of a set of positive numbers must be positive so that

E(log p(X[6) - log p(x[6)) > 0

By Theorem S this implies the convergence of ﬁ(eqlxk) to 1, and proves

Theorem 2,
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