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AN ESTIMATION THEORY APPROACH
TO PULSE AMPLITUDE MODULATION RECEIVERS

by

Toby Berger
Division of Engineering and Applied Physics

Harvard University, Cambridge, Massachusetts

ABSTRACT

By generalizing a trivial problem in estimation theory, some
interesting results have been obtained for a class of pulse amplitude
modulation (PAM) communication channels. In particular, we consider
a linear channel with memory perturbed by additive noise which is uncorrelated
with the signal statistics. It is shown that, for specified second-order
statistics and a mean square error criterion, the Bayes estimation rule for
the specific case of zero-mean Gaussian signal and noise statistics is also
both the best linear estimation rule and the minimax estimation rule. This
fact is used in the theoretical design of sampled-data and continuous time
receivers for such PAM systems. In the continuous time case with an
infinite observation interval and stationary noise statistics, the receiver
thus desizned agrees with the optimum linear receiver praviously derived
for this case by Tufts [2] using a very different approach; the present
analysis shows that Tufts's linear receiver is, therefore, also the best
nonlinear receiver in the minimax sense.

-1-
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In this report we consider the consequences of the following trivial

estimation problem.

Problem 1:

The real random variable a has the Gaussian probability density

2

- =
! e 2P ; -0 <a <oo. (1)
V2T b

The real random variable y is statistically independent of a and has the

pl(a) =

Gaussian probability density >

pz(v)=——l—-— e ¥ |, -w<y<o. (2)

Ver o

The sum random variable x = a+y is observed. It is desired to find that
estimation rule a(x) which minimizes the mean square error D between

a(x) and a. This mean square error is defined by:

o0 OO o 0o
p=@(x)-a2= { ((datn-alp @ip,ndedy={ [ [a-alp (@pyix-a) .
=-Q0 -Q00 -~Q0 -Q0 (3)

Solution:
It is well known ([1], p. 190) that the optimum estimate '&l (x) is the

mean of a ,conditional upon having observed x, namely

o
o Sapz(x-a)pl (a)da
8, (x) = {daptab) -2 . (@
@ Sp,_ (x-a)p, (a)da

=-Q0
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Substituting (1) and (2) into (4) and performing the indicated computations
(See Appendix I) yields the result:
a,(x) = - b° x . (5)
+ 0
The resultant minimum value of D found upon substitution of 31 (x) from
(5) into (3) is (See Appendix I):
2 2
D = "> . (6)
We now introduce some terminology and notation which will be
employed below in discussing other estimation problems related to Problem 1.

The expected value of a function f(a, y) of two real random variables

with joint density p(a, y) will be denoted by

© o
Ep[f(a,y)]=S S f(a,y)p(a, y)dady. (7)
-00 -0

We shall denote by W the class of all joint probability densities

p(a, y) which satisfy the following requirements

b2 (8a)

Ep(az)

0 (8b)

Ep(ay)

n
Q.

2 2
EP(Y ) . (8¢c)
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Problem 2:

It is known that the joint density of a and y is an element of W.
The sum random variable x = a+y is observed, and it is required that the
estimation rule a(x) be linear, i.e., the only permissible estimation rules
are of the form e(x) = kx . We seek that estimation rule az(x) of this

form which minimizes the mean square error D defined by
D(3,p) = E, {[&(x)-a¥} . (9)

Solution:
First note that if a(x) is linear, then D(a, p) is independent of

which peW is used to compute it, because
D (kx, p) = 2) _ 2 2 2 2
,p)-Ep [klaty)-a]™p = Ep[(k-l) a ]+Ep[2k(k-1)°V]+Ep[k yl,

from which by use of (8) we obtain

D (kx, p) = (k-1)% b%+ k%¢? = £(k) . (10)

Setting f'(k) = 0 yields k = b%/b%+c% , while £"(k) = 2¢° > 0 insures a
minimum. Accordingly, c’x\z(x) = 31 (x) .

Alternatively, one could argue as follows. Since the value of
D(4Q, p) is independent of peW when 2 is linear, we can compute it

using any peW whatsoever. In particular, suppose we were to use

‘i"(no Y)=PI(G)P2(Y) (11)

where p, (a) and pz(y) are given by Eqs. (1) and (2), respectively;
one easily verifies that 'f;(a, y)eW. Now Problem 1 tells us that for any

a(x) and, hence, a fortiori, for any linear a(x) , we have
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D(8,%)2 D(a);,$) =D, . (12)

Since 31 is itself linear, we may conclude that az(x) = 31 (x) .
The alternative method of solution of Problem 2 proves useful in

solving the following minimax estimation problem.

Problem 3:
A
It is desired to find the estimation rule a(x) which minimizes the
maximum mean square error that occurs when p(a, y) is varied over W,

i.e., our optimum estimate 33(x) is defined by the requirement

(vax) (% D, pr 2 J% D&, ). (13)
Solution:

The following argument establishes that 3.3(x) = 31 (x) . Since
31 (x) is linear, we know that D(al, p) = const. = D, for all peW and,

therefore,

sSup A _
pew D(“l;p)'Dl' (14)

On the other hand, we know from Problem 1 that 3.1 (x) yields the least

value of D when p =?:I. Accordingly, for all a(x) we have

b D(&,p)>D(&,§)>D(a;, D)

b ow D, = ow (8, P) . (15)

1 " peW
Comparing (15) with (13) shows that 33(x) = 31 (x).
In summary then, we see that in the space W of joint probability

densities as defined by (8), the least favorable distribution with respect
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to a mean square error criterion is ’f)’( a, y) of equation (11) in which a
and y are statistically independent, zero mean and Gaussian. Since 31 (x),
the optimum estimation rule for f)‘( a, y) and a mean square error criterion,
is linear in x , we have seen that it is in fact the solution to all three of the |
estimation problems we have considered.

We now employ the knowledge gained from the above problems in order
to solve some estimation problems regarding the pulse amplitude modulation

system depicted in Fig. 1.

Transmitter }

. N T y(t) A
4\ 7] Zaks(t-'rk) 4
a, 72 || k=1 Dispersive | U(t) x{t) az
. s(t); 2=| . Channel [ “|Receiver —ed=| .
a‘N 'r'N h(t) Ly

Figure l: Block Diagram of PAM Communication System

*We could have defined W somewhat more broadly and still had a, (x)
as the minimax solution. In particular, we could have replaced (8a5 by

Ep(az) <b and (8c) by Ep(yz) g_oz , and we could have permitted

probability distributions P(a, y) which, because of discrete concentrations
of probability, possess no density p(a, y).
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N

The transmitter forms the sum Z aks (t- Tk) from the random vector Q,
k=1

the known vector 7 and the known function s (t). This transmitter output

is then sent over a linear, dispersive channel characterized by an impulse
response h(t). The receiver input x(t) is an additive combination of the
channel response u(t) to the transmitter output and a sample function y (t)

of a random process. The receiver operates on the noisy waveform x{t)

to produce the vector :1_\ of estimates of the respective components of a .

The deéign of the receiver may, therefore, be viewed as a problem in statistical

estimation theory. We start with a relatively trivial problem analogous to Problem 1.

Problem 4:

Suppose that the message vector a has a zero-mean Gaussian

probability density of the form

N N
1 -1
__;-_ETE-IE -zz Z ¢ij o, o,
pla)= e - € izl j=1 . (16)
= emNE et T eV (g 172

In Eq. (16), $ij-l represents the i-jth element of the inverse of the auto-
correlation matrix . Further suppose that y(t) is a sample function of
a zero mean, possibly nonstationary Gaussian random process statistically
independent of a and having the autocorrelation function y(t, s)=y(t)y(s).
The receiver input x(t) is observed at M distinct time instants

tyrtyy ooy by the observed random variables, therefore, constitute
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an M-dimensional column vector x with components x = x (tm);
m=1, 2,..., M. We seek that estimation rule a(x) which minimizes the

A :
mean square error between a and a defined as

N
D=[8(x)-al?= Z g Sdg@[ai(g)-nilzp(g)q(glg) : (17)
i=1

The integration in Eq. (17) extends over the entire N+M dimensional space

Ndx1 ce dxM is a differential element of

volume, and q(x | a) is the M-dimensional probability density of x

of which dgd:_c = dx1 ... da

for-a given message vector a .

Solution:

The signal component u(t) of the receiver input waveform x(t)

is given by
N o
u(t)=anr(t--rj), where r(t)=Ss(t-§)h(£)d§. (18)
j=1 -00

In order to write down q(x | a) explicitly, we introduce the following notation,
Let I' be the M x M autocorrelation matrix whose m-nth element is

7(tm, tn) = Yn and let ‘me:l be the m-nth element of T -1 . Let

N
u(a) be the column vector with components u(tm) = Z o,jr (tm-rj) =
N j=1

c_.a.=u (a); m=12,..., M. We then may write
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M M
- 0T  ente) -1 Z D Vi lxg -u_ @l -u_(@)]
. e m=ln=1

_e _
q(x|a) Nz 17 (2n V7T 72

(19)

It is a standard result of estimation theory ([1],pp. 188-190) that the

optimum estimation rule is the mean of a conditional upon having observed
x , the ith component of which is

Saip(g) a(x|a) da
a, (x) = . (20)

S‘q(glg)p(e_)dg

The integrations indicated in Eq. (20) are performed in Appendix II and

yield the result

0
1

a, (x) = i=1,2, ..., N. (21)

X
i im “m

AN <

The constants oim appearing in (21) are defined in Appendix II.

The most important property of the estimation rule specified by (21)
is that, like the optimum estimate 31 (x) of Problems 1, 2, and 3, it is
linear in the observed random variables x. -

We now introduce some terminology and notation which will be

employed below in discussing other estimation problems related to Problem 4.
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The expected value of a function f(a, y) of two real random vectors

with joint probability density p(a, y) will be denoted by

E,[f(a, z)]=S S f(a,y)p(a, y)dady. (22)
We shall denote by V the class of (M+ N) dimensional joint

probability densities p(a, y) which satisfy the following requirements

Ep(nj a,) = ¢jk . (22a)
Ep(ajym) = 0 j,k=1,2,...,N; myn=1, 2,..., M. (22b)
Ep(ymyn) = Yo (22¢)

Problem 5:

Let a be the N-component random message vector and let y be
M-component random vector whose elements are the noise samples
y(tm) =Y. It is known that p(a, y)eV. The M-component random vector
x whose elements are the receiver input samples x(tm) =x., is observed,
and it is required that the estimation rule _@(5) be linear, i.e., the only
permissible estimation rules are of the form 'c_}_(:_ﬁ) = Kx, where K is an
NxM rectangular matrix. We seek that estimation rule of this form which

minimizes the mean square error D defined by

N
(g, p) = E{Ex-al¥} = ) £ [1§x1-0, (23)
i=1
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Solution:
For linear @(:_c) we find that D (_@ , P) is independent of which

pe€V is used to compute it, since we have

z N 2
D(Kx, p) -ZE Z i Xm i Z ;; 1m[y +u (n)]-u.
i=1

D(&,P)=ZEP Z'kim ym+z °mj%; - a;

i=1 L m=1 J:l

N M N /M 2
D(Kx, p) = Z Eq Z k. Y +Z Z Kim mj | % % . (24)

i=1 Lm:l j=1 m=1

When the squaring operation indicated in (24) is carried out and the
expectation operation is commuted with the summations, it becomes clear
from (22) that D(Kx, p) is independent of peV . It then follows by
reasoning directly analogous to the alternative method of solution of Problem
2 that the desired estimation rule is that already specified by Eq. (21) as the

)

solution to Problem 4, i.e., the optimum estimation rule has K =0 = (6,

im
the distribution analogous to p(a, y) of Eq. (11)is
-z laTglary Ty
~
Pla,y) = —wnwN ) : : (25)
@) % ol Ir|?
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Problem 6:
It is desired to find that estimation rule @(:_c_) which minimizes the

maximum assumed by D(g, p) as p is varied over V.

Solution:

In complete analogy to Problem 3, we see that Eq. (21) specifies the
desired estimation rule.

In summary, the common solution of Problems 4, 5, and 6 is the
optimum sampled-data mean square error receiver for‘ the PAM system of
Fig. 1, where the term "optimum" is, of course, to be construed with
regard to the statistical knowledge assumed and the performance criteria
adopted in these problems.

Of particular interest is the limit of infinitely large M which
corresponds to the case of continuous observation of the receiver input.
Although it is possible to perform the limiting operations directly upon the

form of the 6 as derived in Appendix II, it proves somewhat more

km

convenient to revise our method of attack slightly. (For background material

regarding the analysis that follows, the reader is referred to [1], pp. 98-106.)
Suppose the receiver input x(t) is observed over the interval

T1 <t< T2 . The revision in our method consists of replacing the vector

x of receiver input samples with a vector of expansion coefficients of

x(t) in terms of a set of functions {fm (t )} orthonormal over (T1 , TZ)'

(t) the orthonormal solutions

In particular, we choose for our functions fm.

of the Karhunen-Loéve integral equation
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T

2
M (0= § 7,000 (018 5 T <t<T,. (26)

T

Thus, the elements of x are

T
2

x, = S fm(t)x(t)dt. (27)
T

1
Under the assumptions of Problem 4, the expansion coefficients x . for a
fixed message vector é._ would be statistically independent Gaussian random

variables with variances )‘m and means um (_g._) defined by
T T

2 N 2 N
um(g._)=5. fm(t)u(t)dt=z Sfm(t)r(t-fj)dt aj=z Emj aj . (28)
T IV T : =1

1

—

Accordingiy, in place of Eq. (19) we obtain

M 2
1 Z [xm' #m(g_)]
- = —
e m=1

A
m

Q(z‘.'.‘.’;) = i (29)
(2an_ )2
m

et}

Therefore, the computations done in Appendix Il remain applicable if we

replace c . by £ . and -ymn‘l by ——— . In the limit of infinite M,
m

the vector x of expansion coefficients provides a representation of the

observed receiver input voltage x(t), T1 <t< Tz , which is sufficiently
accurate for most practical purposes. The components Qi (x) of our

optimum estimate approach linear functionals of x(t), ‘I‘l <t< Tz , Which
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will be denoted by G.\i[x(t), T1<t < TZ] = g i=1,2,..., NN We now
characterize the g; more completely by examining the limiting behavior

of Eq. (21).

th

Let Gi (t) be the time function whose m Karhunen-Loéve expansion

coefficient is eim)‘m , i.e., let

T2

Q
Gi(t)=z Bimxmfm(t); eimxm =Sfm(t)9i(t)dt. (30)
m=1 T1

Then, let z, (t) be the solution of the integral equation
T

0,(t) = ) y(t,s)z(s)ds; T, <t<T, . (31)

H

1

It follows that the ith component of our optimum estimate may be expressed

in the form

Qo T Q0 TZ TZ
X X
g =Z i %m Z T:'S fm(t')Oi(t)dt=z TE gdtfm(t)gy(t,s)zi(-)d-
m=1 m=1 T1 m=1 Tl T1
T
® o 2 2 @ x_
8 =Z -x-'r:‘-‘- S dsz, (s) | dt y(t,s)f (t)= Sdlzi(l)z S‘Y(l,t)f (t) dt
m=1 T1 Tl ms= l
T Q0 TZ
8 ° S ds z; (s) Z xmfm (s) =S z, (s) x(s) ds . (32)

T m=1 'I‘l
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In deriving Eq. (32), use has been made of the fact that y(t, s) isa
symmetric kernel. The equation indicates that g; may be formed by passing

x(t) through a linear, time-invariant filter with impulse response wi(t)

given by

zi(T-t) H -T2+T<t<-T1+T
wi(t)= . (33)

0 5 elsewhere

The filter output at time T then will be

o0 -T1+T T2
S‘X(T-'r) wi(r)dr = §X(T-r)2i(T-T)dT=S z,(s)x(s)ds = g, . (34)
-0 -T2+';F. T1

It appears difficult to extend the general analysis beyond this point.
In the specific case in which T, = -00 and TZ - o, an explicit solution for
w, (t) can be obtained if the noise process is wigie se’ns:e gtationary. The
solution for this case was found by Tufts [2] using a very different approach .
Tufts derived the mean square error optimum linear receiver under the
assumption that the only statistical knowledge available to the receiver
designer was the message vector autocorrelation matrix & and the noise
autocorrelation function y(t, s) =/ (t-s); signal and noise were assumed
additive and independent. Calculus of variations yielded an integral equation
the solution of which was the transfer function Wi(f ) of the optimum

receiver filter, namely
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* N jenf(r -T)
w, () = R-W-}—fl z d(i, k) e k , ' (35)
n=1
a ) fo'e) .
where W, (f) = S'Wi(t)e-"z”ft dt, R(f) = S‘r(t)e-_]zﬂft at

=Q0 -0

o
and V¥(f) = §W(7) e-Jz“T dr . Equation {35) represents a "matched filter"
-

*
R ((_).ff) independent of i followed by a delay line with N taps spaced like the

transmission instants Tk and weighted by gain coefficients which vary with i .
The optimum estimate 8 is the sum of the weighted tap outputs of time T

(see Fig. 2).

Matched Filters Delay Line with N Taps Giving Delays T =7
x(t) ¢ R*f k=1,2,....,N
W(%) T--rN_l T--rk T-'rz T-'r1

Fig.2-Optimum Receiver for Stationary Noise and an Infinite Observation Interval
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In Appendix III, Eq. (30) is solved for T1 -~ -0, TZ-’ + oo and
stationary noise, and the solution is shown to be equivalent to Tufts' solution
as given by (35) and Fig. 2. The present analysis shows that the resultant
receiver is not only the best linear one, but also the best nonlinear receiver
in the minimax sense. For either of these interpretations of the receiver, the
joint distribution ptg_, y(t)] of signal and noise has been assumed to belong
to the continuous analog of V, i.e., it is known that for all bk, =1, 2,...,N

and for all t)s 1:2 € (-00, )

Ep (u.j a) = ¢jk (36a)

Ep[ajy(t1 )] =0 (36b)

E [yt y(t))=v(t),t) . (36¢c)
Conclusion:

It has been shown that in mean square error estimation problems
with additive, uncorrelated noise and known second-order statistics, the Bayes
estimation rule for the specific case of statistically independent, zero-mean
Gaussian signal, and noise statistics is also both the best linear estimation
rule and the best minimax estimation rule. This fact has been used to
design optimum sampled-data and continuous time receivers for a practical
PAM communication system. In the continuous time case with an infinite
observation interval and stationary noise statistics, the receiver thus designed

agrees with the optimum linear receiver previously derived for this case
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by Tufts [2] using a very different approach; the present analysis shows that
Tufts's linear receiver is, therefore, also the best nonlinear minimax
receiver.

The above theory could be employed as the mathematical basis for an
investigation of the extent of degradation in system performance suffered by
adopting a sampled data as opposed to a continuous time receiver. It is
also hoped that the above constitutes a useful contribution to the complex field

of the interrelations between different system performance criteria.
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APPENDIX I
2 2 2 2
o o _%[(x-ul +22'-] o _%[a -2aX +_o.7_]
ap.(x-a)p. (a)d o by 24 S‘ o2 bY 4
pZ X=-Q p]. a)daa ae Qo a-;" e Q
al(x) =-$ :“m - -m
1 (x-u)Z 02 1 aZ-Zax az
SPZ(X-G)PI(G)dG © -z[*5——+=>5] o -3 [F—=—+=1
o b ' 4 b
- e da Se da
-00 -
[~ 2 2 2 2
X X

® ey 2 ——
Ql(x) - o° g;‘n Se L 4 Y ol = g g;:‘“ eZa’ ,Zu' (bz+cz)e 2(b%+c°)
-0

- = ( X .
Z(bz+¢rz):‘ bz+o'z )

D= SS [(—-z—-z-)(a-*v) a] P;(alp,(y)dady = 55[(—2-—2-) a +(—2:-7) y -Z(-z-—z) e

-00~-00 - - bto

2 2
- (8 + )
e LI da dy

2 2 2 2 2
=(—z—-—z—c b‘l‘%ng Uz+0=—bz—!T .
b'+e +te b +o

]
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APPENDIX II

In what follows, omitted exponents in the denominator equal those in

the numerator.

°° ZZ Ymn | ranJ“J)(x

m-ln 1

2]

) - N N
S"'kq(’_‘ | a)p(a)da S‘dg o.kexp{ Zz
‘ ) v
S'q(ilﬁ)P(.a_)d& Sdg exp {
O (x) =

Let C be the MxN rectangular matrix whose n-kth
consider the matrix 2-1 +QT_I:_1Q =A.

and strictly positive definite, one easily verifies that A is, also.

element is ¢, , and
Since both & and I are symmetric

We perform

a transformation to the principal axes of the quadratic form in the exponent

by defining the new coordinates p according to the matrix relationa = AB,

where A = (ajk) is the matrix of normalized eigenvectors of I_\ . Denoting

the eigenvalues of A by vyi 8=1,2, ...,

N, we obtain
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de(Z ‘it"z) exp ’_‘TE'ISéE-lzZ vy B
=1

A - =
Ydﬁ exp
- Tpr-1 A .
Defining {" =x"I' " CA, we can express ai(i) in the form
2
€,Bp;-v,P
- L7 e
N e ® |\ X L
A - _ il>4
4 (x)= ) 2y ) v
L
=1 2 =1
Py viPy
S e dp‘
M M N
Since ¢, =Z X Z 'Ym-r: Z Cak 3Ky » this becomes
m=1 n=1 k=1
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APPENDIX III

6

-1 _ "mn
n =X as

If we make the replacements c_ . =

mj Emj and "m

discussed after Eq. (29), the expression for oim as given at the end

of Appendix II becomes

M N N N N
o = Z % mn Z . Z ikt _ 1 Z . ;‘ 2i0%ks
im Xm nk v, 1N mk /., v,
n=1 k=1 =1 m g=1 =1

Combining this with Eq. (30) and the definition of £k from Eq. (28), we

obtain
T, N N . N T, N ap
A0, =Sfm(t) 6,(t) dt:Z 'S'mk;, -——“f kt =Z S £ (1) r(t--rk)dtz A kt
T, 21 =1 Y ka1 T, Y =S

This may be rearrange in the form

TZ N N a. .a
10%K4 )
Sfm(t) Ol(t) -Z Z T r(t-Tk) dt = 0 .

T1 k=11=1

From the completeness of the fm (t) on (Tl’ TZ) we may conclude that

T X 2P
Gi(t)=§Z - r(t-'rk) ; T1<t<T2.
k=121 1L

Writing y(t, 8) = Y (t-8) because the noise is stationary, and letting

Tl-' - oo and TZ-' co, we may write the integral equation (31) in the form

N N a,,.a x
5; Z _i‘_f_k_‘. r(t-r,) =S Yit-s)z (s)ds; te(-o0, o .

k=11 1 ~o
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Fourier transforming then yields
S S a,a, -j2m fr
Z ; ———R(f) e = w(f) Z.(f)
o Vl 1
k=1 =1

. -jem fT «
Since Wi(f) = Zi (f) e from (33), and since ¥(f) = ¥ (f), the

solution for the transfer function of the filter to be sampledat t=T in
order to obtain g, is

N N .
. R*(f) ;\ ;— 2,3, eJZ‘Rf('rk-T)
i T(1) ' v :
k=1 =1

Accordingly, the optimum receiver is a matched filter followed by a tapped
delay line, agreeing with Tufts's result as given in Eq. (35). The tap gain
N
2i0%ke
coefficients are given by Z — and it remains to establish that these
1
£=1

are equivalent to the d(i,k) given by Tufts. Toward this end, let us recall
from Appendix II that A is the matrix of normalized eigenvectors of A,
so that we have ._‘_\'1 = éT , and we may write

l/v1

l/v
-1

, AT At - 2
0 .

>

l/vN



TR438 -24-

: ., th -1, 2021 .
Accordingly, the i-k™ elementof A is > which shows that
51 !
the tap gains for the optimum receiver prescribed by the present theory are
the elements of the inverse of A = 2-1 + QT_I" -1 C . On the other hand,
temporarily adopting Tufts's notation, we obtain by combining his Eqs. (7)
and (15) the following representation for the matrix Q of his tap gain

coefficients d(i, k)

D-M-C=M-Ma M+ =M M-+ = (vl g7

Accordingly, Tufts's tap gains are the elements of the inverse of M'1+Q .

Since his M is our @, it only remains to show that his matrix Q is the

same as our matrix CTE'I C. Now the i-k'® element of Q is defined,

in our notation, as

=S'9 R(f)R*(£) ejz"f“'i"k’ g
RO (£) .

qlk = q (Ti"rk)
-Q0

We now study the behavior of QTI-IQ in the limit Tl-' -00, TZ - oo, and

6
M-+o. First, we have c¢_.=§ ., and ¥ 1. mB hecause we are
mj °mj mn )‘m
using Karhunen-Loéve expansion coefficients, so that the i-kth element of
Tp-1a .
ErL'cis T, T,
Sf (t) r(t-+, )dt Sf {t)r(t-7,)dt

MM M M m i m k

6 § sk T, ’I‘1

Z £ mn e mi°m =z
mi "~ X\ nk Xm ‘Tm

m=1 n=1 m m=1 m=1
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It is well known ([3], p. 93 or [4], p. 167) that the Fourier coefficients of a
stationary, Gaussian process become statistically independent in the limit of
an infinitely long expansion interval. Accordingly, in this limit we may use

as our orthonormal functions im(t) the trigonometric functions

_ i’ZImt

2 71

£ =2 ; =0, +1, +2, ...
m(t)‘z"}::'r_l)mym sy oty L&

Because these functions are complex, some minor complications arise.

. o mi :
In particular, defining bmi = Tm , we had in the real case that
m

_C_JTE-I_(_: = _BTE; in the complex case, this becomes QT_I:-IQ = §+§ ,
where the "+" indicates conjugate transpose. Moreover, summations
over the index m now run from -M to M rather thanfrom ]l ta M. Our

expression for the i-kth element of QTE'IQ ,therefore, becomes

T

T
2 2
S fm*(t) r(t-7,)dt S £(t)x(t-r,) dt
M T T,

A
m=-M k

Substituting the trigonometric functions, this assumes the form
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g rem ) T2 HEmgBe)t 2 it
e 21 r(t) e 21 dt S‘r(t) e 2 dt
M
>‘ 1 T) T)
m=_J-M 271 )\rn

We now take our limit in such a way that as (TZ-TI) and m approach

infinity, their ratio f, representing frequency in cps, remains finite. In

this limit, T becomes the frequency differential df and Xm becomes

1
-1
w(f) ([4], p. 168). The above sum, therefore, tends to the integral

qu‘f(-ri--rk) 1) . Tos) .
af e gr (t) eIoTEt 4¢ Sr (t) e~ 32T Et dt)

-00 - 00

v(f)

=°§ R(HR*(f) J2Aflrimmd
. ¥ (1) '

=-Q0

df:qik‘

This completes the demonstration of the fact that the present theory is in

accord with Tufts's earlier work.
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