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ABSTRACT

Some simple transformation properties of the diffusion
equation th&t has been classically used to describe turbulent
transport in the atmosphere eare briefly examined, The essen-
tial tensorlal nature of the eddy diffusivity is emphaaized,
and it is concluded that the standard form frequently adopted
for the diffusion equation in the meteorological literature
cannot be generally valid,



I. TINTRODUCTION

We conslder the equation that is frequently quoted in the meteorologi-
cal literature as describing the turbulent diffusion of a conservative
scalar property in three dimensioms. For present purposes the density of
the fluid medium will be supposed to be coustant, and the standard general
form of the equation taken to be ™

FoullevBenBok Bk ¥k B

relative to & fixed system of rectangular Cartesfian coovdinates Oxyz.

Here C = C (x,y,z,t) is a sultably defined mean concentration; u, v, ¥
are the mean velocity components of the fluld motion; K;, Ky, Ky are the
so~called eddy diffusion coefficients, which are assumed to be Ffunctiona
of position, Unfortunately the precize nature of the quantities K3, Ky,
and K, (e.g., whether thay are scalar functions of position or compconents
SE 2 weator fumetinn, ate.) 18 rarely discussed in the meteorological con~
texts., Since this question is vital to the interpretation or tne eguation
it 13 briefly examined in this manuscript. It is showm that, even under
the customary assumptions, Equation (1) cannot be a generally valid form
of diffusion equation,

IL. A GENERAL TRANSF TION

div | = aFﬁ/ax + aFn/ay + an 3z where E = (Fy, Fy, Fg) 18 the turbulent
flux vector for the scalar property considered, Equation (1) then reasults
from the hypothesis that the components of F relative to the axes Oxyz are
relsted in 2 simple homogeneous linear fashion to the reupectiv7 component s

of the concentration gradient veetor ac/éz 3 (?C ox, 3c

More fundamentally, the :7ght side of Equation (1) is the negative of

C
/aY: 3%).
let the Greek symbols o, B, Y, ete, stand for any of x, y, or &, and let
us define for the chosen axes Oxyz an ordered array of nine quantities
Kop by the matrix equation

e o' %, 0 (2)
.= [X - g
af yx Dyy “yz 2

Kz sz Ky2 LY K3

For convenience we shall also use the Einstein gupmation conventionm,
according to which, in any term contalning a repeated Greek suffix, it
is undergtood that the suffix 18 given all possible values x, y, z and



the terms so obtained are then added. Then at any chosea point of the

medium Equation (1) is exactly equivalent tq the following relation
between the components of T and those of 3C7ar:
ac
Fo = = Ks BrB (3)
We now consider a second arbitrary set of rectangular axes Ox'y'z', and
let t,5 denote the cosine of the angle between the axes Ou and 0g', so
that t_ g+ = t,: . Then the components of the vector E relative to the new
axes will be giVen by
Byt = Foto (4)
Similarly, the components of the gradient vector acéar for the axes
Oxyz will be related to those for the axes Ox'y'z' by
3¢ ac/
= t -
/arB aréy 6 'B (5)

From Equations (3), (%), and (5) it follows that
_ ac/ ac/
FV' = - KOB arﬁ tG.Y' = - Ka.ﬁ ar&' tB'B ta.Y'

ac/
LI KUB aré‘ tU,YI tBG' (6)

Equation (6) provides the rule fog elating the componente of the flux
vector F and the gradient vector C7§5 in the new axes Ox'y'z'. It may
equivalently be written

ac

F.Yv = - K.Y|6' arﬁ‘ ¢))
where
Byror = Kap oyt tpor ®
Equation (8), however, defines the known transformation law for a second-
order Cartesian tensor. It thus establishes the fact that the set of

quantities K g in Equation (2) constitute the components of a second-

order tensor. This 1s a direct consequence of the vectorial nature of

F and ‘C/ar. The tensor K , 18, of cougxse, in general a function of posi-
tion, since the relation between F and “C[y. will be defined at every

point of the medium. We see from Equation™(7) that in the arbitrary

axes Ox'y'z' the compgnents of F are general homogeneous linear functions
of the components of °Cfy . This relationship is exactly analogous to

that encountered In considering molecular heat conduction in an anisotropile
medium.  Whether such a linearity hypothesis is actually justified for the



turbulent flux of a scalar property can, of course, only be decided on
the basis of experiment. For any physical meaning to be attached to ihe
tensor K !5 (or KGB)’ it 1s evident that it must be a property of the
fluid mozion, i.e., independent of the distribution of the diffusing
scalar property, We may call Kyg the eddy diffusivity temsor.

It may ve aoted thit the requirement for such a tensor yuantity is
actually suggested by an obvious extension of the Prandtl mixing-length
concept to three dimensions. Thus, if we suppose that the turbulent
fluctuation of concentration C' from the mean value C 1s given by

, ac ac
¢' == 1 /Br == 1 /arﬁ

so that 1 = (1., 1., 1,) is the mixing-length vector, then if V_ + denotes
a component of the” turbulent velocity fluctuation, and an overbar denotes
a mean value,

ac
e 0T -
FO = ch, ' = VCL 1',5 /ar

B

aC
=--—l(a[3 /BrB where Kq@“"a 1B

and K  is clearly a second-order tensor.
- 3

B

Relative to the axes Ox'y'z' the right side of Equation (1), which
represents ~div F, is replaced by the nine-term sum represented under
the gsummation convention by

%‘ (g S%B)



ITI. SOME SPECIAL FORMS

The special diagonal form of the tensor Kyp in Equation (2) relative
to the axes Oxyz implies that at the chosen point of the medium the dif-~
fusivity tensor is symmetric (aince symmetry is a property preserved under
transformation of axes, and K, is clearly symmetric) and further that
Oxyz are its prineipal axes. Tor Equation (1) to be valid at all points
of the medium it would a2lsc be necessary for the tensor to have Oxyz as
principal axes at all points of space., It therefore follows that Equation
(1) cannot be adopted as a possible general form of diffusion equation
because the axes Oxyz cannot he chosen arbitrarily but must be a preferred
set with the above properties. A special case would arise if the (symmetric)
diffusivitv tensor were lsotropic at all points of the medium, i,e,, if
Ki = K3 = Ky = say k (a scalar function of position) so that

1 ¢ 0

=k[0 1 0

o 00 1
onanta would he the same for all rectangular sxes

on

In this case it L
9 be principal axeg. Then from Equation (3), the flux

g e
and all axes would
vector would be

ac
Foe—~ /Br
and the corresponding diffusion equation

°c 3¢, 8 3 8 aey I
OL+U av"‘w Z“ax\dx/ ay (k ’raz (&S’"/ (9)

For this special isotroplc form of diffusion equation there are no pre-
ferred axes.

Having recognized the above fundamen:al limitations on the uge of
Fquation (1) we may seek for a meteorological situation where it might
appear plausible to postulate the existence of a preferred set of axes,
independent: of spatial location., Such a situation could occur in the
surface layers of the atmosphere, where the mean wind vector can be
regarded approximately ag everywhere parallel to a given vertical plane,
This uniquely defined vertical plane, together with the vertical direction
(which must be fundamental to the characteristics of turbulence generated
by the horilzontal ground surface) will suffice to define a preferred set
of axes, e.g., Ox and 0z in the plane and, reapectively, horizontal and
verticaly and Oy perpendicular to the plane, i.e., perpendicular to the
mean velocity vector. Relative to these axes the mean velocity component
v of Equation (1) &s v = 0, If it is postulated that this preferred set



of axes is a principal set ior a symmetric diffusivity tensor at every
point of the medium, then relative to this spezial set of axes the dif-
fusion equation would have the form

aC + gi ax <K1 4+ € - <K2 2 ) + g—z- (1(3 g—g- (10)

where Ky, Ky, and K3 are scalar functions of position that define the
principal components of the diffugivity tensor. For the situation
vigualized above, 1t i8 also normally assumed that the vertical compon-
ent of mean velocity w = 0. Of course, whether such a set of stringent
postulates does correspond to the real atmospheric diffusion process can
only be justified on the basis of experiment.

it should be emphasized that the possible existence of a preferred
get of axes in the above example depends on the aasumption that the mean
velocity vector is everywhere parallel to a given vertical plane, so that
a preferred set of horizontal axes can be defined (since we have already
asgumed that the vertical direction is a preferred one) 1f this assump~
tion were not made, for example, if we were to assume’ only that the mean
velocity was parallel to the ground surface with general components
u#$0, veO, w=0, then no preferred horizontal axes 0Ox, Oy could be
defined, and hence a diffusion equation of the form (K; + K,)

0,4, W vE-L () + (L))o 3¢
T I 3% Q(lax ay(2ay,+ (Ka ) (1)

is form of equation could only be valid in the

v i1
special case Xp i.e., 1f the tensor quadric had rotational symmetry

about the z axis.

Finally, it should be noted that, although the above discussion has
been restricted to rectangular axes for reasons of simplicity, the ques-
tions raised will be quite fundamental when considering possible forms
for the equation of turbulent diffusion in dther coordinate systems, e.g.,
any system of orthogonal curvilinear coordinates, For such cases it will
be necessary tc apply the methods of general tensor analysis.
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