UNCLASSIFIED

AD NUMBER

AD461232

LIMITATION CHANGES

TO:

Approved for public release; distribution is unlimited.

FROM:

Distribution authorized to U.S. Gov't. agencies only; Administrative/Operational Use; APR 1965. Other requests shall be referred to Picatinny Arsenal, Dover, NJ. FOUO.

AUTHORITY

PA ltr 22 Jul 1965

THIS PAGE IS UNCLASSIFIED
NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
MECHANISM OF THE SHIELDING EFFECT OF AROMATIC AMINES DURING RADIOLYSIS OF POLYMERS. SENSITIZED FORMATION OF AMINE-ION RADICALS

KH. S. BAGDASAR'YAN
V. A. KRONGAUZ
N. S. KARDASH

APRIL 1965

TRANSLATED BY U. S. JOINT PUBLICATION RESEARCH SERVICE FROM DOKLADY AKADEMII NAUK SSSR 144. 1: 101-104 (1962)

PICATINNY ARSENAL
DOVER, NEW JERSEY

FOR OFFICIAL USE ONLY
DISPOSITION
Destroy this report when it is no longer needed.
Do not return.

DDC AVAILABILITY NOTICE
U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users should request through the Technical Information Branch, Picatinny Arsenal, Dover, N. J.
MECHANISM OF THE SHIELDING EFFECT OF AROMATIC AMINES DURING RADIOLYSIS OF POLYMERS. SENSITIZED FORMATION OF AMINE-ION RADICALS

by

Kh. S. Bagdasar’yan
V. A. Krongauz
N. S. Kardash

April 1965

Feltman Research Laboratories
Picatinny Arsenal
Dover, New Jersey
MECHANISM OF THE SHIELDING EFFECT OF AROMATIC AMINES DURING RADIOLYSIS OF POLYMERS. SENSITIZED FORMATION OF AMINE ION-RADICALS

By Kh. S. Bagdasar'yan, V. A. Krongauz, and N. S. Kardash

It is known that addition of certain agents to polymers shields them from the chemical conversions which occur under the influence of radiation. These agents, which have been given the name anti-radiation agents, as a rule are members of the aromatic class. Aromatic amines are of particularly great interest in this respect, and it is known that they shield both addition and polycondensation polymers. The mechanism of the effect of anti-radiation agents is not clear; it is not even known whether the screening effect of anti-radiation agents is connected with reactions between the molecules of the agents and the radicals which result from radiolysis of the polymers, or whether the shielding effect is brought about at the "pre-radical" stage of the radiolysis, i.e. is connected with the processes of excitation-energy transfer or an electron transfer.

The shielding effect of aromatic amines on the radiation destruction of polymethylmethacrylate is investigated in the present work. Two samples of polymethylmethacrylate were prepared. One sample (I) was obtained by photopolymerization of the monomer (M.W. ~ 7 \times 10^5), and the second (II) by thermal polymerization at 60 (M.W. ~ 10^6) in the presence of the dinitrile of azoisobutyric acid. In both cases the polymerization was carried out in the absence of air. The polymer was reprecipitated twice from benzene solution with methanol. The number of ruptures was determined from the average molecular weight of the polymer (before and after radiation).
molecular weight was calculated from the characteristic viscos-
ity according to the formula:

\[\eta = 4.8 \cdot 10^{-5} (1.91 M)^{0.80} \]

which is used in work [1]. Polymethylmethacrylate films 100
thick were prepared from a solution of the polymer in methylene
chloride. An anti-radiation agent had been previously added to
the solution. The films were brought to constant weight under
high vacuum and then exposed to \(\gamma \)-rays from Co at room
temperature or at the temperature of liquid nitrogen.
Power of the dose was \(6.6 \cdot 10^{18} \) ev/l·sec.

The anti-radiation effect of \(\beta \)-naphthylamine, phenyl-\(\beta \)–
naphthylamine, diphenylamine, and triphenylamine was investiga-
ted. The consumption of amine during radiolysis was investiga-
ted in experiments with phenyl-\(\beta \)-naphthylamine. The concentra-
tion of the amine in the film before and after exposure was
determined by dissolving the film in chloroform and then spectro-
photometric measurements (at 520\(\mu \)m) of the dye formed by com-
bination with \(p \)-nitrobenzoyldiazonium in alcohol solution [2]
(the polymer is precipitated out hereby).

In order to investigate the spectrum of films irradiated
at \(-196^\circ\) without thawing the housing of an SF-4 spectropho-
tometer was rebuilt in such a way that a quartz Dewar flask with
flat windows could be placed in it in the path of the light-ray.
The film was fastened onto a frame set up in a special holder
which made it possible to shift the frame vertically inside the
Dewar flask, which was filled with liquid nitrogen. The optical
density of the film was measured relative to the liquid nitrogen.
In these experiments the film was irradiated after it was se-
cured to the indicated frame.

Curves 1 and 2 in Figure 1 show the relation \(1/M \) to dose
in radiation of a pure polymer (curve 1) and a polymer contain-
ing 0.05 mol/l of triphenylamine (curve 2) at room temperature.
The relation of number of ruptures does not depend on the dose.
For pure polymer the yield of number of ruptures \(G \) is 1.7,
which is in agreement with the data of a number of workers
[3, 4]. In the presence of amines the yield of ruptures is
reduced as the amine-concentration is increased and is 0.65 at
a phenyl-\(\beta \)-naphthylamine concentration of 0.2 mol/l. The
yield of destruction turned out to be approximately the same for
other amines investigated.

Analogous curves (3 and 4 in Figure 1) have been constructed
for polymers which have been irradiated at a temperature of
\(-196^\circ\), and which differ considerably from the curves obtained
Figure 1. The relation $1/M$ (polymer I) to radiation-dose. 1 - irradiation at room temperature; 3 - at -196°; 2 - irradiation in the presence of 0.05 mol/l triphenylamine at room temperature; 4 - at -196°.

Figure 2. The relation $1/M$ (polymer II) to dose in the presence of phenyl-β-naphthylamine. 1 - in the absence of additives (constructed for $G = 1.7$); 2 - 0.033; 3 - 0.05; 4 - 0.18 mol/l.

Interesting results were obtained on investigation of amines during radiolysis of polymers. Determination of the concentration of phenyl-β-naphthylamine after radiolysis at room temperature showed that the consumption of amine at small doses is 1-2 molecules for 100 ev of energy absorbed by the polymer. Films containing amines and irradiated at a temperature of -196° are tinted in various colors depending on the amine present: rose (β-naphthylamine); green (phenyl-β-naphthylamine; blue (diphenylamine and triphenylamine). When the films are heated to room temperature the color quickly and irreversibly disappears. Films which do not contain amines when given the same doses of radiation remain colorless in the visible region of the spectrum.

Absorption-spectra of colored products obtained at a temperature of -196° in a liquid nitrogen medium are shown in
Figure 1. Absorption spectra for polymethylmethacrylate films containing 0.05 mol/l of amine, irradiated at -196°C. 1 - α-naphthylamine; 2 - triphenylamine; 3 - diphenylamine; 4 - phenyl-α-naphthylamine; 5 - polymethylmethacrylate without additives.

Figure 3. For films containing triphenylamine, the absorption spectrum of the radiolysis-product in general form and position of maximum is very similar to the spectrum of the \(\text{N}(\text{C}_6\text{H}_5)_3 \) ion-radical obtained by irradiation by light of a frozen solution of triphenylamine in a mixture of ether-isopentane-ethanol (5:5:2) [5] and by impulse-photolysis of triphenylamine in hexane at 20°C [6]. Thus it may be affirmed with great conviction that the colored products of radiolysis are ionized amine molecules. The concentration of the ion-radicals increases approximately in proportion to the dose in the dose-range up to \(1 \times 10^{10} \text{ ev/gm} \) and further tends to a constant magnitude (Figure 4). The concentration of the ion-radicals does not depend on the concentration of the amine in the region from 0.01 to 0.2 mol/l of triphenylamine. The disappearance of coloration in films when the temperature is increased obviously is connected with the neutralization of the ion-radicals by electrons which are freed from traps when the temperature is increased. The attainment of a limiting concentration of ion-radicals can be explained by this neutralization-process as well. In order to explain in what measure the formation of ion-radicals is brought about by the high-molecular nature of the substrate a solution of diphenylamine (0.005 mol/l) in a mixture of isopentane and methylcyclohexane was prepared. When such a solution was
irradiated at -196° (in the form of a transparent and colorless glass) a coloration with the same absorption-spectrum as was also observed for diphenylamine in polymethacrylate appears. Frozen glass without amine gives no coloration when irradiated. In this connection it is interesting to point out that the frozen glass containing ethanol in addition to the hydrocarbons indicated gives an intense coloration when irradiated[7]. From these data the conclusion may be reached that the appearance of coloration during irradiation of frozen solutions is not connected with a high-molecular nature of the substrate. It is possible that this coloration appears only in those cases where the polymer or hydrocarbon glass contains electron-donor molecules such as amines or alcohol. It is interesting that no coloration was observed when polystyrene containing diphenylamine was irradiated.

The effect of diphenylpicrylhydrazyl (DPPH) on the destruction of polymethylmethacrylate was investigated as well. No effect of DPPH (in a concentration of 0.01 mol/l) on the yield of destruction during irradiation of the films either at room temperature or at -196° was observed. The consumption of DPPH, determined by spectrophotometric measurement at 520μ, under radiation at room temperature turned out to be 3.5 radicals for 100 ev of energy absorbed by the film.

Two problems were of greatest interest when the data obtained were studied: 1) the mechanism of formation of the ion-radicals and 2) is the formation of ion-radicals connected with the shielding effect of amines during radiolysis of polymers or do these two processes take place independent of each other? For discussion of these problems it is necessary first of all to evaluate the radiation yield of formation of ion-radicals, which may be accomplished from the spectrophotometric data. Although the coefficients of extinction for the ion-radicals which we obtained are unknown it may be considered, however, following [5], that the coefficients of extinction for the ion-radicals of triphenylamine and tritolylamine are nearly alike; for the latter compound ε = 1.1×10^4 [8]. Thus from spectrophotometric data (Figure 4, film thickness 100 μ) we find that under a dose of 1·10^20 ev/gm the concentration of the ion-radicals is 1·10^-3 mol/l, and G N(C_6H_5)_3 = 0.8 (per 100 ev of energy absorbed by the entire system). Such a high yield is impossible to explain by direct action of radiation on the amine. Indeed, since the concentration of the amine in these experiments was 0.05 mol/l, then the electron-portion of amine in the film is 0.012, which gives the magnitude 7 for the yield of ion-radicals on the basis of direct action of radiation. This exceeds by ~5 times the energetically-possible magnitude, considering the ionization-potential of the amine of about 7 ev.
(the ionization of triphenylamine takes place under the influence of light of 2000 Å [5]. This calculation shows that the formation of ion-radicals takes place as a result of the fact that the energy absorbed by the substrate is transferred to the amine in one form or another and causes its ionization. There is a possibility of either a shift of an electron from the amine to the positive polymer ion or a shift of excitation-energy from the polymer to the amine, resulting in ionization of the latter.

In order to answer the second question posed above it is necessary to compare the radiation yield of formation of ion-radicals with the screening effect of amines. The yield of formation of ion-radicals 0.8 coincides with a decrease in yield of ruptures in the polymer chain in the presence of triphenylamine 0.05 mol/1 at room temperature: 1.7 - 0.85 = 0.85. Since it is natural to consider that sensitized formation of ion-radicals does not depend on the temperature, then on this basis it follows that the screening effect of amines is wholly brought about by the processes of energy-transfer.

In conclusion let us examine the form of the curve of the relation of the number of ruptures to dose. Let us suppose that primarily the polymer radicals are formed without rupture of the primary chain, for instance by a mechanism proposed by Slovokhotova and Karpov [9]. The primary radicals undergo the following conversions:

1) A monomolecular reaction with rupture of the primary chain, speed-constant \(k_1 = 10^{13} \exp \left(-E/RT\right) \), where \(E \) is equal to the heat of polymerization + direct reaction activation energy (~6 kcal/mole), i.e. \(E = 13 + 6 = 18 \) kcal/mole.

2) The bimolecular reaction of primary radicals (speed constant \(k_2 \)), during which no ruptures of the primary chain take place. During irradiation at low temperatures reactions 1) and 2) do not go and only accumulation of primary radicals proportional to the dose \(kD \) occurs. When the polymer is heated, reactions 1) and 2) take place at very high primary radical concentrations. It is easy to show that under these conditions the relation of the number of ruptures to dose is determined by the following equation:

\[
\text{Number of ruptures} = \frac{k_1 kD}{k_1 + k_2 kD}
\]

At large doses the number of ruptures tends to a constant value \(k_1/k_2 \) as also has been found by experiment (Figure 1).

During irradiation at room temperature reactions 1) and 2) take place even on irradiation and result in a low stationary concentration of primary radicals. Under these conditions the
bimolecular reaction practically does not occur and the number of ruptures is kD.

Bibliography

Physicochemical Institute
imeni L. Ya. Karpov

Received
1 Nov 1961
DISTRIBUTION LIST

Commanding Officer
Picatinny Arsenal
ATTN: Technical Information Branch
Dover, New Jersey

Commanding Officer
U. S. Army Foreign Science and Technology Center
ATTN: Technical Data Branch
Munitions Building
Washington, D. C. 20315

Defense Documentation Center
Cameron Station
Alexandria, Virginia

Commanding Officer
U. S. Army Materials Research Agency
Technical Information Center
Watertown Arsenal
Watertown 72, Massachusetts

Commanding Officer
Watervliet Arsenal
ATTN: SWEWV-RDA
Watervliet, New York

Commanding Officer
Rock Island Arsenal
ATTN: 9340 - Document Section
Rock Island, Illinois

Redstone Scientific Information Center
U. S. Army Missile Command
ATTN: Chief, Document Section
Redstone Arsenal, Alabama
Commanding Officer
Frankford Arsenal
ATTN: Library, 0270
Bridge and Tacony Streets
Philadelphia 37, Pennsylvania

Commanding General
U. S. Army Tank-Automotive Center
ATTN: Technical Information Section
Warren, Michigan

Commanding Officer
Harry Diamond Laboratories
ATTN: Library, Room 211 - Bldg 92
Washington, D. C. 20438

Commanding General
White Sands Missile Range
ATTN: Technical Library
New Mexico
MECHANISM OF THE SHIELDING EFFECT OF AROMATIC AMINES DURING RADIOLYSIS OF POLYMERS, SENSITIZED FORMATION OF AMINE-ION RADICALS

Bagdasar'yan, Kh. S.
Kardash, N. S.
Krongauz, V. A.

April 1965

Technical Memorandum 1483

U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users should request through Picatinny Arsenal, Dover, N. J.

The shielding effect of aromatic amines on the radiation destruction of polymethylmethacrylate is investigated in the present work. The anti-radiation effect of β-naphthylamine, phenyl-β-naphthylamine, diphenylamine, and triphenylamine was also investigated. The effect of diphenylpicrylhydrazyl (DPPH) on the destruction of polymethylmethacrylate was investigated as well.
FOR OFFICIAL USE ONLY

Security Classification

14. KEY WORDS

Shielding effect
Aromatic amines
Radiolysis
Amine-ion radicals
Poly(methylmethacrylate)
Polymer
Sensitized formation
Absorption spectra
Triphenylamine
Ion radicals
Radiation destruction
Anti-radiation agents
Diphenylpicrylhydrazyl

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether “Restricted Data” is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR’S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 (1) "Qualified requesters may obtain copies of this report from DDC."

 (2) "Foreign announcement and dissemination of this report by DDC is not authorized."

 (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through...

 (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through...

 (5) "All distribution of this report is controlled. Qualified DDC users shall request through...

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

 It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

 There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

FOR OFFICIAL USE ONLY

Security Classification