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6. Qmax vs. KG'/eF for various ¢ in the Stoner model. Dotted-line
curve refers to KO'/eF consistent with that evaluated for the ground

state for various ¢,
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ABSTRACT

We have here considered a gas of electrons with a positive background
interacting among themselves throug.h a bare Coulomb potential at T = 0°K.
On‘examining the single-parti;:lc states of the system, one éiscovcrs that the
bare Coulomb potential is .screened by a dynamic dielectric constant. The
same screening is shown to appcar also when the low-lying excitations of the
spin-wav; type involving particle-hole pairs are examined. Now, in the
random phase approximation and in the static limit where the p}asma cffects
are neglected and for long waves, this screening is the usual ’I".homas-Fcrmi.

screening. One may thus start with a Yukawa potential which contains an

arbitrary screening. This has not only the advantage of taking into account

¥ This work was donie when N.R.Ranganathan was visiting Brandeis Unive rsity
during 1961-1963, Chapter III, Cases (a) and (b) were formulated in
collaboration with N. R. Ranganathan.
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density waves. ‘ﬂuu energy is a fmeti.on of coupling "M mﬂf

£ and relative magnetization ¥ . Exnlmimng the absolute minimum of this
energy as a function of magnetization for various coq&in‘- strengths and
l;:rtening constants we find some intercsting features, For § < 0.9 we

find the ground state is either paramagnetic or ferromagnetic depending on

the value of the coupling strength; for & > 0.9 the unsaturated ferromagnetie
states also compete. For £ < 0.9 the intermediate states are relative maxima
and, hence, do not appear. The case where § = 0 is the Coulomb problem ‘
and was studied earlier by Bloch in 1929. For & > 0.9 and much larger
tending to infinity, one has the extreme short-range model of Stoner (1938).
The results obtained by us go overintothis case smoothly. Thus, a kind of
phase diagram is obtair}ed which describes the various ground states as the
screening and the coupling strengths are varied. Itis interesting to point

out that if the Thomas-Fermi value is used for the screening, it is found

that the gas stays paramagnetic for all densities.

- -
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that obtained for the ferromagnetic case by Herring both for the Mg&
for the Stoner gases when appropriate limits are taken. A consequence of ﬁ!
criterion is that if the ground state is a stable ferromagnetic state (i.e., stable

with respect to individual particle excitations) then it is also stable with .
respect to coilective spin-wave excitations in the long wave limit, There
exists a maximum wave vector for the spin wave beyond which' it is unstable,
being scattered into individual particle states,

A matrix Green's function formalism is here developed to treat this

problem. This formalism is a modification of Nambu's for superconductivity

.theory. The method is quite general and is here employed aiso to extend

formally the results to electrons in periodic potentials (Bloch electrons).
The same method is also used to derive the equations for the symmetry
breaki.ng solutions of the Overhauser spin density wave t;.ype .

In an epilogue, some objections to the use of Yukawa potentials are
considered. Also,the various aspects of exteasions of the problemn, some

of which are only formally developed in the report, are outlined,

-xi -

s




A TR - T A



j

1Y

v
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I. FERROMAGNETISM =
e AR W R T e MR
A. K. Rajagopal, H. Brocks, and N. R. Rangamatham = |

F

I. MOTIVATION AND STATEMENT OF THE PROBLEM

.
S

1. General Introduction : o . ' . A

There are essentially two basic x.nodell of ferromagnetiar_n illt solids,
and all others may be considered a..l variations on these two themes. The
Heisenberg [1] model is basad on t.he assumption that: (1) the electrons are
localized on atoms; (2) only a single electron c.onfiguration corresponding to
one electron per atom need be considered; and (3) the interatomic exchan.gc

effects can be treated by introducing an interaction - ZJij-§i . §-j between the

electrons localized on the sites i and j. Here .]’ij is an exchange integral,
§~i and _S__j a2re the spin operators corresponding to the e'ectrons at the sites
i and j. This model is particularly suited to .the case of insulators and will
not be discussed here. For a recent review of exc.hange.in insulators, one
may refer to Anderson(2]. The itinerant model, on the other hand, developed
by Bloch[3], Stoner (4], and Slater (5], is based on the competition bectween
the kinetic energy of the electrons in a band and electron exchange in the
Hartree-Fock approximation (hereafter referred to as HF). This exchange may
be thought of as arising primarily from the intra-atomic rather than inter-
atomic exchange. There are two extreme models of exchange based on long-
range Coulomb interactions between the electrons (which were considex.'ed by
Bloch{3]) and on zero-range interaction. The latter is shown here to be

equivalent to a Weiss field and such a model was examined by Stoner [4]

I-1
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It may be surmised that.in an itinerant ﬂuwy, the system -u-vm

ferromagnetic only for a certain ratio of the exchange energy to the kinetic

energy. This ratio may be thought of as a suitable strength parameter, .whick
determines the magnetic behavior. In the next two sections a brief summary
will be given of the results found in the literature on the ground-state properties

and also the collective excitations of such systems.

2. Ground-State Properties

. In order to describe the ground-state propertic;, the total energy of
the system must be computed and its absolute minimum as a function of |
relative magnetization, { , must be exar‘nined. This cannot be done exactly.
The results to be described are within the HF approximation. This consists
in asauming that the system behaves as if it were composed of "quasi"
particles which are effectively free despite interaction. Also,this approximation
takes into account only the parallel spin correlations between the electrons.
Neglect of antiparallel spin correlations tends to exaggerate the tendency
towards ferromagnetism; that is, it overestimates the difference in inter-
action energy between parallel and antiparallel spins cf the electrons. This
difference tends to be minimized when the interactions are short range, and

therefore, antiparallel spin correlations can, to some extent, be taken into

account phenomenologically by introducing a short-range interaction between
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taken into account more fully for the ordinary (W_i,c )] m “t;* h
deacription of the ground-state properties ir. HF and some r“m M lh- i
take account of correlations will be given in the next two l\mb-lectiOl;l. me |
be assumed that the lyltem of clectrons has a posltive ha.ckground so as to
keep the entire. system electrically neutral. All the calculatienl pertain to

= 0°K , aithough t.. ‘ormalism will be such that this restriction is not

necessary,

A. Coulomb Interaction

Bloch [3] was the first to compute the tctal energy of an electron gas
in a positive background at T = 0°K in.the HF approximation, as a function of
the relative magnetization, ¥ . The coupling strength for this problem is r,
which is the effective radius of the electron in units of the Bohr radius and is
inversely proportional to the cube root of the density of the system. He
showed that for low dcnsitics,correspon'ding to r, S s, 45, the gas becomes
ferromagnetic. This follows when the energy of the ferrorr;agnctic state
(¢ =1) is compared with that of the parcmagnetic st.ate (¢=0). A similar
calculation was made by several other authors, notably Brillouin [8],
Wohlfarth [9], Lidiard [10], Shimuzu [11], and, very 1ecently, Fukuda [12] .
All obtained the same result as Bloch.. Shimuzu tried to take into account
the electron correlations by including the plasma effects, but his analysis

was inconclusive. Cooper [13] extended the Gell-mann and Brueckner [14]
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carefully the possibility of intermediate polarizations as gm“i-' o

B. Short-Range Interaction

Stoner (4] and Slater {5] modified the Sommerfeld model of the metal
by postulating a phenomenological internal magnetic field in order to describe

the ferromagnetic interaction. The coupling strength in this case is the ratio

of the internal magnetic field energy, K@@' to the Fermi energy, €L, KO'/eF .

They assumed that the internal Weiss field acting on each electron is the same,

so that the up and down spin bands are displaced rigidly. Slater (5], however,
took into account the actual density of states distribution ins-tcad of the free
electron one. The second assumption in this theory is that the electrons in
their separate bands obey Fe‘rmi-Dirac (FD) statistics. Such a systcm was
shown to have a paramagnetic (P) ground state for K0! /eF < 2/3, an
unsaturated ferromagnetlc state (UF, 0 < ¢ < 1) for 2/3 < K& /e < 2-1/3,
and a ferromagnetic state (F) for K9 /eF > 27 -1/3 . Wohlfarth {15] has
recently reviewed the present status of this model.

The outstanding assumptions, the existence of a Weiss field and the

use of FD statistics, remained to be justified in this theory. The first was




Weiss field. Bell [16] explicitly examined the statistics of the Weisa ﬂ-ﬁ A
and showed by a direct calculation of the partition function that the use of FD

distributions for the up and down bands can be made consistent. This is
achieved by summing, for each magnetic quantum number m , over the sets
of occupation numbers which are consistent with that value of m . Recently,
.Suris [17] reformulated the Stoner problem using a Green's function method.
He found that Stoner's model is equivalent to an electron gas interacting
throu.gh a zero-range potential in the HF approximation. The FD distributions
for the up and down spins follow as a natural consequence as does also the
Weiss form of the exchange energy. Suris then reproduced the results derived
by Stoner although his method of solution of the resulting integral equations
was more analytical than was the case with Stoner's work. Thusa, this model
18 shown to exhibit an F state for high densities, a P state for low densities
and for the intermediate densities, UF states, in contrast to the behavior of
the Coulomb gas.

All the above remarks concern the symmetry-preserving solutions of
the HF equations. Recently, Overhauser [18)] showed that there exist symmetry—
breaking solutions of the HF equations which have lower energy than the usual

solutions. In particular, he showed that in a Coulomb gas, the P state is
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for coupling -m...m for which the UF is known to be stable. Jﬂ*-;,;__. ot
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3. Individual Particle and Collective Excitations . ‘

The low-lying excitations in a medium close to the ground state are
equally important in the study of any system. In the Heisenberg model of a

ferromagnet, besides the spin-aligned state constituting the ground state, -

there exist spin-wave states close to the ground state. The existence of spin
waves ir} both ferromagnetic metals and insulators has been established
experimentally [6a] . Originally,the existence of spin waves was proved
theoretically by Bloch{19] only for the Heisenberg model. For quite some
time, the absence of spin wav‘es on an itinerant model was thought to be a
serious drawback of the itinerant theory. Slater [20], however, demonstrated
that taking into account interactions more fully would produce spin waves

on such a model. This view was later amplified by Herring and Kittel [21]
and by Herring [22,23] . The first paper gave largely phenomenological
arguments and a more rigorous development appeared in the subsequent

papers. In an insulator one may describe the spin waves as follows. In the

————— S S

e 1 o A et bt < o n



.

£ 5 W, Sum Lkt Tebabi S

p— vy

4

?M’%-‘.'"’ Ciie 4 1
> t

e Rt
Kl r3

&

“ e R e T T R T . =7 T T ol O o O R e ST (P e —

ARPA-11 X 1-7

ground. state, the spins are all localized on the Iatﬁcc sites q‘ the hu\i-tu!ﬂ
arc.all lined up. The first excited state is such tiut one of tho spins on one cf :
the lattice sites is reversed and since the system has translational symmetry
tkis propagates 28 a spin reversal mode. Herring and Kittel [21] gave arg\-no;au
to show that, despite the fact that the electrons are wandering throughout the .
metal lattice, their.spin motions are correlated becatse of the exclusion
principle. They showed that an electron moving in a ferromagnetic metal is
continually gyrated because the electrons in its immediate viclnity tend to

align the ap_in of this electron with their average spin moment. So they postulate
a phenomenological expression f.or. the energy due to this torque involving a
"Bloch wall coefficient” which is shown to be related to ihe spin-wave energy

in the lowest order of perturbation theory. Herring [22, 23] treated this model
in detail both for the Coulomb gas and for the short-range model. 'I:he approach
was to treat the ferromagnetic material as a continuous medium in which the
three components of Bpin density are regarded as the amplitudes of a vector
field quantized in the way demanded by the known commutation rules for the

spir; components. They showed that there exist low-lying spin-wave states and
that these are orthogot.l to all the low-lying individual particle states of the
usual itinerant electron model. This same picture is employed by all the

subsequent authors including the present ones.

ﬁ‘
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Herring [22] corfiputed the spin-wave frequency in the long wa.volqnﬂ* '
limit for the ferromagnetic state, using the model preposed earlier [21] . ,l"o-l'
the .éoulomb gas he found that the coefficient of q2 (where q is the magnitude
of the wave vector of the spin wave) consists of tv:/o terms. By demanding that
the spin-wave frequency be positive, he derived a stability condition which
showed that stable spin waves exist for r,> 5.425. This is slightly larger
than the value derived by Bloch [3] using the ground-state criterion (r. > 5. 45),
Recently, Fukuda [12] rederived this result using ar; equation of motion
technique in the random phase approximation (RPA) including exchange, also
in the limit of small q . He obtained a valye of r,> 5.145. However, he
made a numerical error in computing this value. The correct stability
criterion is r, >'5.344, This result seems more plausible than Herring's,
since it implies that when £y is large‘enough to make the ferromagnetic

state stai)le with respect to individual particle excitations (essentially the

Bloch criterion), then the criterion for spin-wave stability is automatically

satisfied. In other words, the Bloch criterion is stronger than the spin-wave

criterion, and as weshall see, this result also applies in the case of the general

Y ukawa interaction.
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.coefficient of q2 as in the Coulomb case and found that the spin-wave stability

. condition is K@'/CF > 25/3/5 = 0.635. The required coupling is smaller than
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Herring {23] also computed the spin-wave encrgy in the long wave limit
for the ferromagnetic state using the short-range model. .H_lc computed ths

that required for stability of the complete F state (K@'/elr > 0.794) or for
that matter, the criterion for the UF state (KG'/(F > 0.667). The same result
is also derived by Fukuda [12]. This implies that the spin waves are stable
whenever either UF or F state is a stable ground state. Besides finding the
spin waves, Herring and Kittel [21] had given arguments to show that there
are other excited states which are of the Stoner type particle-hole pair

scattering states. These were shown to be orthogonal to the spin-wave states.

Hereafter, we shall refer to the spin-wave states as "bound states" since they
are states of lower total spin polarization than the ground state but lying lower
in energy than the lowest excited individual particle states corresponding to
the transfer of one electron of one spin distribution to the other. Thompson
[24] has recently proposed an extension ofl the usual determinantal method for
treating the ferromagnetic metal. His work is very close in spirit to that

of Herring. He considered bnly the short-range interaction model. His
calculation is more general than Herring's in that he computed the spin-wave
dispersion law for the F state for arbitrary q . Besides rederiving
Herring's expression for the coefficient of qZ

, he showed that the spin

waves become degenerate with the single particle excitations of the Stoner
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type above a certain q_ .. Thic is shown schematically in !"ig, lnq m

degeneracy actually results in the breaking up of the bound state into the
-scattering states. The spin wave decays by carrying an up spin electron inte
a spin down state, and energy and momentum must be conserved in this
process, The difference in energy of the up and down electrons is finito 2s
shown in Fig. la, and the momenta must be such that the up clectron must be
inside the up Fermi iphere while the down electron must be o;;tiide the down
Fermi sphere. With these restrictions, for small q, this process is

energetically impossible while for a rertain 9max 20d beyond it is indeed

possible. This process can take place for all suitable momenta of the
electrons satisfying these conditions and, hence,one gets a continuum of
scattering states as shown in the figures. The bounding curves are for the

electrons near the Fermi sphere. If the calculation is followed carefully, it
is seen that a lifetime appears for the bound state as soon as it reaches the
continuum of scattering states. The interesting feature is that for { < 1, the

2KO ' ¥, decreases and so for the UF states the Unax 18

gapat q =0,
bound to be smaller than that for the F state and finally for £ =0, the P
state, there are no bound spin-wave states. This picture is essentially the
same for the Coulomb case also.

Edwards [25] tried to extend and generalize Herring's work for Bloch
states but did not report any explicit calculations. He derived an improved
version of the general expressions for the spin-wave dispersion in the long
wavelength limit using diagrammatic techniques for the evaluation of matrix

elements. He also indicated how the coefficients of higher powers in q
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could be calculated. Kubo, et al. [26], using a Gren s function te%
treated the short-range itinerant electron model in RPA including m
These authors were interested in computing the spin-wave contribution to the

neutron scattering for an itinerant electron ferromagnetic system. Such a

model was shown to be capable of accounting for the observed diffuse scattering.

In this calculation it is necessary to compute the dynamical lulceptibilitiu..
The spin-wave dispersion so derived agrees with 'I‘hompsox‘x's (24] . Baym [27],
using a Boltzmann equation technique, derived the same results for the same
model. He also gave arguments like Thompson's for the spin-wave states
strongly mixing with the individual particle states'al;ove a certain wave vector,
It is also of interest that,using the Landau theoryof Fermi liquids as a modei

for the electrons in a metal, Abrikosov, et al. [28] , showed the possibility of
spin waves in a ferromagnetic metal. Antonoff [29],using an equation of
motion method,also attempted this problem; he employed what ke called a
"degenerate kernel approximation! besides RPA, and obtained spin waves. He
also computed the maximum wave vector 9,2 25 Was done by Thompsc.m
and Baym. Fukuda [12] has examined the problem of spin waves based on the
Stoner model but he only computed the spin-wave frequency in the long wave-
length limit and in the ferromagnetic state like all others. Thus several
authors have computed the spin-wave frequency in the long wavelength limit
and for the F state for the Stoner model. It must be added that Kubo, et al.,
and Baym (loc. cit.) found zero sound type collective oscillations to exist,

also. These results are summarized in Table 1.
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TABLE 1:  Individual Particle@né-Collective Excitations

{Stoner Gas) -

8 e

Type of Disturbance Collective ‘Scatterin ‘ P Stite
Mode p e,
density-density w~q ] (zero we E'(k+q)~l:'(k). { xero
long. spin’ susc. w~q sound) (e=1,1) sound)
. 2 (spin '
trans. spin susc. w~gq w=E (kt+q)-E_(k)}no resonant
wave) o “¥ lresponse

_12 - s 2
E_(k)=k“/2m - VN, (N_= kF._/6 7°)
kF' = radius of s-Fermi sphere, v: interaction potential.

The density-density response function, longitudinal,and transverse spin

susceptibilities may be thought of as describing, respectively, the spin singlet

" and the spin triplet with projections 0 ~and 1 of the particle-hole pairs.

The scattering states for the density response function and the longitudinal
spin susceptibility are of the form shown in the schematic sketch, Fig. lb.
Here the zero-sound mode is seen to be quite close to the scattering states.
The plasma state is shown in this same figure,anticipating the future
discussion of the Coulomb gas. The absence of an energy gap in the excitation
spectra must be noted.

It is Interesting to compare the corresponding results for the P state
when the interaction is taken to be of zero range. Here only zero sound
appears in the density response while no resonant responses appear in the

susceptibilities as might be expected. In this limit the results are well known.
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The corresponding calculations for the Coulomb gas are not found in * : '='-1.f.12'ﬁ"

literature.

4. Present Work

From the brief summary of the .previoul work in the last two sections,
it is clear that the itinerant electron model of forromagnetism has recently 4
seen a revival of interest. The conclusions of Bloch [3] and subsequent
authors on the boulomb gas were slightly obscured because the absolute
minimum of the ground state was not carefully examined. For the P state,
much work on the many-body aspects has been accomplished using modern
field-theory techniques. For a recent re\.'iew of this one may refer to the
books of Pines [32,33) and Anderson [34]. Shimuzu [11] used the Bohin-Pines
method to examine the many-body effects on the criterion for ferromagnetism.,
His results were inconclusive because he did not examine the total encrgy as
a function of magnetization. Except for the work of Cooper [13], the
extension of field theoretic methods to the ferromagnetic problem has not been
carried out and even this work is not without objections. One of the 1aain
objections to Cooper's work, as he himself realizes, is that the ring diagrams
that were summed are valid only for high density (rs < 1) and the seccnd major
objection is that he only compared as Bloch did, the F and P energies.

It has often been suggested in the literature, notably by Lidiard [10]
and Wohlfarth [35] , that some account of correlations can be inclvded by

using a Yukawa potential for the interaction. This contains a screening
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parameter:ud, hence, includes both the extreme long-range Coﬂomb'm ]
and the extreme short-range Stoner case as limits. The suggestion actually
came from Landsberg [36] who tried to explain the soft x -ay emission bands
of sodiurn on a Sommerfeld model of the metal. Very recentily, Robinson et.al.,
[37], considered the justification, within the context of RI"A, of tin use of .
such a Yukawa potential for nonmagnetic problems. The .screening can be
shown to come about when particle interactions are taken into account. Pines
[38] had earlier shown that taking into account the electron-electron inter-

action brings about a screened interaction between electrons, of range kc'l

{in his notation). He showed, even though this has a very different structure,
that it resembles the Yukawa potential quite closely up to distances compa:rable

to or less than kc°l.

All these arguments pertain to the ronmagnetic case.
Whatever be the consideration for the use of Yukawa potential in an int r- .
acting system, it seems fruitful to re-examine the problem afresh as the
behavior of the Coulomb and the Stoner gases are completely different. The
Yukawa potential may give an insight into the effect of range on the cfiterion
of ferromagnetism.

The use of the Yukawa potential may be justified for the magnetic
problem in much the same way as was done by Robinson, et al. [37] . If,
in an interacting electron gas, the behavior of a single electron is examined,
it is seen that even though one starts with a bare Coulomb interaction the
exchange is screened in general by the dynamic dielectric constant. In the

RPA, and if plasma effects are neglected by assuming the dielectric constant

to be static, and working in ‘the long wavelength limit, it is found that the
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screening parameter given by the familiar ﬁunu»l"czﬁi I-clhﬁi*. 'ﬂf 5
same screening can be shown to appear \n_rhcni the collective excitations of ﬁb
spin-wave type are examined. In this way, the use of the sfdn\_n-a';{'ﬂoteuthl
may be justified. This will be amplified in later chaptess. =

' .The Green's function method is employed here as it is fo#nd to be
powerful enough to include all the results of previous authors and also to
extend them, as will be indicated in subsequent sections . Thus a unification
of all the results both as to the nature of the interactions and as to the use of
a unified and elegant technique for attacking the present problem is here
attempted. All the previous authors concerned themselves with plane waves
while the present work indicates extensions to Bloch waves also.

Besides making a more complete study of the ground state of a
polarized gas, the few non-rigorous attempts of Wohlfarth [15), Lidiard [10],
and Bell [16] to justify the use of a Weiss field and FD distributions will be
here given a more satisfactory justification. This consists in showing that
a quasi-particle picture is valid in metals as was done by Luttinger [39]
for the ordinary interacting electron gas, whereas the authors quoted above
could only show the consistency of such assumptions. They could prove that
the exchange energy is in general a power series in {Z, Here it is seen
to be a complicated function of §2 » and so the convergence becomes slower
as {Z approaches unity, Bell showed how the partition function could be

correctly evaluated in the presence of a Weiss field and, hence, also established
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the validity of the FD distributions for the particle. These ﬂéi}aﬁg |
autornatically in the present approach. : .' ' .

On the collective aspects of the sytem, most of the authors OM

themselves t.o the short-range Stoner model and the F state. For W
the. Covlomb gas must also be studied in the same spirit. This pr9hl«n is
much harder. In the present work the spin waves are studied in detail in the
long wave limit and a formal power series expansion is also given for the
frequency of the spin wave. Herring's [22, 23] method, though ingenious, is
valid only in the long wave limit. He used a perturbation method for the HF
equations and from the agreemént with the present \;'ork, this may be viewed
as RPA in a different form. Thompson's [24] determinantal method is very
cumbersome. The method of Edwards [25] gives a technique for evaluating

the coefficients of various powers of q and, hence, is also quite cumbersome.
The method of Kubo, et al. [26], uses a factorization of the Green's functions
which is equivalent to RPA, and this is here rederived. Baym's [27]
Boltzmann equation technique is equivalent to RPA right from the start and

it is hard to see the complete equation before the approximations are made.
Antonoff's [29] method is similar to that of Kubo, et al.; his use of the
"degenerate kernel' approximation may be shown to be equivalent to the
localization of the spins, with a Heisenberg-type interaction. This invalidates
the purpose of a fully itinerant theory. The same objection is also applicable
to the work of Shimuzu [11], who explicitly assumes in an ad hoc fashion

a Heisenberg-type interaction between the electrons.
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A. Ground-State Properties

The ground-state energy of a system of electrons in a positive back- i
ground in HF approximation at T = 0°K is here computed as a function of
t{(o0 <¥ < 1) when the electrons are interacting through a Yukawa potcntia‘l.
The problem is studied in detail as a funct.ion of screening (£), magnetization
(T) and density (ar. ). To determine the ground state, the absolute
minimum of the total energy as a function of ¥ for various ar, and £ is

studied. It is found that for £ much smaller than the diameter of the ferro-

magnetic Fermi sphere, the system behaves-essentially like the long-range i
Coulomb system. It is found in this case that the F state is the ground state

for low densities and the P state for high densities. The UF states can |
never lie lowest as they are relative maxima. This indicates why the
comparison of just the energies of F and P states in the Coulomb case is
sufficient. For & much larger than the diameter of the ferromagnetic
Fermi sphere, the gas behaves like the short-range Stoner gas with all the
three states of magnetization having the possibility of being the ground state.
This difference in the behavior comes about because of the different fcrms |
the exchange energy takes in these two limits. In this connection, it may

be mentioned that Brooks [6b], using a generalized Weiss field model
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obnrmﬁon had escaped the notice of Wdlkﬂh floc. cit.) v‘p “.‘“‘i ~ ARl _ﬁ..';
the consequences of the generalized Weiss field. The parameter O&M

to Brooks's here is.the screening. it is ciear irom the present analysis that

as .£ increases the criterion for the F state changes abruptly beyond a
certain critical value.

These results are summarized in Fig. 22, b.
Here a plot of the coupling strength (fn (ar') in Fig. 2a and KB'/er in Fig. 2b)

against £ is presented. This clearly shows that for £ ,5,0.9 the nature

of the ground state changes. A more detailed description will be given in
Section II, The possibility of SDW being ground states has not been examined
here for the Yukawa gas. From the work oi Overhauser it is known that the

ground state is an SDW state for densities at which the present theory shows

the P state to be lowest.
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‘ TABLE 2: Individual Particle and Collective MM S

(The Coulomb Gas)

.' Type of Disturbance  Collective Scatteri P State
B Mode States
density-density W~ up, W= E'(k+q)-E'_(k) W~ wp,
long. spin susc. W~ Wp, e=1,H no resonant
> response
trans. spin susc. [w~ q° (spin W= Eo_(k+q)--E_'(k)
wave)]

E_(k) = kz/Zm -2 /fuk [kkn+-;- (kz-kzFU Yn | Tk_—' 1]

ka . radius of ¢ Fermi sphere; for small k,
2 2
2 2e N 1 4e
E, (k) ~k/emg - Skpe s mo s U P )
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A=

s t-minh;im o’"

mkhdﬁﬂhnﬁi“ﬂiﬁtﬂ!&tdl'
M""i! fﬁn)(l 53'“/: M:&mw“
derived by Herring [22] : MN(Q’M (1-5.485/r). -

For the sake of completeness the results for the P -m .are &h-o

given in the Tabte. Here only the plasma mode exists when exchange is
neglected and there are no other excitations. Thc way the scattering states
and the bound states are disposed is similar to that given earlier in the

section on the short-range gas.

A

-

In the Yukawa case, the most interesting collective mode is the spix:l

flip mode, after including exchange contributions. For any . §, and for

small q, by using the same technique as Fukuda, the 'co;:fficient of qZ can
be determined. For the F ‘state, for £ =0 (Coulomb) and for g~
(short range), this goes over to the results obtained earlier. In the short—
range case, a general dispersion law for spin waves of all q, and any
magnetization §, (at T = OOK) is obtained. The ccefficient of qZ for the
UF state is here derived. For the F state, thisa goes over to the result of

Herring [23]. Also, the spin waves merge into the scattering states, which

are of Stoner type,at about 3/4 the F state Fermi momentum and the spin-
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for ﬁn UF states becomes -n;n:‘lloilu T decreaaes a

described o.a.r.l-i.r. . s

The formalism given here can be modified to treat the Ovcrhlm
[18] problem of the SDW states. We have rederived the Overhauser integral
equationl' by our method in a straightforward manner. The extension to the
Bloch states is also indicated here. The collective excitations of the plasma
type for the Bloch electron system in the unpolarized case were first derived
by Ehrenreich and Cohen [40] who used an equation of motion method. This
is here generalized to the polarized case. The other response functions,
namely the longitudinal and transverse spin susceptibilities are also computed
for the Bloch scheme. The possibility of the existence of spin waves in the
Bloch scheme could only be indicated in certain crude approximations due to
the very complicated nature of the equations describing them.

In summary, the Yukawa gas behaves like a Coulomb gas for £<0.9

with no UF states and for £ > 0.9, like the Stoner gas, as displayed in
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exists 2 q for the spin waves at which they imerge with the . M
states. This Unax fOF the spin vn.vu decreases as one decreases .

The scattering states are the usual Stoner-type excitations.
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KB will now be gh'.u.
The quantum mechanics of a system of identical particles are best

described in terms of second uantized operators, namely the creation
operator w't ( nty ). and the annihilation operator *'l ( nt ) {(when acting
to the right). Here “ stangds for the spin orientation and (1"l ,tl) represent
the space-time point, which ;vill be represented in the fut;.xrc by 1. The

dynamics of the system is described by

2
H= Z S d3r¢l’+(rt)[-—§—m— +V(r)]¢lt(rt)
-2

*z Z 5543rd3r'dt' W:‘(rt)xp,f‘(r't')‘z/(r-r';t-t')w',(r't').p'(n)
¥ (2.1. 1)

in units where A = 1. Here the first term represents the kinetic energy,
the second term, the singie particle potential, and the last term represents
the two-particle .interaction potential between the particles. The interaction
potential is taken to be instantaneous so that
Ulr-rjt-t') =Y (r-r') 6 (t-t') (2.1.2)
CII-1

e A IS
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: where [A, ‘\““*u mm“";mw'

inhiﬁdtoahr;npem“u o b : ey

i xﬁ(t) =[x(t)’ul.- x4 SN iF 2 , oAt adyeeitid (z'i'” ‘
where [A, B] =AB - BA. In order to study the thermodynamics of the

system the grand canonical ensemble average is defined by i T

<x>=Tr {eP (H-uN) ¥} /T:-{.‘“H“‘N)} ;  (2.1.%) o
Here Tr stands for the trace on the states of the system; H is the total f

Hamiltonian and N is the number operator S l[/{' { rt)\b(rt)dsr , M is the

chemical potential and f# is 1/KT with K, the Boltzmann constant and
T the temperature on the absoiute scale.

We now define single particle correlation functions

> (1 = <y () wq,’f(x-) >

» (2.1.6)
(n-)-_<4/ +(1')4/ (1 > )
These are respectively defined for t >t and tl by and for real times.
t
These functions define the propagation of disturbances in which a single .




=- @ *(1')11,(1) for t, <t,, e S

It follows that

[}

G.:‘,(lll) ._._, {11?) f?r tl > tl-'

< ' '
G._‘, (11') for t < 6.

All the above definitions hold for real time domains. Using the equation of
motion for t//e_(l), the equation for Go_ - (12) may be constructed. Before
2

1 .
discussing this, a few general remarks about G will now be made which

follow by virtue of its definition, Now formally, since Tr (ABC)= Tr (BCA) =

. . >
Tr(CAB), one has a relation between G~ and G< at the boundaries of an

imaginary time domain
< .
G oc'(“')ltl=0 = -ePP g (n')l . (2.1.9)

Or, if the domain of definition of G is extended to imaginary times

0<it < B, one may write formally

(11')|

rro"

_ePH GN'(“')l-tf-iﬁ (2.1.10)
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< >
G", ( Ty Tpi t) =-e G",(rl Ty; t-ip)
(0<it<p) {2.1.11)

Now the Fourier.transforms in time may be introduced:

u_lo_z(r rz,u) Sdt 'Z(rlrz;t)

-0
< . oo ot <
G.qlo_z(rlrz;u) =Sd:e G”l'z(rl rz;t)
-00

(KB use a factor i in the first, and -i in the second relation). Using

(2.1.11)

a0
G S 1y = P gdt e G

o, o

>
(r,r,; t-ip)
12 o, 172

1
-

| B
.nr-m under mim-m- has time tmt m:wu, ﬂ“{""‘

& 0 , G m:m—-.‘hmzu “1";:’0"9‘ hmd* .g:_._,_l:_’
(2. l 9)muyb¢wri~&tenu
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so that formally one goh- v hins r %

(g 2“")3 74 P‘hl) 'l' (rl 2“’)

:We now introduce thc.spcctral weight function 'A’
] 1

(775 0) -G o (=755 0),

17

>
A (r,r.;w) = G
’l';Z 1°27 %,

.Clearly. then

e, (1725 ©) = (1 - ng(w) Aclcz("l"-zi w)

172

o (rl Tai w) = - nF(U) Aa’ s

(r,xr,; w)
)% 192 172

where ng (W)= 1/(exp (w-p) B+1).

One may write a Fourier series representation of Go’

e, {T172 01

(2.1.13)

(2.1.14)

& (1, 2) in view"

172
of (2.1.10) (Chapter 3 of KB, Pp 19, 20)
~-iz (t -tZ)
Gcrlo' (rlr Z)_( -1p )Z E Gclcz(rer; zv)
v {odd
integers)

(0<1tl,' <B)

(mv/-ip) + p .

time variables,

where 2z =
v

the Fourier coefficient is given by

" sz e
Galaz(’1’25 z2,0=) e Yo 0, F1725 f1ot O

o

This must, however, be independent of t, and letting t,

(2.1.15)

Since the condition (2. 1. 10) holds for both the

so that

ey
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and, hence, aftor some manipulation, ; : S P
? . v)
A, (T, 50) rog, 1

" = dw 1°2 "
(rlrz,xv) 5 VTI8 u'kv r (2.1.16)

f 3¢

Thus, the Fourier coefficient is just an analytic function

(r 172 w)
] dw 1% s
'l'z(r ry52) = 2n w-z

evaluated at =z = Z s provided A has no other singuiarities., A careful

analysis of this analytic continuation is _jiven in KB . It is obvious that

;wi=Lit [G (rer; wtig) -Go_ o_z(rlrz; w-ig)] . (2.1.17)

A (r.r
"lza——o 79, 1

192
This immediately leads to the sum rule

dw .4 Lt dw s . .

27 Atr o (rer’ w)= S‘?‘l_i[ce' o (rer’ w+18)-G°_ o (rer’ w-ig)]
1 £ 172 172

(2.1.18)

=6 6.

r,)
T, 2
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1iGg ¢, (7172 0) - Go o, iT1720 0N = Seye, & ot ;

which is the canonical commutation rule at equal times. The advanced and the

retarded Green's functions could equally well have been introduced

a =1
Gg2, (12 = < (¥, O, w,: @1, > n, -

. B _ 1 -'»
(..._1'2(12) ol w’tl(l)’ ‘I'tz. (Z)]+ >"+(t2't!) J

ﬂ.,,(t) =1 for t>0 and 0 for t< 0. These are related to the causal
Green's function defined above in a very simple way, being equal to the

proper analytic continuation of Ga' (rlrz; z) in their respective domains

172
of definition.

To simplify the notation of Green's functions Ga 7 (12) may be
2

]
written in the form of a matrix

G't (12) G" (12)
G(12) = (2.1.19)

GH“Z) G“ (12)

This form resembles that used by Nambu [43] in his formulation of the
superconductivity theory in which the off-diagonal Green's functions are the
anomalous Green's functions. Let (-ro » T1r Ty Ty ) be the unit and the three

Pauli matrices
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Then the toial number of particles is by definition n{l)= q-f (L u)w?mq uyg
In view of (2. 1. 7, 8)

n(l) = ~i [tr 74G (11*;) , ' : | (2.1. 21a) -
.Similarly,the total spin moment. is >
e() = -1 [tr G111 ) (2.1. 21b)
with
arl(l).= -i {tr T, G(ll+)] = <¢1 (l)'[/l (1) + \l/"}(l)ﬂ/' (1)> etc. L]
Here tr denotes the trace on the spin indices. The spin magnetic moment is
given by 71- [4 ué , where pg is the Bohr magneton. ' . " L—J‘
The equation of motion satisfied by G(11") (henceforth, no special . i "
symbol will indicate matrices are being used, unless otherwise stated) c.an !
now be constructed, since the Heisenberg equation for 4/6 (1) is
2 - : .
i_gt_i le(1)= -Z—r‘n— + "“?}"’ﬁ“”z §d4§W(1-é)zpt(;)%gm%lu) |
o3 , I
Here, in the third term on the right-hand side, the times of 3 and 1 are the _ l
same. Then,
i 2 V‘Z -vinl 6. (12) -
atl 2m 7,9,
- gd‘*i"?fu-i)% 4'.,5(3)111 Gy, u)w *(2)) >=8_ o 26‘4’(1-2) .|
0’3‘ z
f
l
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l“"(i 2,)::3( )(r -r,). 5&1-!3) The last term in%lemm&* -----

cqmtlon can be re-catt in terms of G and its umuml derivative which mﬁ
be defined presently. (For details refer KB Cha.p-tcr. 5). An extra source

term

H' = z f.d3r U_{rt) !P:}(rt) Vo lrt) : (2.1.22)

T
is added to the Hamiltonian H, and this is made tc; vanish at the end of all
calculations. The operaiors are still kept in the Heisenberg representation
and the traces are also taken over the grand caronical ensemble pertaining
to the total Hamiltonian. We shall not go into the redefinitions of G in the
presence of U and we shall not even indicate by any symbol that G is
evaluated in the presence of U unless otherwise stated. In view of this, the
following well-knowr. relationship is obtained: (which may also be taken as

a definition)

i 'gﬁ'(‘z')' <x(1)>=<'r.(¢+(z)zp(z)X(1)>-<zp+(.4)¢/(2)><X(l)>(2. 1.23)

since U generates l[/+zp - This follows directly by developing <X(1)> as a

power series in U and examining the term which is linear in U. Now

17<T(¢/+(3)J/ (3)w (l)w +(2))>
3

can be rewritten by using (2. 1. 23) as follows:
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or equivalently B _ 3 A '"",_:_:;:';._:;"‘
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- — ot e + i o o

12 8 T G(lZ):Z -}-<Tt¢+($¢ (‘b' uwh

4 liter, G(3TH] GO

or
0 s vy tan>
i Z<Tw’v§( )w,}mw,ﬁ W,
o3
) N L-1LE B PPN CTE A ECTIE
06U _ (35 tg=t, )
0‘§ 0’5

Thus

LQ +_2___ vm), wiv, Sd4’57/(l-'3')[tr . G379 ]) G2

l1+7 4= = 0G(12)
‘ 3 \ § a*3m -3
_ ( 5 ) Ut““(_z“/ U GO2) -i S N ) — T
— 0‘; 0’3 3

=, s (1.2 .
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By taking the variational kﬂmdhmdm M
the resulting expression from the ngh by a suitable G, “and m M

»

of the relations in (2. 1. 24) we obtain

. -1
8Ga2) -Sd"z a*s cug 3G _U35) g(32) | (2.1. 25)
Su_ (3) su_ (3)

.’3- ‘3'

We define a new function, l"o(lZ; 3) which is often called the vertex part

-1 -
T (12;3) = L T 122 (2. 1. 26)

o5 6 U‘3(3)

Then

l+1 - 1- ‘r .
‘ 8 l ! 4 Z’ 3-34-}

+ iSd“’; 75 2-nGunr (35 D a5 =Wy 21.2m




The solution of this equation must obey the condition (2. 1. 10) when suitably
extended into the imaginary time domain.

The new function l"0 may now be determined by writing an equation
for it using its definition and the expression (2.1.28) for G.l . This equation
will now involve another new function 61’0/60 and so on. Thus a chain of

equations is obtained. The equation for l"o is

T (12;3)=- 6.2 61 3) iSd4Td4id4§?f(l~T)trfG(TE)Po(—ég; 3)G(3TH)

691-2

15 a*ratzatsatT Y - 1)0(13)1‘ (3%; 3)G(42)I‘ (Z2;71)

’ +1Sd4ld ZY0T) GOZ) T, (Z2; T3) (2. 1. 29j

where
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arise from the single-particle parts in the M“ﬂ“ :
The first of the last two terms is the Hartree wm, uﬁ "
of external density disturbances, cancels precisely with the mtm

ground. The last term contains the contributions from all kinds of tet"ﬁomb

beginning with the exchange processes. (The Hartree term may also be
thought of as arising from direct scattering processes). In view of this
interpretation of the temn. in G-l , the terms on the right-hand side of
(2.1.29) for I'o may be similarly interpreted. The first term is due to the
direct external perturbat‘ion, the se;:ond tern arises from the de;\sity
fluctuations stemming from the Hartree self energy, the third term includes

all kinds of complicated scattering processes and the fourth contains various

forms of corrections arising from changes in the vertices due to interactions.

This last terin is of second order in the interaction potential. The equation
for Po is seen to be nonlinear and inhomogeneous. Because of this, as a
crude first approximation, its solution may be taken to be just the
inhomogeneous term. This, in (2.1. 28) gives the well-known Hartree-Fock
approximation.

Before discussing the various forms of these equations, a schematic

outline of the method of solution of (2.1.28) will be given. Let U = 0 in




D01 = a1l 4y ey
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containing four unknown functions. When this is substituted back in (2.1. 28),
2 . .
G luy = (i L orgnl- vin)e®u 1y, a(ll)+7-p(11')
T T .
Hence G is expressed in terms of the unknown functions a , B . Putting
this back in Z » Wwhich contains G , fully determines the ur.known. functions.
So far no mention has been made of the geometric structure of the
medium. Three cases will be considered. .In the first two, the single-
particle potential V(r) will be taken to be identically zero, so that plane
waves are the solutions for the noninteracting system. Here there are

two possibilities. One is the translationally invariant case, ‘while the second

’
is the symmetry breaking solution of the Overhauser [18] type. In the third
case V(r) is taken to be a periocic potential such that the noninteracting
¢ System is now described by Bloch waves. Here again there are two cases

Sl
A
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If the system is taken to be spatially uniform,

depend only on the space-time coordinate differences. In view of this nm o,

take Fourier transforms in 21l the variables; the Fourier transform variable
corresponding to the space coordinates has the significance of wave number
for single particle states. Let, therefore,

-ip- (r,-r,,) +iw(t, -t,,)
G(p_w)=5d4(l-l')c Blnn 1 Ga-1) (2.2.1)

We will often make use of the four-dimensional notation: p-l= (B._x_-l-potl);
p=I(p, pO)’ Py is a frequency or energy variable (which will be equivalently
referred to as w). Single G isa 2 x 2 matrix, it can be written in terms
of unit and Pauli matrices:

G(1-1) =5 [g-10+7- g(1-iN]. (2.2.2)
Correspondingly, g(pw) and g(pw) are defined similarly to (2.2.1). Taking
t,y =t - 0, we have from (2.1.6)

ca-1h - % e-1H 4+ 7. c-1h] =216 <1,

I v —— T T
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uluﬁﬂni-rf _ A - _4-‘.*-
T (12;3) = - a‘”uaza c“‘u-a

The expression (2.1.28) for G~ - after taking U = 0 (also V(r)= 0 in the

present calculation) takes thc.wcll-known. Hartree-Fock form: (here the

Hartree self-energy term is dropped as it is cancelled by the positive back -

ground)
v, 2 .
Gyp (1-11) = (i ;gt—l+ 2{:‘—) 6@ 1% G 1-1 (2.2, 9)
Taking Fourier transforms,
3_ 4
d’p d i
HF (_B“’) w-p /Zm 15.(;?2—?}'(2-2) GH; (p W) e
3 =
d d = —
= ""P_z/zm‘iS —g('z—%;— W(g-p)nF(w).AHF(pu) e (2 2. 6)
v
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g, (pw) = 1/lw-u,(p)] ™
and ' ’ |

_‘\_ (p) = unit vector of )

. 3_
d .
1 — — B
”(p-plolp) (2.2.9)
3 frepanom -

Then after reducing to partial fractions
1
Gyplpw) = - (g (pw) * glpw)]

*'%‘L 2 (p) (g, (pw)-g_(pw)] (2.2.10)

It is seen that in this approximation, there are two poles in the single-
particle Green's function corresponding to the two spin orientations of the

particles. If the last term is omitted, the usual HF states are recovered.

Hence,
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with ng{x) = Fermi function. Ve ahutn sabrllly were de

Hg’ = ﬁﬁ h,uw;» -,..u wﬂ

= .' L T v

Suris [17] also. Thuo, defining n(p) and' I(J’ as in (2. 2. 3) aﬂm
lating them in the HF a’prcximatioa gives us the equations (2. ! 11) to = '

determine them. Note that u contain (n, ¢) . These equations are thus -
nonlinear integral equations for n, ¢ of the Hammerstein type. Suris
(loc. cit. ) used the theory of these equations to derive the usual Stoner results.

Discussion of a few aspects of these results may be in order here.

The up and down spin states are pushed apart and the energy difference is

(2 ;-5 o@ ds/en’

This is proportional to the total magnetization if one assumed ’U(p) =Y, §
independent of p, or “V to be short ranged, since S\g(p)dsp/(l‘l )3 is

the total magnetization of the system. From (2.2.11) then, one has

e - T ot st TSR W gy B MA@
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! theory of ferromagnetism. Thus in the case of nro-.nm i-nhrteﬂ-n,.aﬂ-_
in the HF approximation, Stoner's as-:u-nptionl are fully justif‘i.od The
.Stomr's constant KO' is seen to be related to 77 through the relatlonskip
. 7 - (zm-/‘m (2.2.13)
These results were derived by Suris [17] and also anticipated to some extent
by Thompson [24] . They were included here for the sake of completeness

and to provide a frame-work for generalization to the Bloch case and to the

symmetry breaking solutions of the SDW type. Before deriving the Overhauser
equations with the present formalism, the relations (2. 2. 3') will be recast.
in a form that corresponds to the Overhauser equations in the special case |

that the symmetry breaking parameter Q becomes zero. To see this, let

5, us define

s(p)= S‘U(p q) olq) d q/(Zl) (2.2.14) i
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of the form exp (ik- r) with the up spin and exp(i (k+Q)- r) with the,

R s r [ i Tl _!','_', e =t '

alu la))-udlu @Y W% |
.(g)xSv(L-g) e AL S s (q) —= +(2.2.15)

3.  Symmetry Breaking Solutions- of the Overhauser Type

Besides the usual plane wave solutions of the HF equations, Overhauser .
[18] pcinted out that there are symmetry breaking solutions which are also

possible ground states of the system. Overhauser associates a plane wave

down spin. Thus the vector Q is a measure of the inhomogeneity, or in
other words, a measure of the breaking of translational sy.mmetry. The
unrestricted HF solutions of this type are alternative candidates for the
ground state of the system equally acceptable as the conventional ones.
Overhauser first introduces such a term into the HF equations and then finds
conditions for consistency very similar in structure to (2.2.15). His g(k)
is seen to be a convolution of the interaction potential with the intrinsic

spin density. To derive Overhauser's expressions, the following

b 2
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Then the HF equation (2. 2. 5) takes the form
w- € (k) -gp (k)
l(k) = (2.3.2)
-8} ¢ (k) w-e(kt Q)
where
. ‘ 3
.2 . , T iu'o+ d k' du' .
Gt(f)-h /2m+15?}(l_5-l_5)0”(l_5w)e _(2'—);—- \

(k+Q)-(k+Q)2/2 “57/“( kG <[k ,)eiu'o+ d3£' duw'
e i e (27)°

ot Aok do

=i ' < 1,0 1w o
SH(E)"S‘?}Q"E)GH (k'w') e _(_2'_)1_
+d3_l§'du'

I ' < . iw'o
g =i f oker 6 S e o

(2.3.3)
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Fey = ek L YRR
Aw-u (k1) (u-w_tE})

qig) +;L(;._+.;p

w, (k) =

| I e (k) - ¢lk+Q) . 7o ! 5 ,
3 m“(l_t_)ln(y‘ (2.3.9)

These are precisely the modified single-particle states due to the \Q-do.“

coupling derived by Overhauser {loc. cit.). We may recast (2. 3. 4) in the

following form to complete the connection \h;ith Overhauser's notation.

Putting the expressions (2. 3. 4) into partial fractions one obtains

o~
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B T pap—

3 , ._' 3 ‘- _ e :r __r;lr.':-:_” ’...
(x) rw_(k)- y o Ty
AL (8, (kw)- g_ (k] —| s (keodp
w, (k) -w_(k) w, (k) - e {k) p N

gy (ko) = [l/(u-ui(g_))']. ra (2.3.61

where

From (2. 3.5) one has the following easily verifiable relationships

(k) - eg{k+Q) ek )- (k+ Q)Y
(wy(k) - eyk)) = [(‘t J)_—+— ) : \/(' = e‘zJ_ >+ g (k) gy f(E;J

= - (w_(K) - ¢ (k+Q)) . (2.3.7a)
) ep(k)- e(k+Q) je,(g)-q(yg)ﬂ
(0, (k)- gk +QN= |+ 5 - 5 ) ey jUkdgy k)
= - (w_(k) - ¢(k)) (2.3.7b)




e ‘1; 3 -;“.b,.ih, k;.“‘"%"" .
‘-mfw &tﬂ'*qﬁvmm 8
' = lu (k) - o, tgugtm-qfuu

(w_{k) -4tk +gpy () gy (k) = = L ‘:""‘a ]

= (w, (k) - w_(k)) (w_(k) - ejik))
as also
(w (k)- c‘(§+9))z+q (k) gy plk) = o (k) -w_(k)) (w (k) -¢ (k+Q) }

(0, (K)- ek +QN24gy (k) gy k= (w, (k) -w_(X)) (w_(k)-¢f (k+@))
{2.3.719)

From the coefficients of g, (kw) and g (kw) in (2.3. 6) it is reasonable

|
(A (k) - € (k+Q)
cos 9k [_+ ! \ N
X [:my - w_(Kk)
' (2.3.8)
[0_(k) - ¢ (k+Q) . '
| v, (k) - w_(k) '

whose sum is clearly unity.

to set

sinza ==

“r

TR e



2 L AulK) - Uke QD (0, LK) -glD

~

= k) -eg(kN + gy (k) g f(k)
and in view of (2. 3. 7d) .
6t |{k) g (%)

cosza =z .

e
(w (k)- ey (k)™ + gy (k) gjp (k)

We could define quite generally

8} 3(15_) g} t(lg)

cosZG =

£ - qkn® + gy (k) g ylk)

'(Z. 3.9)

with the specification of the branch and the definitions of Gk the same as

given by Overhauser. Moreover, from (2. 3.8) and {2.3.7d)
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We may now write G(kuw) as ‘ | o e Sl
[coc30kg+(§d+linlﬁkg_(§d] col'klin'k lﬁ"__—(ﬂ"ﬂ‘""-“ﬂ"” : :
. i : = Vg
Glkw)=| . . .
o, |ELIED 2 2 :
cosO‘ismOli 3 l(k) (g, (kw)-g_(kw)) [sin Ohg_}(!iuhcos 955_(_!53)]
k
(2.3.11) F
These may be substituted back in (2. 3. 3) to give . 1|
/
1
*» i
E
<
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‘l"k):S-(z—’P—t'__') %}—w; C”‘E,Sﬁ _,[l!.h%* i,b“

(2.3.12)

where the consistent sign of the square root in (2. 3. 10) must be used. If

in these we take, as was done by Overhauser, g4} = glf =8, and assume
only w+(1<_') is occupied, then we recover all of Overhauser's results

including the definitions of cos 9k . Thus a generalization of the Overhauser

—

results is here achieved. Moreover, if we take Q = 0, we see immediately

that

kZ d k'

0y (k) = 5 - - —)T?/‘k kK)n(k') ¥ |s(k)|

with s (k) defined as in (2. 2. 14), which are the same as those in (2. 2. 8).

Also from (2. 3.10)

(k) (k)
coszek sinz = g“ — g‘ tz —
= = 4|s (k)|

or

cos . siné
T




results are the generalizations of the usual Sowar WM“ A gk
slightly different form. Incidentally, (2.3.12) generalizes the Oveilihuibs =

results for finite temperatures as well as for finite mapoﬁzaﬁ.on.

4. Homogeneous: Solutions Involving Bloch Electrons

Here a brief description of the extension of the above results in the

co;wentional case (Q = 0) will be given for Bloch electrons. Let blk( 1)

be the stationary Block ‘unction satisfying the Schrédinger equation ")
2
(-9,"/2m + V(1 )b, (1) = ¢,(k) b, (1) (2.4.1)

where ! is the band inde< and k , the reduced wave vector of the electron.
The Green's function in the Bloch k space can now be constructed (a

continuum of k is here used for convenience) thus

3

c(u')zy S by (1) b, (1) Gtk ¢ 1"——3 (2.4.2)
7 1Bz (27)

Here IBZ implies that the sum on k is over those in the first Brillouin

zone. This is now substituted in the HF equation (2. 2. 5), and neglecting
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: .. Uz ::lu-".‘-‘_.,""‘- ::-'-
Here . il RACT MOt & IR
YUK = S XX aqlzh ¥
unit cell
" <tplr >=S u, ") u, (r) &3¢ (2.4.4) .
plt'q - Ugp (2) up () & .4
unit cell
where ulp( r') is the periodic part of the Bloch function, . {r) The self-
consistency conditions {2. 2. 15) now take the form !
d3 2
s,(p)= Z S 9V -a)l <tplrq>]® .
It (27)
n e (@) - np (w); (a)
' - '
| 8 () (2.4.5)
log (@) -0, (q) |

This represents a system of equations in which the band polarizations are

coupled. The neglect of Umklapp processes is justified if the bands are

broad and the local field corrections neglected (Adler [44] ). It must also

i 8




5. Discussion of the Ground-State Properties

In the last few sections the single-particle Green's functions for a

polarized interacting electron gas are studied in the HF scheme. This shows

that the single-particle states in HF split into two, corresponding to the two
directions of quantization of the electrons, parallel and antiparallel to the
internal polarization. In the present section, the ground-state energy of the
system is computed using the Green's functions derived so far. It can be -
shown that the expectation value of the Hamiltonian (2.1.1) with U =0, can

be written as

<H> _ -i Lt g | T T N T
1-1 ot ot
.‘ ° 1 1
v?2 v} \
J ¥ (' Zm " Zm ) G(11M)p d7r; (9 volume of the system)

(2.5.1)
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(a) I-1lﬁ H-Hﬁnlbrdnﬁﬂuihfunih- !hih¢1lit’Hhilir4ll-uiliii!§til -

(2.2.1) for G(11'), and performing the indicated quraﬁo-l in tﬁ;‘. 1) 0&

finally arrives at

+ .3
ip 0 d’p dp

2 = ;. Str [(,o+pz/Zm)G(gpo)l e

— . (2.5.3)
Qo . ¥ = (27)° 2xi

Here we have used a four-dimensional notation as explained earlier. From
(2.1.27) (with U= 0, V = 0) it is easy to verify after defining the Fourier

transform of I‘o to be

T (12;3) - _LE'L e'P(1-2)+iq(1-3) T, (p;q) (2.5. 4)
o S (27) P;q

that
. + 4
2 . ip0 d'p,
[p -p“/2m+iVU(p = 0) [trG(p,)] e — ¢
° = - S z (2x)
4

+d S‘U(B'Bz) Glp ) T (p; p-p,le % —(2—% 1Gp) =1

: x

»
i__.,. - M AT M it B
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- . oy e Ay RN -'I_',J*m::;l? __2 rye 1
. Mu‘ this -i-'n (2. 5.3) anl after some manipulation, ...'.;-. ‘h.";: ' A :*. ; ’
. 4. i,'o"’ ey . = . ‘
o : i
. +\ 2 !
4 ip O |
1 d ~
-5Y(p=0) [tr G(p)] e _
iy Fre ;
1 d*p a*q ip0t iq 0 - |
"7 y y 5 Y -9 [tr(G(aIT, (p; p-9) G(p)]e e ' l
(27 ) ' ' . X !
(2.5.6)

This is quite general and involves no approximations. The first term is the
kineti;: energy, the sccond is the Hartres energy and the third term contains
energy due to all the interactions save the direct Hartree term. The

appearance of Po in only the last term is significant. From this it follows,

as will be shown 'soon, that the Hartree term will not be screened at all by

the interactions. It is to show thig, that the Hartree term was here
retained. It drops out in the present problem,being cancelled by the positive

background. The expression for the ground-state energy in the HF approximation

is obtained by setting l"o(p; q) = - 1. Then the above expression simplifies

after using the HF Green's functions (2. 2. 10)
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ARPA-1} u-33

<H> ~ dﬂ ’ :
S ] @’ = [‘r‘%‘#"“r"' ‘!”"

A

d d \_Lq ¥ .
kL 5 .Yy zl"“'ul’- -q) {og (W (3))+nr(9 (a))] [ngplw, (g))+nrlu (g»] +

+3(@ (g [ng W, () - nglo_(gh] [nglo, (@) - aglo (]} (2.5.7)

Suris [17] also derived an expression for the total energy in this form.

So far no restriction has been made on the form of the interaction |
potential, U(q) It will be shown in the next chaptcr that r {p; P- q) is
proportional to the inverse of a propagating dietectnc constant. In the RPA,
this dielectric function can be explicitly computed. In the static limit and for
a long wavelength, this gives rise to a Thomas-Fermi screening. The same
screening reappears when the collective excitations are studied. Thus, for
thé purpose of the present investigation we shall use a Yukawa interaction
potential with arbitrary screening pararneter, and study the nature of the
solutions as a function of this screening (c.f. Robinson et.al.,[37]).

We take the Yukawa potential in the form
m _ el
r)=-e (exp—EkFr)/r ,

where kF is the paramagnetic Fermi momentum, § is a dimensionless
2 . .
parameter and e~ is the square of the electrenic charge. We also assune

that
(2.5.8)
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kg and k are given by ; A B e “L‘l’." i
ﬂ -r!—'-’/ a2 — iy ; S s e L “EJ{:'}:‘:?;}§
; _ i bt O e [ h s
b 1 y s [ gl '...-:--J'F
kep =01+ :)1/3.1;!. s : 3 : e G
i4) : £k (2.5.9) ’
kg =01 )Py
. F W A
where { is the relative magnetization and
(k;t + kgl )/6tz = N = total number = lr.!.s/Slz
n, is the positive unit step function. Furthermore, the G's are assumed
to be diagonal, equivalent to having the internal polarization in the z : _ l
direction. The single-particle energies in the HF app;'oximation then have !

the following form (c.f. (2.2.8))at T = 0°K :

u+(B) =_p_z/2m-ez/‘l'p ka(lt_t)l/3 + . = l
' ' -
S IR Ext+p-0rn) i)
* 5 2 73 2| -
b Rt pr1+8) P iy

A/ erasn)t P B p-(lic)'/:‘k,{.
- ngp tan £ RF ~ tan E kF )

(2.5.10)

Evaluating <H>/Qo under the same approximations, one has for the total

energy per electron in the HF approximation

Epp (%)= <H> ./Q N-= £y (X)) + €1(%) (2.5.11)
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where we have introduced ar, = mez/kF, a= (4/9!)1/3 = 0.521, and
Flz)= {1-2/32*-8/3z2tan"! (1/x) +
+2/322 (2243 a1+ 1/:%). (2.5.13)

9’(':) has the following features. It is unity at z = 0 and monotonically
decreases to zero as z increases, and for z>> l,?(z) ~1/9 zz » Which
is obtained by expanding F(z) ina power series of 1/z. A schematic
diagram of its behavior is given in Fig. 3.

The coupling strengths must be defined properly when the two extreme
limits £ =0 and £ = o are considered. These are displayed in Table 3.
From this table it is clear that one may infer the Coulomb behavior for
£ <<1 and the short-range behavior for £>> 1. The precise value of £
for which this transition takes place will be gi: »n later in this section. Also,
the coupling strengths in the two limits are scen to be related through the last
expression in the table. Let us redefine the energy per particle in terms of

the Fermi energy so that we only need to examine a dimensionless quantity:
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The absolute minimum of this as a function of the WE;' *

values of § will now be examined.

TABLE 3 The Yukawa Potential and the Various Limits

: 2 .

Viri = e lexp-gkp)/r ; U ia) = me?Nig? + 22 )
kp : Fermi momentum

For f <<, ?)(q) = 47 cz/qz Coulomb potential

We define the coupling strength as gg = er,

(r' in Bohr units) {(a = (4/")1)1/3 = 0.521)

For £>>1,9(q) = 4n e?‘/g?‘sz = a constant Y
(Stoner) zero range potential

We define the coupling strength g © m Y kF/Zt 2

(2ar,)/x g2

In terms of the Stoner coupling strength from (2. 2. 13)
_gS=3/2 (Ke'/GF), €g = Fermi energy ({ = 0)

Thus

KO'/(F = 4/3 (ars/l «Ez ).
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FIG.3: PLOT OF F(Z) AND G (2) VS Z(SCHEMATIC)
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G(z)=(1-22 tan°l {(1/z) + zzh(l + l/:’)). . (I.S.lf;

G(z), like ?( z), is monotonically decreasing with increasing z , taking.
the value unity for z = 0, and going to zero like 1/6:?' forlarge z . A .p.lot
of this is given in Fig. 3. In the above x = (1 -l»t;)l/3 and y = (1- g)l/3 . We
have to examine the sign of azs/bgz which is given by (2. 5. 18) to ascertain

the existence of a minimium in this interval:

2 2 2
8t _ Ko' o x-y)” _ 2F -1 2x -1 2
8{2— - _i—( £5 )min xZ_yZ xy (x-y) (tap ( [3 ) -tan (—E_” +
2 2 2
+ £ (x+z) [(Zx-z)m( E +4x ) +
4xy (x-y) x 3

2, ,.2
() (5_—;‘?‘3}'—)] (2.5.18)
y

-
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‘Then

Hﬁ.iwm m‘Mnﬁm ). This shows
definitions (2. 5.9) are consistent. mﬂﬁm n L

mmumwhdgrmuhmha :
2le/nt? . Consider a function i

E(2) =£(8) - ar_ g(3, §) (0<T<1).

bgtc_(_gl =0 gives (ar) . =£(7)/g'(L,E) (0<g<1) (2.5.19b)

where primes denote differentiation. And

2
i%_— =08 Slar,) gt (X, E) = g () T [0 (00 /g (g, £
- g () [ 57 for)pn 100 <5 <) (2.5. 19¢)
The sign of OZS/BC stherefore, depends on the variation of (nru)mm as a

function of ¥ provided g' ({, £) is shown to be positive throughout
0<t<l. ! 1
In view of this lemma, a plot of (KG'/eF) versus § for variou‘p

£ is given in Fig. 4. It is easy to show that g'(Z, £), which corresponds

e e e L ALY PP MMM N PR B N,
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In the Coulomb and in the Stoner case, the following situations arise

D b o B 2 P e Y

and are here given for the sake of completeness.

1. £=0: Coulomb gas (Bloch [3])

From (2. 5. 14), since}(z=0) =

" / 5/3
8(:)=—-}[‘ §) +(1 9] J .

- 2 ar, [0+043 4 1 .g?/3

(2. 5. 20)
, (0<t<nl
| From (2. 5. 16) |
i 1 1
'. (ar) =X [(1+7) Bra-0'B1 (o<t <1 (2.5.21)
(ars)mtn is a monotonically decreasing function of ¥, taking a value of

. about # near ¢ =0, and 0.637r near ¢ = 1. Hence, the intermediate states
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dtﬁnlﬁmo( kﬂ and kﬂ we have e

M= "rl/"m’('f‘)"rkrf "‘rl /"‘"—i‘l)"r*ﬁ

from which the rest are obvious. » :

2. £~ oo : Stoner Gas (Stoner {4]; Suris [17] )

From (2.5: 14), since?(z)~ l/‘)zz for z ~ o,

5/3 .5/3 ,
S(r)=§-[‘”" - —-] -—‘[(%)mcz)

{0 <t<1) (2. 5.23)
From (2.5.16), since G(z) ~ l/6zZ for z - o,

; 2/3 2/3 | '
(Ko, l (l+§)Z -{1-%) (0<t<i) (2. 5. 24)
€F min ¢

(Ko'/ef‘)min is monotonically increasing with ¢

, taking a value of about

0.67 near ¥ =0 and about 0.79 near ¢ = 1, and, hence, the intermediate

states can be ground states. More explicitly from (2. 5. 18),
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2, 22 _(xe' x - y)° , s s
(8°€/s ¢ ?‘K".'/‘r’mi ?;) : -‘-rxli. (0<t<1) . (2. s‘. 25)
i min il ;

Tixil is positive and so th@ unsaturated ferromagnetic state-.caﬁ be ground
states. From these one may infer the usual Stoner criteria.
The definition of chemical potential here is
2 1 = 2 1
H2KE fom - T YNO 4D =Ky fp ) - 7D N(-Y)
from which the equivalence of (2. 5. 24} with consistent definitions of kF,

and kFl follow.

3. Yukawa Case

The extreme cases of £ =0 and & = oohaving been revit.awed, the
cases with finite £'s will now be discussed. First of all, the possibility
of intermediate states will be discussed in view of the lemma quoted earlier
(2.5.19¢). In Fig. 4, a plot of (Ko'/eF)min versus ¥ for various values
of § ranging from 0.5 to o is given. From the expressions (2. 5. 14,16, 18)
one notices that the usual Taylor expansion for small arguments when £ is
large, indicates the Stoner-type behavior. This sort of argument gives the
inequality that for £ >> 2% (1 + {)1/3 one obtains the short-range behavior
and for § << ZQJ)(I--K)I/3 one obtains the long-range behavior. From
Table 3, we had earlier obtained an estimate which is a factor —i— of what
is expected as above. More careful analysis shows that for £~ 0.9 the
transition from the "long-range" to the "short-range" behavior sets in, in

the sense that the intermediate states tend to be disallowed for £ < 0.9 and

L
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allowed for..'g > 0.9. This is brought out clearly when Fig, 4 is examined
in conjunction with the lemma. 4 < s = ' j

In Figs., S5a-e a plot of (L) versus l:‘ for various . but for
several fixed (KO'/EF) are given. These plots show some interesting features.
In Fig. 5a, KB'/eF = 0. 2 which in the Stoner limit exhibits the P state as
ground state. It is seen that the P state is the absolute minimum for all g
In Fig. Sb, KO'/EF = 0. 667, which in the Stoner limit shows the absolute
minimum precisely at £ = 0. As ¥ is decreased the curves look exactly as
in Fig, 5a, showing that for finite &, P is still preferred. For KO'/'GF = 0. 68,
the Stoner.curve shows a minimum at § = 0.5, i.e., UF is the ground state.
This minimum moves to § = 0 quickly as § is decreased. This movement
of the minima as £ decreases is well brought out in Figs. 5d,e. In Fig. 5d,

KG'/GF = 0. 794 where the Stoner limit gives the F state as the absolute

minimum. On this plot, £ = 6 is seen to exhibit an absolute minimum for

some ¢ 71 , and for & =2 x 21/3 ,» P is the ground state, showing that’

as & decreases the absolute minimum rmin moves to the left. I.n the last
figure of this series, KG'/EF = 2 where the Stoner curve is well in the F
state. As £ decreases, one gets UF for certain &, and for smaller &,
the P state.

To show these more explicitly, a plot of (KO'/(F) versus £ is given

in Fig. 2b, such that this movement of the { . is brought out clearly. For
’ min

a given (KG'/EF), as ¥ is varied, we have the minima at various magnetizations.

Conversely, for a given gmin ythere is a set of optimum values of (KB'/eF)

C rrXtemPe
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and £ which minimize the total energy. This is obvious from Figs. 5a -e.
For E - oo, above KG'/GF = 0.79 one has F state and below KB'/eF = 0, 67
one has P state and between these two one has UF as ground states. As 3
is decreased, the region of UF becomes smaller and smaller, giving a higher
and higher (KG'/’eF) and finally at about § = 0.9, coalesce, showing that UF
is no longer preferred below £ = 0.9. Below this, one uses the condition
obtained by just comparing the F and P states. For the sake of showing
how the Bloch limit is obtained for § = 0, a similar plot of fn (nr’) versus
§ is given in Fig. 2a. On this same figure, a plot of the Thomas-Fermi
screening versus In (urs) is also given. This plot never crosses the ferro-
ma.gnetic region for any'(ars), showing that F state never occurs in HF
for an electron gas with Thomas-Fermi screening.

(b) Just for the sake of completencss we derive the expression for
<H>/Qo in the Overhauser SDW case. From (2.5.1), using the Overhauser

Green's functions (2.3.1) and (2. 3.6) or evaluating <H> directly, we get
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+ (msm 0 + T cos 9 nF(w_(g)E,

455 C988 grig00 | conlt mgto, i +

+ sinzoanF(w_(g_)))(c03293,nF(._o+(S-))+ "i“znganf»('-.‘_(q'))) +

+(s inzos1 np(w, (g))+cos z93111__((.)_(::1))) (s inzoﬂ,np(u+(g' ))+cos 203, ng(w_(q')) +

gy lagjp(a) . .
2 Y @ Y [qy <°° Ggsmogcos 93,81n 93,(nF(w+(gz) -nplw_(q))

(nplw, (@) -nglw_(g')) (2.5.26)

If, as Overhauser (18] did, only the “+(i). branch is assumed to be occupied
and further g” g” 8, we recover his expression. Incidentally, this
generalizes Overhauser's results to finite temperatures. Treating Gq as

a variational parameter, one recovers back the condition on tan 20 \:hich
can be obtained from (2. 3.8) also. Moreover, this generalizes Overhauser's
results for intermediate'magnetizations whereas Overhauser's work concerned
only the paramagnetic state.

Summarizing, we have in this chapter discussed-single particle

states and the ground states of a polarized electron gas. The discussion
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includes some formal results about SDW (symmetry breaking solutions)

and electrons in a periodic potential (Bloch elec'tronu). It is.shown that the
exchange energy in general is a very complicated function of gz , and not
just a power series in ;’2 . The main results are displayed in Figs. 2a,b
which give the regions of magnetizations for optimum values of the coupling
strengths and screening which minimize the total energy of the system. The
use of the Thomas-Fermi screening is valid under certain approximations
for a Coulomb gas, and implies a definite relationship between the. screening
and (aru) . From this it is shown that in HF the electron gas can never
become ferromagnetic. All the calculations reported here are within the HF
approximation and for zero tempe rature, though the formalism contains

resulte for finite temperatures also.

R



III. INDIVIDUAL PARTICLE AND COLLECTIVE EXCITATION OF THE SYSTEM

1. General Introduction

In order to study the collective excitations of the system one needs to
study the characteristic correlation functions. The formalism developed in the

last chapter can be used for this purpose. In this section the necessary equations

.are derived for the correlation functions of interest. In view of the complications

drastic approximations are made to solve them. These will be discussed in the
next two sections.

The first-order response of a system to a given external perturbation
can be expressed in terms of retarded correlation functions. There is a locus
of poles in these functions in the frequency-momentum plane. This locus gives
a relation between the frequency and the wave vector corresponding to the
forcing field. These are the bound states or the collective states of the medium
indicating resonant response to the external field. There is a second frequency-
wave vector relationship which is not a pole structure in the correlation function
but which is a branch singularity. The branch singularities correspond to the
scattering states of the system. In general, the poles of the correlation
function have a real and an imaginary part. The locus in the frequency-wave
vector plane which makes this imaginary part non zcro gives a locus of a
complex pole in this plane, showing that the collective part has a finite life-
time. When this imaginary part is zero one has a real pole which is the bound
state excitation which occurs only for a certain range of the wave vector in a
certain approximation. These may be stated physically as follows. In looking

II-1
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for the collective excitations normally examined {and also those ;tudied here), St
one looks for coherent motion of a particle-hole pair with certain characte r’istic',
like their spin, wave vector and energy. The bound state corresponds to this
coherent motion. Beyond a certain value of the wave vector (difference in the
wave vectors of the pair) which is the wave vector of the collective mode, this I
coherence is lost and one no longer has a collective mode. This is the beginning
of the scattering states of the system. Thus, the nature of the singularities in

the retarded correlation funcltions tells us about the nature of the excitations

in the medium. Here, in particular, the responses of the system to three

kinds of external fields are studied: (1) oscillating fields giving rise to the
fluctuations in the charge density of the medium thus yielding the density-density
oscillations; these may also bethought of as a singlet‘ state oscillation of the
particle-hole pair; (2) oscillations of the z component of spin density by means

of an external magnetic field in the z direction fluctuating the L component of .
spin density so as to create spin acnsity oscillations without the attendant flipping
of spin; these are the triplet oscillations of the pair with their projection ze‘ro;
and (3) fields which fluctuate the transverse components of spindensity by means of
an external magnetic field in the othertransverse direction giving rise to spin

flip oscillations but without the fluctuations in the total charge density, thus
leading to spin-wave type collective modes. These are the triplet state
oscillations of the pair whose projection is unity. Instead of examining the

retarded correlation functions themselves directly, a set of time-ordered
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functions which are related to these (in the same way as in Chapter ‘Z concerning

the single particle\;FéteaLivill be studied. This is done because the variational
derivative technique can be used to advantage.

Define

»

.é‘i(l)=«i(1)-<ai> (i=o0, 1, 2, 3) (3.1.1)

where ; is the operator tr(y +-rit[/), Y is takentobea 1 x 2 column
matrix, and <o-i> is the usual average density as in (2. 1. 21a,b), where T4
stands for the Pauli matrices and 7, for unit matrix. Thus, Go( 1) = excess
particle density over the mean particle density, p(1), 3.1( 1) = excess spin
density over its mean. With these definitions the following correlation

functions are computeci:
1 A A
. ) = =—< (1 . 4 >
X1 = - <T(E (1) &(1)
(i)jzo, +; “y 3) . (3.1.2)
The time ordering here corresponds to the Bose operators in contrast to

Chapter II. For i =j =0, ‘xoo = 'yo) this function is related to the dielectric
' .

constant, §; fori=j =3, it is related to the longitudinal spin susceptibility,

)(33 y fori=1(+), j=2(-), it is related to the transverse susceptibility

X (1, 2 now refer to the spherical components ( (al +i 02)/2) instead of

+-
Cartesian components as in Chaper II),
As in Chapter II, Section 1, a set of formal relationships can be

derived just on the basis of the definitions (3.1.2). These are given in

Appendix A .
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) To relate the functions (3. 1. 2) to the variational derivatives with 'resﬁect

to external fields, let us first note that the fields U‘ and U‘ introduced in the

last chapter may be combined to give the generators of total density and the .z

component of spin density by forming the following combinations:

U =U +U, and U, =U - U
{ o } o

3 3

so that (2. 1. 22) may now be written as

H. - \S' d3r {Uo(rt) n{rt) + Uy (rt) oy (rt))
where
n(rt) = z,l/t+ (rt) Wt (rt) + d/r (rt) 4/‘ {rt)

and

73(et) = i (x0) Py () - Y| (rt) W) (xt)

In view of this we have

6 ) 5 6 6 6

To; Y B0 TBU, P FUp TBU; T BT,

To generate o, (rt) = ¢’} (xt) ) (rt)
and

o (rt) = 4/{ (rt) Wy (xt)

one introduces the following additional Hamiltonian

H" = S‘ d3r [U+(rt) o_{rt) + U_(rt) tr+(rt)]

{(3.1.4)

(3.1.5)

(3.1.6)

The fields (U+ U_ U3), when suitably chosen, are the components of a space-

and time-dependent external magnetic field. The equation for the single particle
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Green's function in the presence of all these fields may now be written down as
in the last chapter (here no new notation is introduced to distinguish this from
the old one as this does not cause any confusion) corresponding to (2. 2. 28)
2
G oy =2+ ! v()-U (1) U. (1) -7, U (1)
=0t - V-G - BB L

- 73 U3 (] 64 gy

+ iS Arra-ntrcTh] ¥ (1219

+iSd4T drvagnecamr ;T (3.1.7)

To make use of the variational derivative technique, the expressions (3.1.2)
will now he recast in terms of suitable derivatives. For,

<o (1)>=-iftr 7GMN) (=0, 1, 2 3

where 1, 2,3 now refer to spherical components (+, -, 3). So one has,

. —5—7—”? o [tr 7, GUID] = < T(o,(0) 64(2)> - < 0,(1)> <oy(2) >

<T((ai(l)-<0'i(l)>) (O'j(Z) - <0'j(2)>))>

<T(3i(1)3'j(2))> .

Also

=-§d47d4?c(1“) T, (‘23;2)0(3'1“1*)) (3.1.9)

)
6 Uj (2) _
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of B0
from (2. 1.25), and defining

(3.1.10)

Ij(12; 3) - oc"(lz)/auj(s)

The I, are matrices like I‘o in the last chapter. Hence

J 1 J

The equations for I'j can now be written down with the help of (3.1.7)

I(12;3) = - s (1-2) sM1-3) -

J

- i$d4T atzatsu0-m [tr{G(TZ)r:i(ES; 3) G(3T (tr+) )}]5‘4)(1-2)-

] S a*T 0T ¢*24MU0-T) GU DT (23; 3) GOTIT, (T2 Ty +

' b Aoy — _ GFO(T’Z;D
+iSdld '20-1 G U —5gyr— : (3.1.12)
J
These equations are exact. From (3.1.12) one can derive the equations for
OFO/G UJ and so on. These form a set of linear equations for Fl 5 FZ’ F3

except that these are all coupled to Fo which satisfies a nonlinear equation.

»

The second term in (3.1.12) has an obvious interpretation and letsus iniroduce

€ 4y 4 . ) .
v;(12) = 1gd Td Z[tr{c(lr)rj(l‘f; 2) G(Z1(t, ))} ] . (3.1.13)

. . -1 .
This term arises from the Hartree term in G °, the next to last term in
(3.1.7), and has, therefore, the interpretation that it is the response of the

total particle density to the component Ui of the external field

e e ——

”-l-—-—-_—-————’
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%02 = F<T (e 2)> . ' (3114

. The various terms in (3.1, 12) may be interpreted as follows. The
first term is the lowest order HF term since in the last chapter this term was
-seen to give the conventional HF single particle excitations. The .se.cond term
is due.to direct acattering processes involving fluctuations in the Hartree self
energy; the third term arises from the exchange scattering processes and the
last term includes all the higher-order vertex corrections coming from various
other scattering processes. The'Eq. (3.1.12) in its full generality is very
complicated and simplifying approximations have to be made. These will be

discussed in the next section as well as the results obtained therefrom.

2. Approximations {Spatially Uniform Solutions)

We now consider the free gas where the single particle potential is -
taken to be zero. Then we have a spatially uniform system where the Green's
function G{(11') depends only on the difference (1-1') and the functions
l"i (12; 3) depend only on (1-2) and (1-3). Before proceeding further, we note
that the last term in (3. l.lé) is of order ?/Z as can be seen by forming the
equation for GPO/G U, . We,
This amounts to neglecting all vertex corrections. (See, for example,
R.'z;jagopal [45) for a discussion of these equations in the extended RPA scheme

using the above formalism,) We now take the Fourier transform of this using

(2,2.1) and (2. 5.4) where 4-D notation is used for convenience.

therefore, drop this term in all our calculations.
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I‘(k,q)~--ri ?/(q)vi(q)-xS%q)\c(qm)
T (3; @) G(D T, (k; T- k)ﬁ-;— : (3.2.1)
' 4 -

-yi(q) is just the Fourier transform of (3.1.14) and has the form

g - | |
C v la) =i 5 (%3)—; (tr {G(q+6) Ii(q; q) G(q‘)}] . (3.2.2)
. T .

From the structure of (3. 2. 1), following a suggestion used in another context
by Nambu [43] , an algebraic transformation may be imade:

T (k; q) = A(k; q) +P(q) ¥ (a) A (k;q) (3.2.3)

where now
Ai(k; q) = “Ti -

4_.
-iS(‘Z’—?; 2(k-3)G(q+q) A (3; @) G(QIT (k;q-k) . (3.2.4)
- N

In view of (3.2.3), one has the form

4
v, (q) =i 49 [tr{G(q+€) A(T; ) G(a)} 1/ €(q) (3.2.5)
(2m)
with
€(q)=1-

-17f(q)5 —&—[tr{G(qw‘q)A (q; Q)G(q)}] . (3.2.6)

e i nidbi ol S VR v PO Ry S ey,
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But 'yo-(q) is the' Fourier transform of the density correlation function, and
80 one has the following general relationship between £(q) and 'yo(q) which

is obtained from their definitions (3. 2.5,6) :

1o0a) = ey [grgr - ! (3.2.7)
Comparing with (2. 50) of Pines [32] (page 41), one thus sees that § (q)"/r-nay
be identified with a propagating dielectric constant of the medium. In view of
the definition (3. 2. 6), the equation for I'o ( cf. (3.2.3)) may be rewritten:

T (k;q)=A_(k; q)/lq) (3.2.8)

and the equation (3. 2. 4) for Ai :

Al(k; Q) = - 'ri -

S %F‘%é%—c'mﬁ)m(a;q)c(am (k; q-k) -(3.2.9)
(21,) q i o

Then one finally arrives at

X.. =i —S—[tr{3G(q+q)A3(q, q)G(q)}]+

(2m)
+i'?/(q>73(q§(—‘l7; (tr {73 Glat @ A (G @) G} ] (3.2.10)
2n
o= { LL (e fr) Glard) A, (@ @) Gl +
+ - ( 21) 1 2 !

+1‘U(q)72(q)g q;— tl’{‘TlG(Q"q)A (q,q)G(q)}] (3.2.11)
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In this technique the dielectric screening of the exchange term, namely in the
second term of (3. 2. 9), comes about quite naturally without.any ad hoc
assumptions. Moreover, a perturbative type of solution of the A‘ equation in
powers of the interaction strength gives the results of the extended RPA [45] .
We will now present four cases, three of which depend on further simplifying
approximations of the equations (3. 2. 9).

To mo‘tivate the a;)proximations, let us examine how the terms in
(3.2.9) came about. To this end, the expression (2. 5. 5) for Cx-l {k} with
all the Ui = 0, must be seen. This contains a term involving l"o , Or
equivalently A . Itis this whi;:h couples the various Pi to I"o as well as
making the equation for Fo nonlinear. However, the 1"0 equation is
inhomogeneous: It‘ was earlier seen that taking the inhomogeneous term for
r'o to be the solution gives the HF approximation for G . So, if the equations
for Fi or equivalently for Ai are derived from GHF , one will arrive at
equations of the form (3. 2. 1), but in the last term, Po appearing at the end

is set equal to -1 thus
l".l(k;q)= -7 -Yla) v (q) +
a*g
+iS (——‘)L4v(k—§)G(q+E)Fi(E;q)G(E)- (3.2.12)
P

And correspondingly

4—
Hg ?2 ) Y(k-q) Gla+q) A;lq;q) Gla). (3.2.13)
ﬂ .

et e . L
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These equations then constitute the usual RPA equations but include leowest
order exchange terms and must be solved to arrive at the various response
functions. Again, the equation for Ai as in (3. 2. 13) cannot be solved completely,
but this time for a different reason. The lowest order RPA consists in taking the
inhomogeneous term to be the solution for A; . But this is the lowest order
approximation when 2/(k) depends on k. On the other extreme, if 2 (k)
is chosen to be independent of k, which is true for zero ranée interactions,
then further,if G's are asswned to be diagonal, (3. 2. 3) can be solved trivially
for Ai . Thia then is the second case where some physically nontrivial
results are obtained. In this way of treating the pro.blem, it is thus seen that
the results for the Coulomb gas and the zero range gas come about quite
trivially. These will be discussed in the next two subsections. We henceforth
assume the G's to be diagonal.

There is another possibility in the present context. This is to consider
the full set of equations for Ai and G.l together. We assume Ao = -1
to start with. This is substituted in the expression for £(q) which now
becomes the RPA dielectric constant. This, therefore, screens the exchange
term in G-l. The resulting equations for Ai (i=1, 2,3 ) are now independent
of A0 but are of the form (3. 2.13) where in the last term, the interaction

potential is screened by § This new set will be discussed to justify

RPA
the use of the Yukawa potential in this problem. This is discussed as Case (c).
After describing thes< results, in the next section, the results are extended

to Bloch electrons, which form the fourth case of the present discussion.

W o o a7
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It may be mentioned in passing that the same method was employed by the author
{46] to derive quite trivially the dielectric constant of an electron gas in the

pi'eaence of an cxternal magnetic field.

A. Coulomb Gas
»‘

: 2
Here V (q) = -%5— and only the most trivial approximations can

q
be made to give closed form results. Here the solutions to (3.2.13) are

taken to be
Al Q) = - : (3.2.14)
Then
€,0a) =1+ (q) (A +B)) (3.2. 15a)
I (Ag+By)
7ll(q) =0 (3. 2.15¢c)
v?_l(q) =0 (3. 2. 15d)
t (Ap - Bp)
LENRE U b ot 4 ) (A +B) (3. 2. 15e)
[ Ap+ BI+40U(q),A.I B,
Xy30) = - | — % TACYE YR (3. 2. 156)

|
X, (q)= -G . (3. 2. 15g)
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Here .

a
o

.l 2]

'

Gyy (a4 Q) Gyy () 3.2.16
I j(z,, T bR £ B ( .*)

>
n

w
[

I S‘ (27) < Gy (a+3) Gy (Q) (3. 2. 16b)

5 o= G” (q+q) G” (q) (3. 2. 16c)

Integrals of the type (3. 2. 16a, b, c) with the same general structure will appearin the

future also. Using a method given in KB, these can be evaluated in general in

the form:

=" Ay (q+3: )ALy (T; @) _

do TRESEY 1LY - =

A(qu) = - (n (w)-n(w))

qu S(Zn) g ‘s ——= nplw)-ng(w
- (3.2.17a)

: A“(q’rc_i;G)AH(?i;u) -

B{quw) = - = — (n(w)-n_(w))
. S(zn) S S w-wtD FUOE ‘
(3.2.17b)

A”(g+E;E)AH(§;5) _

C(quw) = — (n (W) -n (W)

=5 5(277) S S\ w-wtw F o

(3.2.17¢)

The weight functions Ao'o" are as given in Chapter II. The HF approximation
gives
HF HF
A”(gw)=27r6(w- €4 (q); A“ (qu)= 276 (w - €] (S_)) .(3.2.18)

These in (3. 2.17) give the combination

[ng el (q+qN - npte T (g0
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of Fermi functions. We take this to be !

[n, kg, - 19 +30) - n, (kg - 13D :
for T = 0°K as in (2. 5.8). Note that these integrals in general have a principal
part and a delta function part or in other words they have real and imaginary

parts. For the present case:

- B — =
*3 | nplw, (a+3V-ng (0, (@)
AI = S- 3 [ — = (3.2.19a)
Jo(2w) _w-w+(gig)+w+ (q)
- o, = -, |
d n_(w_(q+g))-ng(w_(q))
B, - S 93 b A el (3.2.19b)
(2m) w-w_ (gq+tq)+w_(9q)
3 I - I, -
d n_(w (q+q))-ngfw, (q)) ‘
c, - S 33 a -13 1 s 3 (3.2.19¢)
(2m) _w-w_(g+g)+ w, (q) a
with
v, (q) = q*/2m -
2 q-k
<§_q> quq+%(qZ-kF:):n|m%| (3. 2. 20)
Here qu: + corresponds to kFt ; - to kl’-‘l

The expression for Sl(q) derived under these approximations
corresponds to the dielectric constant derived by various authors within
the RPA (see Pines [32] ) in the unpolarized limit. We will, therefore, call

this plasma RPA.
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‘One notices from the form of the Eq. (3 2.13) and the solution assumed
(3. 2. 14) that the exchange terms are entirely neglected in this plasma RPA.
Because of this the polarized system behaves as though one had just two non-
interacting plasmas and the medium shows no spin wave mode in Xy -
However, on taking the exchange terms into account by examining the PZ
equation in more detail, as. will be done later, spin waves do result, (As a
check on the calculations, if the system were unpolarized, A = B = C, the above

resulits reduce to the known results found 1in the literature.) In this approximation,
7 (q) = 7, (q) = 0 ; this implies that there are no density fluctuations caused

by the fluctuations of the transverse components of the internal polarization.
However, Y3 Z0 , showing that the longitudinal component does affect the

density, These results are rez.isor.\able on physical grounds also. In the

complete ¥ state, B = Q, (| state is empty) there is stili a plasma type

excitation found in both the density response and in X33- (The complete F state

corresponds to an electron gas with one spin state occupied; two particles

cannot come to the same spot &t by dint of the Pauli principle. This is

significant as will be seen in case (B).)

As a further crude approximation, to illustrate the results obtained so
far, if the exchange terms in (3. 2. 20) are expanded for small q , one obtains
an effective quadratic dispersion for the single particle energies with some

effective masses:

Zezk 2

0 q) = a’/am - —=T with - (al"'*ﬁk—-) 22 &
— o g
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This il\om!.to give a heuristic 2rgument. A more useful but perhaps irrelevant

approximation is just to assume a quadratic dispersion law for the two states withi

effective masses, but without the significance of (3. 2. 21). ' In any case, one has;

plasma oscillations in the medium, appearing in the density response, A
73(q-) y and in X, . Inthe P state, the plasma mode appears only in
7,(4) -

We now derive the Thomas-Fermi screening in the polarized medium,
using an effective mass approximation, for the | and | bands. For this we

need to study &€(q,w=0)atT= 0°K for q~ 0. We then have

ny gy - lg+al)-n tkgy - |9|)
=
lq+3l°

n kg -la+@N-n kg - 13

—1 2
lq+ql” -

3-

+ Zml S : q3

(2m)

Evaluating the integrals for small q, one has

2 my k m| k
- s iT e t °Ft | “Fj
S(q’(d-o)— 1+ 3 5 + 3
q 2n 2%

=1+ ER () kD /e

m m
gt =2 (ars)['(ug)/ +J-(1—g)/:l . (3.2.22)

where
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-

Here m  are taken to be arbitrary., Using my =m( =m, we have plotted in

‘ -
Fig. 2a .§(¢=0, 1) versus fn (n;.) to show where the Thomaa-Fermi screening
lies on the phase plot of HF ground states for the Yukawa potential. -Thin.:héwl

that ferromagnetism: does not occur in HF for Thomas-Fermi screening,

B. Zero-Range Gas (Stoner model)

Here ¥(q) = 2/ = a constant. In this case, the equations for A, can

all be solved trivially if the G's are diagonal. These are:

0o |

1/(1-74\11)
11
Ao (k; q) = - o (3.2.23a)
0 . 1/(1 - YB,)
11 . .
Ay (k;q)=-71 (1/(1-¥Dp)) » (3. 2. 23b)
Ak q) = - 7T AL-ZC)) ) | (3. 2. 23¢)
1/(1- ZA.) 0
1 )
Ay (k;q)= - (3. 2.23d)
0 -1/(1-UBy)
a’s = —
where DH=IS\(Z—1T;14—Grr(q+q)G“(Q) .
Then
A +B_-2VA_ B
v, Ma) = - S - (3. 2. 24a)

I Y . %
w1 VA (1-YRy)
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Eylq) =+ o= = (3.2.2
- (1-Z7A) (1-¥B..). . ; ‘ |
L I It ; )
and hence ' :
A.+B. -2%A_B i
7, (q) = - |——H g.u (3. 2. 24a")
1-v" An By
It |
7 (q) = 0 (3. 2. 24¢)
I
1’2 (Q) =0 (3.2.2“)
[
I A - Bor
73 (q) = - —> P (3. 2. 24e)
[ 1= ¥ Ay By
(A, +B +2Y A, B
x33"(q) . u’?j_zu I u. . (3. 2. 240)
b = Ay By :
It
X, (a)=- c /0 -Pc). (3. 2. 24g)
nm_ 2 1
Wy =a /2m - > NZ(1+ ¢)
- q%/2m - K6' (1+ T) in Stoner's notation . (3. 2. 25)

As with the results of case (A), 70“ R 731[ , and x3;I show the same

pole structure. However, X+EI contains a pole also, showing the possibility

of spin-wave modes in the medium without additional approximations. In the
T 1 II . . II

paramagnetic limit, AII = BII = CII; Y, contains a pole while X33 has

none, for repulsive potential. In this limit, the results correspond to those

R T s FE N S LW L W ey - N
R T Lt s 3 :

T ki n i
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of dottfried and Pigman {30] and Wolff [31] . reupectivgly. If one puts Y q) =9
in the results of case (A), in the P state, one finds it necessary to take

Y(q) ~ -2—;/2 to find results in agreement with those of the present section.
This factor of —;—- appears because the exc}‘xax;ge contributicns were n:eglccted

in case (A) and were taken into account here. For the.same reason, the

‘substitution 2/(q) = 27 in case (A) does not give the same results as . case (B)

in the polarized case. The appearance of spin waves as a pole in X " is

entirely due to exchange. The above results have alao heen derived by Kubo
et.al. [26] and Baym [27]. As in (A), Yy =7, =0 for the same reason.

The integrales can all be formally reduced to quadratures for finite T,

and to closed expressions for T = 0°Kk » thus (only principal parts are here
given): ' \\
: 2, 2 ol
wz-(qz/?-m-qq'/m)T
w'-(q"/2mtqq' /m) N

1
A= s =7— ) da' g npto, M) m
47 “q

rwz-(qz/?-m-qq'/m)z )
wz-(q /Zm*QQ'/m)T_‘ r

o
1

= - _?t‘n—j‘ 49" a' nelo_a) tn
4r “q

FSTH qZ/Zm—q q'/m
| §i1+q"/2m 1qq'/m |

I I}T 2/2 '/ 7
- nplw (q') tn _-qz -99 /m
Lﬂ-q /2mtqq'/m

= } (3.2.26)
Q= (w- 2K0Y).

I
Cu-- +qu' a' nglo_a') tn
4m “q
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For T = 0°K , these integrals can be carried out and are:
3 : \
= m 3 2 '
.An TRl B_TT—: . -2q ka /m + ;

[0t & /it qkgy /m

Bort o4 kFt/m] - wtq®/am - qkgy /m |
- Ft m

(W - qZ/Zm + ql_th /m

w- qz/Zm - qut /m

fw -a?/zm)? - P} /m®)

oo}
1

I {(same as above with kl-" replaced by kFl )

m3 29 0 .2
Cu = -—z3 m [ a7 /2m)k

=, 2
-+ q°/2m)k ) +
87 "q F|

Fi

&L .2 =

. 5 Q+q°/2m+qk | /m

b (S qZ/Zm)Z-q“kg.‘ fm? tn | — Fi _
2+ q /Zm-qul /mJ

Q- qZ/Zm +q ka /m—

e .2
| R-q°/2m —qut /m_J

- [@- q%/2m)?- ¢ t/m ]

y
(3.2.27)

These principal parts are evaluated here so that when the imaginary parts of
these integrals vanish (which they do for a certain rangc of the q vector
specified by the logarithmic singularities in (3. 2. 27)), they directly give the
inforimnation concerning the real poles in the w-plane. These real poles in
the correlation function corrcspond to resonant bound states. When the
imaginary parts of these integrals are finite, the reality of w is losat; the
beund states have finite lifetimes in these approximations. The physical
mechanism for these lifetimes has already been outlined in Chapte‘r I, and

will not be repeated here.
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For small\ q , these expressions can be further simplified by making

2 2 2 2
Ay ~-a'N /mw”; By~ -q N| /mu’ . (3. 2. 28)
The evaluation of CII for this limit is a little more subtle because of the

presence of 2K@0'¥. Writing = (w-2KO'Y) it is here given up to order

(qz/ﬁ:;) the reason for which becomes evident when the spin-wave pole is

+

evaluated.
3 2, 2
Tkp ) 2. q%Q 3 kF 5/3 5/3
Ciy~ - — Q +%5F+ : [(1+2) -(1-0)°/ )¢ (3.2.29)
n %3 10m 2¢
The poles of 701[ 7 73“ , and X3;I are of the form
52 ot —2 4 (24
1 -2 AyBy=0s1-v qN'N‘/mu
or
' Dth Ny 1/4
we q . (3. 2. 30)
m

There is thus a sound mode in the medium traveling with a velocity given by

_@)1/2 “_.Cz)l/d,

@Njam) 2 (1H A or v (K
: F

(vp is the Fermi velocity kF/m). For the P state, K9'/5F = 2/3, this
is VF/ﬂ which is the usual result. It must be remarked here that in the

- 0 (only ! states are occupied) so that 811 has no zeros or

W, has no poles showing that there is no sound mode propagation. However,

F state, B

the spin waves ate seen to exist in this state. Note that a plasma mode did

exist in the F state in the Coulomb case, in (A). This result will be

L e e
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evident when the situation is visualized in some detail. In the case of zero-
range interaction, the particles interact only when they are very close to each
other. In thg F state all the particles have up spin and so the Pauli principle
comes into play and precludes the interactions entirely. (The sound mode is
found in Yy » .which,as was pointed out earlier, may be thought of as singlet
state of the pair; in the present instance, no singlet state can be formed.
This is another reason for not finding a sound mode in the medium,) The
longitudinal susceptibility also does not show any resonant response (il did

in the Coulomb case in (A)) because the spins are already lined up and no
longitudinal field can fluctuate it any further because the interactions are of
zero range. However, the transverse susceptibility shows the spin-wave

mode as must be the case and as is reasonable otherwise. Note in this case,

II I I

o " Y3 )(33 = - AII which can be expected because N = oy for,

N = Nt + N‘ = N' (F state) and oy = Nt - Nl = Nt (F state).

v

The spin-wave mode will now be discussed in some detail. This
requires the evaluation cf the zeros of (1 - GL°C“) in the limit of small q
and small w, such that terms of order ((.)qz) and (w3) are neglected. Then

one has

o qz K@' {1+ §)5/3 - (1 - K)S/b (3.2.31)
sw ™ ZmE(RE/e | Tep >t o

ik DN

i s - o Y
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The stability of the spin-wave mode may be ascertained by imposing the

condition that its frequency be positive. This criterion gives

K0'/ep > [+ . (1-r)5/3 1/5¢ . (3.2.32)

 For the fully ferromagnetic case this is

KO'fep > 25/3/5 ~ 0.635 . (3. 2. 33)
From Chapter II, the ground state is an F state if
KO fey. > 213 < 0.794 (3. 2. 34)

and the ground state is UF if KG'/EF > 2/3 ~ 0.667. Thus, whenever the
ground state is cither UF or F the spin waves arc stable also. This was first
noticed by Herring [231 and again recently by Fukuda [12] .

There is a second type of instability of spin waves. Here the spin
waves merge with the scattering states thus acquiring a finite lifetime even

in RPA. This happens only beyond a certain maximuwn wave vector, q

max
of the spin wave, becauce )(+ _ will then have complex poles. The imaginary
part of C“ begins to appear first for Qo ax and Wsw given by o
-2 '
wSW_qmax/2m+2K0§'qmaxkF' /m . (3.2.35)
Calling qQ ax - Qma.x kF , one arrives at a transcendental equation for
Q , obtained by putting (3. 2. 35) in the spin wave dispersion law

max

1 = ’U’Cu (3.2.27):

vy
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| | ;
Qo = 3 KO /ep) 204022200 P g arn'/y s

1/3 1/3
1/3.2 2/3 Qnax-1+8 7-(1-%)
+ [(Q -(1+8)/7)"-(1-¢) L/
max £ "] tn 2 nt0 0.0l

(3.2.26)
This has to be solved numerically. This numerical solution is displayed in
Fig. 6. From (3.2.26) and from the schematic diagram in Fig. 6, it is seen
that Qmax has an upper bound at (1 + §)1/3 -(1 - ()1/3. In this figure,
KB'/eF is taken to be an independent parameter not determined by the ground
state conditions. The only relevant parameter of course is the one pertaining
to the ground state and the corresponding curve is shown in Fig. 6 as a broken-

line curve. For ¢ =1, the F state, this gives an exact answer, namely

. ' '1/3 .
Q .y ” 3/2 (KO /eF)z . (3. 2.27)

m

For such a Qm ! the spin-wave frequency is

k K8'y 9  ,1/3 Ko' 4 2/3
Ysw (Qmax kF) T fF (__6—) 8 g € 9 2 - (3.2.28)
F F :
. ‘ o - . . =1
The spin-wave stabil.ty criterion applied to this shows that wgw (Qmax F)

is stable only if KG'/GF >0.71. This implies that for stable F states for
which KO'/eF > 0.794 the spin waves are stable up to Qmax but beyond

Qmax they are unstable, being scattered into the individual particle excitations,
cven though the infinitesimal spin-wave stability criterion permits spin-waves
to persist. If we take the stable F state for whi-h KG'/GF = 2-1/3

(3. 2. 28) gives the spin waves up to Qmax = 0.945 and its energy is

< :22/3‘ €F/l6 or €p| /16.‘
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SCATTERING OF SPINWAVE INTO
INDIVIDUAL PART'CLE STATES
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FIG. 6 Qmax vs. K8 FOR VARIOUS { IN THE STONER MODEL.
DOTTED-LINE CURVE REFERS TO K87ep CONSISTENT WITH
THAT EVALUATED FOR THE GROUND STATE FOR VARIOUS ¢.
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It must be mentioned that using an approximate method for evaluating :
the. coefficient of q2 for USW\ Herring [23], Thompson [24], and Fukuda [12])
had each obtained the same coefficient as given here for the F state.
Thompson [24] had also derived a value of Qmax for the F state, in agreement
with that given here. Baym [27)] had only estimated this Q . for £<<1
and arrived at a value of Q __ = Z“l/3 (KB'/SF)t » which, as expected, is
smaller than that for the F state. The achex;uatic diagram of how Qmax
comes about is given in Fig. la as well as Fig. 6 which has bccn explained
already. In this connection, an aspect of finite temperatures must be
mentioned. For this case, the integrals A, B, C all acquire finite iinaginary
parts and, hence, the collective modes or, in particular, the spin-wave mode,
will be slightly damped. Physically this is reasonable for, at finite temperatures
particle-particle scatterings occurring into empty states below the top 61’ the
Fermi distribution are more frequent and these tend to destroy the ccherence
of the bound state.

In the light of these results, one may remark on the nature of the
difficulty in computing the total magnetization of the system. We have two

relations for calculating the magnetization:

<o'3> = - i [tr T3 G(ll+) ]
and

<oy (1> 8P0-2) - < lo, (1), o_(2)]_>
at equal times. The direct evaluation of <o3> from the single particle
Green's function in the interacting system is very hard and so may be used

only for very approximate calculations at high temperatures where the

2

e o 30 &
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interactions do not contribute to spin waves. But at very low temperatures,
the correlations are important and one may use the second relation which can
be computed to a much higher ar.;curacy than G . It is not clear at the pres'cnt
time how these two have to be reconciled to arrive at the correct evaluation
of the magnetization valid at all temperatures. It is clearly beset with a
considerable difficulty of self-consistency,

In the next section we will discuss the existence of spin wa.v'es ina
Yukawa gas. This does not follow as directly from the equationa as for the
zero-range gas. One needs to resort to certain transformations of the given

equations.

C. Yukawa Gas

Let us examine the Eq. (3.2.1)

Liikjq)= -7 -%(q) v,(q) -

4—
'iqu 2otk - 9) Glqta) i (q; q) G(q) A (k; g-k) (3.2.17)
(27) € (q-k)

where we have used Fo = AO/S . In this we take 1\o = -1, so that

€= SRPA y Which when evaluated for w = 0 and for small wave vectors

. 2
gives SRPAN 1 + kTF

Hence 2//f has the appearance of a Yukawa potential. Thus, the Yukawa

2. k is the usual Thormmas-Fermi screening.
» 'I‘F g

potential can be used consistently with the ground-state properties in
examining the collective excitations. In case (A), if exchange is taken

into accourt by an extended RPA of the type suggested earlier, it shifts the
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.the coherence of the bound state, The use of "plasma" RPA with a Yukawa.
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pole and also gives a finite lifetime to the collective states. This is as

potential, however, gives results very similar to those in case (A) - a plasma

pole or a zero sound mode depending on whether the screening is small or

large,the transi‘tion being gradual. But spin waves will not appear in this
approximation. A more careful calculation involving the exchange contributions
is neede.d to derlve spin waves, The spin-wave problem i8 now examined here
in detail,

To study the spin waves, we investigate the cquation for PZ and only
the component (FZ )” in this equation contains an inhomogeneous term, since
the inhomogene.ity is caused by the external field and we are seeking resonant
response to an external field. Then equation (3.2.1') takea the form
(yy = qukawa)

I"Z”(k;q)= -14

PN
w
.
[\
[}
9
-~

4~
. a —. q d
+i S'yy(k-@ Glpfara e Gy (e -

To study the collective mode we have to consider the homogeneous counterpart
of this equation which we will now examine. This i8 equivalent to studying the

pole structure of X+_ . From (3.1.12) if the usual RPA is used, with Fo(lZ; 3)
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in the third term equal to -6(4)(1-2)- 6(4)(1-3) and neglecting 8T /6 U, it can be

easily verified that I‘ (12; 3) is of the form O(t - tz) l" {12; 3)s0 that in
Fourier space, one may assert that in (3. 2. 39), I"2 (k; q) is mdopendent
of ko » .the frequency part of k. Then ‘the iio integration in (3, 2. 39) c.an
be carried out, which is just C as in (3. 2. l7c)'

(w (_q+_)-nF (w, (@)
(k; q) = —%w (k-3 |-E T,1(3q)
2“ S. A w- w(g+§)+w(§) 2469

(3. 2. 40)
(homogeneous part of (3. 2. 39)) where u+(q) are evaluated with the Yukawa
potential as in Chapter II (2. 5. 10). It is_interesting to note that in the limit
w=0, q =0 (in this order of limits), (3. 2. 40) becomes the ground state

condition, namely (2. 2.15), Hence, in the P state limit, the two equations

should yield the same results. We now make an algebraic transformation

Lopptks @) = [w-w_(k+q) + w, (k)] ISYRILFEY ) (3.2. 41)_

Then

(-w_(ktq) +u, () Ty 4 (k; q) = -

3_
‘{—33:’2 3%, (- @ (0o, (@) - np (_(g+3N Ty) (@ q) A
T
2 d3—
0y = 1% /em - {49, Yy lk-a) ng (@ : (3.2.43)

(27)
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Fukuda [12] arrived at an equation of the form (3. 2. 42) using an equation of
motion method for the spin flip operator in the RPA which involves the
exchange term and he worked out the Coulox;xb case in the F state. The
present approach follows a procedure somewhat similar to that of Fukuda .in“
solving (3. 2. 42) for a Yukawa potential, but for all ¥ and E.

We will firat indicate how (3. 2. 42) can be solved for quite general v
and then specialize to the Yukawa potential. Let y = k/kF, y = a'/kF :
x = Q/kl- y &= (sz/?.m) ¥ :m& ar = mcz/kF and also chovse x as the
z axis of a reference coordinate system. Then, since cos = (%’— )I/Z Ylo(9$), -

Ylm (9&) being the usual spherical harmonics, we have

ar —
vox o2y (D 2y ) e (50 S. 4% V(ly-y Dlnglw_(e+30)-n (o, (T yix
 §

ar —
2 (?’ ) S d3?V(ly-7l)[nF(u_ (x+y)- np (w, (Y] T4 (55 x) (3. 2.44)

where we have written for convenience, 22 (y -y) = 1—”0-2-2—- v (Iy-?[) . Let

x = 0 in this. Multiplying the rcsultiﬁg expression Fthrough by

(nF(w_(y)) -np (w+(y))) and integrating over y , we sece that a solution exists
with

v =0 and F“ (y,0) = a constant . (3. 2.45)

Multiplying (3. 2. 44) 'through by (nF(w_(yh()) -ng (u+(y)))and integrating over

y we get
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2, ( é3 + . : F (y; x)
(v-x7} § -(—;f;—(nF(u_(x y)-nglw, (v)) ) Ty 4 by;

;
s (A2 (Td,)%' YY) (ngl GetyD -nglo, tyN T3y ty; x) +

+(ars)SS d3 d3— _ . . ‘
= _(—2-1L)3_L Vly-y D) (nplwtxty)-np(@lyDHn (o (x+y D -ng(w, (7))
 §

-P—Z! t(Y} x)

ar 3 .3-
=(—3 )ﬂ' Y EY v(ly-F 1 inglw bety)-nplalyM)n gl (et 7R -n (w0, (7))
(27)

Fopylyix
Interchanging y and y in the RHS, since V is in general symmetric, this
term cancels the last term on the LHS and hence one arrives at a general

expression for v forall x, £, and {:

-~ 3 —
v =P eax (AL \ &TY)T ¥ Y @ nplo_txtyl-nglo, (yN] Ty y (y; x)

3 .
{ —:—1; [ng (o_GeryD)-ngu, (D] Ty by )
(2%) (3. 2. 46)

To find the coefficient of xz, we expand (nF(w_(x+y))-nF(w+(y)) ) and

fzt t (y; x) in powers of x taking note of (3. 2. 45)

o Q@
nplo_bery)-nglu, (0= ) Z v, $) n By
i=1 £=0
>
(0] . B .
le ' (y; x) = Tzl‘()).*. Z Z xJ Yl'm'(?) I‘Zl t g'!r)n'(y) (3.2.47)
j=1 f'm?

-/
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Only Yb appears in the first expression as the left-hand side contains

explicitly only x.y (or %) whlle this is not so clear in the second expreuion

.Working then only to lowest order, we find

N Syan(O)(y)FZH)w(y)dy *T;l(?) S’},snl(l)(y) dy
v~ +2x (—3—)
. 7 {0 (.2 (0
' aw Ty y n ' {y)dy

(3. 2. 48)
Now clearly at T = 0°K,

np(w_(x+y)) - npw (y) = [nplw_(y) - ng (w, (YD)

R S N R I (R LA

so that

n(o)(y) = nplw_(y) - nplw, (y)
o 4 | (3. 2.49)

n My = -2 (31125 510273 2

/A

Choosing

qu‘m - (3/41)1/2 (or /1) (3. 2. 50)
we finally get )

wgy = 9°/2mt {i - (1) S (&, c)}

-]

with ) (3.2.51)

s €0 = § ayy® (nplo_ y-nglo, o) Ty Dy
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- (1)

Now our task is to find FZ“ 10 (y) . This is done by using (3. 2.47) in (3. 2.44)

after multiplying it by [nF(u_(x+y)-nF(u+(y))] , along with the expansion

v=vzx2+... (3. 2. 52)

and then equating the coefficients of like powers of x on both sides of the

resulting expression. Before doing this, let us note that formally.

©
viysh =1 ) Quun (2 ) e,m (3. 2. 53)
VY go
+1
where u'is the angle between y and y . Using SPIU‘) P, ) dp=ﬂzrl GII'
we find 2
+1
—,l_— Q,ly; 1) =S du P lu) vily-yh (3. 2. 53a)
YY -1

In (3.2.53), referring y and yto a system where x is the z axis,
1 + &
pln (u) = 4m /, ( TIT‘I—) Yl"m" (Y) Ynmﬂ(ﬂ
m.

so that {3. 2. 53) takes the form

— 2w A cal
v ( IY“Y“ . Ql" (Y;ﬂ Ylnmn(y) Ylumu(y) D (3- 2. 54)
YY Mm"
Here Y, 's are such that

fm




wpr 3

A e mre X

ARPA-11 : 11-33
s A A ¥ Sheis
\\S‘dy.Yh P Yy 0 ) = 8o 8, (3.2.55)
where ydy = 5 du f d$ as is usually taken. In the Yukawa case,

(3.2.53) taked % particularly simple form
+1

P,
1 1
— Q,lyiy) = )du = =
yy ! _‘S; [y“+y°+ £° -2y p)

%‘ etre
QZ%EI: function of the second kind

+1
P (u)
1 1
=TSd" t-u ’
-1

But since Q‘( t)

we find )
_ 2,2, 2
Q,ly;y) = Q@ [XIXEE g . : (3. 2. 56)
2yy ’

The expansion (3. 2. 53) was anticipated in view of this. Using these, we

get for the coefficient of x

2y M2y G2 G0 Y v T e § 700000, (y; ey

I'm'

ar — . _

2260 Y § 00, T ey
'm'

(3.2.57)

*
Multiplying this through by Ytrn (;'\) and integrating over ;'\ , we get
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-2y 4”;‘/2 4%, amo+z(—)Byn‘°’(ﬂQ (v )47 z“,m(y) s

'Y) S'-‘ ()-)Q!(Y’;) zlth(jd;- (3. 2. 58)
i (1)

Note that for £ #1, m 70, this gives homogeneous equations for T;" Py which

can, therefore, be taken to be zero without loss of generality. Also only

ZH l) (y) appears in the expression (3. 2. 51) for Vg Thus, we consider the

equation for £= 1 m = 0 only. Using (3.2. 50) for Zl‘ 9 , we finally have

e | (7000 a umar | Typio' o =

- {509 @) 0 m Tyyllg o7 (3. 2.59)

This equation must be solved for -Iil t l((l)) to arrive at an explicit expression-

for the coefficient of q2 in Wgw - Note that the above framework is so far
independent of the choice of interaction, and hence, is a proof of the existence

of spin waves for quite general interactions.

Now we will specialize V to be a Yukawa potential, so that (3. 2. 56)

~

has to be used in {3.2.59). Noting in this case that

2 ~2
vy 1 E +(y+y)
Q_1\y;y)= In =
o) 2 §2+(y-y)
and ' (3. 2. 60)
2 -2 .2 2 ~2
Q,ty) - (I HE g (LA )y
4yy E"+(y-vy)
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and since the integral on the left-hand side can be explicitly dom\\wc finally

‘have

2/3_;2 2 i A
Y3+Yz [(14%) o -(1- ;’)1/3]4- § +(1+§) | ot y+(148) /.)
§ +(ly-(1485)77)

§+(l g)2/3 2 2 1/3,2

B ) | E+1-8) /)
g £ +ly-(2-0)"77)

R 1/3 1/3
.o 1t -1 [ ey
- E tan (j—Ll_L + tan +

‘ 1/3 - 1/3 s
+E tan-t- (1"(5) i «!-tan.l “—-?—'Z rZiHL (y)

2, -2 2 2\ R
5 a7 [ERLHY | [ RN} 5 (e, (P nplo_ (7))
E%H(y-y) _

T, '(113 & (3.2.61)

Now note that if Fl“ 10( Y) = - Z‘(fll)o(y)’ this equatio§ still holds. The
equation (3. 2. 61) is an inhomogeneous Fredholm equation of the second kind
and hence admits of a power series solution. Furthermore,' this h#s an
iterative solution, the first iterate being the inhomogeneous part. Since

the coefficient of P?J(' 10(y) in the left-hand side of (3. 2. 61) can be shown

to be positive for positive y, it is clear that the solution 1"2‘ “0 (y) has all
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its terms negative. In view of the symmetry noted eai-lier, .we may seek a
power series solution in the form

5 N 2n+1
Ltio = Z 2on+1 Y (3. 2. 62)

n=0

The integrations on the right-hand side can all be done in principle and thus a
linear expression involving the coefficients {an; is obtained. Equating the
like powers of y on either side of this identity, we get a set of simultaneous
linear inhomogeneous algebraic expressions for {3n} ',' Thleh dii, Warekers,
be determined in principle. Once these coefficients are determined, —I:Zﬁ 10
is obtained and hence, S (E,%) . In view of the cumbersome nature of this
equation (3.2.61), we have, in the case of arbitrary magnetization, chosen

a single term expansion in (3. 2. 62). Even this gives a very complicated

expression for S(£,¢). We here give S in the Coulomb and Stoner limits for

the sake of simplicity:

2 5/3 5/3
SR _ 1 (1+6)>7° - (1-%)
Wsw ~ T?;.‘J; 1' " TROep) 5% (3.2.63a)
where
—_ (1) 32
I‘Z”m {y) = - Tg—*y for £~ oo .
and
2 5/3 5/3
sw = .3 Ay e T (18 (3. 2. 63b)
Wow —Z—rgn_§ { 10 ‘ar_ (1+§)1/3 _ (1‘§)1/3 |
where .

Ty o = - Y
At00 777 g3 g

for £ = 0.
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Note that (3. 2. 63a) is precisely the same as that obtained earlier by a rigorous
method not involving the steps suggested above. In the paramagnetic limit, usin;
the equilibrium KG’/§F and ar, respectively, it is found that the spin ;vavel
are unstable as must indeed be the case. Ag‘ain for the F case, ({=1), Vgw
in both cases are positive when the corresponding equilibrium coupling strengths
are used as they should be.

For the ferromagnetic case, however, we have carried out 2 three-term
exp;msion in (3. 2. 62) and again a very cumbersome expreasjon for S(£) for
all ‘E's obtained. For the sake of simplicity we again give the Coatomd and
the Bloch limits only.- In the Stoner case, a, and ag are identically zero

to [O(Ez)] , as this is the only rneaningful term here. In the Coulomb case,

however, evaluating (313‘335) gives S(£=0; ¢=1) = 0.3517 and hence

5. 344
r
s

WS < g% f2m (1 - B (3.2.64)

This must be compared with Herring's result

L= 2y 5:485

r
s

Fukuda [12] gives 5.136 for this and this is wrong since he made an error
in computing ag . It may be rcmarked that a two-term cxpansi.on gives i
5.166 in agreement with Fukuda. It should now be stated that using Herring's
spin-wave stability criterion using thz equilibrium value r_ = 5.45 (Bloch[3])
we find that our calculation gives a positive wgyw whereas Herring's gives an

unstable spin wave (negative usw). In view of this, we feel that our

calculation is better than Herring's.
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In the next section, the case of Bloch electrons will be dealt thk in

some detai.l \

<
3. The Case of Bloch Electrons

Aot o & s

In Section 4 of Chapter II, suitable modifications for t'reating the single
y | i

particle states in a periodic potential were outlined. In conjunction with .

(2. 4.2), let us define the vertex parts in the Bloch scheme as follows:

i

* y W .ige 2 4. .4 4
L (1'k; q) =S bﬂd_q(j) b1 eV T (117 2) a%1d%10 a2 (3.3.1)
IBZ

1: band index. Then the equations in the RPA including exchange can be -

written

T, (1% q) = - 7, < tkigll'k > - - {

lk+qlza'
- 12 S‘vllfﬁ-q-l'k [tr{Gl (q+q)r(lllzq,q)G (q)-}] (Zﬂ) + |
4- btql,q -
+ iz S’ d et Gy DT (5,59 Gy @ B o5 1)
1Y e 1174 '
nge 1
l k I k . i
; U!k lk SS lk(r )blzk (r )b13k (r )b,k(r )?/(rl Z)d ryd’r, (
' i
(3.3.3) 1

= it
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\ K ‘lkl lzk
. . Using the periodic properties of b, , it is seen that?/ 2 1. 1s non-zero /
l3k3 l4k4
only if k, +k, = ky + ky (mod K) (K: reciprocal lattice vector). Neglecting
“
Umklapp processes (see Adler [46] for their effects) and using a Fourier
representation for?/'(rl-rz) one arrives at .
A = "%
; Lk, Lk
151522 3
Lk, .k, = 20 <k |4k, >< Lk, | tky > Uk, - k,)
3737474
(3)
6 (kl tk, - k3 - k) . (3.3.4)
) . . Defining
L (U'k; q) = <ti*q|L'k > L' (1'%; q) (3.3.5)
and using (3. 3. 4) these equations can be recast into the form
] "e. - B |
L'k q) = - 7, -v(q)y, (q) +
a3y - - -
+i Z 5 ZZ—%T YV (k-q)W(1'kq; L 1,q) th(q+a L' (44,95 q) Glz(a
L§
L4, (3.3.6)
where
< Betql 4 qtg> <4 qrgl 43> <4, | 0% >
%W (Ukq; £ 4,9) = TR TES (3.3.7)
and
4

B &g 2
v, (q)=xz S ?37;—|< f1atq | 1,9 >
L4,

(tr {Gl.(q+a) L' (1,4,Tq) Glz(ﬁ)} ] : (3.3.8)
i
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Assuming as before

Ik q) = A, (#'k; q) + Vlq) 7" (@) A (; q) (3.3.9)
where
Ai (u.k; q) = e 71 -
2 iz S__STv(k ‘)'zd(wkq, 1,4,q9) . G, (q+') A (8 4,9;9)G, (').
i, (2m)
(3.3.10)
.80 that

4-
Pl - i Z L5 el @1 0 {6, (@D 4T 06, @)]

& (q) (2m)
(3.3.11)
with
SB(q) =1-
-i?/(q); S"J}T |<llq+q|lzqzl (tr {G (q+_)A (lllzq, q)Gl (_)}]
7 (27
L1
(3.3.12)
Finally

e s eSS s
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K,
E 33 (q_):izs‘_ﬂz.kl q+q|lq>|
4 2%,
CILFCA (@D A 45T @ Gy ROIR I
l B
e +1Y(q). vy (9
.;
. z S.?S.z_ |<l q+q|lzq >| [tr{f3Gl (agtq@) A (ll ,_q, q) G, (a} ]
| it {27) 4

(3.3.13)

and

s .
x,Bq) = ‘Z S' ——34— |<2,q+314,3>1° (tr{r* G,l(q&n A,(2,1,5; Q) G‘z@} 1+
nt,

4—

+iY(Q) 7, (q)z ( ((12 1q+3|l,ﬁ>|z[tr {1+Gll(q+al\o(lllﬁ; q)G,Z(G)} ]
)
Ly

(3.3.14)
In the 'plasma'’ RPA

gB(g) - 1+ 2@ (A2 + BD) =

=1+ 1U(q)z S —‘1—45;{— |<11q+€|12€>|2 [tr{G, @+ G, (@} ]
R l ‘2

(3.3.15)
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and similarly other expressions for X33, X+_ » etc. One of the important
features of the Bloch case is the appeafance of additional sums on the band
indices and the overlap integrals. The result for SB(q) in the unpolarized
case is that first derived by Ehrenreich and Cohen [40] using the equation .of
motion method. These results here are generalized to include the polarlzations.
The above results are valid only when the local field corrections can be neglected
since the Umklapp processes have been neglected entirely (Adler [44]). This
ncglect of local field corrections is justified when the bands are broad and far
apart. In Appendix B the relation between these equations and those that can
be derived by the equation of motion method will be given.

In view of the complexity of the rcsultg derived above, only the
existence of spin waves will be discussed for the case of a single band, not
overlapping with any others. As in Section 2 of this chapter, the equation
describing the spin flip oscillation in the RPA including exchange is written
in the form (3. 2. 42) for the F state (we have treated only F state here to

keep the complications to a minimum):

3
(w- € ta) Tyl (k;q) = - S (%%;— v (k-q(kq; q) Ty 4 (q; q)
T

3_
€, () = eltq) - € (k) S‘ i—f)l;— l<x|g>|% Y(x-9 (3.3.16)
w

where e€(k) is the band energy.

N

o ok




Gatrvee e

R .4

Lty . - . Gl T R U

ARPA-11 ' . m1-43
In the almost free electron limit, < klq>~ 1, and so % ~ 1} since
Y (k)= 41‘02/1{2 the arguments af\*.hg&riou- section, case (C), go through
and hence. spin waves exist in this case.
R In the tight binding limit, where the overlap integrals can be expressed
in terms of Wannier orbitals, a;(_x;-l ), 1 is the lattice site, and if both k and

3_ are near zero,

kiz> = [ wlinren e

unit ceil

-i(k- 4, -q - L,)
= Z e L | S a*(r-ll)a(z-lz) dJr
unit

11 cell

172

The integral

*x
_Y a(-)) alr-14y) &’
unit cell

is the overlap between two Wannier states, I“, . In the extreme tight binding
limit, I,,, ~ I, 6“, , and if k and k' are~ 0, Z-’ gdsl so that

2
< kla > = O(Ik -a I), The arguments of Section 2, case (C) of this chapter

are applicable so that the spin waves are seen to exist in this case also,

since W(kqq) ~ Oz (|k-q|) and the equation for w is

. s
d = ~2 - -
(w- € ()T, 4(k;q) = -5 —(;?)—;—’U(k-q)o (Ik-ql)rz“(q, a)

e T T

o I
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with
- | A
e la) = elira) - et - § L9 e o (l-qh
, (27)

There is another approximation to the integrai (3.3.4) suggested by
Antonoff [29]). The corresponding results re here derived using the present
technique, since they follow quite easily from the expressions already derived.
Antonoff makes the "degenerate kernel" approximation which consists in

taking, in the single band scheme

ng Tt %2
(% k3 k4 ~ ’Uc(kl ‘k4) + q,ex (kl 'k3) " (3. 3. 17)
k1 k
What is done here is to write v k. k in terms of Wannier orbitals, and inthe
374 ’

resulting expression retain only two-center intcgrals. Then (3. 3. 2) takes

‘the form (in the one-band case)

4
. d
L (Gq) = - 7 - ‘S (;14‘ (V@) + Vo lk-a))
(tr {Gl@a T Gac@}] +
a‘g - = = -

i LI (500 1 Yl Gl T (3 q) G (@) (3.3.18)
In this one further neglects 'U’ex (k-q) in the second term and ?/c(k-a) in
the third. Then a calculation similar to case (B) of the present chapter

follows:

kst S,
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»
3-
d e At By - 2%, (D Ay By
is ° [1-02la)- (AL By + Y, (N Y, (a)-22/ (aD Ay By
(3.3.19)
g v, Mq) = 0 (3. 3. 20)
7Zm(q) =0 (3.3.21)
;
)
; 20y - “ Ay - By )
’ [1-(V g, fa)- 2t Ay By + 2 (@2 fa)-22 (D Ay By ]
(3. 3. 22)
x Moy o Aur* Byyp -2 W, (@) - 2% () Apyy Byy)
P D, (@) YA B Y (@, (@)-2% (@A By ]
(3. 3. 23)
- I
Xﬁl(q) = e (3. 3. 24)
(1- ’”ex CIII)
111 1 a%3 - -
v, () = elq) - - S‘ ﬁy (% (q-q) + %, _(0)) n (q) ¥
= T
- 1 (43 _
T > 5—33— (2/_(q-q) + % (0)) o,4(q) (3.3.25)

(2m)

In (3. 3. 25) '?/c (q-q) is also neglected. In the unpolarized case one obtains
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I 2
v, =-2A,/0+ @Y (q-Y (d)A,) (3.3.26)
< .nm » 7,_m 4 1%m - | i, &
¢ x33m ==2 "‘m/“ N 'yex(q)"AHI) =4 xﬁl : (3.3.28)

. From these results one may notice the following features, even though many
terms are neglected in arriving at these results. The Coulomb and the exchange
unctions cxcept “+£II where caly U
" appears. This is significant, and the reason why in the "plasma" RPA X.+_
did not show the pole structure directly and why it did in case (B) now appears
obvious, even though this fact that exchange has to be taken into account fully
was stressed earlier. In case (B),however, we had taken Q’ex = Wc = %,
which when substituted in the above set of expressions give back those found
already. The results of case (A) follow if ?jex is neglected altogether,

It must be mentioned here that if the "degenerate kernel" approximation

is made in the Hamiltonian itself after rewriting it in the Bloch representation:

H = Z f(k’aka akc+

ke
k, k
1 12 ¢ }

*TZ? Yk e e ko ke (3.3.29)
1 KR grg BpT %R, *3%2 T
1°2%3%4%1%2
(kl+k2=k3+k4) :

D R BV R e

e

sk, 23T

T
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one may then combine the terms in such a way as to get an explicit Heisenberg-
type interaction. Actually, Q’cx(q) goes here with terms which can be cast
into the form ¢(q). .g(-q) which is just the Heisenberg rc;ult. Now if RPA

is used for constructing the various correlatio.n functions, the results obtainec.l :
here are recovered. This has been verified by the author. Antonoff [29] in his
theuil. neglected 'Uc(q) entirely and obtained spin waves. As remarked above,

this is equivalent to assuming a Heisenberg interaction between spins. In later

‘work with F. Englert [29] Antonoff has included ’L/r (gd) and obtained the results

given above. They used an equation of motion method,

In summary, the possibility of spin-wave excitations in an itinerant
model is here shown under various model interactions within the context of
RPA. Moreover, the case of an electron gas interacting with a Yukawa
potential is studied explicitly and the coefficient of qZ in the ferromagnetic
state is determirad. The results are in good agreement with those obtained
by Herring [22, 23] in the appropfiate limits. The collective excitations for

the Overhauser situation are not examirned here.
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There are many objections to the use of Yukawa potential (even though

poteﬁtiall of this type with Thomas-Fermi lcreenin;‘i?}?.suggentive) in such
! e

< calculations as are undertaken in the present work. The first major objection

is that it is an arbitrary choice and in reality the situation may be more complex.

r Secondly, even if the choice be arbitrary, no method is here outlined to

determine the screening parameter from first principles. Thirdly, the

screening of the interaction in this way is known to reduce the contribution of

the exchange energy to the cohesive energy enarmaurly if the acraaning radif

8emh),

are chosen to give agreement with the observed specific heat (£ kg~ 10"cm "~
(See Pines [38]).) In spite of these objections the effect of screening on the
varicus properties of the electron gas is most easily investigated analytically,.
by using a Yukawa potential.

There are several possible directions of extension of the present work.

Concrete result;; are derived only for T = 0°K. These must be generalized
to finite temperatures. This extension should settle the query whethe the
low temperature magnetization is the Bloch T 3/2 or the Stoner TZ . Itis ‘
almost clear from the present work, that at very low tcmpcmtur;:s one must

3/2

very recently by Mattis [47] also. There have been some diagrammatic

have T behavior. This view has been put forward by Brooks [6b] and

analyses of this problem whicl' are not quite rigorous or conclusive. The

&

equations describing the magnetization are quite nonlinear. Some self-
consistent way of calculating the magnctization at low temperatures must be

g E-1
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devcloped as was stressed at the end of the'last chapter; The notion often
expressed and notably by Edwards [25) that the Stoner and Bloch terms

for magnetization and specific heat will both be present is almost certainly
-wrong, as the existence of 9nax for spin waves clearly indicates. Even at
T =0 » the problem has to be done more completely by including all the
possible processes in computing the ground-state energy of the system as

a function of magnetization. The present work indicates very clearly that a
mere comparisonof ¥ and P state energies is certainly not sufficient to
determine the nature of the ground state, as was done by Cooper [13] and
Shimuzu [11]). This is hard only in the sense of numerical analysis but the
way it can be handled is outlined in this work, for the expression for the
dielectric constant is here derived from which the ground-state energy .can be
computed as was done by Cooper. The third extension, wh.ich is not
considered here at all, is the collective excitations of the system when
Overhauser type ground states exist. These must show some new characteristics.
Professor P. C. Martin considers SDW as an itinerant version of the usual
antiferromagnetism. If so, one may expect antiferromagnetic spin-wave
types oscillations in the SDW case. We have now succeeded in solving this
problem in an approximate way, and the results on this and other matters
concerning itinerant antiferromagnetism will be dealt with in a separate

technical report. The fourth extension is a more thorough investigation of

2 L

e T
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the results given here for Bloch electrone. The fifth problem is the examination .
of the Overhauser problem once again in the Bloch scheme. The investigation
of SDW for Bloch waves must be of interest in real solids as extrapolation from
the free gas results.to the real cases is often misleading. The outstanding
problem of all, of course, is a complete investigation, even within HF, of all
the possible ground states including those of broken symmetry. The phase
diagrams given in Figs. 2a, b do not include the superconducting and the SDW
ground states and if these could be somehow incorporated in this plot one would

have a more complete account of the electron gas, even at T = 0°K.




APPENDIX A

SPECTRAL REPRESENTATION OF THE CORRELATION F UNCTIONS

By virtue of the definition, commutation rules, the Hermiticity condition,
and the trace structure of the correlation functions defined by (3. 1. 2), ; set .of
formal relations is obtained for their spectral weight functions. These are
given here without derivation (c.f. Chapter II, section 1).

App (rlrg; w), A33(rlr-2.; w) and A_'__ (x'l rE; w) correspond to A

X33, and Xy -
x
App(rlré;u)=App(rérl; ~w)
dw

1 . .

App(r}_r?_“")zi(:to [-yo(r—r_z;u+ us)--yo(rlré;u-xc)]

a, eplritaiw
<p(2)p(1) >}, . 4 = . —=

tz-t 2w (cﬁw_ 1)
and
e pp(rlré; w)

v, (12;2) = ‘Z?U{ - (A-1)

Ww -z

(z is a complex variable)

A-l

= S Lk

o

o
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3“' "")"' 33(" "1"“’

f%“ss"l’y”’ :

vy =g Lt . .
A33(rlr-2-, w) =i Lo [X33(r-l_r£,u+i €)- X33(rlr-2_, w-ie)]

(r;r,;w)
A A dw 33 1 2
<3,(2) u3(1)>|t2=tl+ 2 5

rs 4 B -1)

and

~ (r,r,; o)
= ((do fasimyTpiw
"33“2’2’-.52?1" =

*
A ( l Z,U) 4(1-2!'1; -U) .

5. l Z,u) <o'3(r ) > 6( )(r -r

Z)
(equal time cornmutation rule)
[e, (1), o (2] = o,(1) 6(3)(rl-r_z-)

Lt

A+_‘(r_l-r2,' u):x(_.o[)({’_(rlr.é;(.,wi() - x Ar r

1720

A (rli'z;&)l
<F (e (>, 4 - de e
o léla tZ-tl"’ 2w (e{iu_l)

and

X (12.7) ~ da A+~(rlr2;-@
+- T ) A =
Ww-2

(A-2)

- i€)]

(A-3)

N

- A

B ] POy
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THE RELATION BETWEEN THE EQUATION OF MOTION METHOD AND THE
GREEN'S FUNCTION METHOD - \

Here the equations describing the varic;us-collective excitations given
in Chapter I, .will be rederived by extending the equation of motion method to
the polarized medium for Bloch electrons. Incxdentally, this extends Wolff'l [31]
method to Bloch electrons and also includes the free electron result as a

special case. The Hamiltonian is written in the Bloch representation:

€ (k)a+ a +
Z Z ' ko %k 0

4Lk o

k1 kL,

+%Z Z Z Z klklaljl k*l 3.t +

o a

tk Lk, I k,k ofe 3344‘11 27272 332kz41
(ky+k;= k3+k4 (mod K))

+Z /, <k, lk2+ql L, > Lakzll‘ ak2+qllzt U+(ql) +
hix 4%,

PR t o
+a a U (q,)+ (a a +a ra YU (q,)+
k! Tt q ) UL kot ket atyy " Tkt %k, kq 0} 7 Yo (9

{
+ {a a, |, -a a
4t Fkyrq tt YN kpta 0 ) Ugta)p (B-1)

ot

and a are the creation, annihilation operators for Bloch electrons
.satisfying the usual anticommutation rules. Then the equations of motion

in the RPA for various operators are constructed, after using

e

i
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k2, kL. . o5 7y
171%2%2 3 ,(3) .
gty kgl " (2m)” 6° (k) +k, -k -k ok, -k, )

<k, lk4g4 > <kyty [kyty >
(Umklapp processes are neglected as in the text)
-l (B-2)

o ¢
T (kte; q) = < ‘lfl'c 3 rqter > €

fw- ui+(k+q) + uz., (k)] I‘“ (ktt'; q) =

= [nF(u‘+(k+q)) - nF(u+, (k)] < k+ql|kl' S| Uo(q) - U3(q) -

- (q) Z Z Z <a'lyla'tal; >T7 (q'41,5q) +

qQ' lllz o
v(k-q')w(kll'q;q'lllz) 't
+ r (q'4,4,; q) (B-3)
1 1
q' lllZ . <q +qll lq lz >
"}3 is as dcfined in (3. 3.7)
(w- “l- (ktq) + “’l'- (k)] F“ (ktt'; q) =
r

- [nplo, bl n (o, (D] < kiqtlke > i Uy() + U, () -

oo
_‘U(q)z Z Z < q'lzlq'+qll >T (q'lllz; q) +
q' ll"Z o

W (k-q')20(kl'q; q'L, L, )
M Z L2 I‘”(q'lllz;q) (B-4)

]
g 4, < q'+qt|q L, >

i B bt b S

e =
" s
i i
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‘and
{w- ull"(qu). +.u:..(k)) ri! (kee; q) = o
= [nF Iu" (k+q)) - ¥ (u; (k)] €k+ql'kﬂ >¢-U {9+
e V (k-q' P (ke q; q'1, 1, ) '
+Z <qd'+af)[q'f > rit (9'4) 455 a) (B-5)
a 41, )

with

wit () = g k) - + Z l<q'2' [kt >| 2W (k-q') (nplq) + o3p(a)).  (B-6)
q'r

To see the connection with the vertex pPart equations, namely (3. 3 6),
one first notices that the right side of (3.3.6) is independent of the frequency
part of k, the first index of the vertex function,so that one may assert that -
the solution of this equation is of the form

L (ett'; q) =Tk 2275 q)

Then the @ -intcgrations can be carri.ed out in the right-hand side and assuming

the G's to be diagonal, one gets, writing it in the component form:
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y =
o

(I} (kte; gw?)‘:.- (7))

q:r nr(Ul'(Q'Pq')-n (U“ (Q'”
-6 Vg Z Z .
q 41, w-w, (q+q)+u (q")
[ 4
| <a'+aty @', >| 2 (T (g1, 1, qul,, +
+Z }: Uk-q'YU kLt g; 9'4,4,)
q' ‘x‘z
( nl.-(wl;r (q+q")) - nF(ul:‘(q'))
' (L' (q'4, 2,5 q))
w-w;r (qtq') + wlc' (q') 195727 Ve
1 2
Now let
Tktq) + w7 (k Lo (ke
L' (ks qu) | = 07y () + op s
(13" (k285 qu oot | (w° ol <ktqt[kl™>
F Ul (k+q))‘ nF (wll (k))
then
(w-w, (ktq) + w, " (k) I“" (k1r'; q) =
s [nF(wlU(k+q))-nF(wl:r (kK))<k+qt]ke >{_ (7)ot -

- ?/(q) 5‘ Z Z(<q'l lq +ql >) I‘O'o'(qll lZ’ q) +

o 'llc

2(k-q') 2 (kl'q; q'L, L)
172 ro’o"( T )
<q'+qll [q'lz> i 4 Z’.q

\‘
-+
20

lllz

(B-7)

(B-8)

(B-9)
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which are identical in structure with those derived above (B - 3, 4, 5) except .

for the external field terms which have been swallowed in the Green's function

< technique as the vertex part involves a variational derivative with respect to

these aad, hence, their presence here appears as (7;)44'- (The notation used

¢ here is very slightly different from the text and should cause no great

confusion. )

-
1
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~

I -

OVERHAUSER SOLUTIONS INVOLVING BLOCH ELICT“ 1

4

{ 2

f

In the Epilogue, the fifth problem mentioned concerns the extension
of the results of Overhauser [18] obtained in Section II-3 to Bloch electrons.
This is particularly of use since the Chromium-Rhenium sy-texﬁ s.eemc to show
anSDW character demanding a two-band model. This was brought to the
attention of one of us (A. K. Rajagopal) by Dr. Van Zandt of Lincoln Laboratories.
In this appendix we give a generalization of our results of the Stoner theory for
Bloch electrons given in Section I1I-4 so as to give an Overhauser-typc theory
for Bloch electrocns. The results of Section II-4follow when Q = 0 and those of
Section I[-3 follow when the Bloch functions are réplaced by plane waves, and
the band indices omitted. The results obtained here are all formal,

In order to arrive a.t a suitable generalization, we assume that the
electron of spin up and wave vector k in band 1 {s agsociated only with the
one of spin down in the same band but with a vector (k+Q) . With this

prescription, the following redefinitions of the expression (2.3.1) arc made:

3
d k' -
Gyy(11') = b (1) by (17)  Gyy (K%t -t )
H Z g(znﬁ rk r'k ) E S W \

T 1Bz
1) = it 1) b T kY,
Gt )'Z o3 i+t Pyl Gy (ke =)
f IBZ .
L(C-l)
Gy (1Y) = Z ——j_dsk' b,. (1) b (1') Gy (LK'; ¢, -t, )
A T 18z (27 e I'k'+Q H SR

3
1y - d”k! ¥ ' . Melo g o
Gl'(ll ) = Z S. Wbllkl_',Q“) bllkl(l ) G‘ '“ k stl tl')

1" 1IBZ

2 2se3e
%

r
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Then a calculation similar to the one given in Section II-3 follows and we give /

here only the final results.

< R A - ¢
1! + ] \
€t (k)=e‘(k)+iz ng:,l;, G“<(l‘k';u.>')oi"$'o g—k-#—
¢ T 1BZ (27)
Bk
€ (k)=€ (k+Q) +i ”ﬂ(“‘Ql:k:“‘Q G <(l'k';u').1u'o d k'dw'
2} 1 ; Ié.z Ac+Qrk+Q 'T;,T?'
> (c-2)
N S .
gf)lfa) =1 z S v fl::Qk;Q Gy Sk u) €'° 4 Kde
r 1Bz (27)
6c+Q LK < ot alk'dw
g (k) = ?j 11,0 G (l'k'iU') e 3
I Z IéZlk rx'+Q i (21)? )

Here el(k) is the energy of the electron in band £, and the IBZ indicates

B

that the integration in k space is confined to the first Brillouin zone. As

in Section I1-4,

R
2 3‘ S‘ * * 3.3 /
= Y ()b . (2)%(1-2)b, . (2)b, , (1) d”1d72 ]
f3ky Liky £k Lk, L3k Tk

Moreover,

2
€ p (k) + € (k) _ € 4(k) - € (k)
‘.. u‘i(k) - ( lt' 5 d ) ¥ l' 5 ll ) + gt ‘(lk) gl '(ﬂ()

\

(C-3)
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Thus, in Section II-3 we may rcplaet'-ok by '£k4,,'° that one has MY ¥

G (tkjw) .=
[cos 20&3 4+ UK; u)+-1nzok. (x; W) co.o*.momjﬂl;)r[;k(&; whg (fk;w)
o (R ) 8 e

’g (fx)

ICOIO&linolk a-:-{-mr[g_+(m; w)-g_(1k; w)] [.inzokg+(&; u)+c0329‘kg_(ﬂ<; W) |
| (C-4)

where

g, (B0 = 1w - 0,2 ()] . (C-5)

Finally then

‘ 3 ' et
‘d“‘)"l(k)’z S- =Y e (€08 0 nplog ) 40in%0, 0 oy (k)]

F 18z (%7
3. ' 1t -
fll(k)zfl(km)-; S -(dz_l;g 86 e 1R 1 G mp (g, (k) con Byl (k)]
r'f
1Bz

3. et /z (I'k") | 3
Su(lk) =Z S i;?g" Wﬁ::g,fﬁ %H'E'T c080‘,k,sinOl,k,{nF(u::(k'))-nF(wl, (k)]
1' IBZ

' 3 (£'k*) .
d k! Ik+Q 'k’ /311 . -
SH(B() =Z:U\§‘Z "(‘;3" ¥/4 & 'k'+Q WCOBGI,k,sinGI,k,[rF(w‘,(k ))-nF(wl'(k ))]

(C-6)
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The .equations for gt} 8¢ may bcn.wziitten more explicitlycoiinod ni gurid

3 g (k') = fa) O
d k' & £k'+Q H
(M) = (0w} (k') -n_fw, (kD]
&) ' Zmz (2) £+ Q 'K [ (k,) Y nplwg nglug (k')

f
. |{ L]
A : 3 e """"'--*‘:.-%" REFe ){“:{i (.C N

and a similar equation for g} 4 (0). i
Lastly,the expression for total energy of this system in HF may bc

{. ‘)Ol 4 t i
computed using these Green's functions as before. Thil is ueen to bc 18 'w’ ;

' -
|l

3

<H> Z S L9, [(efalcosBy t e farQ) sin’dy Ing (w,'ta)
@, T Bz ®M o
+ (el(q)sinzolq+e‘(q+0)coszalq) nF(wl°(q))]" ) i
Z SS‘ d_i_é_‘l_.[y::q' lq(cos ) nF(u‘(q)H
s (2m) L :
bain0n(w](@)lcos 28, n (w0, (g +8in 8 . 0 (0, (')
in o FU q co l'k' wl' q 'k Fu‘l q
Tyt . 2 - . 2
W:'g':g:::g (stOB(nF (U:(Q))+C05 olknFl'Ul (q)))(SH'\ ol'k'nF(wlT (q')) +

+ coszot,k, nF(wl-' )}

qtgra (Bt g pttad) . .
+?/l'q +Q 1q /;'Hq) g”(ITﬂ cosolq sanlq cos gl'q' smal,q,

[“1-‘(“1+(q))’"y(“’; (q))][nF(w;(q'))-nF»(w‘.'(q'))]

s pplla'+Qlq jglt“q)g““'q')

i cos 0, sin8, cosf sinf,, ,
l lq+Q g'l(lq)glt(l'q') lq n

llql

[ngp o, (ah-ngto, 1)) (aplwgta))-nplop(a)] (C-8)

L O, G R - .
- . -

< Saman

Al o pEAT® SN i Bt = oIS £7G S e b ALK L B e e 230



TrAas I BT oy g MR TS M T T s B o Ut ey i s i e et 8 8 g5 e S PSSR

-ARPA-11 C-5

This generalizes (2. 5. 26) for Bloch electrons. We may remark that just as
for Q = 0, the equations for gt} and g} ¢ are now coupled integral equations. _
In the above calculation, the Umklapp processes were neglected which implies
the neglect of local field corrections and thus broad bands [44). This formally

completes the analysis of SDW for Bloch electrons.
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] ¢ pr

P-STATE INSTABILITY ) :

!
The solution obtained in Section I1[-2 was not quite suitable for discussing
the P state stability when the Coulomb case for { = 0 is considered. Here we

derive the correct criterion for P state instability. Consider the spin wave

equation (3. 2. 42) in the limit w =0, § = 0 (P atate). ‘lhen

2 3
-(RE 4 o) P(p;q)+{5 i—;‘-;;— %, (p-¥) [nglulkta)) -ng (v (] p Tipia)

3 ' .
: S :’2._*)3_ ,lp-1) [ng (0 (cta) -np (k)] Tlkja) (D-1)
' !

Now let

L (p;q) = Z q' Y, (3 T‘b:‘(p)

i, 4, m

2,,2, .2, 2
27 p tk +E kF

2 (p-k) = Q,( VY, (B Y, (R (D-2)
y Pk Tt 2pk tm fm
m

np ikt ng 0N = ) @' ¥y G ny k)
ifm

in (D-1) and intcgrate over ?) . Then we get

D-1

o
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: 4n.1/2 SV 2 ey
s - L (/ ;‘,qrm(pwé,—,,;qroo @)

-+

.2 pz+kz+§ZkFZ 1+{z by ;
€ t Z S kak Qy Zpk qa  “ng, (k)¢ Ty (P)
izibn
.2 peidrgti? ) m, 1, .
= ;p— z g kdk QO Zpk q nln (k) I“n (k) (D-3)
i,ifm
Equating the coefficients of the like powers of q we get since
ntf:’ -0 ' (D-4)

p @n /2 (0) s p¥+ic? +g° tx ’ (1) o

2 Ip2+k e P -
e F (N (0)
= 55 E S kdk Qo\ K ny (k) T (k) (D-5)
hmn
It is easy to prove that .
/ kg
(1), AT 1/2 F
ny k) = - (5T 19018 (o ~w(k) 8,y 8 o (D -6)

Then (D-5) takes the form

2.2, .2, 2 2
2 p tk +& kF k
E 1,0 {:S‘kdk Ql( s )lvku(k)lé(z%-u(k) 05 0

: 2
2 P4k +E K \ .
- T f il Qo( T l"’kUMI 5 (o - 0N T )
(D-7)
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u = Let us take © ~ kz/Zm so that one finally gets a condition for nontrivial solution
% of (D-7) as =

£
'1;‘ Sr' 1 z z

{ l = —'— Qo(l +.§ /Z)‘Ql ‘l+'§ /2)] (D-‘)
£
,Now,

| Q(x)-Q(X)=l(l-X)b\'-]—“xl*l

;‘ () 1 2 -X

| or

% ar 2

. 4
- [1--§_m(1+?)].

or )
ar 2
- s 4
. g [l-%—tn(n?)l (D-9)
Note that this is precisely (2. 5. 16) when evaluated for { = 0. For § - 0, this
: . o B . 4 . 4 8
gives the Bloch condition ar =1 . For E—=*, n(l+ —z—) — -7
13 3 13
and
ar, 2 ar,
lr—=— -1t 5] = (—)2 ,
g
2 KO 2 |.

; o . .
(F), so that we get the Stoner criterion K0 /GF 5 -

L e b e o —— o e s - 0 - i vt 4ty
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