NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution authorized to U.S. Gov’t. agencies and their contractors; Administrative/Operational Use; DEC 1964. Other requests shall be referred to Office of Naval Research, Arlington, VA 22217.

AUTHORITY
CFSTI per ONR ltr, 11 Mar 1966

THIS PAGE IS UNCLASSIFIED
NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
HYDRONAUTICS, incorporated
research in hydrodynamics

Research, consulting, and advanced engineering in the fields of NAVAL and INDUSTRIAL HYDRODYNAMICS. Offices and Laboratory in the Washington, D. C., area: Pindell School Road, Howard County, Laurel, Md.
Best Available Copy
HIGH FREQUENCY FATIGUE OF METALS
AND THEIR CAVITATION
DAMAGE RESISTANCE

By:
A. Thiruvengadam

December 1964

Prepared Under
Office of Naval Research
Department of the Navy
Contract No. Nonr-3755(00) FBM
NR 062-293
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td>EXPERIMENTAL APPARATUS</td>
<td>4</td>
</tr>
<tr>
<td>DESIGN OF TEST SPECIMENS</td>
<td>6</td>
</tr>
<tr>
<td>General Aspects</td>
<td>6</td>
</tr>
<tr>
<td>Notch Sensitivity</td>
<td>7</td>
</tr>
<tr>
<td>Effect of Notch on Resonant Frequency</td>
<td>9</td>
</tr>
<tr>
<td>EXPERIMENTAL PROCEDURE AND ACCURACY</td>
<td>9</td>
</tr>
<tr>
<td>Amplitude Measurement and Determination of Maximum Stress</td>
<td>9</td>
</tr>
<tr>
<td>Time Measurement</td>
<td>10</td>
</tr>
<tr>
<td>Fabrication of Test Pieces</td>
<td>11</td>
</tr>
<tr>
<td>Cooling and Environmental Control</td>
<td>12</td>
</tr>
<tr>
<td>RESULTS AND ANALYSIS</td>
<td>12</td>
</tr>
<tr>
<td>Results</td>
<td>12</td>
</tr>
<tr>
<td>Analysis</td>
<td>13</td>
</tr>
<tr>
<td>Influence of Corrosion</td>
<td>17</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>19</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>20</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1 - Block Diagram of the Magnetostriction Apparatus Used for High Frequency Fatigue Tests

Figure 2 - Transducer Characteristics

Figure 3 - Basic Principle of High Frequency Fatigue Specimen Design

Figure 4 - (a) High Frequency Fatigue Specimen (b) Photograph of SAE 1020 Steel Fatigue Specimen

Figure 5 - Calibration of Pick Up Coil for Monitoring Strains

Figure 6 - General Arrangement of High Frequency Fatigue Testing Apparatus

Figure 7 - Results of High Frequency Fatigue Tests

Figure 8 - True Stress-Strain Curves

Figure 9 - Comparison Between Theory and High Frequency Fatigue Data

Figure 10 - Effect of NaCl Concentration on the Amplitude Damage Rate Relationship for SAE 1020 Steel

Figure 11 - High Frequency Corrosion Fatigue of SAE 1020 Steel

Figure 12 - Corrosion Fatigue of SAE 1020 Steel
Q Quality factor
\(f_n \) Natural frequency
\(\Delta f \) Width of the resonance curve at half the maximum amplitude
\(\lambda \) Wave length of sound
\(c \) Velocity of sound
\(E \) Modulus of elasticity
\(\rho \) Density
\(\eta \) Fatigue notch sensitivity
\(K_f \) Ratio of unnotched fatigue strength to notched fatigue strength
\(K_t \) Theoretical stress concentration factor
\(\varepsilon_{\text{max}} \) Maximum strain
\(\xi_{\text{max}} \) Maximum amplitude
\(\sigma_a \) Stress amplitude
\(S_e \) Strain energy
\(\sigma \) True stress
\(\varepsilon_p \) True plastic strain
\(n \) Strain hardening exponent
\(\varepsilon_f \) True ultimate fracture strain
\(\sigma_f \) True ultimate fracture stress
\(\sigma_f' \) Auxiliary true ultimate fracture stress
SUMMARY

Recent experiments (1,2) have shown that the plastic strain energy (as given by the area of the stress-strain diagram obtained from a simple tensile test) is at present the most significant criterion for cavitation damage resistance of metals. Since the strain rates involved in the cavitation damage process were several orders of magnitude higher than that in a simple tensile test from which the strain energy was derived, the above result is surprising.

In order to confirm the preceding result, high frequency fatigue tests at 14.2 kcs (at the same frequency used for cavitation damage tests) were conducted for five metals. Recently Morrow (3) used plastic strain energy as a criterion for finite fatigue life and derived a relationship connecting stress to fracture and number of cycles to fracture by making use of true ultimate tensile strength and the strain hardening exponent. He showed reasonable correlation with forty sets of data. Good correlation is also obtained with the present experiments and Morrow's theory if the strain hardening exponent is reduced by about fifteen percent for all the five metals. This result confirms that plastic strain energy is a good criterion even at high strain rates.

Another result revealed by the present study is the influence of corrosion. Recently (7) it was shown that cavitation damage in a corrosive environment increases greatly while the contributions from direct electrochemical corrosion could not
account for this great increase. It was postulated that the increased damage must come principally from the deterioration of the strength due to corrosion fatigue, but there were serious doubts whether corrosion could play any significant role at these high frequencies. Present experiments show that fatigue strength can be reduced significantly for SAE 1020 steel in 3 percent NaCl solution even at high frequencies, thus confirming the earlier speculations.

INTRODUCTION

Recent attempts to characterize the cavitation damage resistance of metals by a common mechanical property have shown that the most significant correlation could be established with the strain energy of the material in the steady state zone (1,2). This strain energy is given by the fracture energy per unit volume of the metal as obtained from the area of the stress-strain diagram from a simple tensile test. The cavitation damage process takes place at strain rates several orders of magnitude higher than the simple tensile test which gives the fracture energy at relatively low strain rates. It seemed surprising that the fracture energy at such low strain rates could still represent the energy absorbing capacity of metals under the highly transient stresses produced by the cavitation bubble collapse. Some experimental verification was needed to clarify the strain rate effects on fracture energy of metals in order to explain these results.
During these studies the thought provoking investigations of Morrow (3) using plastic strain energy as a criterion for finite fatigue life came to the attention of the author. Morrow successfully related the plastic strain energy per cycle to the static true strain energy for forty sets of data including carbon steels, alloy steels, nickel based alloys, various aluminum alloys, beryllium and brass. This prompted the present investigations in which the fatigue tests at a frequency of 14 kcs were conducted following the pioneering work of Gaines (4), Mason (5) and Neppiras (6). Morrow's analysis was extended to the high frequency fatigue tests to see how much the strain rate effects interact and modify the analysis. As a result of this analysis, it has been found that a good correlation between the theory and experiments can be obtained if the value of the strain hardening exponents are reduced by 15 percent from the static result. This shows that the strain rate effects are relatively small when energy is used as a criterion for the fracture mechanism.

Another important aspect clarified by these investigations is the interaction of the corrosive environment on cavitation damage. It has been observed that the damage rates in a corrosive environment are much higher than those observed in a relatively non-corrosive environment (7). The electrochemical corrosion estimated by four different methods could not account for this increase in rate of damage. On the basis of these findings, it was postulated that the major contribution to the increase of rate of damage in a corrosive environment should
come mainly from the change in the fatigue properties of the ma-
terial in that corrosive environment. However, a popular point
of view has hypothesized that under cavitation conditions the
surface material was being removed so rapidly that there was in-
sufficient time for appreciable corrosive weakening of the sur-
face. The present investigations include the test results for
one metal (1020 SAE steel) in 3 percent NaCl solution and these
results show that fatigue properties of non-resistant metal in
a corrosive environment can be drastically changed even under
very high frequencies.

EXPERIMENTAL APPARATUS

The experimental technique adopted for the present investi-
gations consists of oscillating a metallic rod at its resonant
longitudinal frequency. This frequency was selected to be the
same as that used for previous cavitation damage tests. This
technique enables the utilization of the magnetostriction ap-
paratus used previously for cavitation damage tests. Gaines (4)
who introduced the idea of using magnetostriction oscillators
for cavitation damage testing also suggested the use of the same
equipment for fatigue testing as well. He, in fact, carried out
a few fatigue tests in his apparatus. However, this technique
did not gain popularity until Mason (5) and Neppiras (6) suc-
cessfully used exponential and stepped velocity transformers,
thereby making the technique more versatile, because high strains
can be produced on any metal with moderate power. A detailed
discussion of the various aspects involved in this method is
given by Neppiras (6, 8).
In essence, the apparatus consists of a magnetostriction transducer, an oscillator, an amplifier, a power supply, a noise coil, an oscilloscope and a frequency counter (Figure 1). An exponential velocity transformer is attached to the magnetostriction nickel transducer stack. The characteristics of the entire system are shown in Figure 2 for three resonant frequencies. The resonant frequency of the system can be varied by varying the length of that portion of the velocity transformer from the nodal support to the free end by means of extension rods. The amplitude is monitored by a suitable voltage pick-up coil located approximately midway between the node and the antinode. A permanent magnet is used in the immediate vicinity of the coil to increase the induced voltage. This induced voltage is proportional to the displacement amplitude and the instrument is calibrated by measuring the displacement at the antinode with a filar microscope. The accuracy of these measurements is discussed later.

A detailed study of the transducer system showed that the best quality factor was obtained at 14.2 kcs and hence this frequency was selected for fatigue tests. The quality factor is defined as the ratio of usable energy stored in the system to the total input energy and is given by

\[Q = \frac{\sqrt{3} f_n}{\pi \Delta f} \]

[1]

where \(f_n \) is the resonant frequency and \(\Delta f \) is the width of the resonant curve at half of the maximum amplitude.
DESIGN OF TEST SPECIMENS

General Aspects

The basic principle of the design of the high frequency fatigue specimens is as follows: When a longitudinal vibration of a half wave length of a metallic rod is produced by means of an oscillator, the maximum strain is produced at the node while the maximum velocity and displacement are produced at the antinodes at either end of the rod (Figure 3). If a notch is produced at the node, then the strain is further amplified at the node. It is necessary to amplify the strains by means of a notch because of the power limitations of the driving oscillator. There are two other unwanted side effects due to this notch, namely: (i) the fatigue notch sensitivity and (ii) the change in resonant frequency. These two effects will be discussed subsequently.

The main idea is to attach a half wave length of the metallic rod to the free end of the exponential horn and to vibrate it at the best frequency selected from considerations of the quality factor. The half wave length can be experimentally determined by adjusting the rod length to resonate at the best frequency. An accurate determination of this length and frequency will give the value of velocity of sound for each of the metals tested by the relationship

\[\frac{\lambda f_n}{c} = 1 \]

[2]
where

\[\lambda \] is the wave length,

\[f_n \] is the resonant frequency, and

\[c \] is the velocity of sound.

The modulus of elasticity also can be calculated after determining the density of the metals by the conventional water-displacement method, by

\[E = \rho c^2 \] \hspace{1cm} \text{[3]}

where

\[E \] is the modulus of elasticity

\[\rho \] is the density of the metal.

Table I gives the physical properties thus determined for each of the six metals under investigation.

Notch Sensitivity

As pointed out earlier, a notch was provided at the node to induce the required strains. It is known that for plate is sensitive to notches depending upon the geometry of the notches. This effect is characterized by a factor \(\eta \) known as notch sensitivity. \(\eta = \frac{K_f - 1}{K_t - 1} \) \hspace{1cm} \text{[4]}
where

\[K_f = \frac{\text{un-notched fatigue strength}}{\text{notched fatigue strength}}, \text{ and} \]

\[K_t = \text{the theoretical stress concentration factor}. \]

Experimental information on \(\eta \) as a function of notch radius is available for steels and aluminum alloys in References 10 and 11. The notch radius was selected so that \(\eta \) would be as close to unity as possible. The same notch radius was adopted for both Tobin Bronze and Monel since no experimental data were readily available for these metals. Next, the theoretical stress concentration factors for round bars may be found from Reference 12. The dimensions of the notch selected are shown in Figure 4(a). A photograph of the 1020 SAE steel specimen is shown in Figure 4(b).

The stresses are calculated as follows: The maximum strain at the node for a uniform rod in sinusoidal vibration is given by

\[\varepsilon_{\text{max}} = \frac{2\pi \xi_{\text{max}}}{\lambda} \tag{5} \]

where \(\xi_{\text{max}} \) is the maximum amplitude. The stress amplitude \(\sigma_a \) is given by

\[\sigma_a = \varepsilon_{\text{max}} \cdot E \tag{6} \]
For the present design, the theoretical stress concentration factor from Reference 12 is 1.65 and the area ratio is 4. Hence the magnification factor, M is 4 times 1.65 and the stress amplitude is given by

\[\sigma_a = 6.6 \frac{2\pi}{\lambda} \xi_{\text{max}} \cdot E \]

Effect of Notch on Resonant Frequency

Another effect of the notch is to lower the resonant frequency slightly. This can be rectified by reducing the length of the fatigue specimen after a few trial and error experiments. This modified length can also be predicted by an approximate theory following Neppiras (6). However, the change in wave length due to the notch remains within 10 percent as shown in Table 1 and this can be taken into account in the calculation of stresses.

EXPERIMENTAL PROCEDURE AND ACCURACY

Amplitude Measurement and Determination of Maximum Stress

As pointed out earlier, the maximum amplitude at the antinode where the fatigue specimen is attached is monitored by means of a calibrated voice coil located as shown in Figure 1. Since the fatigue specimen forms a half wave length, its addition does not change either the frequency or the calibration. The voltage developed by the coil was of the order of 35 volts, corresponding to an amplitude of 2.5×10^{-3} inch and hence
For the present design, the theoretical stress concentration factor from Reference 12 is 1.65 and the area ratio is 4. Hence the magnification factor, \(M \) is 4 times 1.65 and the stress amplitude is given by

\[
\sigma_a = 6.6 \frac{2\pi}{\lambda} g_{\text{max}} \cdot E
\]

[7]

Effect of Notch on Resonant Frequency

Another effect of the notch is to lower the resonant frequency slightly. This can be rectified by reducing the length of the fatigue specimen after a few trial and error experiments. This modified length can also be predicted by an approximate theory following Neppiras (6). However, the change in wavelength due to the notch remains within 10 percent as shown in Table 1 and this can be taken into account in the calculation of stresses.

EXPERIMENTAL PROCEDURE AND ACCURACY

Amplitude Measurement and Determination of Maximum Stress

As pointed out earlier, the maximum amplitude at the antinode where the fatigue specimen is attached is monitored by means of a calibrated voice coil located as shown in Figure 1. Since the fatigue specimen forms a half wave length, its addition does not change either the frequency or the calibration. The voltage developed by the coil was of the order of 35 volts, corresponding to an amplitude of \(2.5 \times 10^{-8} \) inch and hence
HYDRONAUTICS, Incorporated

maintain constant amplitude. (An automatic amplitude control has been designed for future studies). The determination of this fracture time is no problem especially above ten million cycles since it would take about 12 minutes to reach this value. It would take 20 hours to reach a billion cycles and this time is designated as "run-out" time. (Run-out is defined as the number of cycles at which the test is discontinued—even if the specimen does not fracture).

Fabrication of Test Pieces

Figure 4(a) shows the dimensional tolerances required for the fabrication of the specimens. The specimens were ground to the final dimensions from a 3/4 inch round bar stock for all the five metals except for SAE 1020 steel. The specimens were in the annealed condition and of the same heat as was used for previous cavitation damage tests and stress-strain measurements. Cavitation damage specimens and tensile test specimens were prepared from the same bar stock of the metals. The fatigue specimens for SAE 1020 steel were prepared from 1/2 inch round bar stock; however, the cavitation damage and tensile test data were not available for the same heat.

As soon as these specimens were machined they were coated with a corrosion protective film * and stored. This film was removed with methanol before each test. For this initial limited program, only ten specimens were tested for each metal except for SAE 1020 steel for which about 30 specimens were used.

* Zip Spray No. 2 by Zip Abrasive Company of Cleveland, Ohio.
Cooling and Environmental Control

Without outside cooling, the fatigue specimens become excessively hot near the node due to the high dynamic strains. To avoid this unwanted heating, a constant temperature, close to atmospheric temperature, was maintained by immersing the specimen in a constant temperature bath. This bath provided simultaneously the corrosive or non-corrosive environment as required. For the present experiments, the fatigue specimens were immersed in a beaker full of either distilled water or methanol, which was kept at constant temperature ±2°F. by means of another cooling jacket through which tap water was circulated. For one set of experiments with SAE 1020 steel, 3 percent NaCl solution was used as the environmental bath to provide the corrosive environment. This arrangement is shown in Figure 6.

RESULTS AND ANALYSIS

Results

Figure 7 shows the results of these tests for five metals, namely:

(a) 1100-F Aluminum
(b) 2024-T4 Aluminum
(c) Tobin Bronze
(d) Monel
(e) 316 Stainless Steel.

The dark circles show the results of tests in methanol, whereas all the other tests were conducted in distilled water. These results show the negligible effect of corrosion by distilled water.
Analysis

As pointed out in the introduction, the main aim of these investigations is to obtain a quantitative insight into the strain rate effects on the fracture energy of these metals. The following analysis, originally due to Morrow (3), has been quite useful for this purpose.

Brief review of Morrow's Theory: The following important assumptions are made in this theory.

1. Plastic strain energy is a criterion for finite fatigue life.

2. The total plastic strain energy to fracture increases as the alternating stress is reduced in a completely reversed fatigue test. Specifically, it has been assumed that this quantity is inversely proportional to the fourth power of the alternating stress.

3. The plastic strain energy per cycle can be related to the static true stress-strain curve.

The theoretical justifications, the experimental verification and the limitations of these assumptions are discussed in detail by Morrow in his original paper. The derivation of the essential equations will be touched upon only briefly in this report.
The plastic strain energy up to fracture per unit volume is given by

\[S_e = \int_0^{\varepsilon_f} \sigma \, d\varepsilon_p \]

[8]

and

\[\sigma = \varepsilon_p^n \]

[9]

where \(\sigma \) is the true stress corresponding to a true plastic strain of \(\varepsilon_p \) (see Figure 8), and \(n \) is the strain hardening exponent.

Now

\[\sigma = \sigma_f' \left(\frac{\varepsilon_p}{\varepsilon_f} \right)^n \]

[10]

where \(\sigma_f' \) is the true fracture stress corresponding to the fracture strain \(\varepsilon_f \). In some materials, deviation from linearity in a log-log plot of true stress versus true strain occurs past necking (probably due to the triaxial stresses present in the necked region). For this reason, \(\sigma_f' \) has been defined as the stress obtained by extrapolating the straight line region as shown in Figure 8(b) to the strain at fracture. The experimentally measured value would be \(\sigma_f \).

Substituting Equation [10] in [8] and integrating gives

\[S_e = \frac{1}{1 + n} \sigma_f' \varepsilon_f \]

[11]
Similarly the plastic strain energy, or the work done per cycle Δw is

$$\Delta w = 2 \int_0^{\Delta \varepsilon_p} \sigma d \varepsilon_p$$

$$= \frac{2}{1+n} \sigma_a \Delta \varepsilon_p \quad [12]$$

Assuming that Δw remains constant for the entire test at a given stress level, the work done up to fracture W_f is given by

$$N_f \Delta w = W_f \quad [13]$$

The dependence of W_f on σ_a was evaluated by a combination of a dimensional analysis due to Liu (13) and the Griffith crack theory. There is a region of plastic deformation around each crack. Assuming these regions are geometrically similar, the stored plastic energy will depend upon the square of the crack length.

Thus

$$\frac{W_a}{W_1} = \left(\frac{l_a}{l_1}\right)^2 \quad [14]$$

Invoking Griffith's theory,

$$L_0 \sigma^2 = \text{constant} \quad [15]$$
and hence

\[\frac{L_2}{L_1} = \left(\frac{C_a}{C_1} \right)^{2s} \] \quad [16]

Combining Equations [14] and [16], one gets

\[\frac{C_a}{C_1} = \left(\frac{W_2}{W_1} \right)^{-r} \] \quad [17]

Hence

\[\frac{C_a}{C_{1r}} = \left(\frac{W_f}{S_e} \right)^{-t} \] \quad [18]

Combining Equations [11], [12], [13] and [18], one obtains

\[2N_f \left(\frac{C_a}{C_{1r}} \right)^s \frac{\Delta \varepsilon_P}{\varepsilon_f} = 1 \] \quad [19]

\[\frac{\Delta \varepsilon_P}{\varepsilon_f} = \left(\frac{C_a}{C_{1r}} \right) \frac{1}{n} \] \quad [20]

Now from [19] and [20]

\[C_a = C_{1r} \left(2N_f \right)^{- \frac{n}{1 + 5n}} \] \quad [21]
In logarithmic form

\[
\log \sigma_a = \log \sigma_f' - \frac{n}{1 + 5n} \log (2N_f) \quad [22]
\]

Morrow found this analysis for completely reversed, constant amplitude uniaxial fatigue to agree with the trends in forty sets of fatigue data of metals.

The above analysis was used to check the experimental data of the present high frequency fatigue tests. The values of \(\sigma_f' \) and \(n \) as obtained from true stress-strain diagrams for these five metals are shown in Table 2. It was found that Equation [22] fits the experimental data for all of the five metals tested, if the value of \(n \) used in Equation [22] is fifteen percent less than the actual values as obtained from tests. A comparison between the curves predicted from the above analysis using 85 percent of the value of \(n \) and the experimental data are shown in Figure 9. This agreement shows that the high strain rates involved in the present testing method has not substantially changed the plastic energy required to fracture the metal in fatigue. This conclusion is very significant in explaining why the strain energy gives the most significant correlation with cavitation damage resistance.

Influence of Corrosion

One of the serious limitations to the above analysis is the influence of corrosive environment. It is known that cavitation damage is greatly increased in a corrosive liquid. For a typical
case of NaCl solutions and SAE 1020 steel, this relationship is reproduced from Reference 7 in Figure 10. It was pointed out in that reference that the estimated electrochemical corrosion could not account for the large increase in damage and therefore the fatigue strength of the metal must have deteriorated due to corrosion. There were some doubts as to whether the fatigue strength could be affected so greatly under such high frequencies. To clarify this point, a few experiments were conducted using SAE 1020 steel. Figure 11 shows the results with methanol, distilled water, and 3 percent NaCl solution as liquid environments. One can easily notice the detrimental effect of corrosion on the fatigue strength of steel even at this high frequency.

An analysis similar to the one above gives the following equation for this steel in a non-corrosive environment.

\[\log \sigma_a = \log 1.25 \times 10^3 - \frac{0.07}{1 + 5 \times 0.07} \log 2N_f \] \[23\]

The effect of corrosion can be represented quantitatively by means of the following equation.

\[\log \sigma_a = \log \sigma_f' - \frac{n}{1 + 5n} \log 2N_f - CN_f \] \[24\]

where \(C \) is an empirical corrosion fatigue factor. For the present results, \(n \) turns out to be \(4 \times 10^{-10} \) as shown in Figure 12. It is believed that a deeper understanding of this corrosion factor \(C \) would eventually lead to a quantitative representation of corrosive interaction in cavitation damage.
CONCLUSIONS

Based on the results of these investigations, the following conclusions may be stated.

1. The plastic strain energy correlation found to be successful to represent cavitation damage and low frequency fatigue, can equally be used for correlating high frequency data. This result shows that strain rate effects may not introduce deviations greater than 10 to 20 percent in the strain hardening exponent. This result is significant in explaining the correlations obtained with cavitation damage (1, 2).

2. Fatigue strength of non-resistant metals in a corrosive environment can be significantly changed even under high frequencies. This tends to explain the earlier findings with regard to the very high increase in cavitation erosion in a corrosive liquid (7).
REFERENCES

13. Liu, H. W., University of Illinois, Personal Communication to Morrow (3).
TABLE 1

Required Design Parameters for High Frequency Fatigue Specimens as Determined Experimentally

<table>
<thead>
<tr>
<th>Metal</th>
<th>Velocity of Sound (fps)</th>
<th>Density (gms/cm³)</th>
<th>Modulus of Elasticity (psi)</th>
<th>Wave Length (inches)</th>
<th>Modified Wave Length of Notched Specimen (inches)</th>
<th>Resonant Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1020 Mild Steel</td>
<td>16700</td>
<td>7.85</td>
<td>29.0 x 10⁶</td>
<td>14.0</td>
<td>13.0</td>
<td>14,290</td>
</tr>
<tr>
<td>1100-F Aluminum</td>
<td>16700</td>
<td>2.70</td>
<td>10.0 x 10⁶</td>
<td>14.0</td>
<td>13.2</td>
<td>14,210</td>
</tr>
<tr>
<td>2024-T₄ Aluminum</td>
<td>16700</td>
<td>2.70</td>
<td>10.0 x 10⁶</td>
<td>14.0</td>
<td>13.2</td>
<td>14,200</td>
</tr>
<tr>
<td>316 Stainless Steel</td>
<td>16300</td>
<td>7.98</td>
<td>28.4 x 10⁶</td>
<td>13.6</td>
<td>12.6</td>
<td>14,220</td>
</tr>
<tr>
<td>Monel</td>
<td>14650</td>
<td>8.84</td>
<td>25.4 x 10⁶</td>
<td>12.3</td>
<td>11.2</td>
<td>14,300</td>
</tr>
<tr>
<td>Tobin Bronze</td>
<td>10950</td>
<td>8.41</td>
<td>11.8 x 10⁶</td>
<td>9.2</td>
<td>8.3</td>
<td>14,200</td>
</tr>
</tbody>
</table>
TABLE 2
The Values Of σ_f' And n For The Five Metals Analyzed

<table>
<thead>
<tr>
<th>Metal</th>
<th>σ_f'</th>
<th>n</th>
<th>85% n</th>
<th>Strain Energy S_e in Kips</th>
</tr>
</thead>
<tbody>
<tr>
<td>316 Stainless Steel</td>
<td>120</td>
<td>0.10</td>
<td>0.085</td>
<td>35</td>
</tr>
<tr>
<td>Monel</td>
<td>110</td>
<td>0.08</td>
<td>0.068</td>
<td>24</td>
</tr>
<tr>
<td>Tobin Bronze</td>
<td>83</td>
<td>0.10</td>
<td>0.85</td>
<td>17</td>
</tr>
<tr>
<td>2024-T4 Aluminum</td>
<td>81</td>
<td>0.13</td>
<td>0.11</td>
<td>13</td>
</tr>
<tr>
<td>1100-F Aluminum</td>
<td>26</td>
<td>0.07</td>
<td>0.06</td>
<td>4</td>
</tr>
</tbody>
</table>
HYDRONAUTICS, INCORPORATED

FIGURE 1 - BLOCK DIAGRAM OF THE MAGNETOSTRICTION APPARATUS USED FOR HIGH FREQUENCY FATIGUE TESTS
FIGURE 2 - TRANSDUCER CHARACTERISTICS

ALL READINGS AT APPROXIMATELY CONSTANT POWER INPUT

\[f_n = 13390 \quad Q=19 \]
\[f_n = 14210 \quad Q=29 \]
\[f_n = 14790 \quad Q=15.1 \]
FIGURE 3 - BASIC PRINCIPLE OF HIGH FREQUENCY FATIGUE SPECIMEN DESIGN

(a) UNNOTCHED HALF-WAVE LENGTH SPECIMEN

(b) NOTCHED HALF-WAVE LENGTH SPECIMEN

\[\epsilon'_\text{max} = M \epsilon_{\text{max}} \]
NOTES:

1. GROOVE (DETAIL "A") IS TO BE SMOOTH, FREE FROM CHATTER TOOL MARKS, GROOVES OR OTHER DISCONTINUITIES. THE DIMENSIONS OF THE GROOVE MUST BE IDENTICAL FOR ALL SPECIMENS IN A LOT ±.001 AS MEASURED WITH AN OPTICAL COMPARATOR.

2. FINISH IN GROOVE Ø.36 OR BETTER

3. DIMENSION "A" = HALF WAVE LENGTH OF SOUND

FIGURE 4(a) - HIGH FREQUENCY FATIGUE SPECIMEN
FIGURE 4 (b) - PHOTOGRAPH OF SAE 1020 STEEL FATIGUE SPECIMEN
Figure 5 - Calibration of Pick-Up Coil for Monitoring Strains

Amplitude (\(\text{inches x 10}^3 \))

Strain (\(\text{inches x 10}^3 \))

Pick-Up Coil Volts
FIGURE 6 - GENERAL ARRANGEMENT OF HIGH FREQUENCY FATIGUE TESTING APPARATUS
HYDRONAUTICS, INCORPORATED

TEST CONDITIONS FOR ALL THE METALS
FREQUENCY: 14.8 HZ
TEMPERATURE: 76°
LIQUID ENVIRONMENT
• DISTILLED WATER
• METHANOL

STRESS AMPLITUDE \(\sigma_0 \) - KIPS

NUMBER OF CYCLES TO FAILURE - \(N_f \)

FIGURE 7 - RESULTS OF HIGH FREQUENCY FATIGUE TESTS
HYDRONAUTICS, INCORPORATED

a) TYPICAL TRUE STRESS-STRAIN CURVE

b) LOGARITHMIC TRUE STRESS-STRAIN CURVE

c) TRUE STRESS-STRAIN DATA FOR 316 STAINLESS STEEL

FIGURE 8 - TRUE STRESS-STRAIN CURVES
FIGURE 9 - COMPARISON BETWEEN THEORY AND HIGH FREQUENCY FATIGUE DATA
MATERIAL: SAE 1020 STEEL
FREQUENCY: 15 KCS
TEMPERATURE: 80°F
DIAMETER OF SPECIMEN: 5/8 INCH
AFTER S. WARING ET AL (7)

FIGURE 10 - EFFECT OF NaCl CONCENTRATION ON THE AMPLITUDE VERSUS DAMAGE RATE RELATIONSHIP FOR SAE 1020 STEEL
Figure II - High Frequency Corrosion Fatigue of SAE 1020 Steel
In order to verify the strain rate effects on the correlation between strain energy of metals and their cavitation damage resistance, high frequency fatigue tests at 14.2 kcs were conducted using a magnetostriction oscillator. Utilizing Morrow's theory, it has been shown that fatigue at this frequency can be quantitatively predicted if a fifteen percent reduction in static strain hardening factor is made. This result shows that strain rate effects are relatively small when plastic strain energy is used as a criterion.

Another result revealed by this study is the influence of corrosion. Present experiments show that fatigue strength can be reduced significantly for SAE 1020 steel in 3 percent NaCl solution even at high frequencies, thus confirming earlier speculations.
1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as month, year, or month, year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures. i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 1) "Qualified requesters may obtain copies of this report from DDC."

 2) "Foreign announcement and dissemination of this report by DDC is not authorized."

 3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through DDC."

 4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through DDC."

 5) "All distribution of this report is controlled. Qualified DDC users shall request through DDC."

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical content. The assignment of links, roles, and weights is optional.
DISTRIBUTION LIST
(Contract Nonr 3755(00))

<table>
<thead>
<tr>
<th>Chief of Naval Research</th>
<th>Commanding Officer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of the Navy</td>
<td>Office of Naval Research</td>
</tr>
<tr>
<td>Washington 25, D. C.</td>
<td>Branch Office</td>
</tr>
<tr>
<td>Attn: Codes 438</td>
<td>3 1000 Geary Street</td>
</tr>
<tr>
<td>Code 461</td>
<td>1 San Francisco 9, California</td>
</tr>
<tr>
<td>Code 463</td>
<td>1</td>
</tr>
<tr>
<td>429</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commanding Officer</th>
<th>Director</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Naval Research</td>
<td>U.S. Naval Research Laboratory</td>
</tr>
<tr>
<td>Branch Office</td>
<td>Washington 25, D. C.</td>
</tr>
<tr>
<td>495 Summer Street</td>
<td>Attn: Codes 2000</td>
</tr>
<tr>
<td>Boston 10, Massachusetts</td>
<td>2020</td>
</tr>
<tr>
<td></td>
<td>2027</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Commanding Officer	Chief, Bureau of Ships
--------------------------	Department of the Navy
Office of Naval Research	Washington 25, D. C.
Branch Office	Attn: Codes 300
230 N. Michigan Avenue	305
Chicago 1, Illinois	335
	341
	342A
	345
	421
	440
	442
	634A
	Attn: Code 634 (B. Taylor)
	Code 634 (L. Birnbaum)

Commanding Officer	Chief, Bureau of Naval Weapons
--------------------------	Department of the Navy
Office of Naval Research	Washington 25, D. C.
Branch Office	Attn: Codes R
Navy No. 100, Box 39	R-12
Fleet Post Office	RR
New York, New York	RRRE
	RU
	RUTO

<table>
<thead>
<tr>
<th>Commanding Officer</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Naval Research</td>
<td></td>
</tr>
<tr>
<td>Branch Office</td>
<td></td>
</tr>
<tr>
<td>1030 East Green Street</td>
<td></td>
</tr>
<tr>
<td>Pasadena 1, California</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Commanding Officer and Director</td>
<td>Commander</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>U.S. Navy Mine Defense Laboratory</td>
<td>Portsmouth Naval Shipyard</td>
</tr>
<tr>
<td>Panama City, Florida</td>
<td>Portsmouth, New Hampshire</td>
</tr>
<tr>
<td>Superintendent</td>
<td>Attn: Design Division</td>
</tr>
<tr>
<td>U.S. Naval Postgraduate School</td>
<td>Commander</td>
</tr>
<tr>
<td>Monterrey, California</td>
<td>Charleston Naval Shipyard</td>
</tr>
<tr>
<td>Attn: Library</td>
<td>U. S. Naval Base</td>
</tr>
<tr>
<td>Commanding Officer and Director</td>
<td>Charleston, South Carolina</td>
</tr>
<tr>
<td>U.S. Naval Electronic Laboratory</td>
<td>Attn: Library</td>
</tr>
<tr>
<td>San Diego, California</td>
<td>U. S. Naval Base</td>
</tr>
<tr>
<td>Attn: Code 4223</td>
<td>Charleston, South Carolina</td>
</tr>
<tr>
<td>Commanding Officer and Director</td>
<td>Commander</td>
</tr>
<tr>
<td>U.S. Naval Civil Engineering Lab.</td>
<td>Long Beach Naval Shipyard</td>
</tr>
<tr>
<td>Port Hueneme, California</td>
<td>Long Beach 2, California</td>
</tr>
<tr>
<td>New York Naval Shipyard</td>
<td>Attn: Research Division</td>
</tr>
<tr>
<td>Material Laboratory</td>
<td>Commander</td>
</tr>
<tr>
<td>Brooklyn, New York</td>
<td>Pearl Harbor Naval Shipyard</td>
</tr>
<tr>
<td>Attn: Mr. C. K. Chatten Code 949</td>
<td>Navy No. 128, Fleet Post Office</td>
</tr>
<tr>
<td>Commander</td>
<td>San Francisco, California</td>
</tr>
<tr>
<td>Norfolk Naval Shipyard</td>
<td>1</td>
</tr>
<tr>
<td>Portsmouth, Virginia</td>
<td>Commander</td>
</tr>
<tr>
<td>New York Naval Shipyard</td>
<td>San Francisco Naval Shipyard</td>
</tr>
<tr>
<td>U.S. Naval Base</td>
<td>San Francisco 24, California</td>
</tr>
<tr>
<td>Brooklyn, New York</td>
<td>Shipyard Technical Library</td>
</tr>
<tr>
<td>Commander</td>
<td>Code 303TL, Bldg. 746</td>
</tr>
<tr>
<td>Boston Naval Shipyard</td>
<td>1</td>
</tr>
<tr>
<td>Boston 29, Massachusetts</td>
<td>Mare Island Naval Shipyard</td>
</tr>
<tr>
<td>Commander</td>
<td>Vallejo, California</td>
</tr>
<tr>
<td>Philadelphia Naval Shipyard</td>
<td>1</td>
</tr>
<tr>
<td>U.S. Naval Base</td>
<td>Commandant, U.S. Coast Guard</td>
</tr>
<tr>
<td>Philadelphia 12, Penn.</td>
<td>1300 E. Street, N. W. Washington, D. C.</td>
</tr>
<tr>
<td>Institution</td>
<td>Year</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>National Research Council</td>
<td></td>
</tr>
<tr>
<td>Montreal Road</td>
<td></td>
</tr>
<tr>
<td>Ottawa 2, Canada</td>
<td></td>
</tr>
<tr>
<td>Attn: Mr. E. S. Turner</td>
<td></td>
</tr>
<tr>
<td>Engineering Societies Library</td>
<td></td>
</tr>
<tr>
<td>29 West 39th Street</td>
<td></td>
</tr>
<tr>
<td>New York 18, New York</td>
<td></td>
</tr>
<tr>
<td>Society of Naval Architects and Marine Engineers</td>
<td></td>
</tr>
<tr>
<td>74 Trinity Place</td>
<td></td>
</tr>
<tr>
<td>New York 6, New York</td>
<td></td>
</tr>
<tr>
<td>Webb Institute of Naval Architecture</td>
<td></td>
</tr>
<tr>
<td>Glen Cove, Long Island, New York</td>
<td></td>
</tr>
<tr>
<td>Attn: Prof. E. V. Lewis</td>
<td></td>
</tr>
<tr>
<td>Technical Library</td>
<td></td>
</tr>
<tr>
<td>The John Hopkins University</td>
<td></td>
</tr>
<tr>
<td>Baltimore 18, Maryland</td>
<td></td>
</tr>
<tr>
<td>Attn: Prof. S. Corrsin</td>
<td></td>
</tr>
<tr>
<td>Prof. F. H. Clauser</td>
<td></td>
</tr>
<tr>
<td>Prof. O. M. Phillips</td>
<td></td>
</tr>
<tr>
<td>Director</td>
<td></td>
</tr>
<tr>
<td>Applied Physics Laboratory</td>
<td></td>
</tr>
<tr>
<td>The John Hopkins University</td>
<td></td>
</tr>
<tr>
<td>8621 Georgia Avenue</td>
<td></td>
</tr>
<tr>
<td>Silver Spring, Maryland</td>
<td></td>
</tr>
<tr>
<td>New York State University</td>
<td></td>
</tr>
<tr>
<td>Maritime College</td>
<td></td>
</tr>
<tr>
<td>Engineering Department</td>
<td></td>
</tr>
<tr>
<td>Fort Schuyler, New York</td>
<td></td>
</tr>
<tr>
<td>Attn: Prof. J. J. Foody</td>
<td></td>
</tr>
<tr>
<td>California Institute of Tech.</td>
<td></td>
</tr>
<tr>
<td>Pasadena 4, California</td>
<td></td>
</tr>
<tr>
<td>Attn: Hydrodynamics Lab.</td>
<td></td>
</tr>
<tr>
<td>Prof. T. Y. Wu</td>
<td></td>
</tr>
<tr>
<td>Prof. A. Ellis</td>
<td></td>
</tr>
<tr>
<td>Prof. A. Costa</td>
<td></td>
</tr>
<tr>
<td>Prof. M. Plesset</td>
<td></td>
</tr>
<tr>
<td>University of California</td>
<td></td>
</tr>
<tr>
<td>Berkeley 4, California</td>
<td></td>
</tr>
<tr>
<td>Attn: Department of Engineering</td>
<td></td>
</tr>
<tr>
<td>Prof. H. A. Schade</td>
<td></td>
</tr>
<tr>
<td>Prof. J. Johnson</td>
<td></td>
</tr>
<tr>
<td>Prof. J. V. Wehausen</td>
<td></td>
</tr>
<tr>
<td>Prof. E. V. Laitone</td>
<td></td>
</tr>
<tr>
<td>Prof. F. Lieber</td>
<td></td>
</tr>
<tr>
<td>Prof. M. Holt</td>
<td></td>
</tr>
<tr>
<td>University of California</td>
<td></td>
</tr>
<tr>
<td>Los Angeles, California</td>
<td></td>
</tr>
<tr>
<td>Attn: Prof. R. W. Leonard</td>
<td></td>
</tr>
<tr>
<td>Prof. A. Powell</td>
<td></td>
</tr>
<tr>
<td>Director</td>
<td></td>
</tr>
<tr>
<td>Scripps Institution of Oceanography</td>
<td></td>
</tr>
<tr>
<td>University of California</td>
<td></td>
</tr>
<tr>
<td>La Jolla, California</td>
<td></td>
</tr>
<tr>
<td>Iowa Institute of Hydraulic Research</td>
<td></td>
</tr>
<tr>
<td>State University of Iowa</td>
<td></td>
</tr>
<tr>
<td>Iowa City, Iowa</td>
<td></td>
</tr>
<tr>
<td>Attn: Prof. H. Rouse</td>
<td></td>
</tr>
<tr>
<td>Prof. L. Landweber</td>
<td></td>
</tr>
<tr>
<td>Prof. P. G. Hubbard</td>
<td></td>
</tr>
<tr>
<td>Harvard University</td>
<td></td>
</tr>
<tr>
<td>Cambridge 38, Massachusetts</td>
<td></td>
</tr>
<tr>
<td>Attn: Prof. G. Birkhoff</td>
<td></td>
</tr>
<tr>
<td>Prof. S. Goldstein</td>
<td></td>
</tr>
</tbody>
</table>
HYDRONAUTICS, Incorporated

University of Michigan
Ann Arbor, Michigan
Attn: Engineering Research Institute
Prof. F.G. Hammitt
(Dept. of Nuclear Engr.)

Stevens Institute of Technology
Davidson Laboratory
Hoboken, New Jersey
Attn: Mr. D. Savitsky
Mr. J. P. Breslin
Dr. D. N. Hu
Dr. S. J. Lukasik

Director
Ordnance Research Laboratory
Pennsylvania State University
University Park, Pennsylvania
Attn: Dr. G. F. Wislicenus

Director
Woods Hole Oceanographic Inst.
Woods Hole, Massachusetts

Director
Alden Hydraulic Laboratory
Worcester Polytechnic Institute
Worcester, Massachusetts

Stanford University
Stanford, California
Attn: Dr. Byrne Perry
(Dept. of Civil Engr.)
Prof. E. Y. Hsu
(Dept. of Civil Engr.)
Dr. S. Kline
(Dept. of Mech. Engr.)

Dr. E. R. G. Eckert
Mechanical Engineering Department
University of Minnesota
Minneapolis, Minnesota 55455

Institute for Fluid Mechanics and Applied Mathematics
University of Maryland
College Park, Maryland
Attn: Prof. J. M. Burgers

Department of Theoretical and Applied Mechanics
College of Engineering
University of Illinois
Urbana, Illinois
Attn: Dr. J. M. Robertson

Cornell Aeronautical Laboratory
Buffalo 21, New York
Attn: Mr. W. F. Milliken, Jr.

Brown University
Providence 12, Rhode Island
Attn: Dr. R. E. Meyer
Dr. W. H. Reid

Rensselaer Polytechnic Institute
Troy, New York
Attn: Prof. R. C. DiPrima
Southwest Research Institute
8500 Culebra Road
San Antonio 6, Texas
Attn: Dr. H.N. Abramson

Department of Aeronautical Engr.
University of Colorado
Boulder, Colorado
Attn: Prof. M.S. Uberoi

Courant Institute
New York University
New York, New York
Attn: Prof. P. Carabelian

Institut fur Schiffbau der
Universitat Hamburg
Lammerszth 90
Hamburg 33, Germany
Attn: Prof. O. Grim
Attn: Prof. K. Wieghardt

Max-Planck Institut fur
Stromungsforschung
Bottingerstrasse 6-8
Gottingen, Germany
Attn: Dr. H. Reichardt, Dir.

Versuchsanstalt fur Wasserbau
und Schiffbau
Gartenufer (Schleuseninsel)
1 Berlin 12, Germany
Attn: Prof. Dr. Ing. S. Schuster

Netherlands Ship Model Basin
Wageningen, The Netherlands
Attn: Ir. R. Wereldsma
Dr. J.B. Van Manen

Mitsubishi Shipbuilding and
Engineering Company
Nagasaki, Japan
Attn: Dr. K. Taniguchi

Mr. W.R. Wiberg, Chief
Marine Performance Staff
The Boeing Company
Seattle 24, Washington

Mr. William P. Carl
Grumman Aircraft Corporation
Bethpage, L.I., New York

Grumman Aircraft Corporation
Bethpage, L.I., New York
Attn: Engineering Library

Mr. G. W. Paper
ASW and Ocean Systems Dept.
Lockheed Aircraft Corporation
Burbank, California

Dr. A. Ritter
Therm Advanced Research Div.
Therm, Incorporated
Ithaca, New York

HYDRONAUTICS, Incorporated
Pindell School Road
Howard County
Laurel, Maryland
Attn: Mr. P. Eisenberg
(President)
Mr. M.P. Tulin
(Vice President)