AD NUMBER

AD455118

NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution authorized to U.S. Gov’t. agencies and their contractors; Administrative and Operational Use; Dec 1964. Other requests shall be referred to the Office of Naval Research, 800 N. Quincy Dr. Arlington, VA 22217.

AUTHORITY

ONR, per ltr dtd, 28 Jul 1977

THIS PAGE IS UNCLASSIFIED
NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
Nuclear Magnetic Resonance Spectroscopy.
The Configurational Stability of Primary Grignard Reagents.
Structure and Medium Effects.

By George M. Whitesides and John D. Roberts

Prepared for publication in
Journal of the American Chemical Society

California Institute of Technology
Division of Chemistry and Chemical Engineering
Pasadena, California

Reproduction in whole or in part is permitted for
any purpose of the United States Government
Nuclear Magnetic Resonance Spectroscopy.
The Configurational Stability of Primary Grignard Reagents.
Structure and Medium Effects. 1

(1) Supported in part by the Office of Naval Research and the National Science Foundation.

By George M. Whitesides and John D. Roberts

Qualitative and semi-quantitative examination of the temperature dependence of the \(\text{RCH}_2\text{Mg} \) proton n.m.r. spectra of several Grignard reagents indicates that the rate of inversion at this center is relatively insensitive to the structure of the group \(R \). Secondary Grignard reagents invert much more slowly, if at all. The dependence of the inversion rate of the primary organometallic compounds on solvent character and on added salts suggests that inversion proceeds by means of a mechanism having kinetic order greater than one.

Introduction

The preceding paper 2 presented n.m.r. spectral evidence demonstrating that 3,3-dimethylbutylmagnesium chloride 3 in diethyl ether solu-

For convenience, the organometallic compound formed by reaction of an alkyl halide with magnesium in an ethereal solvent will again be called an alkylmagnesium halide.

This observation suggests that careful examination of the spectrum of this and related compounds in different solvents and at different concentrations might provide data pertinent to the mechanism of this inversion, and to the nature of Grignard reagents in solution.

Much of the modern work concerned with the structure of Grignard reagents has centered around attempts to evaluate the importance of the so-called Schlenk equilibrium in describing the Grignard reagent. In several well-known experiments, Dessy and co-workers examined the exchange reaction between labeled magnesium bromide and diethyl-^4

\[
2 \text{RMgX} \rightleftharpoons \text{R}_2\text{Mg}^+\text{MgX}_2 \rightleftharpoons \text{R}_3\text{Mg} + \text{MgX}_2
\]

and diphenylmagnesium, ^5 and concluded from these experiments that
the equilibrium

\[2 \text{RMgBr} \rightleftharpoons \text{R}_2\text{Mg} + \text{MgBr}_2 \]

was not important in the Grignard reagents studied. In addition, conductiometric measurements were reported to give identical values for the dielectric constant of a 1:1 mixture of diethylmagnesium and magnesium bromide and of an equivalent concentration of "ethylmagnesium bromide."\(^6\)

It was therefore concluded that the Grignard reagents studied were best represented by the equilibrium and that no species represented by the formula "RMgX" is present in solution.\(^7\)

Recently however, Stucky and Rundle\(^8\) and Ashby and Becker\(^9\)

29, 0000 (1964) for evidence that in fact the Schlenk equilibrium may be rapidly established.

have presented data suggesting that Dessy's conclusion may have been premature. Stucky and Rundle demonstrated by the X-ray crystal structure determination of phenylmagnesium bromide dietherate that the magnesium atom was tetrahedrally coordinated to one phenyl group, one bromide atom, and two oxygen atoms; that is, that this Grignard reagent was in fact "RMgBr·2Et₂O" in the solid state.

Ashby and Becker were able to obtain a crystalline solid from a tetrahydrofuran solution of ethylmagnesium chloride whose empirical formula corresponded to EtMgCl₃·THF. This fact, and their observation that ethyl Grignard reagent was monomeric in tetrahydrofuran, led them to conclude that the most important species in solution was actually EtMgCl.

Both of these studies depended on compounds existing in the solid state, and in consequence neither is necessarily pertinent to the structure of the Grignard reagent in solution. However, the X-ray study in particular provides evidence that "RMgX" may exist under suitable conditions, and suggests that further work on the structure of Grignard reagents in solution must take into consideration the possibility of its existence.
Results

Organomagnesium compounds derived from halides similar in structure to 3,3-dimethylbutyl chloride show an analogous temperature dependence in their spectra. Thus, the spectra of the \(-\text{CH}_3\)-Mg protons of 3-methylbutylmagnesium chloride and n-butyilmagnesium chloride are triplets at room temperature; at \(-50^\circ\), the spectra become more complicated (Fig. 1). The degree of complexity is unfortunately sufficiently great to discourage attempts to analyze the spectra explicitly. The 3,3-dimethylbutyl group provides a particularly simple system for analysis, because the four protons of the ethylene fragment are not coupled to the protons of the t-butyl group. In the 3-methylbutyl- and n-butyilmagnesium chloride, however, the chemical shift between the methyl protons and the adjacent methylene protons is of the same order of magnitude as the coupling constant between them, and the \(\alpha\)-proton spectrum is consequently complicated. 10

Although little quantitative information can be obtained from the spectra of these Grignard reagents, or from the spectra of the corresponding dialkylmagnesium compound (Fig. 2), qualitative comparison with the 3,3-dimethylbutylmagnesium compounds makes clear two similarities in their temperature dependence. The first of these is that the low-temperature spectra of the Grignard reagents are very similar to the room-temperature spectra of the corresponding dialkylmagnesium compounds.
mounds. The second is that the Grignard reagent spectra do not seem to change at temperatures below approximately -70°, and the di-
sylmagnesium spectra change little below 430°.

Both of these observations are compatible with the explanation explicitly proposed for the temperature dependence of the spectrum of 3-dimethylbutyl Grignard reagent based on the rate of inversion. Moreover, the second of these observations would be difficult to reconcile with important changes in populations of rotational conformations with temperature. If changes in the populations of the trans and gauche conformations were important in determining the temperature dependence of these spectra, the broadening observed in the central line for di-n-butyl-
magnesium compared with n-butylmagnesium chloride would be the consequence of an increase in the energy difference between trans and gauche conformations of these compounds. Decreasing the temperature of the Grignard reagent produces a broadening of the central line of its spectrum. If this change were a reflection of changes in conformer populations, lowering the temperature of the dialkylmagnesium compound should result in an analogous change in its spectrum. In fact, little change in the spectrum of the latter compound is observed on decreasing the tempera-
ture. Therefore, changes in conformer populations are probably not important in determining the temperature dependence of the spectra.

An analogous argument can of course be applied to the 3-methy-
tylmagnesium and 3, 3-dimethylbutylmagnesium compounds studied.

The high-temperature spectral behavior of bis-(3-methylbutyl)-
magnesium and di-n-butylmagnesium appears comparable with that observed
for bis-(3, 3-dimethylbutyl)-magnesium. Each changes from its "low-
temperature" form to a triplet over the temperature range +50° to +110°.

The similarity in the spectral behavior of these three structurally
similar Grignard reagents suggests that the rates and thermodynamic
parameters for the processes which result in the simplification of their
spectra are approximately the same. This qualitative observation that
all the primary Grignard reagents examined exhibit the same spectral
behavior is further supported by analysis of the temperature dependence
of the spectrum of 2-phenyl-3-methylbutylmagnesium chloride as will
be described below.

Discussion of the Grignard reagents considered up to this point
has centered on the observation of a temperature-dependent averaging of
vicinal coupling constants between α and β methylene protons. The same
kinds of information can in principle be obtained from chemical-shift data.
The two primary Grignard reagents examined for evidence of chemical-
shift averaging were selected in the expectation that their α-methylene
group would have an AB-type spectrum if inversion at the –CH₂-Mg
center were slow, and an A₂-type spectrum if inversion were rapid.
The protons of a methylene group near a center of molecular asymmetry may be magnetically non-equivalent and display AB type n.m.r. spectra. Recent investigations indicate that conformational preference is responsible for the major part of the magnetic non-equivalence of the methylene protons. A primary Grignard reagent which might be expected to have magnetically non-equivalent methylene protons would thus be one in which one rotational conformation around the α,β carbon–carbon bond would be significantly lower in energy than the other two. The \(\text{C}_3\text{H}_6\text{Mg} \) protons of two Grignard reagents, 2-phenylpropylmagnesium bromide and 2-phenyl-3-methylbutylmagnesium chloride, were examined for evidence of magnetic non-equivalence. The α-methylene hydrogens of the former in diethyl ether solution had an \(A_2 \)-type spectrum from +33° to -80° (viscous broadening prevented measurement below this temperature). The methylene protons of the latter had a spectrum characteristic of the AB part of an ABX spectrum at room temperature; at +110°, the spectrum collapsed to an \(A_2X \) type (Fig. 3 and 4).

The most plausible interpretation of the temperature dependence of the spectrum of 2-phenyl-3-methylbutylmagnesium chloride is the same as that proposed for 3,3-dimethylbutylmagnesium chloride. The magnetic
non-equivalence of the methylene hydrogens at +33° demonstrates clearly that inversion of configuration at the \(-\text{CH}_2\text{Mg}\) center is slow on the n.m.r. time scale. The loss of the magnetic non-equivalence as the temperature is increased is taken as evidence that a rapid inversion of configuration, analogous to that proposed previously, averages the magnetic environments of the methylene hydrogens.

Quantitative discussion of these spectra is more difficult than that of the spectra of the 3,3-dimethylbutylmagnesium derivatives,\(^2\) because the chemical shifts and coupling constants obtained on analysis of the former compound are less precise. The AB part of an ABX spectrum theoretically consists of eight lines, of which four may be of low intensity. The positions of these low intensity lines are unfortunately difficult to determine exactly in the room temperature spectra of either 2-phenyl-3-methylbutylmagnesium chloride and bis-(2-phenyl-3-methylbutyl)-magnesium. These lines are necessary for accurate determination of the geminal methylene coupling constant. The spectrum in ether solution is further confused by the accidental near-degeneracy of two of the intense lines. Moreover, no information can be obtained from the X part of the spectrum, due both to its low intensity and to its complexity.

Therefore, although agreement can be obtained between the observed and calculated spectra, the values obtained from analysis cannot be regarded as highly precise. Coupling constants and chemical shifts for a solution of this Grignard reagent in diethyl ether solution at -14°, and in tetrahydrofuran solution at +33°, and for the corresponding dialkylmagnesium compound in ether at +33° are reported in Table I. The starting halide has an \(A_2X\) type spectrum in carbon tetrachloride solution.
Table I

Spectral Parameters (c. p. s.) for the Methylene Protons of 2-phenyl-3-methylmagnesium X Treated as an ABX System

<table>
<thead>
<tr>
<th></th>
<th>$X = \text{Cl}^a$</th>
<th>$X = \text{Cl}^b$</th>
<th>$X = \text{R}^c$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\nu_A - \nu_B$</td>
<td>12.9</td>
<td>9.2</td>
<td>14.2</td>
</tr>
<tr>
<td>$\nu_A - \nu_X$</td>
<td>150d</td>
<td>150d</td>
<td>150d</td>
</tr>
<tr>
<td>J_{AB}</td>
<td>± 12.1</td>
<td>± 12.5</td>
<td>$\pm 12.2^d$</td>
</tr>
<tr>
<td>J_{AX}</td>
<td>∓ 10.3</td>
<td>∓ 9.7</td>
<td>∓ 10.2</td>
</tr>
<tr>
<td>J_{BX}</td>
<td>∓ 4.3</td>
<td>∓ 5.6</td>
<td>∓ 3.2</td>
</tr>
</tbody>
</table>

aDiethyl ether solution at -14°. bTetrahydrofuran solution at +33°. cDiethyl ether solution at -14°. dThis value was assumed.

eAccuracy in the chemical shift and coupling constant values is estimated to be ± 0.5 c. p. s.

The temperature dependence of the α-proton spectrum of 2-phenyl-3-methylbutylmagnesium chloride depends on the response of the ABX spectrum to the exchange rate of a process interchanging the A and B protons. The AB part of the observed ABX spectrum consists of two overlapping quartets, arising from transitions within two separate sets of energy levels, (i.e., the two sets of transitions have no energy levels in common). Fig. 5 indicates the transitions which are expected to collapse under the influence of an exchange process averaging states 3', and 4', and 5' and 6'. 13 It can be shown that each of these quartets
behave approximately as an AB quartet with "effective chemical shifts" of
\[\nu_B - \nu_A = J_{BX} - J_{AX} \] or \[\nu_B - \nu_A = -J_{BX} + J_{AX} \] respectively,\(^{14}\) and coupling

\[\text{constant } J^\prime_{AB} \] under the influence of the exchange process.

Analysis of the temperature dependence of the \(\alpha\)-proton spectrum
of 2-phenyl-3-methylbutylmagnesium chloride is complicated by the fact
that only the four intense central lines of the AB part of the ABX spectrum
can be observed, in the region of intermediate exchange rate. Careful
analysis of the temperature dependence of these spectra would involve,
for example, comparing the observed separation between the 6 and 4
transitions at each temperature with spectra calculated for an AB system
with \[\nu_A - \nu_B = \nu(2) - \nu(1) - J_{13} + J_{12} \] and \[J_{AB} = J_{12} \] for several values of
\(1/\tau\), in order to obtain the dependence of \(1/\tau\) on temperature. A plot of
\[\log (1/\tau) \] versus \(1/T\) would then yield \(E_a\) and \(A\).

As an approximate alternative method for the calculation of activation
parameters from the collapse of these spectra, we have calculated
approximate "apparent" chemical shifts from the spectra at each temperature in the region of intermediate exchange rate and applied the formulas developed by Gutowsky and Holm15 for an AX system with $J = 0$ to these parameters to obtain the pre-exchange lifetimes. To calculate the apparent chemical shifts, the assumption was made that the positions of the weak outer lines could be approximated by adding or subtracting J_{AB} from the appropriate inner lines. Values of $v_1 - v_2$ could then be calculated from the resulting spectra by standard methods.

This procedure has several defects. The most serious of these is that the spectra calculated previously using typical AB parameters indicate clearly that the separation between the two A transitions is not exactly J_{AB} in the region of intermediate exchange: the weak outer line broadens and collapses toward the center more rapidly than the strong inner line. The only justification for using the procedure outlined above in this case is that the intensity of the weak outer line is much less than that of the inner line, and that a fairly large error in determining its line position introduces only a small error in the value of the effective chemical shift.

The values of the "apparent" chemical shifts at each temperature in the region of intermediate exchange rate were used to obtain the corresponding values of $1/\tau$, where τ is the pre-exchange lifetime in the

Gutowsky and Holm procedure. Activation energies and pre-exponential factors were obtained from the plots of \(\log \left(\frac{1}{r} \right) \) versus \(\frac{1}{T} \) shown in Fig. 6. For 2-phenyl-3-methylbutylmagnesium chloride in diethyl ether the values obtained were \(E_a \approx 7 \text{ kcal/mole} \) and \(A \approx 10^6 \text{ sec}^{-1} \); for 2-phenyl-3-methylmagnesium chloride in tetrahydrofuran the corresponding values were \(E_a \approx 17 \text{ kcal/mole} \) and \(A \approx 10^{11} \text{ sec}^{-1} \). The spectrum of bis-(2-phenyl-3-methylbutyl)-magnesium does not collapse in the accessible temperature range.

Two further points related to the spectral behavior of this compound deserve brief comment. First, the line-broadening observed in the region of intermediate exchange-rate for 2-phenyl-3-methylbutylmagnesium chloride again confirms that exchange and not changes in the populations of the rotational conformations open to the molecule is responsible for the temperature dependence of the spectrum. Second, the absence of a temperature dependence on the spectrum of the related compound 2-phenylpropylmagnesium bromide does not necessarily imply that inversion of configuration is rapid. We have examined the spectrum

(16) The conclusions reached by Fraenkel and co-workers concerning the interpretation of similar observations are probably incorrect. The magnitude of a chemical-shift difference resulting from molecular asymmetry is difficult to predict under the best of circumstances. Although the interpretation of a non-zero chemical shift in terms of configurational stability is fairly straightforward, meaningful interpretation of a zero chemical shift requires caution; c.f., G. Fraenkel, D. G. Adams, and J. Williams, Tetrahedron Letters, 767 (1963).
of this latter compound and of bis-(2-phenylpropyl)-magnesium from +33° to -75° (viscous broadening prevents observation below this temperature) and find that the \(-\text{CH}_2\text{Mg}\) protons of both compounds remain magnetically equivalent. The preceding discussions have demonstrated clearly that other, structurally similar primary Grignard reagents have very similar activation parameters for the inversion process. There is no obvious reason to expect the rate of inversion of the 2-phenylpropyl-magnesium compounds to be anomalous. We believe that these compounds are inverting at approximately the same rates as those discussed previously, but that the 1-phenylethyl group produces only a small magnetic non-equivalence in the adjacent methylene group. 17

At this point it is of interest to describe briefly certain of the variables which have pronounced effects on the rate of inversion at the \(\text{CH}_2\text{Mg}\) center of the organometallic compound. Those most pertinent are the effects of concentration of the organometallic compound, structure of the solvent, and nature of the halogen anion(s) present in solution.

(17) The chemical shift between the \(-\text{CH}_2\text{-Ph}\) protons of 1-phenyl-2-methylbutyl benzyl ether is 16.0 c.p.s. in carbon tetrachloride solution and 9.8 c.p.s. in acetone. In contrast, the corresponding chemical shifts in 1-phenylethyl benzyl ether are 9.1 and 2.5 c.p.s. respectively. G. M. Whitesides, J. J. Grocki, D. Holtz, H. Steinberg, and J. D. Roberts, J. Am. Chem. Soc., 87, (1965).
Decreasing the concentration of 3, 3-dimethylbutylmagnesium chloride in solution decreases the rate of inversion. Fig. 7 indicates that at -8°, a decrease in Grignard reagent concentration of approximately tenfold changes the spectrum from one characteristic of rapid inversion to one characteristic of slow inversion. In these spectra, the triplet at lower field is the upfield ether methyl group ^{13}C satellite, and may be used to judge both the concentration of the organometallic compound and the natural linewidth in the solution.

The effect of solvent on the spectrum of the Grignard reagent is equally dramatic (Fig. 8). In diethyl ether solution at room temperature, the spectrum of the $-CH_2-Mg$ protons is a triplet; in tetrahydrofuran at approximately the same temperature and concentration, the central line is broadened noticeably; in diglyme, the spectrum is the typical AA'XX' type. The tetrahydrofuran spectrum was examined as a function of temperature and found to collapse to a relatively sharp triplet at +57°. The spectrum became more complicated at temperatures below 0° (unfortunately viscous broadening prevented detailed comparison with the low-temperature diethyl ether solution spectrum). The effect of temperature on the spectrum in diglyme was not examined.

The type and quantity of halide ion present in solution is also important in determining the appearance of the spectrum. In all cases we have examined, inversion of configuration is slower when bromide ion is the halogen in solution than when chloride ion is present. Thus, the spectrum of 3-methylbutylmagnesium chloride changes from its "high-temperature" triplet to the more complicated "low-temperature" form between -30° and -70°, in contrast, the central line of 3-methylbutyl-
magnesium bromide shows appreciable broadening at room temperature, and the spectrum changes to a slow inversion spectrum at -15°. Qualitatively the same spectral behavior is observed for n-butylmagnesium chloride and n-butylmagnesium bromide.

Addition of magnesium bromide to a solution of 3,3-dimethylbutylmagnesium chloride appears to slow the rate appreciably. A solution prepared by reaction of 0.1 ml. of ethylene dibromide and 0.01 ml. of 3,3-dimethylbutyl chloride with excess magnesium turnings in ether reaches its low-temperature form at -7°; a solution containing the same concentration of Grignard reagent but one-tenth as much added magnesium bromide has a corresponding spectrum only at -40°, and the Grignard reagent itself has this spectrum at approximately -50° (Fig. 9).

These last experiments indicate that halide ion is probably involved in some specific manner in the rate-determining step for the process averaging the vicinal coupling constants. That is, the effect of the halide ion is not merely to influence properties of the solution such as dielectric constant or ionic strength, but rather to change the activation energy for the inversion process by its effect on the structure or solvation of the organometallic compound. It might be possible in the absence of these observations to rationalize the decrease in rate of inversion with decreasing concentration as the result purely of changes in the bulk properties of the solution. In particular, if the transition state for inversion involves charge separation, the dielectric constant of the solvent will be

\[\delta^- \quad \delta^+ \]

\[RCH_3 \ldots \text{Mg} \ldots \]
important in determining the rate. Dessy and Jones have examined the
dielectric constant of solutions of ethylmagnesium bromide and of di-
ethylmagnesium and found a pronounced concentration dependence.6 The
concentration of the Grignard reagent in solutions used for n.m.r. samples
was ordinarily 0.2 M to 3 M. If the samples examined by Dessy are a
fair model, the dielectric constant of the solution in this concentration
range should be quite sensitive to changes in concentration. Consequently
the tenfold change in concentration in the samples in Fig. 7 might have
been accompanied by a fivefold change in dielectric constant. A decrease
in dielectric constant of this magnitude should significantly decrease the
rate of a process depending primarily on charge separation.

However, addition of magnesium bromide to a Grignard reagent
solution can reasonably be expected to increase the dielectric constant of
the solution.6 If dielectric constant were the most important factor in
determining the rate of inversion of 3,3-dimethylbutylmagnesium chloride,
the order in Fig. 9 should be the opposite of that observed.

It is important to notice that the spectrum observed for solutions
containing both chloride and bromide ion is not a superposition of the
spectra of two separate species "RMgCl" and "RMgBr" but rather an
average spectrum. Similar averaging is also observed in mixtures of
dialkylmagnesium and magnesium halide in ether. If, for example, a
solution of 3,3-dimethylbutylmagnesium chloride is treated with less than
a stoichiometric amount of dioxane, the magnesium chloride present in
solution is only partially removed. The spectrum observed for such a
solution is not a superposition of the spectra of the Grignard reagent and
the dialkylmagnesium compound separately, but an averaged spectrum
corresponding to an intermediate rate of inversion. Correspondingly, addition of an excess of magnesium bromide to a solution of bis-(3,3-dimethylbutyl)-magnesium produces a sample whose vicinal coupling constants are averaged; addition of less than a stoichiometric amount of magnesium bromide results in partial averaging.

These observations suggest that none of the species involved in the Schlenk equilibrium, "RMgX," "R₂Mg," and "R₂Mg·MgX₂" have prolonged separate existence in solution. It is not presently possible to decide whether the partial averaging of vicinal coupling constants observed for samples containing less than a stoichiometric quantity of magnesium chloride is the result of rapid migration of halide ion from magnesium to magnesium, of rapid migration of magnesium chloride as a separate species, or of some other process occurring in solution.

The results discussed so far have dealt entirely with primary Grignard reagents. Although a limited number of examples have been examined, these results define clearly the rates of inversion which may be expected for this class of organometallic compound.

A comparison of the rate of inversion of suitably chosen primary and secondary Grignard reagents might be expected to be useful, in light of the probable pertinence of such data to considerations of the mechanism of inversion. Unfortunately application of the techniques used in examination of the primary Grignard reagents to several secondary Grignard reagents has been less successful. It is not proved possible to measure the rate of inversion of a secondary Grignard reagent; however, it is possible to establish a lower limit on this rate from the experiments described below.
The spectrum of the Grignard reagent prepared from 3,3-dimethyl-
cyclobutyl bromide in tetrahydrofuran solution at room temperature shows
a doublet for the methyl protons (Fig. 10). The magnetic non-equivalence
of the methyl groups can reasonably be explained only as the consequence
of slow inversion of configuration at the CH-Mg center. If the Grignard
reagent is inverting slowly, two types of methyl groups are present; one
cis to the magnesium atom, one trans. The absence of a chemical shift
between the two methyl groups would not have allowed an unambiguous
interpretation, because either rapid inversion of configuration at the
CH-Mg center or an accidental degeneracy of the chemical shifts of a
slowly inverting Grignard would give the same result. However, the ob-
servation of two kinds of methyl protons indicates clearly that inversion
is slow with this molecule.

Similarly, the two isopropyl methyl groups of 2,3-dimethylbutyl
Grignard reagent are magnetically non-equivalent at room temperature
in both tetrahydrofuran and deuterodiethyl ether solution (Fig. 11). The
carbon atom bearing the magnesium atom in this compound is a center of
molecular asymmetry. The observation that the adjacent isopropyl methyl
groups are magnetically non-equivalent indicates that inversion of con-
figuration at the -CHCH₃-Mg center is slow on the n.m.r. time scale.¹³

Neither of these compounds shows significant temperature depen-
dence in its spectrum. The chemical shift between the methyl protons of
3,3-dimethylcyclobutylmagnesium bromide does not change over the tem-
perature range +33° to +120°. The chemical shift between the methyl
protons in the isopropyl group of 2,3-dimethylbutylmagnesium chloride
does decrease by approximately 0.7 c.p.s. between +33° and +120°;
however, this decrease occurs gradually over the indicated temperature range, and is probably due to changes in the rotational conformation populations of the isopropyl group rather than to a change in the rate of inversion.

The absence of a significant temperature dependence in the spectra of these two compounds suggests that the barrier to inversion of configuration is higher in the secondary than in the primary Grignard reagents. It might be argued that 3,3-dimethylcyclobutyl Grignard reagent is not a representative secondary Grignard reagent, since the ring strain of the molecule and hybridization of the carbon atoms are atypical. However, 2,3-dimethylbutyl Grignard reagent seems a reasonable model for a secondary Grignard reagent.

It should be noted in connection with these observations that the reaction of a dialkylmercurial with mercuric bromide proceeds at the same rate for diisopropyl- and di-n-propylmercury compounds and faster for dicyclopropylmercury and diphenylmercury. This dissimilarity

between the influence of the alkyl group on the rate of this reaction and on that of the Grignard inversion suggests that the well-established S_{E2} mechanism for the mercurials and the mechanism of inversion in the Grignard reagents are probably not closely related.
Discussion

The experimental observations presented in this and previous papers indicate that inversion of configuration of several primary Grignard reagents occurs with similar activation parameters. An important question to be asked concerning the mechanism of the inversion reaction concerns its kinetic order. If inversion proceeds by an uncomplicated ionization-recombination pathway, the inversion rate should be approximately independent of the concentration of organometallic compound or magnesium salts in solution, if salt effects and the effect of concentration on the dielectric constant of the medium are neglected. If inversion is a process of higher kinetic order, its rate should vary with the concentration of the reactants. It is observed experimentally that the inversion rate does depend in a very striking manner on the concentration of the Grignard reagent in solution, being slower in dilute than in concentrated solution. The actual decrease accompanying a decrease in concentration can be estimated for 3, 3-dimethylbutylmagnesium chloride from Fig. 7 which indicates that a change in the concentration of the organometallic compound from approximately 15% to approximately 1% at -6°C is sufficient to change the spectrum from its fast exchange form to its slow exchange form. The fast exchange and slow exchange forms of the Grignard reagent spectra correspond to inversion rates differing by approximately a factor of 50.
This observed dependence of inversion rate on the concentration of the Grignard reagent is in reasonable, qualitative agreement with that which might be expected using a bimolecular mechanism as a model. The observed change in inversion rate might also be within the range which would be predicted on the basis of unimolecular mechanism, provided the transition state for the inversion in the mechanism has very much more charge separation than the ground state. In this case, the change in rate would be a consequence of the change in the bulk dielectric constant of the solvent, accompanying the change in concentration.

The effect of the concentration and kind of halogen anion present in solution is best discussed by considering the influence the anion might have on the transition state for uni- and bimolecular reactions.

In a unimolecular ionization-recombination reaction, the anion would probably exert its influence by its effect on the carbon-metal bond strength and the effect would, of course, be largest for halide ion bonded directly to the magnesium atom. An increase in the electronegativity of a substituent X bonded to magnesium should increase the p character of the magnesium bonding orbital directed toward X.\(^\text{(19)}\) An increase in the

p character of the Mg-X bond will be accompanied by a decrease in the p character of the magnesium bonding orbital directed toward carbon, and an increase in the ionic character of the C-Mg bond. The ease of ionic dissociation of the R-Mg bond of organomagnesium compounds is thus predicted to be R-MgCl \gg R-MgBr \gg R-MgI \gg R-MgR, in agreement with the observed order.
If the mechanism of inversion is bimolecular, it probably involves electrophilic attack on the Grignard reagent by some species containing the fragment $-\text{MgX}$: either RMgX, $\text{MgX}_2 \cdot \text{R}_2\text{Mg}$ or some more complicated magnesium containing species. The rate of inversion would then be expected to increase with increasing electrophilicity of the attacking species. The more electronegative the halogen atom attached to the magnesium, the more electrophilic the $-\text{MgX}$ fragment should be. Hence, using a bimolecular model for the reaction and assuming that the rate depends primarily on the electrophilicity of the fragment $-\text{MgX}$, one would predict that the rate of inversion should also increase in the observed order $\text{R-MgCl} > \text{R-MgBr} > \text{R-MgI} > \text{R-MgR}$.

It is likely that the anion present in solution influences the inversion reaction in some manner other than through its effect on electrophilicity or on the bulk dielectric constant of the solution. Magnesium bromide added to a solution of 3, 3-dimethylbutylmagnesium chloride in ether slows the rate of inversion. It would be inconsistent to assume that electrophilicity of the $-\text{MgX}$ fragment were the sole important factor in determining the rate of inversion, and then to say that adding a weak electrophile to a strong electrophile should decrease the overall electrophilicity of the $-\text{MgX}$ fragments in solution.

The spectrum observed for the mixture of Grignard reagent and magnesium bromide does not consist of two superimposed spectra corresponding to "RMgCl" and "RMgBr" but rather of an averaged spectrum intermediate between the two. This observation suggests that migration of halide ion (or magnesium halide) between organometallic centers occurs rapidly in solution. In consequence, the solution of "RMgCl"
(20) In this connection, it should be noted that while the results mentioned so far do not exclude the possibility that all the inversion observed in the dialkylmagnesium compounds takes place through catalytic action of small quantities of magnesium halide left unprecipitated by dioxane, with di-(3,3-dimethylbutyl)-magnesium, at least, inversion takes place with halide-free preparations derived from the mercury compound.²

with added magnesium bromide probably contains an equilibrium concentration of "RMgBr." It seems possible that the anion present in solution might influence the inversion rate both through its effect on electrophilicity of the -MgX fragment in solution and through its effect on the carbon-magnesium bond strength.

This same approach may be used to rationalize the dependence of the inversion rate on solvent. Ethers are electron-donor solvents, by virtue of their non-bonding oxygen electrons; as such, they are known to be capable of forming strong dative bonds to positively charged magnesium species. In an ionization-recombination mechanism, solvation in the transition state should be more important than solvation to the ground state, because charge separation in the transition state will be greater. Inversion should therefore proceed more rapidly in a basic ether such as tetrahydrofuran than in a relatively non-basic ether such as diethyl ether, because of the greater capability of the former to solvate the positively charged magnesium fragment in the transition state.

If, on the other hand, the rate of inversion is primarily dependent upon the electrophilicity on the -MgX fragment, inversion should be
slowest in the most basic ether: the ability of the basic ether to donate electrons to the magnesium atom should considerably reduce the electrophilicity of this atom.

The spectra of Fig. 8 indicate that inversion is fast in diethyl ether, slower in tetrahydrofuran, and slowest in diglyme. Consequently, the dependence of inversion rate on solvent character also provides qualitative support for the suggestion that the inversion mechanism is characterized by a molecularity higher than one.

The effect of structure on the rate of inversion has not been investigated carefully. The activation parameters obtained for inversion of 3, 3-dimethylbutylmagnesium chloride and 2-phenyl-3-methylbutylmagnesium chloride in ether suggest that inversion occurs at approximately the same rate in both compounds; the secondary Grignard reagents examined definitely invert more slowly. This difference in rate may reflect the difference in the relative stabilities usually ascribed to primary and secondary carbanions, or major differences in the geometry of the molecules near the C-Mg bonds.

The possibility of inversion involving rapid elimination and addition of magnesium hydride\(^2\) is ruled out by the fact that this would be

expected to give intermolecular hydrogen exchanges which would affect
the spin-spin splitting patterns; however, there is no definite evidence which excludes some sort of homolytic cleavage recombination mechanism for the inversion process.

If the mechanism of the inversion reactions bears any resemblance to the electrophilic substitution reactions of organomercury compounds, it is interesting to speculate on the possible rate of alkyl-group migration with retention of configuration. The organomercury compounds commonly exchange through a four-center transition state and the rate of exchange with retention of configuration is much greater than that with inversion. If this type of transition state is also favorable with organomagnesium compounds, the rate of metal-metal exchange with retention of configuration may be very much faster than the rate of inversion.

Experimental

(22) Boiling points are uncorrected. Vapor chromatograms were obtained using Perkin-Elmer Vapor Fractometers Models 154-C and 800. Infrared spectra were determined with a Perkin-Elmer Model 237 double-beam grating spectrometer, using an eight-minute scan. Elementary analyses were performed by the Spang Microanalytical Laboratory, Ann Arbor, Michigan.

Nuclear magnetic resonance spectra were obtained with the spectrometers described previously. 2

Analyses of the ABX spectra of the 2-phenyl-3-methylbutylmagnesium
derivatives were considerably more uncertain than those for the AA'XX' systems, because the low-intensity outer lines of the AB part of the spectrum frequently could not be distinguished from noise in the spectrum and because the X part of the spectrum could not be analyzed at all.

To obtain the activation energies for the 2-phenyl-3-methylbutylmagnesium derivatives, the spectra were analyzed at each temperature to obtain \(v_A - v_B \). In order to analyze the spectra, it was necessary to assume a value for \(J_{AB} \); in each case this coupling constant was assigned the value \(-12.2 \) c. p. s. The complete spectrum could then be constructed by measuring the positions of the four central lines and adding or subtracting (depending on whether the line considered was an A or a B transition) \(J_{AB} \) to obtain the approximate values of the weak transitions. Spectra completed in this way could then be analyzed to obtain \(v_A - v_B \).

The dependence of \(1/r \) on \(1/T \) was obtained by using these values of \(v_A - v_B \) directly in the treatment of Gutowsky and Holm. The data are given in Table II: \(\tau \) here has the same meaning as previously: i.e., is twice the value of the one used by Gutowsky. The value of \(1/T_\alpha \) was taken as \(0.5 \) c. p. s.

The samples of the Grignard reagents were prepared as described previously. Grignard reagents and dialkylmagnesium compounds containing a \(-\text{CH}_x\text{Mg}\) group were identified by the characteristic chemical shift and spin-coupling patterns of their \(\alpha \) protons. The resonances of protons adjacent to a strongly electropositive metal occur at significantly higher field than those of any of the other compounds likely to occur in the solution; these protons could consequently be recognized and examined without difficulty. The \(\alpha \)-proton resonances of the secondary Grignard
Table II

Separations and Temperatures Used in Obtaining the Dependence of $1/\tau$ on $1/T$ for 2-Phenyl-3-methylbutylmagnesium Chloride

<table>
<thead>
<tr>
<th>T°, K</th>
<th>$1/T \times 10^3$</th>
<th>$v_A - v_B$, c. p. s.</th>
<th>$(1/\tau), \text{sec}^{-1}$</th>
<th>log $(1/\tau)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>259</td>
<td></td>
<td>13.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>269</td>
<td>3.72</td>
<td>12.8</td>
<td>3.33</td>
<td>0.52</td>
</tr>
<tr>
<td>279</td>
<td>3.58</td>
<td>12.8</td>
<td>3.33</td>
<td>0.52</td>
</tr>
<tr>
<td>305</td>
<td>3.29</td>
<td>12.0</td>
<td>8.23</td>
<td>0.92</td>
</tr>
<tr>
<td>305</td>
<td>3.29</td>
<td>11.7</td>
<td>9.49</td>
<td>1.00</td>
</tr>
<tr>
<td>323</td>
<td>3.10</td>
<td>7.7</td>
<td>19.4</td>
<td>1.29</td>
</tr>
<tr>
<td>330</td>
<td>3.03</td>
<td>0.0</td>
<td>24.3</td>
<td>1.38</td>
</tr>
</tbody>
</table>

Tetrahydrofuran solution

<table>
<thead>
<tr>
<th>T°, K</th>
<th>$1/T \times 10^3$</th>
<th>$v_A - v_B$, c. p. s.</th>
<th>$(1/\tau), \text{sec}^{-1}$</th>
<th>log $(1/\tau)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>339</td>
<td></td>
<td>10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>346</td>
<td>2.89</td>
<td>9.7</td>
<td>2.82</td>
<td>0.45</td>
</tr>
<tr>
<td>360</td>
<td>2.78</td>
<td>9.8</td>
<td>2.51</td>
<td>0.40</td>
</tr>
<tr>
<td>365</td>
<td>2.74</td>
<td>9.1</td>
<td>5.65</td>
<td>0.75</td>
</tr>
<tr>
<td>364</td>
<td>2.74</td>
<td>8.4</td>
<td>7.85</td>
<td>0.89</td>
</tr>
<tr>
<td>370</td>
<td>2.70</td>
<td>6.9</td>
<td>11.6</td>
<td>1.06</td>
</tr>
<tr>
<td>373</td>
<td>2.68</td>
<td>6.0</td>
<td>13.5</td>
<td>1.13</td>
</tr>
<tr>
<td>379</td>
<td>2.64</td>
<td>0.0</td>
<td>17.3</td>
<td>1.24</td>
</tr>
</tbody>
</table>
reagents were usually complicated by spin-coupling and of lower intensity than those of the primary Grignard reagents, and were frequently difficult to locate. These Grignard reagents were characterized by addition of a slight excess of water to the sample tube followed by centrifugation to remove the precipitated magnesium salts. Comparison of the spectrum of the organometallic solution and that of the hydrolyzed solution with the spectra of solutions in the same solvent of the starting halide and of the hydrocarbon expected from hydrolysis (when available) usually allowed the resonances due to Grignard reagent to be identified without difficulty.

The quantity of solids produced during the preparation depended primarily on the type of halide used: bromides frequently produced no solids at all; chlorides often gave small quantities of a white flocculent precipitate.

Grignard reagents prepared in tetrahydrofuran were occasionally pale yellow after heating, and showed a tendency to precipitate larger amounts of solids than the corresponding ether solutions. Occasionally, a tetrahydrofuran solution of an alkylmagnesium chloride would give such heavy deposits of crystals as to fill the liquid phase; however, sufficient sample for n.m.r. examination could usually be recovered by centrifugation. The signal intensity in such samples was usually slightly less than that of the same solutions before crystallization.

Tetrahydrofuran solutions occasionally gave broad spectra immediately after their preparation; resolution always improved after the sample had aged for several days.

Solutions prepared in diglyme had approximately the same characteristics as those prepared in tetrahydrofuran, except that the viscosity
of the final diglyme solution was significantly greater.

The yields of Grignard reagent prepared in diethyl ether solution were estimated to be 70-95% by comparison with the ^{13}C satellites of solvent, based on starting halide.

2-Phenyl-3-methyl-1-butanol. — Diisopropylmagnesium was prepared by addition of 66 g. (0.75 mole) of dry dioxane to a Grignard solution prepared from 92 g. (0.75 mole) of 2-bromopropane and 18 g. (0.75 mole) of magnesium in 300 ml. of ether in a 1-l. three-necked round-bottomed flask equipped with mechanical stirrer, condenser and pressure-equalized dropping funnel. The precipitated magnesium bromide dioxanate was not separated from the dialkylmagnesium solution to which was then added 60 g. (0.50 mole) of styrene oxide at such a rate as to maintain gentle refluxing. The reaction mixture was stirred for four hours at room temperature, heated under reflux for one hour, and hydrolyzed with saturated aqueous ammonium chloride solution to the point at which the solids conglomorated on the sides of the flask. The ether layer was decanted from the salts and dried over calcium sulfate. Removal of the ether on a rotary evaporator and distillation of the residue through a 20-cm wire-spiral packed column yielded 53 g. of product, b. p. 84-87° (2 mm) lit. to p. 93° (4 mm); the purity of the product was estimated

to be 90-95% from the n. m. r. spectrum.
2-Phenyl-3-methylbutyl chloride was prepared by addition of 50 ml. of thionyl chloride to a solution of 25 ml. of 2-phenyl-3-methyl-1-butanol and 50 ml. of dimethylformamide in a 200-ml. Erlenmeyer flask immersed in an ice-bath. The temperature of the solution was maintained at 15 ± 5° during the addition. The solution was allowed to stand at room temperature for six hours after addition of the thionyl chloride, then hydrolyzed by pouring into 200 ml. of cold water. The organic layer was separated and the aqueous layer extracted twice with 50 ml. portions of ether. The combined extracts were dried over calcium chloride, then distilled twice through a 20-cm. wire-packed column at reduced pressure to yield 12 g. (approximately 45%) of product, b. p. 67-74° (0.8 mm).

Anal. Calcd. for C₁₁H₁₈Cl: C, 72.32; H, 8.28; Cl, 19.41. Found: C, 72.55; H, 8.26; Cl, 19.18.

2-Phenyl-3-methylbutylmagnesium chloride could be prepared from the chloride only with difficulty. The most successful procedure involved mixing 0.1 ml. of the chloride and 0.1 ml. of ether with magnesium turnings in an n. m. r. tube. The magnesium turnings were then broken up with a Nichrome wire. Onto this mixture was poured 0.4 ml. of ether without mixing the layers. The tube was sealed and heated in the usual manner; after approximately one hour at 100° reaction between magnesium and the halide occurred. The remainder of the preparation was unexceptional.

1,3-Dibromo-2,2-dimethylpropane. — The procedure used was a modification of that of Schurink. In a 500-ml. round-bottomed three-
necked flask equipped with a pressure-equalized dropping funnel and air-cooled condenser was placed 183 g. (0.92 mole) of 2,2-dimethyl-1,3-propanediol. The flask was heated on the steam bath and 500 g. of freshly opened phosphorus tribromide was added over the course of two hours. The steam bath was exchanged for an oil bath and the temperature increased to 160°. The temperature was maintained at this level for 24 hours. The heterogeneous mixture resulting was then cooled and poured into 1 l. of water. The lower layer was separated and dried over calcium sulfate. The n.m.r. spectrum indicated that this material was approximately 70% the desired bromide. The yield was 200 g., and the product was used without further purification.

3,3-Dimethylcyclobutanecarboxylic acid was prepared following the procedure of Campbell and Rydon, substituting the crude 1,3-di-bromo-2,2-dimethylpropane prepared above for the 1,3-diiodo-2,2-dimethylpropane used by these workers. The yield of acid was 22 g., b.p. 75-103° (12 mm); lit. b.p. 105-106° (15 mm). Silver 3,3-dimethylcyclobutanecarboxylate was prepared from 3,3-dimethylcyclobutanecarboxylic acid following the procedure of Cason and Way. The silver salt was air-dried at room temperature, and then

dried at 0.5 mm for four days prior to its use in the brominative decarboxylation.

3,3-Dimethylcyclobutyl Bromide from Silver 3,3-Dimethylcyclobutanecarboxylate. — The procedure was modeled after that described for the preparation of cyclobutyl bromide. The reaction flask was dried by distilling 50 ml. of carbon tetrachloride from it immediately before use. Bromine and carbon tetrachloride were dried by distillation from phosphorus pentoxide.

The silver salt (38.9 g., 0.17 mole) was added over the course of one hour to 250 ml. of carbon tetrachloride and 28.9 g. (0.18 mole) of bromine in a 500-ml. three-necked round-bottomed flask equipped with mechanical stirrer and thermometer and immersed in a Dry-Ice-acetone bath. The salt was added through a piece of Gooch tubing connecting one inlet of the reaction flask directly to the Erlenmeyer flask in which the salt had been dried. No carbon dioxide evolution was observed until the solution had been warmed briefly to +20°; after the reaction had started, the solution was cooled to 0° and the remainder of the silver salt added. When gas evolution had ceased, the reaction mixture was allowed to stand overnight and then filtered, washed once with aqueous sodium bisulfite, once with 2 N potassium hydroxide solution, and once with water. The organic layer was dried over calcium sulfate, and the carbon tetrachloride removed through a 10-cm glass-helix packed column. The
bromide was distilled under slightly reduced pressure through a 30-cm Vigreux column. The product (12 g., 45%) had b. p. 132° by the capillary b. p. method. The purity of the product was approximately 95% as estimated by v. p. c. (column K, 110°). The n. m. r. and infrared spectra were consistent with desired structure.

Anal. Calcd. for C₆H₁₁Br: C, 44.19; H, 6.80; Br, 49.01. Found: C, 44.13; H, 5.94; Br, 48.80.
Fig. 1. Spectra of the CH$_2$-Mg protons of 3-methylbutylmagnesium chloride and n-butylmagnesium chloride in diethyl ether as a function of temperature.
\((CH_3)_2CHCH_2CH_2MgCl\) \(\quad\) \(\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{MgCl}\)

\(+24^\circ\) \(+32^\circ\)

\(-48^\circ\) \(-51^\circ\)

\(-57^\circ\) \(-73^\circ\)
Fig. 2. Spectra of the CH₂-Mg protons of bis-(3-methylbutyl)-magnesium
and di-n-butylmagnesium in diethyl ether as a function of tem-
perature.
\[((\text{CH}_3)_2\text{CHCH}_2\text{CH}_2)_2\text{Mg} \quad \text{(CH}_3\text{CH}_2\text{CH}_2\text{CH}_2)_2\text{Mg} \]

\[+104^\circ \quad +96^\circ \]

\[+78^\circ \quad +26^\circ \]

\[+31^\circ \quad -78^\circ \]
Fig. 3. Spectra of the CH₂-Mg protons of 2-phenyl-3-methylbutylmagnesium chloride in diethyl ether, as a function of temperature. The spectrum of the organometallic compound is superimposed on that of the ether 13C satellite.
Fig. 4. Spectra of the CH$_2$-Mg protons of 2-phenyl-3-methylbutyl-magnesium chloride in tetrahydrofuran as a function of temperature.
Fig. 5. Schematic energy level diagram and spectrum for the AB part of an ABX spectrum. The illustrated order of energy levels holds for $\nu_A > \nu_B$, $J_{AB} > 0$, and $J_{AX} < J_{BX} < 0$. Transitions 1, 2, 3, and 4 are A transitions; 5, 6, 7, and 8 are B transitions.
Fig. 6. Plot of log (1/τ) as a function of 1/T for 2-phenyl-3-methyl-butylmagnesium chloride: (a) tetrahydrofuran solution; (b) diethyl ether solution.
Fig. 7. Spectra of 3,3-dimethylbutylmagnesium chloride in diethyl ether as a function of concentration. The sharp triplet at lower field is the ether methyl 13C satellite.
Fig. 8. Room temperature spectra of the CH₂-Mg protons of 3, 3-dimethylbutylmagnesium chloride as a function of solvent:
(a) diethyl ether; (b) tetrahydrofuran; (c) diglyme.
Fig. 9. Spectra of 3, 3-dimethylbutylmagnesium chloride in diethyl ether at −7° as a function of added magnesium bromide. The approximate molar ratios of magnesium bromide to 3, 3-dimethylbutylmagnesium chloride in the solutions are: (a) 1.5; (b) 0.15; (c) 0.00.
Fig. 10. Spectrum of the methyl protons of 3, 3-dimethylcyclobutyl-
magnesium bromide in tetrahydrofuran. The separation
between the two peaks is approximately 4 c.p.s. at +32°.
Spectrum of the methyl protons of 3-methylbutylmagnesium chloride in tetrahydrofuran solution. The four lines at highest field are the isopropyl methyl proton resonances.
TECHNICAL REPORT DISTRIBUTION LIST

CONTRACTOR: CALIFORNIA INSTITUTE OF TECHNOLOGY

CONTRACT NUMBER: Nono 220(26)

NO. COPIES

Commanding Officer
Office of Naval Research Branch Office
230 N. Michigan Avenue
Chicago 1, Illinois (1)

Commanding Officer
Office of Naval Research Branch Office
207 West 21th Street
New York 11, New York (1)

Commanding Officer
Office of Naval Research Branch Office
1030 East Green Street
Pasadena 1, California (1)

Commanding Officer
Office of Naval Research Branch Office
Box 39, Navy #100, F.P.O.
New York, New York (7)

Director, Naval Research Laboratory
Washington 25, D. C.
Attn: Technical Information Officer (6)
Chemistry Division (2)

Chief of Naval Research
Department of the Navy
Washington 25, D. C.
Attn: Code 425 (2)

DDA&E
Technical Library
Room 3C-128, The Pentagon
Washington 25, D. C. (1)

Department of the Army
Supply & Maintenance Command
Maintenance Readiness Division
Washington 25, D. C.
Attn: Technical Director (1)

NO. COPIES

U.S. Army Natick Laboratories
Clothing & Organic Materials Division
Natick, Massachusetts
Attn: Associate Director (1)

Harry Diamond Laboratories
Washington 25, D. C.
Attn: Library (1)

Office, Chief of Research & Development
Department of the Army
Washington 25, D. C.
Attn: Physical Sciences Division (1)

Chief, Bureau of Ships
Department of the Navy
Washington 25, D. C.
Attn: Code 312A (2)

Technical Library, DLI-3
Bureau of Naval Weapons
Department of the Navy
Washington 25, D. C. (4)

Defense Documentation Center
Cameron Station
Alexandria, Virginia (20) (12)

Chief of Naval Research
Department of the Navy
Washington 25, D. C.
Attn: Code 425 (2)

Commanding Officer
U.S. Army Electronics Research and Development Laboratory
Attn: SELRA/TR
Fort Monmouth, New Jersey 07703 (1)

Naval Radiological Defense Laboratory
San Francisco 24, California
Attn: Technical Library (1)

Naval Ordnance Test Station
China Lake, California
Attn: Head, Chemistry Division (1)

REVISED 30 AUG 1963
TECHNICAL REPORT DISTRIBUTION LIST

CONTRACTOR California Institute of Technology
CONTRACT NUMBER N00014-70-A-0020(26)
MR NO. 055-388
DATE 1970-11-15

<table>
<thead>
<tr>
<th>NO. COPIES</th>
<th>NO. COPIES</th>
</tr>
</thead>
</table>
| Commanding Officer
Army Research Office
Box CM, Duke Station
Durham, North Carolina
Attn: CRD-AA-IP | 1 |
| Atomic Energy Commission
Division of Research
Chemistry Programs
Washington 25, D.C. | 1 |
| Atomic Energy Commission
Division of Technical Information Extension
Post Office Box 62
Oak Ridge, Tennessee | 1 |
| Commanding Officer
U.S. Army Chemical Research and Development Laboratories
Attn: Librarian
Edgewood Arsenal, Maryland | 1 |
| Dr. R. B. Fox
Code 6120
Naval Research Laboratory
Washington 25, D.C. | 1 |
| Dr. E. Grumwald
Bell Telephone Laboratories
Murray Hill, New Jersey | 1 |
| Dr. R. W. Taft, Jr.
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania | 1 |
| Old Branch Office
195 Summer Street
Boston 10, Massachusetts
Attn: Mr. A. L. Powell | 1 |
| Mr. W. H. Lee, Director
Contract Research Department
Pennsalt Chemicals Corporation
900 First Avenue
King of Prussia, Pennsylvania | 2 |
| Dr. M. S. Newman
Department of Chemistry
Ohio State University
Columbus, Ohio | 1 |
| Dr. P. Bartlett
Department of Chemistry
Ohio State University
Columbus, Ohio | 1 |
| Dr. S. Kasten
Department of Chemistry
University of California
Los Angeles 25, California | 1 |
| Dr. L. P. Hammett
Department of Chemistry
Columbia University
New York 27, New York | 1 |
| Dr. H. C. Brown
Department of Chemistry
Purdue University
Lafayette, Indiana | 1 |
| Dr. H. S. Gutowsky
Department of Chemistry
University of Illinois
Urbana, Illinois | 1 |
| Dr. T. L. Heying
Organics Division
Olin Mathieson Chemical Corporation
275 Manchester Avenue
New Haven, Connecticut | 1 |
TECHNICAL REPORT DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>CONTRACTOR</th>
<th>CALIFORNIA INSTITUTE OF TECHNOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTRACT NUMBER</td>
<td>Monr 220(26)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NO. COPIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Monsanto Research Corporation
Everett Station
Boston 49, Massachusetts
Attn: Librarian

<table>
<thead>
<tr>
<th>NO. COPIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Dr. T. I. Onak
Department of Chemistry
Los Angeles State College
Los Angeles, California

<table>
<thead>
<tr>
<th>NO. COPIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Dr. Sidney Schaeffer
Department of Chemistry
Indiana University
Bloomington, Indiana

<table>
<thead>
<tr>
<th>NO. COPIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Dr. W. H. Lipscomb
Department of Chemistry
Harvard University
Cambridge 38, Massachusetts

<table>
<thead>
<tr>
<th>NO. COPIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Interim

George M. Whitesides and John D. Roberts

December 1964

34 + 11 figure and legend

Technical Report No. 38

Qualitative and semi-quantitative examination of the temperature dependence of the RCH₂-Mg proton n.m.r. spectra of several Grignard reagents indicates that the rate of inversion at this center is relatively insensitive to the structure of the group R. Secondary Grignard reagents invert much more slowly, if at all. The dependence of the inversion rate of the primary organometallic compounds on solvent character and on added salts suggests that inversion proceeds by means of a mechanism having kinetic order greater than one.
Nuclear Magnetic Resonance Spectroscopy
Grignard Reagents
Stereochemistry

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Qualified Data" is included. Marking is to be in accordance with appropriate security regulations.

3. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

4. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

5. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

6. AUTHOR(S): Enter the name(s) of author(s) as shown on the report. Enter last name, first name, middle initial. For military, show rank and branch of service. The name of the military author is an absolute minimum requirement.

7. REPORT DATE: Enter the date of the report as day, month, and year. If more than one date appears on the report, use date of publication.

8. TOTAL NUMBER OF PAGES: The total page count, or follow normal pagination procedures, i.e., enter the exact pages containing information.

9. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

10. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

11. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, program number, system number, task number, etc.

12. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

13. OTHER REPORT NUMBERS: If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

14. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:
 (1) "Qualified requesters may obtain copies of this report from DDC."
 (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
 (3) "U.S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through

 (4) "U.S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through

 (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

15. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

16. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

17. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

In the abstract, it is desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (TS/SCI), (TS/SCI/NOFORTRAN), etc.

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 250 words.

18. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.