UNCLASSIFIED

AD NUMBER

AD455002

NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

FROM

Distribution authorized to U.S. Gov’t. agencies and their contractors; Administrative/Operational Use; 21 AUG 1964. Other requests shall be referred to Army Medical Research Lab., Fort Knox, KY.

AUTHORITY

USAMRL ltr, 26 Feb 1970

THIS PAGE IS UNCLASSIFIED
NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
EFFECTS OF HIGH INTENSITY IMPULSE NOISE AND RAPID CHANGES IN PRESSURE UPON STAPEDECTOMIZED MONKEYS

Major John L. Fletcher, MSC
Captain George D. Roberson, MC
Michel Loeb, Ph.D.
Report Submitted 12 August 1964

Authors

Major John L. Fletcher, MSC
(Ph. D.)
Department of Sensory Processes
Division of Psychology
USAMRL

Captain George D. Roberson, MC*
Chief, ENT Clinic
Ireland Army Hospital

Michel Loeb, Ph. D.
Department of Sensory Processes
Division of Psychology
USAMRL

*Now in practice at the Nalle Clinic, Charlotte, North Carolina.

The animals used in this study were handled in accordance with
the "Principles of Laboratory Animal Care" established by the
National Society for Medical Research.

Qualified requestors may obtain copies of this report from DDC.

Foreign announcement and dissemination of this report by DDC
is limited.
REPORT NO. 610

EFFECTS OF HIGH INTENSITY IMPULSE NOISE AND RAPID CHANGES IN PRESSURE UPON STAPEDECTOMIZED MONKEYS

Major John L. Fletcher, MSC
Captain George D. Roberson, MC
Michel Loeb, Ph.D.

Department of Sensory Processes
Division of Psychology
US ARMY MEDICAL RESEARCH LABORATORY
Fort Knox, Kentucky

and

IRELAND ARMY HOSPITAL
Fort Knox, Kentucky

21 August 1964

This Research Was Done Under

Traumatic Origins of Hearing Loss
Subtask No. 02
Military Psychophysiological Studies
Task No. 01
Military Psychophysiological Studies
DA Project No. 3A012001A800
ABSTRACT

EFFECTS OF HIGH INTENSITY IMPULSE NOISE AND RAPID CHANGES IN PRESSURE UPON STAPEDECTOMIZED MONKEYS

OBJECT

To determine the effect of high intensity impulse noise and of rapid changes in pressure upon stapedectomized patients.

RESULTS

No experimental disarticulation of the prostheses was observed, nor were any behavioral manifestations of vestibular involvement seen. No significant difference between the two types of prostheses used was found.

CONCLUSIONS

There is no valid evidence in this study to support drastic duty limitation for stapedectomy patients. No operational basis for choice between the polyethylene and vein graft procedure as opposed to the stainless steel piston could be found.

APPROVED: GEORGE S. HARKER, Ph.D.
Director, Division of Psychology

APPROVED: SVEN A. BACH
Colonel, MC
Director
EFFECTS OF HIGH INTENSITY IMPULSE NOISE AND RAPID CHANGES IN PRESSURE UPON STAPEDECTOMIZED MONKEYS

Today we find the stapedectomy procedure the treatment of choice in the management of otosclerosis. The widespread incidence of otosclerosis, plus the popularity of the stapedectomy procedure, have resulted in a great number of persons undergoing this operation. The relative newness of the procedures and the difficulties attendant upon research in this area in part account for the dearth of research on the subsequent effects of this procedure upon the hearing abilities and susceptibilities of those so treated. Investigations have been made of the susceptibility of stapedectomized patients to noise induced temporary threshold shifts (1, 2, 3). So far, the findings appear to indicate no heightened susceptibility to acoustic insult. However, at best many problems beset the researcher in this endeavor. One critical problem is that of securing a proper control group against which to compare a stapedectomized population. Ideally, the control group should differ from the experimental group only in that they have not been stapedectomized. Certainly, auditory acuity of the two groups should be the same, because auditory acuity is a limiting factor in noise induced temporary threshold shifts (4). This requirement is exceedingly difficult to meet, and as a result, extreme caution must be observed in evaluating the results of studies where this condition was not met.

Several problems should be considered in evaluating the hazards of the environment to the stapedectomized person. Impulse noise, with its precipitous rise time and typically high overpressure, would logically be thought to pose more of a problem than would continuous noise, not only because of the possibility of noise induced hearing loss, but also because of the possibility of the inertia of the prosthesis-ossicular chain interacting with the steep rise time of the impulse to result in disarticulation of the prosthesis, or more drastic damage. Andersen et al (5) measured the transmission of sound before and after insertion of stapedial prostheses in cadaver temporal bones. They found no prosthesis weight-frequency related effects. They did, however, note that exposure to "violent" sounds resulted in disarticulation of the prostheses. They also observed that at such high levels (in excess of 100 dB) the prosthesis did not follow the movement of the incus. Subjective reports are frequently encountered suggesting that changes in altitude, such as those found in unpressurized or suddenly de-pressurized airplane cabins, result in failure of the prostheses. However, one might think that if the patient were able to equalize the pressure, i.e., "clear" his ears, danger from this source would be minimized.
in order to minimize activity during exposure (such as fighting, jumping, and other activities that might produce deleterious effects).

Group II, also 12 animals, 24 ears, was placed in an altitude chamber and ascended to a pressure equivalent altitude of 30,000 feet, then descended, free-fall, to 1,200 feet. This was repeated three times with 2 min intervals between runs. No sedation or tranquilization was given this group as we were afraid such treatment might interfere with the animals' ability to equalize pressure.

Group III, 11 animals and 22 ears, was housed with the other animals, treated just like them, but not exposed to gunfire or pressure change.

Immediately after exposure, the animals in Groups I and II were anesthetized and had their tympanic membranes reflected in order to determine the effects of the exposure upon the tympanic membrane, ossicular chain-prostheses, middle ear mucosa, and the oval window reaction. At a later date the animals of the control group, Group III, were similarly scrutinized.

RESULTS

The over-all results were surprisingly good from a clinical point of view, i.e., the prostheses were extremely resistant to disarticulation, so much so that none were experimentally interrupted. The observed reactions of the tympanic membrane, middle ear mucosa, and oval window were also remarkably mild. Both the PE + V and the SSP did well. The data do not seem to differentiate between the two as far as we can tell. Complete results of the experiment are presented in Tables 1, 2, 3, and 4. As can be seen, gunfire had no observable effect upon the prostheses and little observable effect upon the tympanic membrane, middle ear mucosa, and the oval window. Also, no behavioral effects of vestibular trauma were seen. Obviously, in view of the severity of the impulse noise to which these animals were exposed, more than a human would normally ever receive, we need not fear failure of the prostheses from this source. However, it is equally plain that we cannot, on the basis of this experiment, say anything about the damage to the hearing of the animal, only that the prostheses did not fail. In a further effort to promote failure of the prostheses by impulse noise, six animals of Group I were exposed to 12 rounds of gunfire from a 90 mm cannon. The average quasi-peak SPL, measured inside the cage, was in excess of 190 dB. Again, we failed to produce drastic results (see Table 4).
We could observe no significant basis for choice between the PE + V and SSP techniques. If basis for choice exists, it is surgical, not mechanical.

It is appropriate to mention here that more research is necessary before we can set exposure criteria for the patient's work environment. It will probably be some time before sufficient data are accumulated to enable us to evaluate the permanent effects of various noises upon the hearing of stapedectomized patients.

CONCLUSIONS

1. High intensity impulse noise and rapid changes in air pressure do not appear sufficient to cause significant prosthesis failure in stapedectomized monkeys.

2. Of the two variables tested, within the limits of this experiment, pressure changes appear to be more traumatic.

3. No apparent difference appears to exist between the reliability of the stainless steel piston and the polyethylene and vein techniques.

4. Solely on a basis of fear of prosthesis failure, no reason can be seen for any drastic limitation of duty of stapedectomized patients.

REFERENCES

EFFECTS OF HIGH INTENSITY IMPULSE NOISE AND RAPID CHANGES IN PRESSURE UPON STAPEDECTOMIZED MONKEYS

Today we find the stapedectomy procedure the treatment of choice in the management of otosclerosis. The widespread incidence of otosclerosis, plus the popularity of the stapedectomy procedure, have resulted in a great number of persons undergoing this operation. The relative newness of the procedures and the difficulties attendant upon research in this area in part account for the dearth of research on the subsequent effects of this procedure upon the hearing abilities and susceptibilities of those so treated. Investigations have been made of the susceptibility of stapedectomized patients to noise induced temporary threshold shifts (1, 2, 3). So far, the findings appear to indicate no heightened susceptibility to acoustic insult. However, at best many problems beset the researcher in this endeavor. One critical problem is that of securing a proper control group against which to compare a stapedectomized population. Ideally, the control group should differ from the experimental group only in that they have not been stapedectomized. Certainly, auditory acuity of the two groups should be the same, because auditory acuity is a limiting factor in noise induced temporary threshold shifts (4). This requirement is exceedingly difficult to meet, and as a result, extreme caution must be observed in evaluating the results of studies where this condition was not met.

Several problems should be considered in evaluating the hazards of the environment to the stapedectomized person. Impulse noise, with its precipitous rise time and typically high overpressure, would logically be thought to pose more of a problem than would continuous noise, not only because of the possibility of noise induced hearing loss, but also because of the possibility of the inertia of the prosthesis-ossicular chain interacting with the steep rise time of the impulse to result in disarticulation of the prosthesis, or more drastic damage. Andersen et al (5) measured the transmission of sound before and after insertion of stapedial prostheses in cadaver temporal bones. They found no prosthesis weight-frequency related effects. They did, however, note that exposure to "violent" sounds resulted in disarticulation of the prostheses. They also observed that at such high levels (in excess of 100 dB) the prosthesis did not follow the movement of the incus. Subjective reports are frequently encountered suggesting that changes in altitude, such as those found in unpressurized or suddenly de-pressurized airplane cabins, result in failure of the prostheses. However, one might think that if the patient were able to equalize the pressure, i.e., "clear" his ears, danger from this source would be minimized.
The Armed Forces are a particularly lucrative source of both problems and research possibilities with regard to stapedectomies. Gunfire noise exposure is, of course, typical of military personnel, and with the increasing use of aircraft of all kinds, and of airborne operations involving parachuting, a large number of persons are exposed to rapid changes in pressure. Problems of this nature suggested the research to be reported in the succeeding sections. Specifically, an investigation was made of the effects of impulse noise and sudden changes in pressure (simulating altitude changes) upon stapedectomized monkeys. Monkeys were used because of both the ethical and practical considerations involved.

METHOD

A total of 40 Cebus monkeys were procured and subjected to surgery. The Cebus monkey, a New World species, was used because its middle ear is quite accessible to surgery, unlike that of the Old World monkeys, and is markedly similar to that of man. Both ears of each animal were operated with the same type of prosthesis placed in each ear. Half the animals were treated with a modified S36a (6) technique utilizing a No. 90 polyethylene strut and vein graft (PE + V), while the other half had a stainless steel piston (SSP) made especially to fit the Cebus monkey. Five of the surgically completed animals expired subsequent to surgery from non-surgical causes so that our experiment was performed on a population of 35 animals. These animals were randomly divided into three groups. Group I was exposed to high intensity impulse noise on two occasions, to machine gun fire and to 90 mm cannon fire. Group II was exposed to rapid changes in pressure simulating changes in altitude, while Group III was the control group. They were operated, kept with and treated like the experimental groups except that they were not experimentally exposed to either of the variables.

Group I, which consisted of 12 animals (24 ears) was exposed to 2,000 rounds of fire from an M-73 7.62 cal machine gun. The fire was 5 sec bursts with a 5 sec interval between bursts. All animals exposed had had at least 2 months to recover from surgery. Firing was done on an open range in the field. The quasi-peak sound pressure level (SPL), measured inside the animal's retention cage, averaged 164 dB. Sound measurement was accomplished using a General Radio Model 1551-B sound level meter, a Massa 141-B microphone, and a General Radio Model 1556-B impact noise analyzer. Variability of the pressure was ±2 dB. All animals were tranquilized 2 hours prior to exposure by injection of 1 mg/kg body weight of Seruylan (phencyclidine hydrochloride)
in order to minimize activity during exposure (such as fighting, jumping, and other activities that might produce deleterious effects).

Group II, also 12 animals, 24 ears, was placed in an altitude chamber and ascended to a pressure equivalent altitude of 30,000 feet, then descended, free-fall, to 1,200 feet. This was repeated three times with 2 min intervals between runs. No sedation or tranquilization was given this group as we were afraid such treatment might interfere with the animals' ability to equalize pressure.

Group III, 11 animals and 22 ears, was housed with the other animals, treated just like them, but not exposed to gunfire or pressure change.

Immediately after exposure, the animals in Groups I and II were anesthetized and had their tympanic membranes reflected in order to determine the effects of the exposure upon the tympanic membrane, ossicular chain-prosthesis, middle ear mucosa, and the oval window reaction. At a later date the animals of the control group, Group III, were similarly scrutinized.

RESULTS

The over-all results were surprisingly good from a clinical point of view, i.e., the prostheses were extremely resistant to disarticulation, so much so that none were experimentally interrupted. The observed reactions of the tympanic membrane, middle ear mucosa, and oval window were also remarkably mild. Both the PE + V and the SSP did well. The data do not seem to differentiate between the two as far as we can tell. Complete results of the experiment are presented in Tables 1, 2, 3, and 4. As can be seen, gunfire had no observable effect upon the prostheses and little observable effect upon the tympanic membrane, middle ear mucosa, and the oval window. Also, no behavioral effects of vestibular trauma were seen. Obviously, in view of the severity of the impulse noise to which these animals were exposed, more than a human would normally ever receive, we need not fear failure of the prostheses from this source. However, it is equally plain that we cannot, on the basis of this experiment, say anything about the damage to the hearing of the animal, only that the prostheses did not fail. In a further effort to promote failure of the prostheses by impulse noise, six animals of Group I were exposed to 12 rounds of gunfire from a 90 mm cannon. The average quasi-peak SPL, measured inside the cage, was in excess of 190 dB. Again, we failed to produce drastic results (see Table 4).
The effects of altitude (pressure) as seen in Table 2, were somewhat more noticeable. For example, Table 1 shows that in Group I, the appearance of the tympanic membrane was normal for all subjects. In Group II, however, only eight of the membranes appeared normal; the rest varied from a slight to a generally injected appearance. Similarly, the middle ear mucosa was normal in Group I, while in Group II, only seven were normal, with the remaining 17 varying from a slight reaction to frank hemorrhage. The oval window reaction observed in the two groups was about the same. As we examine these data we are inescapably drawn to the conclusion that while neither of these experimental variables really wrecked havoc with the prostheses, the effects of the pressure change were considerably more marked. It is significant, we believe, that no failures of the prostheses were induced. The procedures are obviously highly reliable and quite resistant to forces considerably in excess of those one normally encounters in everyday life. This is not to say that failure will not occur, merely that we were unable to produce it. We desire to emphasize again, however, that these results related only to susceptibility of the prostheses to failure, and to tissue response, not to the effect of these variables upon the hearing of the stapedectomized animal.

We also believe that it is significant that no behavioral manifestations of vestibular damage could be observed. Any penetration of the vestibule by the prostheses should have produced immediate and observable behavioral changes. The fact that none were observed strongly suggests that no penetration occurred. Serial sections are being made of the temporal bones but results are not ready at this time.

Our results obviously do not support the findings of Andersen et al (5) who reported disarticulation of the prostheses at "violent" levels. This is not surprising, as their prosthesis was in an exposed dead temporal bone, while ours was in an intact living animal.

DISCUSSION

Based upon the results presented above, we can see no real need to drastically restrict the duty activities of stapedectomized persons after complete recovery from initial surgery. As always, common sense should be used but apparently the procedures are quite resistant to failure if successfully performed. However, as shown in Tables 1 and 2, original results of the insertion of the prostheses can be less than perfect, so that trauma could conceivably break down an initially imperfectly implanted prosthesis.
We could observe no significant basis for choice between the PE + V and SSP techniques. If basis for choice exists, it is surgical, not mechanical.

It is appropriate to mention here that more research is necessary before we can set exposure criteria for the patient's work environment. It will probably be some time before sufficient data are accumulated to enable us to evaluate the permanent effects of various noises upon the hearing of stapedectomized patients.

CONCLUSIONS

1. High intensity impulse noise and rapid changes in air pressure do not appear sufficient to cause significant prosthesis failure in stapedectomized monkeys.

2. Of the two variables tested, within the limits of this experiment, pressure changes appear to be more traumatic.

3. No apparent difference appears to exist between the reliability of the stainless steel piston and the polyethylene and vein techniques.

4. Solely on a basis of fear of prosthesis failure, no reason can be seen for any drastic limitation of duty of stapedectomized patients.

REFERENCES

LEGEND FOR TABLES

TM - Tympanic Membrane
MM - Middle Ear Mucosa
OW - Oval Window

Tympanic Membrane

Normal (N) - Self-explanatory.
Slight injury - Hyperemia in vascular strip area.
General injury - Entire tympanic membrane hyperemic.

Original Results

Self-explanatory.

Middle Ear Mucosa

No reaction (NR) - Self-explanatory.
Slight reaction - Generalized injection.
Moderate reaction - Some petechiae.
Frank hemorrhage - Self-explanatory.

Oval Window

Slight - Very little reaction in the drum or the vein around the prosthesis.
Moderate - Somewhat greater reaction around prosthesis.
Marked - Drum plastered to incus with much reaction around prosthesis.
TABLE 1

GROUP I - GUNFIRE

(Polyethylene Strut and Vein Graft)

<table>
<thead>
<tr>
<th>Post-Exposure Appearance of the TM</th>
<th>Original Results</th>
<th>Reaction of the MM</th>
<th>Reaction of the OW, Due to Surgery</th>
<th>Post-Exposure Appearance of the TM</th>
<th>Original Results</th>
<th>Reaction of the MM</th>
<th>Reaction of the OW, Due to Surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Originally slipped tube</td>
<td>NR</td>
<td>Slight</td>
<td>N</td>
<td>Good</td>
<td>NR</td>
<td>Slight</td>
</tr>
<tr>
<td>N</td>
<td>Good</td>
<td>NR</td>
<td>Moderate</td>
<td>N</td>
<td>Good</td>
<td>NR</td>
<td>Slight</td>
</tr>
<tr>
<td>N</td>
<td>Good</td>
<td>NR</td>
<td>Marked</td>
<td>N</td>
<td>Good</td>
<td>NR</td>
<td>Slight</td>
</tr>
<tr>
<td>N</td>
<td>Good</td>
<td>NR</td>
<td>Slight</td>
<td>N</td>
<td>Good</td>
<td>NR</td>
<td>Moderate</td>
</tr>
<tr>
<td>N</td>
<td>Good</td>
<td>NR</td>
<td>Slight</td>
<td>N</td>
<td>Good</td>
<td>NR</td>
<td>Slight</td>
</tr>
</tbody>
</table>

(Stainless Steel Piston)

N	Good	NR	Slight	NRgrave General injury	Good	NR	Slight
N	Good	NR	Slight	NRgrave Moderate question of perilymph in middle ear	Good	NR	Moderate
N	Good	NR	Slight	N	Good	NR	Slight
N	Good	NR	Slight	N	Good	NR	Slight
N	Good	NR	Moderate	N	Good	NR	Slight
TABLE 2

GROUP II - ALTITUDE

(No Perforations Seen in Any Ears)
(Polyethylene Strut and Vein Graft)

<table>
<thead>
<tr>
<th>Post-Exposure Appearance of the TM</th>
<th>Original Results</th>
<th>Reaction of the MM</th>
<th>Reaction of the OW, Due to Surgery</th>
<th>Post-Exposure Appearance of the TM</th>
<th>Original Results</th>
<th>Reaction of the MM</th>
<th>Reaction of the OW, Due to Surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>General injury</td>
<td>Good</td>
<td>Frank hemorrhage</td>
<td>Slight</td>
<td>Slight</td>
<td>Good</td>
<td>Slight</td>
<td>Slight</td>
</tr>
<tr>
<td>N</td>
<td>Good</td>
<td>NR</td>
<td>Slight</td>
<td>Slight</td>
<td>Good</td>
<td>Slight</td>
<td>Slight</td>
</tr>
<tr>
<td>N</td>
<td>Good</td>
<td>NR</td>
<td>Slight</td>
<td>Slight</td>
<td>Good</td>
<td>Slight</td>
<td>Slight</td>
</tr>
<tr>
<td>Slight</td>
<td>Good</td>
<td>Moderate</td>
<td>Slight</td>
<td>Slight</td>
<td>Good</td>
<td>NR</td>
<td>Slight</td>
</tr>
<tr>
<td>N</td>
<td>Good</td>
<td>NR</td>
<td>Slight</td>
<td>Slight</td>
<td>Slipped</td>
<td>NR</td>
<td>Slight</td>
</tr>
<tr>
<td>Slight</td>
<td>Slipped</td>
<td>Slight</td>
<td>Slight</td>
<td>Slight</td>
<td>Good</td>
<td>Frank hemorrhage</td>
<td>Slight</td>
</tr>
</tbody>
</table>

(Stainless Steel Piston)

<p>| Slight | Good | Moderate | Slight | Slight | Good | Moderate | Moderate |
| Slight | Good | Moderate | Slight | Slight | Good | NR | Moderate |
| Slight | Good | Frank hemorrhage | Moderate | Slight | Good | NR | Slight |
| General injury | Good | Moderate | Slight | Slight | Good | Poor crimp | Slight |
| Slight | Good | Moderate | Moderate | Slight | Good | Moderate | Marked |
| N | Good | Moderate | Slight | N | Good | Slight | Slight |
| Slight | Good | Slight | Slight | N | Good | NR | Slight |</p>
<table>
<thead>
<tr>
<th>Post-Exposure Appearance of the TM</th>
<th>Left Ear</th>
<th>Right Ear</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Original Results</td>
<td>Reaction of the MM</td>
</tr>
<tr>
<td>N</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>N</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>N</td>
<td>OK</td>
<td>Moderate</td>
</tr>
<tr>
<td>N</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>N</td>
<td>OK</td>
<td>Moderate</td>
</tr>
<tr>
<td>(Stainless Steel Piston)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Good</td>
<td>NR</td>
</tr>
<tr>
<td>N</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>N</td>
<td>OK</td>
<td>OK</td>
</tr>
</tbody>
</table>

Some surgically completed animals expired from non-surgical causes, so control group slighted to allow correct experimental groups.
TABLE 4

EXPERIMENTAL - GUNFIRE 2 (90 mm)

(Polyethylene Strut and Vein Graft)

<table>
<thead>
<tr>
<th>Post-Exposure Appearance of the TM</th>
<th>Left Ear</th>
<th>Right Ear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Results</td>
<td>Reaction of the MM</td>
<td>Reaction of the OW, Due to Surgery</td>
</tr>
<tr>
<td>(Stainless Steel Piston)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Marked*</td>
</tr>
</tbody>
</table>

With this one exception, gunfire produced no observable effect.

AG 3059-O-Army-Knox-Oct 64-6C
ARMED FORCES

DISTRIBUTION

Armed Forces Institute of Pathology, Washington, D.C.

Army Attache, Fleet Post Office Box 79, Navy 100, New York, N.Y.

Chief, Life Sciences Division, Office of the Commanding General, Washington, D.C.

Chief, Preventive Med Div, Directorate of Professional Svc., SGO, Washington, D.C.

Chief, Research and Development Command, Scientific Information Br., Washington, D.C.

Cmtd.: Brooke Army Med Center, Med Field Svc School, Stimson Library, Ft. Sam Houston, Tex.

CG, I Corps Group, APO 358, San Francisco, Calif.

CG, 7th Logistical Command, APO 612, San Francisco, Calif.

CG, US Army Chemical Research and Development Laboratories, Edgewood Arsenal, Md.

CG, US Army Europe, APO 403, New York, N.Y.

CG, US Army Medical Research and Development Command, Washington, D.C.

CG, US Army Munitions Command, CBR Center, Edgewood Arsenal, Md.

CO, Brooke Army Medical Center, Surgical Research Unit, Ft. Sam Houston, Tex.

CO, Chemical Corps, Biological Documents Laboratory, Ft. Detrick, Md.

CO, Medical Technical Library, Fitzsimons General Hospital, Denver, Colo.

CO, Picatinny Arsenal, Dover, N.J.

DISTRIBUTION

CO. US Army Medical Research Unit, Ft. Clayton, Canal Zone
CO. US Army Medical Research Unit, Inst for Medical Research Kuala Lumpur, Malaya
CO. US Army Medical Research Unit, Ft. Detrick, Md.
CO. US Army Medical Research Unit, APO 180, New York, N. Y.
CO. US Army Research Inst of Environmental Medicine, Natick Labs, Natick, Mass.
CO. US Army Tropical Research, APO 851, New York, N. Y.
Director of Research, US Army Air Defense, Human Research Unit, Ft. Bliss, Texas
Director of Research, US Army Leadership, Human Res Unit Library, Presidio of Monterey, Calif.
Director, US Army SEATO, Medical Research Laboratory, APO 146, San Francisco, Calif.
Director, Walter Reed Army Inst of Res. Walter Reed Army Med Cent, Washington, D. C.
Historical Univ, US Army Medical Service, Walter Reed Army Med Cent, Washington, D. C.
Office of the Chief Psychi & Neuro Consultant, SGO, Washington, D. C.
Office of the Dir. Division of Neurophy. Walter Reed Army Inst of Res. Washington, D.C.
Senior Medical Advisor, Hqs KMAG, APO 102, San Francisco, Calif.
Walter Reed Army Inst of Res. Dept of Atomic Casualty Studies, Washington, D. C.

HOSPITALS

CG. Brooke General Hospital Medical Library, Ft. Sam Houston, Tex.
CG. Letterman General Hospital, Presidio of San Francisco, Calif.
CG. Madigan General Hospital, Tacoma, Washington.
CO. Basset Army Hospital, Ft. Jonathan Wainwright, Fairbanks, Alaska.
CO. DeWitt Army Hospital, Ft. Belvoir, Va.
CO. Dunham Army Hospital, Carlisle Barracks, Pa.
DISTRIBUTION

CO. Ireland Army Hospital, Ft. Knox, Ky.
CO. Irwin Army Hospital, Ft. Riley, Kan.
CO. Kenner Army Hospital, Ft. Lee, Va.
CO. Kirkbride Army Hospital, Ft. George G. Meade, Md.
CO. Kirk Army Hospital, Aberdeen Proving Ground, Md.
CO. McDonald Army Hospital, Ft. Lupton, Va.
CO. Martin Army Hospital, Ft. Benning, Ga.
CO. Munson Army Hospital, Ft. Leavenworth, Kan.
CO. Noble Army Hospital, Ft. McClellan, Ala.
CO. Patterson Army Hospital, Ft. Monmouth, N. J.
CO. Weldon Army Hospital, Ft. Dix, N. J.
CO. Walter Reed General Hospital, Washington, D. C.
CO. Toms Hack Army Hospital, Ft. Bragg, N. C.
CO. US Army Hospital, Ft. Benjamin Harrison, Indianapolis, Ind.
CO. US Army Hospital, Ft. Campbell, Ky.
CO. US Army Hospital, Ft. Carson, Colorado.
CO. US Army Hospital, Ft. Dix, N. J.
CO. US Army Hospital, Ft. Hood, Tex.
CO. US Army Hospital, Ft. Jackson, S.C.
CO. US Army Hospital, Ft. Jay, N. Y.
CO. US Army Hospital, Ft. Leonard Wood, Mo.
CO. US Army Hospital, Ft. MacArthur, Calif.
CO. US Army Hospital, Ft. Monroe, Va.
CO. US Army Hospital, Ft. Ord, Calif.
CO. US Army Hospital, Ft. Polk, La.
CO. US Army Hospital, Ft. Rucker, Ala.
CO. US Army Hospital, Ft. Sill, Okla.
CO. US Army Hospital, Ft. Stewart, Ga.
CO. US Army Hospital, Ft. Wolters, Tex.
CO. US Army Hospital, Dugway Proving Ground, Utah.
CO. US Army Hospital, Redstone Arsenal, Ala.
CO. US Army Hospital, Sierra Army Depot, Herlong, Calif.
CO. US Army Hospital, White Sands Missle Range, N. Mex.
ARMED FORCES - NAVY

DISTRIBUTION

Aviation Medical Acceleration Lab, US Naval Air Development Center, Johnsville, Pa.
Aviation Psychol Laboratory, US Naval School of Aviation Medicine, Pensacola, Fla.
Bureau of Naval Weapons, Washington, D. C.
Chief, Bureau of Yards and Docks, Washington, D. C.
Chief of Naval Air Research Training, Glenview, Ill.
Chief of Naval Air Technical Training, US Naval Air Station (75), Memphis, Tenn.
Commander, Naval Missile Center, Technical Library, Point Mugu, Calif.
CO, US Naval Civil Engineer Lab, Port Hueneme, Calif.
CO, US Naval Medical Field Research Lab., Library, Camp Lejuene, N. C.
CO, US Naval Ordnance Test Station, Station Hospital, China Lake, Calif.
CO, US Naval Weapons Station, Attn: QE Laboratory, Concord, California
Director, Aerospace Crew Equipment Lab, Naval Air Engr Center, Philadelphia, Pa.
Director Research Division (71) Bureau of Medicine & Surgery, Washington, D. C.
Director, US Naval Research Laboratory, Code 2027, Washington, D. C.
Director of Laboratories NMS, National Naval Medical Center, Bethesda, Md.
Office of Naval Res Br. Document & Tech Infor, Box 33, Navy 100, Fleet PO, New York, N.Y.
Office of Naval Research, Code 454, Washington, D. C.
Officer in Charge, Exper Diving Unit, US Naval Sta, Navy Yard Annex, Washington, D. C.
Officer in Charge, Operations Evaluations Group, Washington, D. C.
Special Assistant, Medical Allied Sciences, Washington, D. C.
US Naval Research Laboratory, US Naval Submarine Base, New London, Groton, Conn
US Naval Supply Research & Development Facility, Library, Bayonne, New York
US Naval Medical Neuropsychiatric Research Unit, San Diego, Calif.

US AIR FORCE

Comdr. Rome Air Development Center, Griffiss AFB, N. Y.
Comdr. 6570 AMRL (NRBA) Wright-Patterson AFB, Ohio
Comdr. 6570 AMRL (NRBBN) Wright-Patterson AFB, Ohio
Comdr. 6570 AMRL (NRRL) Wright-Patterson AFB, Ohio
Comdr. Wilford Hall, US Air Force Hospital, Lackland AFB, Texas
Hqs-AT Office of Scientific Research, (Tempo Bldg D) Washington, D. C.
ARMED FORCES - US AIR Cont.

DISTRIBUTION

Langley Research Center, National Aeronautics & Space Admin., Hampton, Va.
Office of the Surgeon, Air Tag Command, Randolph AFB, Tex.
Office of the Surgeon, Hqs Strategic Air Command, Offutt AFB, Neb.
School of Aerospace Medicine, Aeromedical Library, Brooks AFB, Texas
6571st Aeromedical Research Laboratory Library, Holloman AFB, N. Mex.

GOVERNMENTAL AGENCIES

Argonne National Laboratory, Library Service Department, Argonne, Illinois
Armed Forces Radiobiology Research Inst, National Naval Medical Center, Bethesda, Md.
Brookhaven National Lab, Associated Universities Inc, Library, Upton, L. I., N. Y.
Chief, Radiation Br, National Cancer Institute, Bethesda, Md.
Defense Documentation Center Hqs, Cameron Station, Alexandria, Va.
Department of Health Educ & Welfare, Div of Radiol Health-PHS, Washington, D. C.
Division of Biology & Medicine, US Atomic Energy Commission, Washington, D. C.
Division of Medical Sciences, National Research Council, Washington, D. C.
Executive Secretary, Committee of Vision, National Res Council, Washington, D. C.
Federal Aviation Agency, CARI Library - AC-43.2, Oklahoma City, Oklahoma
National Aeronautics & Space Administration, Washington, D. C.
National Institute of Health, Division of Research Grants, Bethesda, Md.
National Library of Medicine, Bethesda, Md.
Office of Civil Defense, Technical Research Laboratory, Battle Creek, Mich.
US Public Health Svc, Occupational Health Res & Tng, Facility, Cincinnati, Ohio

OTHER AGENCIES

Abbott Laboratories, Science Information Services, N. Chicago, Illinois
American Machine Foundry Co, New York, N. Y.
Arctic Health Research Center Library, Anchorage, Alaska
Central Medical Library, 11-42, The Boeing Co, Seattle, Washington
Chief, Bioscience Section, Aerospace Division, The Boeing Co, Seattle, Washington
General Electric Co, Advanced Electric Center Library, Ithaca, N. Y.
General Electric Co, Tempo Library, Santa Barbara, Calif.
DISTRIBUTION

OTHER AGENCIES Cont.

IBM Research Center, Engr Science Dept 475, Yorktown Heights, N. Y.
ITT Federal Laboratories, Human Factors Group, Nutley, N. J.
Kings County Hospital, Department of Anesthesiology Library, Brooklyn, N. Y.
Lafayette Clinic 951 E. Lafayette Street, Detroit, Michigan
Mayo Clinic, Director of Biophysics Division, Rochester, Minn.
McDonnell Aircraft Corp, St. Louis, Mo.
Psychological Abstracts, Washington, D. C.
Ray Corporation Library, Santa Monica, California
Rheem Califone Corporation, Los Angeles, Calif.
Space Technical Laboratories, Subcommittee on Noise, Los Angeles, Calif.
The Boeing Company Library, Military Aircraft Systems Division, Wichita, Kan.
The John Crerar Library, Chicago, Illinois
The Research Analysis Corp Library, McLean, Va.
Yerkes Laboratories of Primate Biology, Orange Park, Fla.

MEDICAL COLLEGE/SCHOOL LIBRARIES AND DEPTS

Albany Medical College Library, Albany, N. Y.
Bowman Gray School of Medicine, Library, Winston-Salem, N. C.
Brown University, Library Documents Division, Providence, R. I.
College of Medical Evangelists, Verneer Radcliffe Memorial Library, Loma Linda, Calif.
Columbia Univ, Dept of Psychology, New York, N. Y.
Columbia Univ, Medical Library, New York, N. Y.
Cornell Univ, Central Serial Record Department, Ithaca, N. Y.
Cornell Univ, Medical Library, New York, N. Y.
Creighton Univ, Medical Pharmacy Library, Omaha, Neb.
Dartmouth College, Dana Biomedical Library, Hanover N. H.
Harvard Univ, Medical Library, Boston, Mass.
Indiana Univ, Medical Center Library, Indianapolis, Ind.
Indiana Univ, School of Medicine Library, Bloomington, Ind.
Johns Hopkins Univ, Welch Medical Library, Baltimore, Md.
Kansas State Univ, Department of Psychology, Manhattan, Kan.
Loma Linda Univ, White Memorial Medical Library, Los Angeles, Calif.
MEDICAL COLLEGE /SCHOOL LIBRARIES AND DEPTS Cont.

DISTRIBUTION

Marquette Univ, Medical-Dental Library, Milwaukee, Wis.
Medical College of Virginia, Tompkins-McCaw Library, Richmond, Va.
New York Academy of Medicine Library, New York, N. Y.
New York Univ, College of Medicine, Research Division, New York, N. Y.
New York Univ, College of Engr, Research Division, New York, N. Y.
New York Univ, Medical Center Library, New York, N. Y.
Northeastern Univ, Department of Psychology, Evanston, Ill.
Northeastern Univ, Medical School Library, Chicago, Ill.
Ohio State Univ, Chemical Abstracts Service, Columbus, Ohio
Ohio State Univ, Engr Experiment Station, Systems Research Group, Columbus, Ohio.
Ohio State Univ, Psycholinguistics Laboratory, Columbus, Ohio.
Ohio State Univ, Research Center, Aviation Psychology Laboratory, Columbus, Ohio.
Ohio State Univ, School of Optometry, Columbus, Ohio.
Ohio State Univ, Tape Library, Columbus, Ohio
Purdue Univ, Department of Psychology, Lafayette, Ind.
Rush Medical College Library, Chicago, Ill.
St. Louis Univ, Medical School Library, St. Louis, Mo.
Stanford Univ, Lane Medical Library, Palo Alto, Calif.
State Univ of Iowa, College of Medicine Library, Iowa City, Iowa.
State Univ of Iowa, Univ Hosp, Dept of Otolaryng & Maxillofacial Surg, Iowa City, Iowa.
State Univ of New York, Anesthesiology Department, Brooklyn, N. Y.
State Univ of New York, Medical Library, Downtown Medical Center, Brooklyn, N. Y.
Texas Medical Center Library, Jesse H. Jones Library Bldg, Houston, Tex.
Tufts Univ, Hussa Engineering Information Analysis Service, Medford, Mass.
Tulane Univ, School of Medicine Library, New Orleans, La.
Vanderbilt Univ, Hospital Library, Nashville, Tenn.
Univ of Alabama, Medical Center Library, Birmingham, Ala.
Univ of Arkansas, Medical Center Library, Little Rock, Ark.
Univ of Buffalo, Department of Psychology, Buffalo, N. Y.
Univ of Buffalo, Health Sciences Library, Buffalo, N. Y.
Univ of California, Biomedical Library, Los Angeles, Calif.
Univ of Chicago, Radiation Laboratory, Chicago, Ill.
Univ of Cincinnati, College of Medicine, Kettering Lab, Cincinnati, Ohio
Univ of Florida, College of Medicine, Gainesville, Fla.
Univ of Georgia, Department of Psychology, Athens, Ga.
<table>
<thead>
<tr>
<th>University</th>
<th>Location</th>
<th>City</th>
<th>State</th>
<th>Department/Institute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unif of Illinois, Aerospace</td>
<td>Urbana</td>
<td>Urbana, Ill.</td>
<td></td>
<td>Aerospace Laboratory, Urbana, Ill.</td>
</tr>
<tr>
<td>Unif of Illinois, Aviation</td>
<td>Urbana</td>
<td>Urbana, Ill.</td>
<td></td>
<td>Aviation Psychology Laboratory, Urbana, Ill.</td>
</tr>
<tr>
<td>Unif of Illinois, Speech</td>
<td>Urbana</td>
<td>Urbana, Ill.</td>
<td></td>
<td>and Hearing Clinic, Urbana, Ill.</td>
</tr>
<tr>
<td>Unif of Illinois, Training</td>
<td>Urbana</td>
<td>Urbana, Ill.</td>
<td></td>
<td>Research Laboratory, Urbana, Ill.</td>
</tr>
<tr>
<td>Unif of Kansas, Medical Library</td>
<td>Kansas City</td>
<td>Kansas City,</td>
<td></td>
<td>Kansas, Medical Library, Kansas City, Kan.</td>
</tr>
<tr>
<td>Unif of Kentucky, Psychology</td>
<td>Lexington</td>
<td>Lexington, Ky.</td>
<td></td>
<td>Department, Lexington, Ky.</td>
</tr>
<tr>
<td>Unif of Louisville, Medical</td>
<td>Louisville</td>
<td>Louisville, Ky.</td>
<td></td>
<td>Library, Louisville, Ky.</td>
</tr>
<tr>
<td>Unif of Maryland, Health</td>
<td>Baltimore</td>
<td>Baltimore, Md.</td>
<td></td>
<td>Sciences Library, Baltimore, Md.</td>
</tr>
<tr>
<td>Unif of Miami, School of Medicine</td>
<td>Coral Gables</td>
<td>Coral Gables,</td>
<td></td>
<td>School of Medicine, Coral Gables, Fla.</td>
</tr>
<tr>
<td>Unif of Minnesota, Serials</td>
<td>Minneapolis</td>
<td>Minneapolis,</td>
<td></td>
<td>Division Library, Minneapolis, Minn.</td>
</tr>
<tr>
<td>Unif of Mississippi, Medical</td>
<td>Jackson</td>
<td>Jackson, Miss.</td>
<td></td>
<td>Center, Rowland Medical Library, Jackson, Miss.</td>
</tr>
<tr>
<td>Unif of Missouri, Medical</td>
<td>Columbia</td>
<td>Columbia, Mo.</td>
<td></td>
<td>Library, Columbia, Mo.</td>
</tr>
<tr>
<td>Unif of Nebraska, College of</td>
<td>Omaha</td>
<td>Omaha, Neb.</td>
<td></td>
<td>Medicine Library, Omaha, Neb.</td>
</tr>
<tr>
<td>Unif of Oklahoma, Medical Center</td>
<td>Oklahoma City</td>
<td>Oklahoma City, Okla.</td>
<td></td>
<td>Library, Oklahoma City, Okla.</td>
</tr>
<tr>
<td>Unif of Oregon, Medical School</td>
<td>Portland</td>
<td>Portland, Ore.</td>
<td></td>
<td>Library, Portland, Ore.</td>
</tr>
<tr>
<td>Unif of Oregon, Department of</td>
<td>Portland</td>
<td>Portland, Ore.</td>
<td></td>
<td>Dermatology, Portland, Ore.</td>
</tr>
<tr>
<td>Unif of Pittsburgh, Department of</td>
<td>Pittsburgh</td>
<td>Pittsburgh, Pa.</td>
<td></td>
<td>Psychology and Radiology, Pittsburgh, Pa.</td>
</tr>
<tr>
<td>Unif of Rochester, Department of</td>
<td>Rochester</td>
<td>Rochester, N. Y.</td>
<td></td>
<td>Psychology, Rochester, N. Y.</td>
</tr>
<tr>
<td>Unif of Rochester, School of</td>
<td>Rochester</td>
<td>Rochester, N. Y.</td>
<td></td>
<td>Medicine & Dentistry, Rochester, N. Y.</td>
</tr>
<tr>
<td>Unif of Rochester, Strong</td>
<td>Rochester</td>
<td>Rochester, N. Y.</td>
<td></td>
<td>Hospital, Rochester, N. Y.</td>
</tr>
<tr>
<td>Unif of Southern California, School of Medicine</td>
<td>Los Angeles, Calif.</td>
<td></td>
<td>Library, Los Angeles, Calif.</td>
<td></td>
</tr>
<tr>
<td>Unif of South Dakota, Medical</td>
<td>Vermillion</td>
<td>Vermillion, S. D.</td>
<td></td>
<td>Library, Vermillion, S. D.</td>
</tr>
<tr>
<td>Unif of Tennessee, Mooney</td>
<td>Memphis</td>
<td>Memphis, Tenn.</td>
<td></td>
<td>Memorial Library, Memphis, Tenn.</td>
</tr>
<tr>
<td>Unif of Texas, The Radiobiology</td>
<td>Austin</td>
<td>Austin, Tex.</td>
<td></td>
<td>Laboratory, Austin, Tex.</td>
</tr>
<tr>
<td>Unif of Texas, Medical Branch</td>
<td>Galveston</td>
<td>Galveston, Tex.</td>
<td></td>
<td>Library, Galveston, Tex.</td>
</tr>
<tr>
<td>Unif of Texas, Speech & Hearing</td>
<td>Austin</td>
<td>Austin, Tex.</td>
<td></td>
<td>Clinic, Austin, Tex.</td>
</tr>
<tr>
<td>Unif of Utah, Library of Medical</td>
<td>Salt Lake City</td>
<td>Salt Lake City, Utah.</td>
<td></td>
<td>Sciences, Salt Lake City, Utah.</td>
</tr>
<tr>
<td>Unif of Virginia, School of</td>
<td>Charlottesville</td>
<td>Charlottesville, Va.</td>
<td></td>
<td>Medicine, Biostatistics, Charlottesville, Va.</td>
</tr>
</tbody>
</table>
MEDICAL COLLEGE/SCHOOL LIBRARIES AND DEPTS Cont.

DISTRIBUTION

Univ of Virginia, Medical Library, Univ Hospital, Charlottesville, Va.
Univ of Virginia, Psychology Department, Charlottesville, Va.
Univ of Washington, Health Sciences Library, Seattle, Wash.
Univ of Wisconsin, Medical School Library, Madison, Wis.
Univ of Wisconsin, Psychology Studies Division, Madison, Wis.
Wayne State Univ, Medical Library, Detroit, Mich.
West Virginia Univ, Medical Center Library, Morgantown, W. Va.
Yale Univ, School of Medicine, Otologic Research Laboratory, New Haven, Conn.
Xavier Univ, Department of Psychology, Cincinnati, Ohio

FOREIGN

Accessions Dept, Nat’l Lending Library for Sci & Tech, Boston SPA, Yorkshire, England
British Army Medical Liaison Officer, British Embassy, Washington, D. C.
British Navy Staff Officer, Benjamin Franklin Sta, Attn: F. P. Ellis, Washington, D. C.
Canadian Liaison Officer, Office of the Surgeon General, Washington, D. C.
Commander P. H. Bonnel, Med En Chef De La, Marine, Paris, France
Defence Research Member, Canadian Joint Staff, Washington, D. C.
Dr. Hugo Aradillo, Hospital Militar Central, Asuncion, Paraguay
Dr. R. W. Brinabicomb, Chom Defence Expr. Ext, Porton Down, Salisbury, Wilts, England
Dr. Martti J. Karvonen, Dir Physiol Dept, The Inst of Occup Health, Helsinki, Finland
Dr. Jan Tersz, Dept of History, Karolinska Inst, Stockholm, Sweden
Dr. G. H. Yardum, Div Physiol Lab, U.H. & O.F.S. Chamber of Mines, Johannesburg, S. Africa
Eichii Nagashima Exta Info Svc, The Nat’l Inst of Animal Health, Tokyo, Japan
Escuela de Sanidad Militar, V. Edu Sanitar, Attn: Eugento G. C. Robeau, Asuncion, Paraguay
German Military Attaché, Federal Ministry of Defense, Washington, D. C.
Inst of Clinical Exp Surgery, Attn: Dr. Liska, Prague, Krc, Czechoslovakia
Inst of Exp Med & Surg, Attn: Dr. Hans Selye, Dir Univ of Montreal, Montreal, Canada
Inst of Physiology, Univ of Pisa, Attn: Giuseppe Moruzzi, Pisa, Italy
Laboratory of General Pathology Therapy, Attn: Prof Zenon N. Bacq, Liege, Belgium
Medical Sciences Library, University of Alberta, Edmonton, Alberta, Canada
Oxford Univ, Department of Human Anatomy, Attn: Dr. A. R. Lind, Oxford, England
Prof D. Bennati, Dir Inst de Ciencias Fisioflogicas, Montevideo, Uruguay
Prof R. W. Ditchburn, J. J. Thompson Physiol Lab, Berks Univ, Berks, England
Prof D. W. MacKay, Univ of N. Staffordshire, Keele, Staffordshire, England
Prof J. A. F. Stevenson Faculty of Med, Univ of Western Ont, London, Ont, Canada
Royal Air Force Inst of Aviation Med, Attn: Dr. G. H. Byford, Fareborough, England
Royal Society of Medicine Library, London England
Univ of Western Ontario Med School, Attn: Dr. Allan C. Burton, London, Ont, Canada
In order to determine the effects of impulse noise and rapid changes in pressure upon stapedectomy patients, 40 Cebus monkeys were subjected to the stapedectomy procedure and later exposed to gunfire or rapid changes in pressure in an altitude chamber. Two different prostheses were used, half the monkeys receiving the polyethylene strut and vein graft, the other half getting a stainless steel piston prosthesis. Immediate post-exposure examination of the monkeys was made by reflecting the drums. No experimental disarticulation of the prostheses was observed, nor were there any behavioral manifestations of vestibular pathology. No significant differences were observed between the two different prostheses used. On the basis of this experiment, no valid reason for drastic duty limitation of stapedectomy patients can be seen.
END

DTIC

6-86