STUDY OF RADIATION HEAT FLUX FROM HIGH PRESSURE AIR ARCS

This document has been approved for public release. Its distribution is unlimited.

C. H. Marston
General Electric Company

January 1965
NOTICES

When U. S. Government drawings specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified users may obtain copies of this report from the Defense Documentation Center.

References to named commercial products in this report are not to be considered in any sense as an endorsement of the product by the United States Air Force or the Government.
STUDY OF RADIATION HEAT FLUX
FROM HIGH PRESSURE AIR ARCS

C. H. Marston
General Electric Company
FOREWORD

This report was prepared by the Space Sciences Laboratory of the General Electric Company Missile and Space Division for the Arnold Engineering Development Center (AEDC), Air Force Systems Command (AFSC). The work was performed from December 1963 to November 1964 under contract AF 40 (600)-1080, Project 8952, Program Element 62405334, Task 895202, entitled "Study of Radiation Heat Flux from High Pressure Air Arcs."

Capt. J. Edwards and Capt. J. R. Cureton were the Technical Monitors.

C. H. Marston and T. K. Pugmire were the principal investigators. The spectrographic temperature profiles were obtained by H. Sajjian and B. A. Bellinger. Dr. H. E. Weber's continuing advice and comment and particularly his assistance with the applications section are gratefully acknowledged. The invaluable assistance of A. M. Schorn, who prepared the ARCRAD computer program, and V. L. Chesser, who ran the arc facility, is also gratefully acknowledged.

Some sections of this report were originally prepared by T. K. Pugmire, who is no longer with the company. These include the discussion of thermal equilibrium in section 2, some parts of section 5, and all of Appendix E. Appendix B was written by A. M. Schorn.

The reproducibles used for the reproduction of this report were supplied by the author December 28, 1964.

This technical report has been reviewed and is approved.

John R. Cureton
Captain, USAF
Gas Dynamics Division
DCS/Research

Donald R. Eastman, Jr.
DCS/Research
ABSTRACT

A computational model has been developed and applied for calculating radiant heat flux from an electric arc using real gas properties and taking into account both self absorption and space varying temperature. The model requires knowledge of the temperature profile as an input. Temperature profiles were measured spectrographically using an air arc at one and 2.4 atmospheres. These measured profiles plus some simple analytic ones which satisfied boundary conditions were used to calculate radiant heat flux at pressures from 1 to 300 atmospheres. The experimental program also included measurements of radiant flux density at 2.2 and 5.7 atmospheres for comparison with calculations based on the measured profiles. Estimates were made of radiation losses in the AEDC 20-megawatt arc air heater now under development.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. ANALYSIS</td>
<td>3</td>
</tr>
<tr>
<td>2.1 The Arc Column Model</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Infinite Half Cylinder Absorptivity</td>
<td>7</td>
</tr>
<tr>
<td>2.3 Absorption of Exterior Radiation</td>
<td>12</td>
</tr>
<tr>
<td>2.4 Absorption of Interior Radiation</td>
<td>14</td>
</tr>
<tr>
<td>2.5 Emissivity Calculations</td>
<td>19</td>
</tr>
<tr>
<td>2.6 Complete Expression for Radiant Heat Flux</td>
<td>20</td>
</tr>
<tr>
<td>2.7 Constricted Arc with Non Black Walls</td>
<td>24</td>
</tr>
<tr>
<td>III. DIGITAL COMPUTATION</td>
<td>26</td>
</tr>
<tr>
<td>3.1 Program ARCRAD</td>
<td>26</td>
</tr>
<tr>
<td>3.2 Limits on Frequency Range of Calculations</td>
<td>28</td>
</tr>
<tr>
<td>3.3 Preliminary Processing of Absorption Coefficient Data</td>
<td>31</td>
</tr>
<tr>
<td>3.4 Temperature and Density Profiles</td>
<td>34</td>
</tr>
<tr>
<td>IV. COMPUTER RESULTS</td>
<td>37</td>
</tr>
<tr>
<td>4.1 Wavenumber Range of Results</td>
<td>37</td>
</tr>
<tr>
<td>4.2 Convergence of Upper and Lower Bounds</td>
<td>39</td>
</tr>
<tr>
<td>4.3 Results with Assumed Temperature Profile</td>
<td>42</td>
</tr>
<tr>
<td>4.4 Sensitivity to Changes in Outer Radius</td>
<td>44</td>
</tr>
<tr>
<td>4.5 The Quasi-Thin Model and Frequency Distribution</td>
<td>48</td>
</tr>
<tr>
<td>4.6 Two-Temperature Model</td>
<td>51</td>
</tr>
<tr>
<td>V. EXPERIMENTAL STUDY</td>
<td>57</td>
</tr>
<tr>
<td>5.1 Objectives</td>
<td>57</td>
</tr>
<tr>
<td>5.2 Arc Heater</td>
<td>59</td>
</tr>
<tr>
<td>5.3 Temperature Profiles and Centerline Temperatures</td>
<td>61</td>
</tr>
<tr>
<td>5.4 Radiant Heat Flux Measurements</td>
<td>64</td>
</tr>
<tr>
<td>VI. APPLICATION TO ARC HEATER CONFIGURATIONS</td>
<td>68</td>
</tr>
<tr>
<td>6.1 General</td>
<td>68</td>
</tr>
<tr>
<td>6.2 Specific Configuration</td>
<td>71</td>
</tr>
<tr>
<td>6.3 Arc Column Model</td>
<td>72</td>
</tr>
<tr>
<td>6.4 Low Pressure Operation</td>
<td>72</td>
</tr>
<tr>
<td>6.5 High Pressure Operation</td>
<td>74</td>
</tr>
<tr>
<td>VII. CONCLUSIONS</td>
<td>77</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>77</td>
</tr>
</tbody>
</table>
APPENDIXES

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>Calculation of Energy Fraction</td>
<td>74</td>
</tr>
<tr>
<td>B.</td>
<td>Program ARCRAD</td>
<td></td>
</tr>
<tr>
<td>B. 1</td>
<td>Purpose</td>
<td>77</td>
</tr>
<tr>
<td>B. 2</td>
<td>Glossary</td>
<td>78</td>
</tr>
<tr>
<td>B. 3</td>
<td>Initialization and Input Program Notes</td>
<td>87</td>
</tr>
<tr>
<td>B. 4</td>
<td>Block Diagram and Program Notes</td>
<td>92</td>
</tr>
<tr>
<td>B. 5</td>
<td>Program Listing</td>
<td>108</td>
</tr>
<tr>
<td>C.</td>
<td>Calculation of Annulus Radii</td>
<td></td>
</tr>
<tr>
<td>C. 1</td>
<td>Analysis</td>
<td>122</td>
</tr>
<tr>
<td>C. 2</td>
<td>Description of Analytic Temperature Profile</td>
<td>123</td>
</tr>
<tr>
<td>C. 3</td>
<td>Definition of Symbols for Computer Program</td>
<td>125</td>
</tr>
<tr>
<td>C. 4</td>
<td>Block Diagram</td>
<td>127</td>
</tr>
<tr>
<td>C. 5</td>
<td>Program Listing</td>
<td>132</td>
</tr>
<tr>
<td>D.</td>
<td>Curve Fit for Temperature Profile Data</td>
<td></td>
</tr>
<tr>
<td>D. 1</td>
<td>ARCRAD Curve Fit Program Description</td>
<td>138</td>
</tr>
<tr>
<td>D. 2</td>
<td>Sense Switch Settings</td>
<td>139</td>
</tr>
<tr>
<td>D. 3</td>
<td>ARCRAD Curve Fit Definition of Symbols</td>
<td>139</td>
</tr>
<tr>
<td>D. 4</td>
<td>Block Diagram</td>
<td>140</td>
</tr>
<tr>
<td>D. 5</td>
<td>Program Listing</td>
<td>142</td>
</tr>
<tr>
<td>E.</td>
<td>Measurement of Temperature Profiles</td>
<td></td>
</tr>
</tbody>
</table>

ILLUSTRATIONS

Figure

2. 1 Absorption by an Infinitely Long Half Cylinder: a) Geometry, b) Typical Absorption Path 6
2. 2 Transmissivity of an Infinitely Long Half Cylinder ... 8
2. 3 Absorption of Exterior Radiation. The j=3 Annulus is shown as a Typical Example 9
2. 4 Sector Radius, \(R_{ijq} \) for Calculation of Exterior Radiation Absorption Length 11
2. 5 Geometry of Absorption of Interior Radiation Illustrated for Radiation from the Outermost Annulus (\(j=1 \)) with \(q=j+2 \) .. 13
2. 6 Absorption Paths for Calculation of Exterior Emissivity from an Infinitely Long Cylindrical Annulus. Only the Unshaded Part of the Annulus is Directly Visible to the Surface Element 16
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7</td>
<td>Absorptivity of a Cylindrical Annulus Relative to Absorptivity of a Cylinder (both infinitely long)</td>
<td>18</td>
</tr>
<tr>
<td>2.8</td>
<td>Influence of Arc Chamber Emissivity on Radiant Heat Transfer</td>
<td>23</td>
</tr>
<tr>
<td>3.1</td>
<td>Frequency and Temperature Ranges of Spectral Absorption Coefficient Data. The Solid Outline Represents Available Data</td>
<td>25</td>
</tr>
<tr>
<td>3.2</td>
<td>Fraction of Black Body Energy Emitted at Wavenumbers Greater than 61,500 cm⁻¹</td>
<td>27</td>
</tr>
<tr>
<td>3.3</td>
<td>Arbitrary Polynomial Profiles and a Nitrogen Profile Measured by Maeccker</td>
<td>29</td>
</tr>
<tr>
<td>4.1</td>
<td>Convergence of Upper and Lower Limit Calculations as Number of Sectors Increases</td>
<td>33</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of Profile Fullness on Radiant Flux Density</td>
<td>35</td>
</tr>
<tr>
<td>4.3</td>
<td>Temperature Level Dependence of Arc Radiant Heat Flux</td>
<td>36</td>
</tr>
<tr>
<td>4.4</td>
<td>Frequency Distribution of Radiant Heat Flux, Arc Profile Measured at 2.4 atm, 455 amp, Computed at 100 atm</td>
<td>38</td>
</tr>
<tr>
<td>4.5</td>
<td>Reduction in Intensity of Radiation from a High Pressure Arc by Surrounding Plasma - Two Temperature Model with Arc at 16000°K</td>
<td>40</td>
</tr>
<tr>
<td>4.6</td>
<td>Two Temperature Model Including High Frequency Radiation with Arc at 15000°K</td>
<td>41</td>
</tr>
<tr>
<td>5.1</td>
<td>High Pressure Air Arc-Constricted Column</td>
<td>43</td>
</tr>
<tr>
<td>5.2</td>
<td>Spectrographically Measured Profile, 1 atm, 400 amp</td>
<td>44</td>
</tr>
<tr>
<td>5.3</td>
<td>Spectrographically Measured Profile, 1 atm, 585 amp</td>
<td>45</td>
</tr>
<tr>
<td>5.4</td>
<td>Spectrographically Measured Profile, 2.4 atm, 455 amp, with Curve Fit to Two Different Boundary Conditions</td>
<td>46</td>
</tr>
<tr>
<td>5.5</td>
<td>Arc Column Centerline Temperature Variation with Arc Current at Constant Temperature</td>
<td>47</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>5.6</td>
<td>Copper Slug Gage for Total Radiant Heat Flux Measurement Shown in Retracted Position</td>
<td>49</td>
</tr>
<tr>
<td>5.7</td>
<td>Typical Recording Trace for Determination of Radiant Heat Flux</td>
<td>50</td>
</tr>
<tr>
<td>5.8</td>
<td>Average Transmission of General Electric Type 101 Quartz Excluding Surface Reflection Losses (Thickness = $1/16''$)</td>
<td>52</td>
</tr>
<tr>
<td>5.9</td>
<td>Radiant Heat Flux at 2 atm</td>
<td>53</td>
</tr>
<tr>
<td>5.10</td>
<td>Comparison of Computations Using 2 Measured Profiles with Direct Radiant Flux Density Measurements</td>
<td>54</td>
</tr>
<tr>
<td>6.1</td>
<td>Ring Electrode Rotating Arc with Separation Distance of 4 Ring Radii</td>
<td>58</td>
</tr>
<tr>
<td>6.2</td>
<td>Outline of AEDC 20 MW Arc Heater Interior (based on drawing furnished by Westinghouse Electric Co.)</td>
<td>60</td>
</tr>
<tr>
<td>6.3</td>
<td>Choked Fully Developed Flow (Ref. 15)</td>
<td>62</td>
</tr>
<tr>
<td>6.4</td>
<td>Energy Balance and Ohm's Law at 5 Atmospheres Chamber Pressure</td>
<td>63</td>
</tr>
<tr>
<td>6.5</td>
<td>Radiant Flux Density at the Boundary of a uniform Temperature Air Arc at 255 Atmospheres</td>
<td>65</td>
</tr>
<tr>
<td>6.6</td>
<td>Arc Chamber Energy Balance at 255 atmospheres with an Input power of 19 megawatts</td>
<td>67</td>
</tr>
</tbody>
</table>
NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Transition probability (Appendix E only)</td>
</tr>
<tr>
<td>A</td>
<td>Area</td>
</tr>
<tr>
<td>dA</td>
<td>Radiating element of surface area</td>
</tr>
<tr>
<td>B</td>
<td>Total radiant flux density leaving a surface</td>
</tr>
<tr>
<td>B'</td>
<td>Total radiant flux density incident on a surface</td>
</tr>
<tr>
<td>c₂</td>
<td>Planck's second radiation constant 1.4380 (cm°K)</td>
</tr>
<tr>
<td>D</td>
<td>Fraction of black body energy at wavelengths between 0 and λ</td>
</tr>
<tr>
<td>E</td>
<td>Voltage gradient</td>
</tr>
<tr>
<td>E</td>
<td>Excitation energy (Appendix E only)</td>
</tr>
<tr>
<td>e</td>
<td>2.718</td>
</tr>
<tr>
<td>F</td>
<td>View factor between radiating surfaces</td>
</tr>
<tr>
<td>g</td>
<td>Statistical weight of an energy state</td>
</tr>
<tr>
<td>h</td>
<td>Enthalpy</td>
</tr>
<tr>
<td>h</td>
<td>Planck's constant (Appendix E only)</td>
</tr>
<tr>
<td>H</td>
<td>Dimensionless enthalpy (R_T = 35.58 \text{ BTU/lbm})</td>
</tr>
<tr>
<td>I</td>
<td>Radiation intensity (\text{watt/cm}^2 \cdot \text{steradian}) (Section 2 only)</td>
</tr>
<tr>
<td>I</td>
<td>Electric current</td>
</tr>
<tr>
<td>J</td>
<td>Total spectral radiance (\text{watts/cm}^3 \cdot \text{steradian})</td>
</tr>
<tr>
<td>k</td>
<td>Boltzmann constant (Appendix E only)</td>
</tr>
<tr>
<td>k</td>
<td>Linear absorption coefficient (\text{cm}^{-1})</td>
</tr>
</tbody>
</table>
AEDC-TR-65-11

\(kR \)
Dimensionless absorption length

\(L \)
Length along absorbing path (Section 2 only)

\(L \)
Length

\(m \)
Number of constant temperature subdivisions of the arc column

\(N \)
Atom number density

\(n \)
Wavenumber (reciprocal of wavelength), \((\text{cm}^{-1}) \)

\(P \)
Power

\(p \)
Pressure

\(q \)
Radiant power (watts)

\(R \)
Sector radius (Section 2 only)

\(R \)
Radius

\(r \)
Annulus radius (Section 2 only)

\(s \)
Number of sector subdivisions in an absorbing quadrant

\(dV \)
Element of radiating volume

\(v \)
Dimensionless variable, \(c_2 n / T \)

\(W_{B,n} \)
Monochromatic emissive power of a black body

\(W \)
Mass flow rate

\(x \)
Exponent on arbitrary profiles

\(x \)
Radial distance (Appendix E only)
GREEK SYMBOLS

\(\nu \) Absorptivity

\(\beta \) Angle whose sine is the annulus radius ratio \(r_{j+1}/r_j \). Also, an angle defined in Fig. 2.1a

\(\gamma \) Angle defined in Fig. 2.1a

\(\delta \) Arc column radius (cm)

\(\epsilon \) Emissivity

\(\eta \) Fraction of black body energy radiated within a wavenumber interval

\(\theta \) Angle defined in Fig. 2.1b

\(\lambda \) Wavelength

\(\nu \) Frequency

\(\tau \) 3.14 \ldots

\(\rho \) Density

\(\sigma \) Stefan-Boltzmann constant

\(\sigma_e \) Electrical conductivity

\(\tau \) Transmissivity

\(\phi \) Angle at which absorption length is calculated (see Figs. 4 and 5)

\(\chi \) Angle used in cylinder absorptivity calculation

\(\psi \) Angle defined in Fig. 2.1

\(\omega \) Solid angle
INDEXING SUBSCRIPTS

The following subscripts are used to indicate that the subscripted quantity varies stepwise with the subscript (listed in reverse order of summation).

\[n \quad \text{Wavenumber} \]
\[j \quad \text{Index on radiating annulus, counting from the outermost Angle at which absorption lengths are calculated (see Figs. 2.4 and 2.5)} \]
\[q \quad \text{Index on absorbing annulus, counting from the outermost (see sect. 2.4)} \]

GENERAL SUBSCRIPTS

\[a \quad \text{Arc column} \]
\[b \quad \text{Heated bulk gas} \]
\[c \quad \text{Constrictor or arc chamber} \]
\[\text{CL} \quad \text{Centerline} \]
\[E \quad \text{Exterior} \]
\[g \quad \text{Gas} \]
\[\text{HF} \quad \text{High frequency} \]
\[I \quad \text{Interior} \]
\[i \quad \text{Non-black surface at which net radiation is calculated} \]
\[k \quad \text{Non-black surface radiation to surface i} \]
LF Low frequency
LL Lower limit
ref Reference
UL Upper limit
w wall
SECTION I
INTRODUCTION

One of the primary limitations on entry simulation facilities, such as hotshot tunnels, arc driven shock tubes and electric arc heaters in general, is radiation heat loss. This report describes a project which consisted of a computer study of arc radiation using tabulated spectral absorption properties of high temperature air, combined with spectrographic measurements of temperature profiles and experimental determination of radiation heat transfer rates.

The geometric configuration studied was an idealization of a D.C. arc column in the form of an infinitely long right circular cylinder whose temperature is a known function of radius only. The basic approach, which makes use of detailed spectral absorption data (Refs. 1, 2) developed by Breene and Nardone for analysis of the radiating gas cap of a re-entry vehicle, has application to any reasonably simple geometry with space-varying temperature.

An upper bound on radiation heat flux can be calculated by assuming the arc to be a black body at arc centerline temperature. Another upper bound can be established by assuming the gas heated by the arc to be optically thin so that all the energy radiated by each infinitesimal volume element reaches the chamber walls. At a given pressure, and for a known or assumed temperature profile, radiant flux density can then be calculated by integrating total radiance over the volume of a unit length of arc column and multiplying by 4π steradians. The energy leaving this unit length of arc column is, of course, distributed over the entire column length but, assuming an infinitely long column, the energy radiated from a unit length must be equal to the energy (originating throughout the column) crossing a unit length of boundary surface.

These upper bounds are perfectly adequate as long as radiation is only a small part of the total heat flux. However, at the pressure and temperature levels which are now the goals of, for example, arc heater development, radiation is the predominant heat transfer mode and a more accurate prediction is needed.

Absorption and emission of radiant energy in air depend on temperature, density and frequency. Thus, radiation energy from a particular element of volume will have a spectral distribution of intensity which is characteristic of the temperature and density of that element. The amount of energy reabsorbed along a particular
path will depend on the path length and also on the absorption characteristics (hence temperature and density) of each volume element along the path. A complete solution of the radiation heat transfer problem with self-absorbing gas therefore requires detailed knowledge of the radiation characteristics of air plus calculation for all volume elements (or a representative sample if advantage can be taken of symmetry), all possible paths for each volume element and all frequencies for each path.

As a practical matter some approximations are necessary. By means of the method described in this report, sufficiently tight upper and lower bounds can be placed on the effect of self-absorption that the calculation of radiant flux density is limited in accuracy by the state of knowledge of radiation properties, and of arc column temperature profiles.
SECTION II
ANALYSIS

2.1 THE ARC COLUMN MODEL

Consider an infinite cylindrical column of radiating gas at constant pressure with a known or assumed radial temperature profile. Let the column boundaries be cold and non-reflecting because, for structural reasons, the wall must be kept sufficiently cool that re-radiation can be neglected and, while cold compared with the arc plasma, it is still too warm to retain a high reflectivity. A correction for the effect of non-black walls is discussed in Section 2.7.

Complete equilibrium cannot be attained in the arc column, which exists only because of continuous energy transfer processes. However, a considerable body of evidence, both experimental and theoretical (Refs. 3, 4, 5, 6 and 7), indicates that local thermal equilibrium among electrons, ions, atoms and molecules can be assumed, with certain restrictions, so that equilibrium properties may be used in the computation.

Finkelnburg (Ref. 3) has indicated that according to existing analytical and experimental evidence, local thermal equilibrium exists to a good approximation in the plasma of all arcs operating at one atmosphere or greater except near the electrodes where strong electric fields (hundreds of volts per centimeter) are present. Lochte-Holtgreven (Ref. 4) concluded from his theoretical studies of the arc column that, at atmospheric or higher pressures, both the temperature of excitation and the "temperature" of ionization are for practical purposes equal to the electron temperature, with the possible exception of constricted arcs having an electric field intensity of 300 volts/cm or more. Cobine (Ref. 5) has shown that bulk gas temperature and electron temperature are essentially identical for a constant current discharge whenever the pressure is above 17 mm hg. Maecker's (Ref. 6) experimental studies support these conclusions.

The arc heater used in this study was designed to isolate completely the constricted region from electrode contamination (a major source of column and flow perturbation). The only part of the arc column used for this study was the constricted region, well separated from the electrodes, with a voltage gradient less than one hundred volts/cm (Ref. 8).
A given temperature distribution implies the existence of a steady state; each element of volume, dV, has presumably struck a balance among heat generated, radiated, absorbed and conducted in and out. Each such element within the column radiates in all directions with an intensity which is a known function of temperature, density and frequency. The assumptions of cylindrical symmetry and constant pressure make temperature and density dependent on radius only, so that intensity and transmissivity reduce to functions of radius and frequency only.

The arc column was divided into a constant temperature core and a series of constant temperature annuli with radiant heat flux originating in the core and in each annulus considered separately in terms of equivalent surface emissivities. Radiant flux densities for each surface are given by an equation of the form

\[q/A = \int_0^\infty \epsilon_n W_{B,n} \, dn \]

(2.1)

where \(W_{B,n} \) is the monochromatic emissive power of a black body at the radiator temperature and \(n \) is the wavenumber.\(^*\) Over a small but finite wavenumber interval the flux density is of the form

\[(q/A)_{\Delta n} = \sigma T^4 \epsilon_n \eta_n \]

(2.2)

where \(\epsilon_n \) is the average emissivity within the wavenumber interval and \(\eta_n \) is the fraction of the total energy radiated by a black body at temperature \(T \) which is radiated within the interval \(\Delta n \).

\(^*\) Each annulus was denoted by the index number \(j \) assigned to its exterior surface, counting from the outside surface of the arc column inward to the core.

\(^*\) Wavenumber is the reciprocal of wavelength and is therefore proportional to frequency. Tabulation of properties by wavenumber proves convenient so the term will be used interchangeably with frequency in the sense of frequency dependence.
Upper and lower limits were placed on the fraction of emitted radiant energy which actually leaves the arc column by considering two assumed sets of absorbing paths. One set of paths was so chosen that absorption is always less than or equal to the true absorption while along the other set of paths radiation absorption was always greater than or equal to the true value.

2.2 INFINITE HALF CYLINDER ABSORPTIVITY

The basic element from which the absorption model was built up is an infinite half-cylinder of gas, of radius R, absorbing radiation from an element of area on its axis. Associated with the cylinder is a linear absorption coefficient k which is a function of radial distance only. The angles shown in Fig. 2.1 (a) are related by

\[\cos \gamma = \sin \theta \cos \psi \]

(2.3)

From Fig. 2.1(b), the solid angle d\omega can be written

\[d\omega = \frac{R}{L} \ d\theta d\psi \]

(2.4)

If the surface element dA is radiating with an intensity I (energy flux per unit solid angle) and absorption takes place along the path according to Beer's law, then

\[d^2 q = (I \cos \gamma dA) \ d\omega \ \exp \left(- \int_0^L k \ dl \right) \]

(2.5)

Integration of Eq. (2.5) over the half cylinder would yield the total radiant flux originating from dA and escaping the half cylinder. With the further definition

\[(kR) = \int_0^R k \ dr = \frac{1}{\sin \theta} \int_0^L k \ dl \]

(2.6)

the radiant flux density from dA which escapes the half cylinder is

\[\text{5} \]
Figure 2.1 Absorption by an Infinitely Long Half Cylinder.

a) Geometry

b) Typical Absorption Path.
\[
\frac{d\sigma}{dA} = 4I \int_0^{\pi/2} \cos \psi d\psi \int_0^{\pi/2} \exp \left(-\frac{KR}{\sin \theta} \right) \sin^2 \theta \ \ \ \ \ (2.7)
\]

For the case of no absorption

\[
\frac{q}{A} = \pi I \ \ \ \ \ \ (2.8)
\]

Therefore if \(kR \neq f(\psi) \) transmissivity and absorptivity are given by

\[
\tau_n = 1 - \alpha_n = \frac{4}{\pi} \int_0^{\pi/2} \cos \psi d\psi \int_0^{\pi/2} \exp \left[-\frac{(kR)_n}{\sin \theta} \right] \sin^2 \theta d\theta \ \ \ \ (2.9)
\]

where subscript \(n \) denotes dependence on wavenumber. Equation (2.9) cannot be integrated inclosed form but numerical evaluation is straightforward and the result is shown in Fig. 2.2. Note that \(\alpha_n \) and \(\tau_n \) depend only on \((kR)_n \) hereafter called the absorption length. When \(k_n \) is assumed to undergo a series of step changes with radius, Eq. (2.6) is replaced by an appropriate summation but Eq. (2.9) is unchanged.

2.3 ABSORPTION OF EXTERIOR RADIATION

An element of the exterior surface of any annulus but the outermost "sees" the annuli exterior to it as a segment of a cylinder. The segment was approximated by two or more sectors of cylinders centered at the radiating surface element is shown in Fig. 2.3. In this way, calculation of absorption became simply a matter of determination of absorption lengths plus application of Eq. (2.9).

The boundaries of a typical sector are at angles \(\psi \) and \(\psi + \Delta \psi \) from the normal to the radiating surface element. It is clear from Fig. 2.3 that an upper limit transmission approximation -- all absorption lengths less than or equal to the true absorption lengths -- corresponds to the case where sector coincides with segment at the \(\psi \) boundary. Likewise, a lower limit on transmissivity corresponds to sector-segment coincidence at the \(\psi + \Delta \psi \) boundary.
Figure 2.3 Absorption of Exterior Radiation. The $j=3$ Annulus is shown as a Typical Example.
The absorption geometry calculation must be done separately for all but the outermost ($j = 1$) annulus. Referring to Fig. 2.4 there are $q = j - 1$ sector radii R_{j}, ϕ_{q} exterior to the j^{th} annulus within each sector. Calculation of each R_{j}, ϕ_{q} is straightforward trigonometry since r_{j} and r_{q} are known and ϕ is equal to either ψ for the upper limit calculation or $\psi + \Delta \psi$ for the lower limit calculations. Absorption lengths are then

$$
(kR)_{n, j, \phi} = \sum_{q=1}^{j-1} k_{n, q} \left(R_{j, \phi_{q}} - R_{j, \phi} \right) \tag{2.10}
$$

The magnitude of $\Delta \psi$ depends on the number of sectors into which the quadrant $0 \leq \psi \leq \frac{\pi}{2}$ was divided. Let s be the number of sectors, so that

$$
\Delta \psi = \frac{\pi}{2s} \tag{2.11}
$$

Transmissivity is then given by

$$
\tau_{n, j} = \frac{4}{\pi} \sum_{i=1}^{s} \left[\sin(i \Delta \psi) - \sin \left((i-1) \Delta \psi \right) \right] \int_{0}^{\pi/2} \exp \left[\frac{-(kR)_{n, j, \phi}}{\sin \theta} \right] \sin^{2} \theta \, d\theta \tag{2.12}
$$

*Subscript j on sector radius, absorption length and transmissivity refers to the respective quantities as "seen" from the j^{th} annulus. Subscript q is used to denote annuli absorbing radiation from the j^{th} annulus, again counting inward from the outermost radius. Capital R is used to distinguish sector radii from annulus radii and the angle $\psi \leq \phi \leq \psi + \Delta \phi$ designates the angle at which absorption lengths for a particular sector were calculated.
Figure 2.4 Sector Radius, R_j, ϕ, q for Calculation of Exterior Radiation Absorption Length.
Upper and lower limits on transmissivity depend on choice of \(\phi \)

\[
\phi = i \Delta \psi; \quad \tau = (\tau_{n,j})_{E, LL} \\
\phi = (i-1) \Delta \psi; \quad \tau = (\tau_{n,j})_{E, UL}
\]

where subscripts E, LL and UL refer to exterior, lower limit and upper limit respectively.

2.4 Absorption of Interior Radiation

The parts of annuli "visible" to a radiating element of interior surface are no longer segments, but similar sector approximations can be applied. Calculation of absorption lengths is somewhat complicated by the fact that, depending on \(\phi \), a radiation path can cross an annulus boundary twice, once, or not at all, corresponding to the existence of two, one, or no solutions to the triangle specified by \(r_{j+1} \), \(r_q \) and \(\phi \), Fig. 2.5. Sector radii* are given by

\[
R_{j, \phi, q}^+ = \frac{r_q}{\sin \phi} \left\{ \sin \left[\phi + \sin^{-1} \left(\frac{r_{j+1}}{r_q} \sin \phi \right) \right] \right\}
\]

(2.14a)

when

\[
r_{j+1} \sin \phi \leq r_q
\]

and by

\[
R_{j, \phi, q}^- = \frac{r_q}{\sin \phi} \left\{ \sin \left[\phi + \pi - \sin^{-1} \left(\frac{r_{j+1}}{r_q} \sin \phi \right) \right] \right\}
\]

(2.14b)

when

\[
r_{j+1} \sin \phi < r_q \leq r_{j+1}
\]

*Sector radii equal to or larger than \(r_{j+1} \) are designated \(R^+ \) while those smaller than \(r_{j+1} \) are designated \(R^- \).
Figure 2.5 Geometry of Absorption of Interior Radiation Illustrated for Radiation from the Outermost Annulus (j=1) with q=j+2.
Defining \(q' \) as the maximum value of the index \(q \) (corresponding to the smallest \(r_q \)) for which two solutions exist, the absorption lengths are given by

\[
(kR)_{n,j,\phi} = \sum_{q=2}^{q'} k_{n,q-1} \left[\left(R^+_{j,\phi,q-1} \right) - \left(R^+_{j,\phi,q} \right) \right] + k_{n,q'} \left[\left(R^+_{j,\phi,q} \right) - \left(R^-_{j,\phi,q'} \right) \right] + \sum_{q = j+2}^{q'} k_{n,q-1} \left[\left(R^-_{j,\phi,q-1} \right) - \left(R^-_{j,\phi,q} \right) \right]
\] (2.15)

Because absorption coefficient is not necessarily a monotonically increasing function of temperature, the extremals of absorption length within any sector do not always correspond to the values at sector boundaries \(\psi \) and \(\psi + \Delta \psi \). Therefore, a third computation of \((kR)_{n,j,\phi}\) was made within each sector at \(\phi = \psi + \Delta \psi/2 \). The smallest and largest of these were used for computing interior transmissivities \((\tau_{n,j})_{\ll} I, (\tau_{n,j})_{\ul} I\) respectively from Eq. (2.12).

2.5 EMISSIVITY CALCULATIONS

Radiation from the exterior and interior surfaces of each constant temperature annulus was also considered separately. Emissivity of the exterior surface was obtained by modifying the limits on the absorptivity integral for a complete cylinder. At the interior surface emissivity was obtained using a modification of the transmissivity calculation already discussed.
The basis for calculating emissivity of the exterior surface is the integral expressing absorptivity of an infinitely long gaseous cylinder relative to an element of its surface. The integral is given by Jakob (Ref. 9) as

\[
\alpha = \frac{k}{\pi} \int_{-\pi/2}^{\pi/2} \int_{-\pi/2}^{\pi/2} \cos^2 \chi \cos \psi \left(\int_0^L e^{-kr} \, dr \right) \, d\chi \, d\psi
\]

(2.16)

where \(\psi \) is defined in Fig. 2.6 and \(\chi \) is the angle between the vertical and \(L \) measured in a plane passing through the surface element normal to the plane of Fig. 2.6.

Instead of evaluating the complete double integral, a closed form solution was obtained for the case where \(kL \) is sufficiently small that the inner integral reduces to

\[
\int_0^L e^{-kr} \, dr \approx L \quad kL << 1
\]

(2.17)

This solution was extended to optically denser conditions using the mean beam length concept (Ref. 10).

Replacing the cylinder by a cylindrical annulus, Fig. 2.6, only the unshaded part of the annulus is considered because radiation which passes through the hollow is included in the emissivity of the interior surface. The integration of Eq. (2.16) over \(\psi \) must therefore be performed in two steps:

1. \(0 \leq \psi \leq \beta : \quad L = \frac{r}{\cos \chi} \left[\cos \psi - \sqrt{\sin^2 \beta - \sin^2 \psi} \right]

(2.18a)

2. \(\beta \leq \psi \leq \frac{\pi}{2} : \quad L = \frac{2r \cos \psi}{\cos \chi}

(2.18b)

where \(\beta \) is the angle at which \(L \) is tangent to the inner surface and is related to the ratio of annulus radii by
Figure 2.6 Absorption Paths for Calculation of Exterior Emissivity from an Infinitely Long Cylindrical Annulus. Only the Unshaded Part of the Annulus is Directly Visible to the Surface Element.
Combining Eqs. 2.16, 2.17 and 2.18 the absorptivity of an annulus can be expressed by

\[\alpha_j = \frac{2kr_j}{\pi} \left[\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos \chi d\chi \right] \]

(2.20)

\[
\int_{0}^{\beta} \left(\cos \psi - \sqrt{\sin^2 \beta - \sin^2 \psi} \right) \cos \psi d\psi + 2 \int_{0}^{\beta} \frac{\cos^2 \psi d\psi}{\beta} \\
\]

Integrating and dividing by \(2kr_j\), which is the limiting absorptivity of a cylinder of radius \(r_j\)

\[
\frac{\alpha_j}{2kr_j} = \left[\frac{1}{\pi} - \frac{\sin^2 \beta}{2} - \frac{\beta}{\pi} - \frac{\sin 2 \beta}{2\pi} \right] \\
\]

(2.21)

Equation (2.21) is plotted in Fig. 2.7. If the factor 2 is changed to 1.9, the mean beam length of a cylinder is obtained and the absorptivity over the range from optically thin to black body is given within \(\pm 5\%\) (Ref. 10) by

\[
\alpha = \left[1 - \exp \left(-1.9 kr_j \right) \right] \\
\]

(2.22)

Combining Eqs. (2.21) and (2.22) and noting that the assumption of local equilibrium implies \(\alpha = \epsilon\), the following expression for "exterior" emissivity \(\epsilon_j, n\) results
Figure 2.7 Absorptivity of a Cylindrical Annulus Relative to Absorptivity of a Cylinder (both infinitely long).
\[(\epsilon_{j, n})_E = 1 - \exp \left[-1.9 k \frac{r}{n} j \left(1 - \frac{\sin^2 \beta}{2} - \frac{\beta}{\pi} - \frac{\sin 2\beta}{2\pi} \right) \right] \]

Equation (2.23) includes the emissivity of the cylindrical core as the special case \(\sin \beta = 0 \).

The interior emissivity of an annulus is identical with the absorptivity of a single annulus relative to a radiating element at its inner surface. The sum of absorptivity and transmissivity is unity so transmissivity of a single annulus can be calculated from Eq. (2.12) using absorption lengths given by

\[\overline{kR} = \left\{ \frac{k_{n, j}}{n} \right\} (R_{j+1}, \phi, j) \]

(2.24)

The arithmetic mean of the upper and lower limits on \(\tau \) was used to calculate interior emissivity

\[(\epsilon_{n, j})_E = 1 - \frac{\tau_{UL} + \tau_{LL}}{2} \]

(2.25)

2.6 COMPLETE EXPRESSION FOR RADIANT HEAT FLUX

Radiant heat flux, expressed as power per unit surface area of arc column boundary, may now be written as a double summation of terms like Eq. (2.2), each multiplied by the appropriate transmissivity

\[q/A = \sigma \sum_{n} \left\{ \left[\sum_{j=1}^{m} T_{j}^{4} \left(\frac{r_{j}}{\delta} \right) \left(\eta_{n, j} \right) \left(\tau_{n, j} \right)_{E} \left(\epsilon_{n, j} \right)_{E} \right] \right. \]

\[+ \left[\sum_{j=1}^{m-1} T_{j}^{4} \left(\frac{r_{j+1}}{\delta} \right) \left(\eta_{n, j} \right) \left(\tau_{n, j} \right)_{I} \left(\epsilon_{n, j} \right)_{I} \right] \right\} \]

(2.26)
The radius of the arc column is δ, m is the number of constant temperature subdivisions (core plus annuli) and T and ϵ are given by Eqs. (2.13), (2.23) and (2.25). Black body energy fraction, η, is proportional to the integral of the Planck radiation function over each wavelength interval $\Delta \lambda$. Methods used for calculation of η are discussed in Appendix A.

2.7 CONSTRICTED ARC WITH NON BLACK WALLS

As pointed out in Section 2.1 the arc chamber wall will have a low reflectivity (high emissivity). However, wall emissivity will not be unity as has been assumed thus far, and a means of evaluating its effect on the magnitude of the radiant heat flux actually absorbed by the wall is desirable.

A complete calculation of the radiant interchange between the arc and the constrictor walls adds a very substantial complication to the analysis already presented and, in addition, requires data on the frequency and angular dependence of wall surface emissivity. Fortunately the effect of a non-black wall can be accounted for quite closely in the following way.

Radiant interchange between a non-black wall and a radiating gas can be expressed, following Eckert (Ref. 10)

$$
(q/A)_i = -B_i + \sum_k F_{i-k} (1 - \alpha_{i-k,g}) B_k + (q/A)_g
$$

(2.27)

where $(q/A)_i$ is the net radiant flux density absorbed at surface i, B_i and B_k are the total radiant flux densities leaving surface i and surface k respectively, F_{i-k} is a view factor between surface i and each surface k, $\alpha_{i-k,g}$ is the absorptivity of the gas between surface i and each surface k as determined by integration over the solid angle corresponding to the particular F_{i-k}, and $(q/A)_g$ is the radiant flux density from the gas incident on surface i. Equation 2.27 expresses the net radiant flux density to surface i as the algebraic sum of radiant flux density leaving surface i, radiant flux density arriving from surfaces k and radiant flux density from the gas.

McAdams (Ref. 17) gives a total normal emissivity of 0.57 for a copper "plate heated at 1110°F".
Let surface \(i \) be an infinitesimal element of the chamber wall and consider as a single surface \(k \) the remainder of the infinitely long cylindrical arc chamber wall. Then

\[
\frac{(q/A)_g}{(q/A)_a} = \frac{\delta}{R_c}
\] \hspace{1cm} (2.28)

where \((q/A)_a\) is the radiant flux density from the arc as given by Eq. 2.26 and \(R_c\) is the constricted radius. Also

\[
B_i = B_k = B_w
\] \hspace{1cm} (2.29)

\[
F_i - k = 1
\] \hspace{1cm} (2.30)

\[
\sum_k F_i - k(1 - \alpha_{i-k, g}) B_k = (1 - \alpha_{w, g}) B_w
\] \hspace{1cm} (2.31)

where \(B_w\) is the radiant flux density leaving the wall at any point and \(\alpha_{w, g}\) is the "average" absorptivity of the gas between surface element \(i \) and all other parts of the wall surface. Further, defining \(B'_w\) as the total radiant flux density incident on the wall at any point we can write, where \(\epsilon_w\) is the emissivity of the wall

\[
B_w = \epsilon_w \sigma T_w^n + (1 - \epsilon_w) B'_w
\] \hspace{1cm} (2.32)

By definition

\[
(q/A)_w = B'_w - B_w
\] \hspace{1cm} (2.33)

so that, neglecting radiation at wall temperature,

\[
B_w = \frac{1 - \epsilon_w}{\epsilon_w} (q/A)_w
\] \hspace{1cm} (2.34)

Combining eqs. 2.27, 2.28, 2.31 and 2.34 we obtain

\[
\frac{(q/A)_w}{(q/A)_a \left(\frac{\delta}{R_c} \right)} = \frac{1}{1 + \alpha_{w, g} \left(\frac{1 - \epsilon_w}{\epsilon_w} \right)}
\] \hspace{1cm} (2.35)
which has been plotted as Fig. 2.8.

The quantity \(\alpha_{w,g} \) is an "average", over all frequencies and angles, of the absorptivity of the gas relative to radiation which has been reflected one or more times from the constrictor wall. Reflection may itself vary with frequency and angle, and multiple reflection will be more likely at those frequencies at which gas absorption is relatively low. However, if the arc fills the constrictor, \(\alpha_{w,g} \) cannot differ greatly from the average emissivity of the arc column and, as arc radius becomes small compared to wall radius, \(\alpha_{w,g} \) approaches zero. A reasonable estimate of \(\alpha_{w,g} \) and Fig. 2.8 shows that the correction is relatively insensitive to the precise value of \(\alpha_{w,g} \), particularly for the relatively high values of emissivity expected in practice.

All results in Sections 3, 4, and 5 are presented in terms of heat flux from the arc and a wall emissivity correction may be applied as required.
Figure 2.8 Influence of Arc Chamber Emissivity on Radiant Heat Transfer.
SECTION III
DIGITAL COMPUTATION

3.1 PROGRAM ARCRAD

The FORTRAN computer program which enabled an IBM 7090 digital computer to produce solutions to Eq. 2.23 is called ARCRAD and is included as Appendix B. It requires as input information the temperature, density and inner and outer radii of each annulus, absorption coefficient data and some programming data discussed in Appendix B. Its standard output includes

1. A repeat of the temperature-density-radius input.

2. Radiant flux density based on upper and lower limit transmissivities tabulated by wavenumber interval and also summed over all wavenumbers.

3. Radiant flux density with all transmissivities set equal to unity, again both tabulated by wavenumber interval and summed.

4. Optionally, an output tape which can be converted automatically to a graph of tabulations 2) and 3) above.

3.2 LIMITS ON FREQUENCY RANGE OF CALCULATIONS

Although radiant energy is distributed throughout the electromagnetic spectrum, all but a negligible fraction is contained within rather narrow limits which are a function of temperature. These limits are conveniently expressed in terms of a parameter \(v \) defined as

\[
v = \frac{c_2 n}{T}
\]

(3.1)

where \(c_2 \) is Planck's second radiation constant and is equal to 1.4380 cm\(^{-2}\) K. For a black body radiating at a given temperature, only 0.25\% of the total energy is radiated at frequencies corresponding to \(v < 0.3 \) or to \(v > 13 \). Therefore the only energy considered was that at frequencies (wavenumbers) bracketed by the above values of \(v \). Figure 3.1 shows these limits, along with the curve \(v = 1 \), which was the dividing line for application of two different methods for calculating \(\eta \) (see Appendix A).
Figure 3.1 Frequency and Temperature Ranges of Spectral Absorption Coefficient Data. The Solid Outline Represents Available Data.
The solid outline of Fig. 3.1 represents the range of temperature and frequency of the Breene and Nardone results (Refs. 1, 2) plus additional as yet unreported work. Data above 61,500 cm\(^{-1}\) are not precise but are known to provide an upper bound within a factor of 2. Temperatures near the centerline on the measured profiles exceeded the 15000°K upper limit on available high frequency data. An upper bound on the possible contribution in the high frequency range was therefore established by considering annuli at temperatures above 15000°K to be black bodies in the wavenumber range for which data was not available.

\[
\frac{(q/A)_{HF}}{T} = \sigma \sum_{j=16,000}^{m} \frac{(r_j)}{\delta} (D_{61,500})
\]

where \(D\) is defined by Eq. A.2 and is here the fraction of black body energy above 61,500 cm\(^{-1}\). The dependence of \(D_{61,500}\) on temperature is shown in Fig. 3.2. Both \(D\) and \(r/\delta\) are generally small in this case so use of the upper bound does not greatly increase the uncertainty of the results.

3.3 PRELIMINARY PROCESSING OF ABSORPTION COEFFICIENT DATA

The Breene and Nardone data from 1300 cm\(^{-1}\) to 62,000 cm\(^{-1}\) is recorded on magnetic tape but the tape contains much information extraneous to this study and the absorption coefficients are tabulated at unnecessarily fine frequency intervals. A preliminary processing of these tapes was therefore necessary to obtain a data tape containing linear absorption coefficients tabulated at 500 cm\(^{-1}\) intervals.

Data above 62,000 cm\(^{-1}\) was available only in printed form so punched cards were prepared which were then converted to magnetic tape. The wavenumber interval was increased to 1000 cm\(^{-1}\) because at higher frequencies a given increment represents a smaller fraction of the total energy.

3.4 TEMPERATURE AND DENSITY PROFILES USED IN COMPUTATION

As has been stated, temperature distribution in the arc column is presumed known. With the assumption of local thermal equilibrium
Figure 3.2 Fraction of Black Body Energy Emitted at Wave Numbers Greater Than 61,500 cm\(^{-1}\).
and a given pressure level, the density distribution can then be determined from a table or chart of thermodynamic properties. A limited amount of temperature profile data was available from direct spectroscopic measurement (see Section 5.2 for further discussion) which provided a basis for comparison of results with direct measurements of radiant heat flux.

Based on the results of direct measurements plus application of reasonable boundary conditions, a series of simple analytic (polynomial) profiles were also used for computation. These profiles were chosen to provide a systematic comparison of the effect on radiant heat flux of temperature level and fullness of the temperature profile. These analytic profiles, shown in Fig. 3.3 along with a profile measured by Maecker, (Ref. 6) were of the form

\[\frac{T - T_{ref}}{T_{CL} - T_{ref}} = 1 - \left(\frac{r}{\delta} \right)^x \]

The spectral absorption coefficient data were tabulated at temperature intervals of 1000°K and decade density intervals. In order to avoid double interpolation for temperature and density, the thickness of each annulus was selected in such a way that the weighted average temperature of each annulus was a tabulated temperature, see Appendix C. Absorption coefficients were then interpolated logarithmically with density. Calculation of weighted average annulus temperatures requires a polynomial representation of the temperature profiles so measured profiles were reduced to this form using a modification of a standard least squares polynomial curve fit program, Appendix D.

3.5 TRANSMISSIVITY APPROXIMATION

Numerical evaluation of the integral appearing in Eq. 2.12 leads to the curve of Fig. 2.2 with \((kR)_{n,j,\phi}\) as a parameter. Rather than perform the numerical integration for each different \((kR)_{n,j,\phi}\) empirical approximations were used in Program ARCRAD which took advantage of the similarity of Fig. 2.2 to a simple exponential decay. The approximations were made over three regions as follows:

1) \(0 \leq kR \leq 1.1\) \(\tau = \exp (-1.206(kR))\)
Figure 3.3 Arbitrary Polynomial Profiles and a Nitrogen Profile Measured by Maecker.
2) $1.1 < \overline{kR} \leq 16 \quad \tau = \{ \exp [-1.206 (\overline{kR})] \} [1.0774 - .09539 (\overline{kR})$

\[+ .055577 (\overline{kR})^2 - .004291 (\overline{kR})^3 \]

\[+ .00020826 (\overline{kR})^4 \} \]

3) $\overline{kR} > 16 \quad \tau = 0$

Introduction of this approximation resulted in roughly halving the computer time per case.
SECTION IV
COMPUTER RESULTS

4.1 WAVENUMBER RANGE OF RESULTS

Because of the limitations on available data discussed in Section 3.2, curves presenting results of calculation are labeled as follows to indicate the wavenumber range they cover.

<table>
<thead>
<tr>
<th>Label</th>
<th>Meaning</th>
<th>Wavenumber Range (cm(^{-1}))</th>
<th>Temperature Range (°K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF</td>
<td>Low Frequency</td>
<td>up to 61,500</td>
<td>3,000 - 25,000</td>
</tr>
<tr>
<td>HF</td>
<td>High Frequency</td>
<td>61,500 and up</td>
<td>9,000 - 15,000</td>
</tr>
<tr>
<td>BBL</td>
<td>Black Body Limit given by Eq. 3.2</td>
<td>61,500 and up</td>
<td>16,000 - 25,000</td>
</tr>
</tbody>
</table>

Table 4.1 - Frequency Range of Results

As will be discussed in Section 5.4 the break at 61,500 cm\(^{-1}\) is also convenient from the standpoint of comparisons with experimental measurements since this frequency is just about the cutoff frequency of the fused quartz window used to protect the radiant heat flux gage.

4.2 CONVERGENCE OF UPPER AND LOWER BOUNDS

The computational model described in Section 2 of this report was designed to bracket the effect of self absorption on radiant heat flux from an arc column. The effectiveness of this approach depended on just how close to each other were the upper and lower bounds and this could not be established without actually performing some numerical calculations.

As originally conceived and proposed, the absorption model postulated a lower limit on absorption (maximum radiant heat flux) in which all radiation was considered to be "exterior" in the sense of section 2.3. For this case the absorption paths were represented by half-cylinders whose radii were equal to the difference between annulus outside radii and the arc column boundary radius. The upper limit on absorption (minimum radiant heat flux) was established by assuming
all radiation to be "interior" and absorbed by half-cylinders whose radii were equal to the sums of the annulus radii and the arc column boundary radius. Results with this model gave an upper bound practically indistinguishable from the optically thin case and a lower bound which was lower by an order of magnitude.

A second computational model was then developed, as described in detail in Section 2. Division of the half cylinders into sectors and separate calculation of "exterior" and "interior" radiation for both upper and lower bounds greatly reduced the spread between them. By retaining the number of sectors as variable, more sectors could be used at higher pressures, where the spread is large, than are needed at lower pressures.

The additional flexibility achieved by retaining the number of sectors as a variable can be used in two ways. Figure 4.1 illustrates the effect of varying the number of sectors while keeping all else constant. Within the limits of roundoff error, increasing the number of sectors improves the approximation. A price is paid of course, in additional computer time. The form of convergence indicates that an average of upper and lower bound calculations will give an excellent approximation to the "exact" result.

In addition to justifying an average of the two limit calculations as representative of the "exact" result, Fig. 4.1 is a useful guide to economic choice of the number of sectors. At pressures equal to or greater than 100 atm, s was set equal to 3. Below 100 atm a value of s=2 sufficed.

4.3 RESULTS WITH ASSUMED TEMPERATURE PROFILES

If one starts with the postulate that the arc column is axially symmetric and that the temperature decreases monotonically from a peak at the centerline to some relatively low temperature at the outermost radius, than the general shape of the profile is reasonably well determined. This is true even though local bumps may exist due to changes in ionization level or other phenomena.

Let us define a full profile as one in which arc temperature remains near arc centerline temperature until very near the outer boundary. Fullness is dependent on details of the local energy balance and is therefore certain to change with, for example, changes in the relative importance of the conduction and radiation modes of heat loss to the boundary.
Figure 4.1 Convergence of Upper and Lower Limit Calculations as Number of Sectors Increases.

PROFILE MEASURED AT 1 atm 400 amp
CALCULATION DONE FOR P = 300 atm
* see section 4.1
The family of curves given by Eq. 3.3 satisfies the aforementioned postulates and contains a single parameter, the exponent x, to characterize the fullness. The effect of fullness may then be judged by a plot such as Fig. 4.2 which shows radiant flux density vs. x at 3 pressure levels. Fig. 4.2 also shows, for comparison, the asymptotic value which each curve approaches as x becomes very large. The asymptotes were computed assuming a cylinder of gas uniformly at centerline temperature. The limiting case of a black body at centerline temperature is also included. Lacking knowledge of temperature profiles at the higher pressures, these curves help narrow the possible range of radiant flux densities and will be more useful if and when more becomes known about temperature profiles at high pressure.

The sensitivity of radiant heat flux to temperature was investigated for a sequence of profiles of the form of Eq. 3.3 (with $x=3$) in which centerline temperature was varied from 12,000 to 15,000 K, Fig. 4.3. Over the range calculated the radiant heat flux increases approximately as the 8.4 power of arc column centerline temperature at 100 atm and below.

4.4 Sensitivity to Changes in Outer Radius

Weber's estimates of constricted arc column growth (Ref. 12) indicate that the arc may not entirely fill the constrictor of the arc heater used in the experimental work. Temperature could not be measured over the entire column, so for one of the measured profiles, Fig. 5.4, two different outer edge parabolas were matched to the polynomial which was fitted to the data (in this case also a parabola). The part of the profile for which data existed was unchanged and the sensitivity of the calculation to changes in the outer part of the profile was checked in this way. Comparison made on the basis of heat flux at the constrictor wall (0.5 cm radius) indicated that exact arc column diameter made little difference, Table 4.2.

Because only the outer few annuli were changed this result does not contradict Fig. 4.2 where the entire profile was systematically varied.
Figure 4.2 Effect of Profile Fullness on Radiant Flux Density.
Figure 4.3 Temperature Level Dependence of Arc Radiant Heat Flux.
<table>
<thead>
<tr>
<th>Pressure (atm)</th>
<th>Radiant Flux Density at 0.5 cm radius (kw/cm²)</th>
<th>δ = 0.35 cm</th>
<th>δ = 0.5 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 HF</td>
<td>.44</td>
<td>.62</td>
<td></td>
</tr>
<tr>
<td>LF</td>
<td>.18</td>
<td>.20</td>
<td></td>
</tr>
<tr>
<td>SUM</td>
<td>.62</td>
<td>.82</td>
<td></td>
</tr>
<tr>
<td>2 HF</td>
<td>.88</td>
<td>.93</td>
<td></td>
</tr>
<tr>
<td>LF</td>
<td>.55</td>
<td>.59</td>
<td></td>
</tr>
<tr>
<td>SUM</td>
<td>1.43</td>
<td>1.52</td>
<td></td>
</tr>
<tr>
<td>10 HF</td>
<td>1.87</td>
<td>1.65</td>
<td></td>
</tr>
<tr>
<td>LF</td>
<td>4.62</td>
<td>4.88</td>
<td></td>
</tr>
<tr>
<td>SUM</td>
<td>6.49</td>
<td>6.53</td>
<td></td>
</tr>
<tr>
<td>100 HF</td>
<td>2.5</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>LF</td>
<td>45.1</td>
<td>45.6</td>
<td></td>
</tr>
<tr>
<td>SUM</td>
<td>47.6</td>
<td>48.8</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.2 - Radiant Flux Density at Constrictor Boundary
2.4 atm 455 amp measured profile

4.5 QUASI-THIN MODEL AND FREQUENCY DISTRIBUTION

The quasi-thin model was obtained by setting all transmissivities equal to unity in Eq. 2.26. Because the computation of emissivities takes into account self absorption within each annulus, the quasi-thin model will yield a radiant heat flux known to be closer to the true value than the optically thin model. The extent of the difference between quasi-thin and optically thin depends on the magnitude of the dimensionless absorption lengths associated with each annulus, so choice of number of annuli will have an effect on the quasi-thin result. The quasi-thin result, however, is a very simple extra step for the computer and provides a useful indication of the importance of self-absorption.

As mentioned in section 3.1, an option in the program permits automatic plotting of radiant flux density in each wavenumber interval, both quasi-thin and self-absorbing, Fig. 4.4. In general the higher the intensity of radiation the greater the difference between self-absorbing and quasi-thin.
Figure 4.4 Frequency Distribution of Radiant Heat Flux. Arc Profile Measured at 2.4 atm, 455 amp. Computed at 100 atm.
4.6 TWO TEMPERATURE MODEL

In order to gain some idea of the effect of a body of heated plasma in reducing the intense radiation from the arc column proper, a two temperature cylindrical model, which is compatible with that discussed in section 2, was investigated. Figure 4.5 presents results with the arc at 16,000°K and the surrounding plasma at 6,000°K with the dimensions investigated shown in the inset sketch. As pressure is increased, the shielding effect of the lower temperature surrounding plasma may be sufficient to cause the total radiant flux to pass through a maximum and then decrease somewhat. As pressure is increased the energy radiated by the cooler surrounding gas to the walls will continue to increase and the large equivalent radiating surface tends to magnify the increase. However, the fraction of energy reabsorbed from the arc column will also increase and the possibility that the latter effect could result in a net decrease in radiant flux to the walls is confirmed by Fig. 4.5. The calculation was repeated with the arc at 15,000°K in order to include the high frequency radiation, Fig. 4.6.

It must be emphasized that the existence of such an effect is controlled by geometry, operating conditions and arc behavior at high pressures -- all of which affect the temperature distribution and its (here neglected) pressure dependence.
Figure 4.5 Reduction in Intensity of Radiation from a High Pressure by Surrounding Plasma - Two Temperature Model with Arc at 16,000 K.
Figure 4.6 Two Temperature Model Including High Frequency Radiation with Arc at 15,000°K.
SECTION V
EXPERIMENTAL STUDY

5.1 OBJECTIVES

The objectives of the experimental work were:

1) measurement of temperature profiles for use as an input to the analysis.

2) measurement of total radiant heat flux to compare with results of the analysis.

5.2 ARC HEATER

The Gerdien type arc heater used for this study is shown in Fig. 5.1. This heater produces a uniform uncontaminated air plasma in a test section (constricted region) instrumented with voltage probes, a spectrographic observation window and a shuttered channel for radiation measurements. The heater has been more completely described in Ref. 8. The constrictor section can be replaced by a somewhat shorter non-constricting section which has a window for photographic observation.

Available power supply voltage limits maximum operating pressure in the unconstricted mode to 15 atmospheres although the heater is capable of withstanding higher pressures. The greater length of the constrictor section reduced the voltage limitation on pressure to about 5 atmospheres.

5.3 TEMPERATURE PROFILES AND CENTERLINE TEMPERATURES

Two temperature profiles were obtained at one atmosphere and one at 2.4 atmospheres. These are shown in Figs. 5.2, 5.3, and 5.4. The reason for two fitted curves in Fig. 5.4 was discussed in Section 4.4.

Relative intensities of several emission lines were used with Abel’s integral equation to establish arc column temperature gradients. A description of the technique is included as Appendix E. Additional measurements of arc centerline temperature were made at 2.2 atmospheres and several current levels as shown in Fig. 5.5. These are based on average intensities in a narrow slice through the center of the arc. Therefore evaluation cannot make use of Abel’s integral
Figure 5.1 High Pressure Air Arc-Constructed Column.
Figure 5.2 Spectrographically Measured Profile, 1 atm, 400 amp.

TEMPERATURE (THOUSANDS OF °K)

ANALYTIC APPROXIMATION

RATIO OF X7774 & X7947
Figure 5.3 Spectrographically Measured Profile, 1 atm, 585 amp.
Figure 5.4 Spectrographically Measured Profile, 2.4 atm, 455 amp with Curve Fit to Two Different Boundary Conditions.
Figure 5.5 Arc Column Centerline Temperature Variation with Arc Current $P=2.2$ to 2.4 atm.
to allow for the cooler gas ahead of and behind the centerline region and the resultant temperatures are slightly lower that the "true" centerline temperature as obtained by measurements over a significant fraction of the profile.

Spectrographic data were not obtained at higher pressures because the measurements depend on observed spectral lines being nearly optically thin. The line reversal technique which is applicable at high pressures requires of the order of 70% absorption and is therefore most applicable at pressures substantially above 5 atm.

5.4 RADIANT HEAT FLUX MEASUREMENTS

Three types of gages were considered for measuring radiant heat flux while avoiding convective heating. The first gage was a cavity type, recessed in a channel 5 cm from the arc column. The channel eliminated convection and conduction without the necessity of a transparent window, but temperature rise of the cavity was barely detectable. At the other extreme a thermopile proved too sensitive.

The gage actually used, Fig. 5.6, was a cylindrical copper slug mounted with one base coated with lampblack and covered by a 1/16" thick quartz window. Remaining surfaces were thermally insulated by a teflon sleeve which also held the window in place. Temperature rise in the slug was measured by a chromel-alumel thermocouple directly connected to a recording oscillograph.

A shutter shielded the gage until the arc had stabilized at the desired conditions. Then the shutter was opened and the gage moved rapidly forward to one of several preselected positions in the channel. In the first position the gage surface was recessed 1/2" from the constrictor wall. Fully extended the gage surface was recessed 1/16" so that the exposed surface of the quartz was tangent to the constrictor wall.

Radiant heat flux to the gage was calculated from the rate of temperature rise of the copper slug, assuming constant specific heat and no heat losses. A typical data trace is shown in Fig. 5.7. Radiation of the constrictor wall can be inferred by plotting heat flux data at several points along the channel and extrapolating to zero distance.
Figure 5.5 Arc Column Centerline Temperature Variation with Arc Current P=2.2 to 2.4 atm.
to allow for the cooler gas ahead of and behind the centerline region and the resultant temperatures are slightly lower that the "true" centerline temperature as obtained by measurements over a significant fraction of the profile.

Spectrographic data were not obtained at higher pressures because the measurements depend on observed spectral lines being nearly optically thin. The line reversal technique which is applicable at high pressures requires of the order of 70% absorption and is therefore most applicable at pressures substantially above 5 atm.

5.4 RADIANT HEAT FLUX MEASUREMENTS

Three types of gages were considered for measuring radiant heat flux while avoiding convective heating. The first gage was a cavity type, recessed in a channel 5 cm from the arc column. The channel eliminated convection and conduction without the necessity of a transparent window, but temperature rise of the cavity was barely detectable. At the other extreme a thermopile proved too sensitive.

The gage actually used, Fig. 5.6, was a cylindrical copper slug mounted with one base coated with lampblack and covered by a 1/16" thick quartz window. Remaining surfaces were thermally insulated by a teflon sleeve which also held the window in place. Temperature rise in the slug was measured by a chromel-alumel thermocouple directly connected to a recording oscillograph.

A shutter shielded the gage until the arc had stabilized at the desired conditions. Then the shutter was opened and the gage moved rapidly forward to one of several preselected positions in the channel. In the first position the gage surface was recessed 1/2" from the constrictor wall. Fully extended the gage surface was recessed 1/16" so that the exposed surface of the quartz was tangent to the constrictor wall.

Radiant heat flux to the gage was calculated from the rate of temperature rise of the copper slug, assuming constant specific heat and no heat losses. A typical data trace is shown in Fig. 5.7. Radiation of the constrictor wall can be inferred by plotting heat flux data at several points along the channel and extrapolating to zero distance.
Figure 5.6 Copper Slug Gage for Total Radiant Heat Flux Measurement Shown in Retracted Position.
Figure 5.7 Typical Recording Trace for Determination of Radiant Heat Flux.
Allowances must be made for losses through the window and at the gage surface. The percentage of light reflected by a glass surface of refractive index 1.55 (about that of quartz) is tabulated as a function of angle of incidence in Ref. 13 and a graphical integration based on this tabulation indicates that approximately 92% of the incident energy is transmitted when the gage is fully in. Taking the absorptivity of lampblack as .95, the radiant energy measured by the gage at the arc chamber wall must be increased by a factor of 1.14. This correction is approximate but extrapolation to the arc column wall leads to considerable uncertainty in any event. The transmission characteristic of type 101 fused quartz, Fig. 5.8, coincides very nearly with the Low Frequency Range computer output so comparison will be made with LF curves.

An additional uncertainty introduced by the quartz window is the possible change in transmission characteristic when the glass is exposed to the high temperature arc. The transmission characteristic in the visible range was checked for a few windows using a standard lamp and photomultipliers. The ratio of photomultiplier outputs with and without the window inserted gave the fraction of energy transmitted (i.e., energy neither reflected nor absorbed). A clean window gave values from .89 to .90. Transmission of windows which has been exposed to the arc ranged from .40 to .79. The time at which the changes took place is unknown so no correction has been made for this effect.

Results are shown in Table 5.1 and Fig. 5.9. For the first series the insulator used to jacket the copper slug was melamine, and the quartz window was fastened to the melamine with an adhesive. This was not entirely satisfactory since the glass did not always remain in place. In the second series tabulated the teflon sleeve arrangement shown in Fig. 5.6 proved to be much more reliable.

The effect of the quartz window in shielding the gage from conduction is evident in the comparison of table 5.2.

Figure 5.10 is a comparison of calculations based on two measured profiles and the results of direct measurement. Complete confirmation of the calculation model and absorption coefficient data requires measurements at substantially higher pressures but at least the magnitude and trend are consistent.
Figure 5.8 Average Transmission of General Electric Type 101 Quartz Excluding Surface Reflection Losses (Thickness=1/16").
Figure 5.9 Radiant Heat Flux at 2.2 atm.
Figure 5.10 Comparison of Computations Using 2 Measured Profiles with Direct Radiant Flux Density Measurements
Distance of Gage Face from Arc Column (in)

<table>
<thead>
<tr>
<th>Distance of Gage Face from Arc Column (in)</th>
<th>Arc Current (amp)</th>
<th>Arc Voltage (volts)</th>
<th>Rate of Temperature Rise (°F/sec)</th>
<th>Mass of Slug (gm)</th>
<th>Radiant Density (w/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First series, P=2.2 atm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.25</td>
<td>460</td>
<td>350</td>
<td>6.86</td>
<td>1.64</td>
<td>7.7</td>
</tr>
<tr>
<td>1.25</td>
<td>400</td>
<td>410</td>
<td>5.8</td>
<td>1.64</td>
<td>6.5</td>
</tr>
<tr>
<td>1.25</td>
<td>430</td>
<td>410</td>
<td>6.7</td>
<td>1.64</td>
<td>7.5</td>
</tr>
<tr>
<td>1.25</td>
<td>405</td>
<td>390</td>
<td>5.8</td>
<td>1.64</td>
<td>6.5</td>
</tr>
<tr>
<td>1.25</td>
<td>430</td>
<td>415</td>
<td>8.1</td>
<td>1.64</td>
<td>9.1</td>
</tr>
<tr>
<td>1.25</td>
<td>525</td>
<td>355</td>
<td>6.9</td>
<td>1.75</td>
<td>8.2</td>
</tr>
<tr>
<td>.50</td>
<td>450</td>
<td>390</td>
<td>11.86</td>
<td>1.64</td>
<td>13.3</td>
</tr>
<tr>
<td>.50</td>
<td>440</td>
<td>350</td>
<td>21.0</td>
<td>1.64</td>
<td>23.6</td>
</tr>
<tr>
<td>.50</td>
<td>425</td>
<td>405</td>
<td>11.60</td>
<td>1.64</td>
<td>13.0</td>
</tr>
<tr>
<td>.28</td>
<td>440</td>
<td>360</td>
<td>50.2</td>
<td>1.64</td>
<td>56.4</td>
</tr>
<tr>
<td>.22</td>
<td>500</td>
<td>365</td>
<td>76.4</td>
<td>1.64</td>
<td>85.7</td>
</tr>
<tr>
<td>.13</td>
<td>500</td>
<td>356</td>
<td>172.0</td>
<td>1.53</td>
<td>179.5</td>
</tr>
<tr>
<td>.13</td>
<td>550</td>
<td>340</td>
<td>175.0</td>
<td>1.53</td>
<td>183.0</td>
</tr>
<tr>
<td>.13</td>
<td>545</td>
<td>345</td>
<td>94.5</td>
<td>1.75</td>
<td>112.0</td>
</tr>
<tr>
<td>.13</td>
<td>555</td>
<td>340</td>
<td>109.0</td>
<td>1.75</td>
<td>129.0</td>
</tr>
<tr>
<td>.13</td>
<td>555</td>
<td>330</td>
<td>99.0</td>
<td>1.75</td>
<td>117.0</td>
</tr>
<tr>
<td>.06</td>
<td>485</td>
<td>372</td>
<td>179.0</td>
<td>1.72</td>
<td>210.5</td>
</tr>
<tr>
<td>.06</td>
<td>550</td>
<td>350</td>
<td>136.0</td>
<td>1.75</td>
<td>161.0</td>
</tr>
</tbody>
</table>

Second series, P=2.2 atm

.06	400	430	249	1.67	284
.06	480	410	244	1.67	278
.06	440	408	252	1.67	292
.06	450	410	266	1.67	302
.13	450	405	156	1.67	178
.13	455	415	185	1.67	211
.25	425	415	123	1.67	141

Second series, P=5.7 atm

| .06 | 600 | 505 | 479 | 1.76 | 575 |
| .06 | 610 | 480 | 385 | 1.76 | 454 |

Table 5.1 - Radiant Heat Flux to Slug Gage
<table>
<thead>
<tr>
<th>Distance of Gage Face from Arc Column (cm)</th>
<th>Radiant Flux Density (watts/cm²)</th>
<th>Total Flux Density (No Window on Gage) (watts/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.559</td>
<td>85.7</td>
<td>214.0</td>
</tr>
<tr>
<td>.159</td>
<td>210.5</td>
<td>636.0</td>
</tr>
<tr>
<td>.159</td>
<td>161.0</td>
<td>648.0</td>
</tr>
</tbody>
</table>

Table 5.2 - Comparison of Total and Radiant Heat Flux at a Pressure of Two Atmospheres
SECTION VI
APPLICATION TO ARC HEATER CONFIGURATIONS

6.1 GENERAL

A variety of configurations for heating plasma by means of an electric arc are in use today. Two of the more common basic arc heater geometries are the constricted arc and the ring electrode rotating arc. Application of the model developed in Section 2 applied fairly well to the constricted arc since axial symmetry is maintained in most of the heater and some measurements of arc column temperature profiles are available.

Analysis of the ring electrode rotating arc is considerably more difficult because arc temperature measurements are not available and arc behavior is influenced by such new factors as the ratio of ring diameter to separation distance, the magnitude and direction of self-induced or externally applied magnetic driving fields, and the magnitude and direction of cold air flow transverse to the arc column.

Under some circumstances for instance, the rotating arc may bow inward to the extent that, except near the electrodes, it is stationary on the axis of symmetry, Fig. 6.1. Fastax films taken of a rotating arc between ring electrodes separated by a distance of about 4 ring radii tend to bear out this possibility. The column was photographed through a 3/8" wide x 1/8" high port midway between electrodes. At pressures above approximately 10 atmospheres the column was visible and stationary, centered in the port. At lower pressures, down to about 2 atmospheres, changes in brightness indicated that the column was moving past the port. At 2 atmospheres pressure light from the port was uniform. These observations fit the hypothesis that at the highest pressure only the parts of the arc near the electrodes are moving, while the body of the column is aligned with the axis, while at low pressure the entire column may be moving too fast for the Fastax camera to "stop" the motion.

If the magnetic field which causes the arc to rotate is sufficiently strong, of the order of 20 kilogauss, the arc can be magnetically diffused (Ref. 14) thus radically altering its geometry and radiation characteristics. A transverse flow created by a rapidly moving arc column may destroy the axial symmetry of the column, probably tending to create a turbulent If this tail merges with the leading "edge" of the column a diffuse operating mode also results.
Figure 6.1 Ring Electrode Rotating Arc With Separation Distance of 4 Ring Radii.
6.2 SPECIFIC CONFIGURATION

An outline sketch of the arc heater of immediate interest is shown in Fig. 6.2. It is designed to operate at high pressure on 3 phase, 60 cps, alternating current with the arcs kept in rapid motion by a steady, externally applied, magnetic field. Cold air flows radially inward through the arcs, then axially to the nozzle.

Magnetic field strength is 5 kilogauss, which is probably not sufficient to cause magnetic diffusion, so the arc will be treated as a cylindrical column. Arc length cannot easily be established because, while electrode separation is only about one fourth that in the observations described in Section 6.1, pressure can be higher and there is a radially inward velocity component which will probably cause the arc to bow inward. Some estimated operating conditions at two pressures are shown in Table 6.1.

TABLE 6.1. AEDC 20 MEGAWATT ARC HEATER SPECIFICATIONS

<table>
<thead>
<tr>
<th>Dimensions*</th>
<th>Low Pressure</th>
<th>High Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chamber Diameter (in.)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Insulator Diameter (in.)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Electrode Spacing (in.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>center to center</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>Minimum Gap</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Total Chamber Length (in.)</td>
<td>17.5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estimated Operating Conditions</th>
<th>Low Pressure</th>
<th>High Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure (psia)**</td>
<td>75</td>
<td>3750</td>
</tr>
<tr>
<td>(atm)</td>
<td>5.1</td>
<td>255</td>
</tr>
<tr>
<td>Arc Voltage (volts zero to mean)**</td>
<td>1000</td>
<td>2000</td>
</tr>
<tr>
<td>Arc Current (amperes rms/phase)**</td>
<td>4000</td>
<td>3500</td>
</tr>
<tr>
<td>Power Input (MW)**</td>
<td>11</td>
<td>19</td>
</tr>
<tr>
<td>Exit Enthalpy (Btu/lbm)**</td>
<td>6100</td>
<td>7200</td>
</tr>
<tr>
<td>(h/RT0)</td>
<td>180</td>
<td>212</td>
</tr>
<tr>
<td>Exit Temperature (°K)</td>
<td>6300</td>
<td>8000</td>
</tr>
<tr>
<td>Mass Flow (lbm/sec)**</td>
<td>1.20</td>
<td>1.0</td>
</tr>
<tr>
<td>Estimated Rotational Speed (rev/sec)**</td>
<td>1400</td>
<td>1300</td>
</tr>
</tbody>
</table>

*Scaled from Westinghouse Drawing AC09084
**Westinghouse letter of 11 September 1964
Figure 6.2 Outline of AEDC 20 MW Arc Heater Interior (based on drawing furnished by Westinghouse Electric Co.)
6.3 ARC COLUMN MODEL

Arc size and temperature distribution are not known, so some admittedly crude assumptions were made in order to arrive at an estimate. The arc was assumed to be cylindrical at a uniform temperature with air flow through it limited by aerodynamic choking or by the total flow, whichever was least. The choked flow function for flow through an arc has been computed by Weber (Ref. 15) and is shown in Fig. 6.3. For a known or assumed voltage gradient and current there is then a unique combination of arc radius and temperature which satisfies both an energy balance and Ohm's Law. In view of the approximate nature of the data and model, electrode drops (of the order of tens of volts) and back EMF due to interaction with the externally applied magnetic field (a few volts) were neglected in the estimates of voltage gradient. A further implicit assumption is that an AC arc may be treated by DC methods and that the RMS value of current gives acceptable mean values. In brief, both space and time variation of arc temperature (and bulk gas temperature too) were ignored.

6.4 LOW PRESSURE OPERATION

The gas is nearly optically thin at 5 atmospheres so that total radiance, \(J \), as computed by Breene and Nardone (Ref. 2) was used to compute radiant heat fluxes. The energy balance for a unit length of arc column was written

\[
\frac{I^2}{\sigma_e \pi \delta^2} - \left(\frac{W}{Ap} \right)^* p(2\delta) (h_a - h_o) - (4\pi J_a) (\pi \delta^2) = 0 \quad (6.1)
\]

where \(p \) is pressure, \(h_o \) is the enthalpy of the incoming air, \(h_a \) is enthalpy at arc temperature, \(\delta \) is arc radius and \(\left(\frac{W}{Ap} \right)^* \) is the choked flow function, Fig. 6.3. Peng and Pendroh (Ref. 16) were the source for electrical conductivity \(\sigma_e \). Equation 6.1 can be considered a function of radius and arc temperature, Fig. 6.4, since, at a given pressure, \(\sigma_e, J_a, \left(\frac{W}{Ap} \right)^* \) and \(h_a \) are all functions of temperature. Ohm's law in the form

\[
E = \frac{I}{\sigma_e \pi \delta^2} \quad (6.2)
\]

is also shown on Fig. 6.4 for several values of \(E \). The values selected are reasonable at the low pressure. Experience with rotating arcs indicates that the column radius should be less than about 0.5 cm and
Figure 6.3 Choked Fully Developed Flow (Ref. 15)
Figure 6.4 Energy Balance and Ohm's Law at 5 Atmospheres Chamber Pressure.
that 60 v/cm is a reasonable maximum voltage gradient. This is a
local column gradient which cannot be obtained by simply dividing the
voltage between electrodes by electrode spacing. Turbulence locally
twists and turns the column extending its actual length to several
times the distance between electrodes. The arc length used for
calculations at 5 atm is then obtained by dividing the applied voltage
by the voltage gradient.

Bulk enthalpy, h_b, of plasma leaving the arc chamber, was
estimated from another energy balance. Consider 3 arcs, each of
length L_a, in a cylindrical chamber of length L_c and radius R_c and
assume that the only loss is the bulk gas radiation at bulk (exit)
enthalpy. Then

$$\left(\frac{W}{Ap}\right)^* p (2\delta) (3L_a) h_a - Wh_b = 4\pi J_b (\pi R_c^2 L_c)$$

(6.3)

where subscript b refers to bulk gas and L_a is the length of a single
arc. The choked flow function and the total radiance are known
functions of bulk enthalpy (or, equivalently, bulk temperature) so
Eq. 6.3 uniquely determines h_b. Results are presented in Section
6.6 along with those for the high pressure case.

6.5 HIGH PRESSURE OPERATION

Essentially the same analysis was applied to the 255 atmosphere case except that the gas can no longer be considered optically
thin and program ARCRAD was used to calculate radiation. For the
conditions given, the entire flow can pass through the arc column
without choking, so the arc column energy balance analogous to
Eq. 6.1 was written

$$\frac{I^2}{\sigma_e \pi \delta^2} - \frac{W(h_a - h_0)}{3L_a} - (q/A)_a 2\pi \delta = 0$$

(6.4)

where $(q/A)_a$ is the radiant flux density at the arc column boundary,
Fig. 6.5.

Again a unique combination of a radius and arc temperature
exist which simultaneously satisfy Eq. 6.4 and Ohm’s law (Eq. 6.2)
for an established value of E.

Raezer, et al., Ref. (17) indicate that voltage gradient varies
as the 0.28 power of the pressure. Applying this to the 60 v/cm
gradient at 5 atmospheres gives 174 v/cm and an arc length of 4.5
Figure 6.5 Radiant Flux Density at the Boundary of a Uniform Temperature Air Arc at 255 Atmospheres.
inches. The resulting arc radius is quite large, probably much too large, and the arc temperature and enthalpy are therefore low since the general trend of the curve is similar to Fig. 6.4. For this reason results are also included for an arbitrarily assumed arc length of 2 inches.

Exit enthalpy was again estimated from a simplified arc chamber energy balance. The bulk gas was taken to be a cylinder of arc chamber dimensions at a uniform temperature corresponding to exit enthalpy, with a smaller cylinder, the arc column, moving rapidly around its circumference. Both the bulk gas and the arc column radiate to the arc chamber wall but a part of the arc radiation is now re-absorbed by the bulk gas.

In cross section this geometry corresponds very closely to radiation of a surface element into a cylinder, so the Nusselt solution for absorptivity of a cylinder can be applied. By Lambert's cosine law the equivalent arc surface area per unit length radiating inward is equal to the arc column diameter so that \(q_{ab} \), the power reabsorbed by the bulk gas, is given by

\[
q_{ab} = 2\pi (3L_a) \sigma T_a \frac{4}{\pi} \sum n \epsilon_{a,n} \eta_{a,n} \alpha_{b,n} \tag{6.5}
\]

Program ARCRAD was adapted to the computation of \(q_{ab} \).

Neglecting all losses but radiation and assuming, optimistically, that radiation from the bulk gas takes place at bulk exit enthalpy, the equivalent of Eq. 6.3 is

\[
W(h_a - h_b) + q_{ab} = q_b \tag{6.6}
\]

where power radiated by the bulk gas, \(q_b \) is given by

\[
q_b = \frac{(q/A)_b}{(2\pi R_c)(R_c + L_c)} \tag{6.7}
\]

and \((q/A)_b\) was computed using program ARCRAD. Strictly speaking, absorption lengths for radiation from the ends of the cylinder are slightly different than for the cylindrical surface, but the difference is of the order of 5% and the ends are only a small fraction of the total surface anyway so no distinction is made. It was convenient to solve for \(T_b \) graphically, Fig. 6.6, plotting Eqs. 6.6 and 6.7 as functions of temperature because both \(q_b \) and \(h_b \) are non-analytic.
Figure 6.6 Arc Chamber Energy Balance at 255 atmospheres with an Input power of 19 megawatts.
Two curves are shown for \(q_b \), one assuming that the chamber walls are black and the other applying the correction factor discussed in Section 2.7. The arc itself is small compared to the chamber so no correction is needed, but reabsorption by the bulk gas can be significant. In evaluating the correction factor for the bulk gas \(\alpha_w \), \(g \) was taken as the ratio of \((q/A)_b \) to black body radiation, both at 7500 °K.

If \(P_{\text{loss}} \) is defined as that part of the input power which is absorbed by processes other than net heating of the incoming air and \(P_{\text{in}} \) is the total input power then

\[
P_{\text{loss}} \leq P_{\text{in}} - W(h_b - h_o)
\]

A curve representing the equality is also plotted in Fig. 6.6 and its intersection with the radiation loss curve places an upper bound on bulk temperature.

6.6 RESULTS AND DISCUSSION

Results of calculations are summarized below.
TABLE 6.2. AEDC 20 MEGAWATT ARC HEATER, ESTIMATED ARC CONDITIONS AND RADIANT FLUXES

<table>
<thead>
<tr>
<th>Pressure (atm)</th>
<th>5</th>
<th>255</th>
<th>255</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage gradient (V/cm)</td>
<td>60</td>
<td>390</td>
<td>174</td>
</tr>
<tr>
<td>Arc Length (cm)</td>
<td>15.7</td>
<td>5.1</td>
<td>11.5</td>
</tr>
<tr>
<td>(in)</td>
<td>6.2</td>
<td>2.0</td>
<td>4.5</td>
</tr>
<tr>
<td>Arc Radius (cm)</td>
<td>.48</td>
<td>.45</td>
<td>.78</td>
</tr>
<tr>
<td>Arc Temperature (K)</td>
<td>16,000</td>
<td>11,000</td>
<td>10,500</td>
</tr>
<tr>
<td>Wall Emissivity</td>
<td>--</td>
<td>.57</td>
<td>1.0</td>
</tr>
<tr>
<td>Exit Temperature (K)</td>
<td>6,300</td>
<td>7500</td>
<td>7200</td>
</tr>
<tr>
<td>Exit Enthalpy (Btu/lbm)</td>
<td>6,100</td>
<td>6300</td>
<td>5900</td>
</tr>
<tr>
<td>Arc Radiation (mw)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total from arc</td>
<td>3.6</td>
<td>.9</td>
<td>.9</td>
</tr>
<tr>
<td>To Bulk gas*</td>
<td>0</td>
<td>.2</td>
<td>.2</td>
</tr>
<tr>
<td>To Wall*</td>
<td>3.6</td>
<td>.7</td>
<td>.7</td>
</tr>
<tr>
<td>Bulk gas radiation (mw)</td>
<td>.05</td>
<td>11.0</td>
<td>11.7</td>
</tr>
<tr>
<td>Total Radiation to Wall</td>
<td>3.65</td>
<td>11.7</td>
<td>12.4</td>
</tr>
<tr>
<td>Average Radiant Flux Density** (kw/cm²)</td>
<td>2.3</td>
<td>7.4</td>
<td>7.8</td>
</tr>
</tbody>
</table>

* at 7500°K

** Based on a cylinder 17.5 inches long by 4 inches diameter.

At 5 atmospheres the bulk gas radiation loss is relatively small and the decrease in enthalpy from arc to bulk gas is primarily the result of mixing with cold gas which did not pass through the arc.

At 255 atmospheres bulk gas radiation alone can consume practically all of the power input. Results presented in Fig. 6.6 and Table 6.2 tend to be optimistic in that conduction losses have been neglected and bulk gas radiation has been assumed to take place at exit temperature rather than somewhere between arc temperature and bulk temperature.
Total radiation to the wall includes radiation directly from the arcs. The arcs would tend to create local hot spots except that they are in rapid motion -- making about 10 revolutions for each half cycle of input voltage -- so the heat flux per unit length from the arc was considered as uniformly distributed around the arc chamber periphery.
SECTION VII

CONCLUSIONS

At high pressures there is no simple way to predict the radiant heat transfer from an arc column. The computational model described herein provides very tight upper and lower limits if the basic geometry assumptions of the model are satisfied and if the temperature distribution is known. Reasonable limiting assumptions about temperature profiles can be useful in bracketing the desired answer but one must know the temperature level either by measurement or calculation.

Incorporation of radiation including self-absorption into a solution of the energy equation such as Weber has done (Ref. 11) for the optically thin case, is the next logical step in the study of this problem. The temperature profile would then be a part of the result rather than a required input. A coordinated experimental program to measure radiant heat flux and/or temperature profiles at high pressure would also be very desirable.
REFERENCES

APPENDIX A

CALCULATION OF ENERGY FRACTION

For a given wavenumber interval, \(\Delta n = n_2 - n_1 \), let \(\eta \) be the fraction of the total energy flux radiated by a black body at a given temperature which falls within this interval

\[
\eta = D_1 - D_2 \quad \text{(A.1)}
\]

where

\[
D = \frac{\int_{n_1}^{n_2} W_{B,n} \, dn}{\int_{0}^{\infty} W_{B,n} \, dn} \quad \text{(A.2)}
\]

The function \(D \) is available in tabular form, (Ref. 18) but, for computer application, direct generation of \(\eta \) by series expansion was desired. Two series were used.

1. Pivovonsky and Nagel (Ref. 18) gives a series expansion for \(D \) as

\[
D = 1 - \frac{15}{\pi^4} v^3 \left(\frac{1}{3} - \frac{v}{8} + \frac{v^2}{60} - \frac{v^3}{5040} + \frac{v^4}{272160} - \cdots \right) \quad \text{(A.3)}
\]

where

\[
v = \frac{c_2 n}{T} = \frac{1.4380n}{T} \quad \text{(A.4)}
\]

This series converges for \(v < 2\pi \) but convergence is slow when \(v > 1 \). Defining
\[
\bar{v} = \frac{v_2 + v_1}{2}; \quad \Delta v = \frac{v_2 - v_1}{2}
\]

Equation A.3 was transformed to

\[
\eta = \frac{15}{\pi^4} \left\{ \Delta v \left(\frac{-v}{2} - \frac{v^3}{2} + \frac{v^4}{12} - \frac{v^6}{720} + \ldots \right) + (\Delta v)^3 \left(\frac{1}{12} - \frac{v}{8} + \frac{v^2}{24} - \frac{v^4}{576} + \ldots \right) \right. \\
+ (\Delta v)^5 \left(\frac{1}{960} - \frac{v^2}{3840} + \ldots \right) \left. + 0 \left[(\Delta v)^7 \right] + \ldots \right\}
\]

and used to calculate \(\eta \) when \(\bar{v} \leq 1 \). Inclusion of the terms shown through order \((\Delta v)^3\) results in a value of \(\eta \) accurate to \(\pm 0.1\% \).

2. While \(D \) itself cannot be expressed in closed form, its derivatives can be. Since \(\eta \) is the difference between two values of \(D \), the zero order term of a Taylor expansion of \(\eta \) vanishes. Expansion about \(\bar{v} \) eliminates all even order derivatives, thus

\[
\eta = \left[(v_1 - \bar{v}) - (v_2 - \bar{v}) \right] \left[\frac{\partial D}{\partial v} \right]_{v=\bar{v}} + \frac{1}{3!} \left[(v_1 - \bar{v})^3 - (v_2 - \bar{v})^3 \right] \left[\frac{\partial^3 D}{\partial v^3} \right]_{v=\bar{v}} + \ldots \]

(A.7)

Since

\[
\frac{\partial D}{\partial v} = -\frac{15}{\pi^4} \frac{v^3}{(e^1 - 1)}
\]

(A.8)
the energy fraction becomes

\[
\eta = \frac{15}{\pi^4} \left\{ (\Delta \nu) \left[\frac{-3}{v^3 e^{v-1}} \right] + (\Delta \nu^3 \frac{v}{3!(e^v-1)^3} \left[(6+v^2+6v-12) e^v + (v^2-6v+6) e^2v \right] + \ldots \right\}
\]

(A.9)

Retaining only the term of order \(\Delta \nu \), Eq. (A.9) was used to calculate \(\eta \) to \(\pm 0.6\% \) when \(\nu > 1 \). The curve \(\nu = 1 \) on Fig. 3.1 separates the region of application of the two methods.
APPENDIX B

PROGRAM ARCRAD

B.1 PURPOSE

The purpose of this program is the calculation of radiation heat flux from a cylindrical air arc based on spectral emission-absorption characteristics of air and a measured or assumed temperature profile.
B.2 GLOSSARY OF TERMS

<table>
<thead>
<tr>
<th>Fortran Name</th>
<th>Formula Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABEMIS(22)</td>
<td></td>
<td>Intermediate array used in calculation of E_{OUT}.</td>
</tr>
<tr>
<td>AINC</td>
<td></td>
<td>Decrease in wave number.</td>
</tr>
<tr>
<td>ALPHA(IO)</td>
<td>x</td>
<td>Angles used for absorption lengths for calculation $EXTRMN$ and $EXTRMX$ and EIN.</td>
</tr>
<tr>
<td>AMAX</td>
<td></td>
<td>Running sum of maximum radiation heat flux from all annuli of cylinder (excluding core) - final sum corresponds to only one wave number $WN(I)$.</td>
</tr>
<tr>
<td>AMIN</td>
<td></td>
<td>Running sum of minimum radiation heat flux.</td>
</tr>
<tr>
<td>AKDR(45)</td>
<td></td>
<td>Components of linear absorption path.</td>
</tr>
<tr>
<td>ANGADD</td>
<td>$x/2$</td>
<td>Angle difference in radians of elements of ANGLE array.</td>
</tr>
<tr>
<td>ANGLE(20)</td>
<td></td>
<td>Angles used for absorption lengths and transmissivity for interior radiation.</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>Intermediate value in calculation of RI array.</td>
</tr>
<tr>
<td>BCDREC(14)</td>
<td></td>
<td>Storage locations for reading BCD input.</td>
</tr>
<tr>
<td>BUFF2(525)</td>
<td></td>
<td>Buffer for labeled and blocked tape on A6.</td>
</tr>
<tr>
<td>BUFFT(86)</td>
<td></td>
<td>I-O buffer storage total.</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>Intermediate value in calculation RI array $RI(NQ, 1)$.</td>
</tr>
<tr>
<td>Fortran Name</td>
<td>Formula Name</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>ENTRMN</td>
<td>$\tau_{i, LL}$</td>
<td>Minimum transmissivity for interior radiation.</td>
</tr>
<tr>
<td>ENTRMX</td>
<td>$\tau_{i, UL}$</td>
<td>Maximum transmissivity for interior radiation.</td>
</tr>
<tr>
<td>EOUT</td>
<td>ϵ_e</td>
<td>Emissivity exterior.</td>
</tr>
<tr>
<td>EPSMN</td>
<td></td>
<td>Minimum interior emissivity.</td>
</tr>
<tr>
<td>EPSMX</td>
<td></td>
<td>Maximum interior emissivity.</td>
</tr>
<tr>
<td>ETA(23, 121)</td>
<td>η</td>
<td>Fraction of total energy radiated by black body at annulus temperature and wave number.</td>
</tr>
<tr>
<td>ETASM(23)</td>
<td></td>
<td>ETA of each temperature summed over all wave numbers.</td>
</tr>
<tr>
<td>EXRQSN(22, 10)</td>
<td></td>
<td>Intermediate array used in calculation of R array.</td>
</tr>
<tr>
<td>EXSNRQ(22, 10)</td>
<td></td>
<td>Intermediate array used in calculation of R array.</td>
</tr>
<tr>
<td>EXTRMN</td>
<td>$\tau_{e, LL}$</td>
<td>Minimum transmissivity of exterior radiation.</td>
</tr>
<tr>
<td>EXTRMX</td>
<td>$\tau_{e, UL}$</td>
<td>Maximum transmissivity of exterior radiation.</td>
</tr>
<tr>
<td>FKR(20)</td>
<td></td>
<td>Empirical approximation of one of the integrals used in calculation of transmissivity and interior emissivity.</td>
</tr>
<tr>
<td>FMT(12)</td>
<td></td>
<td>Storage for input Hollerith identification.</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>Index for reading in data on tape A2, for printing output on tapes A3 and A6, and indexing wave numbers.</td>
</tr>
<tr>
<td>Fortran Name</td>
<td>Formula Name</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>II</td>
<td></td>
<td>Index used in reordering the part of TRYKDR array - associated with 2 consecutive ALPHA - in ascending order.</td>
</tr>
<tr>
<td>I2</td>
<td></td>
<td>Index used in reordering part of TRYKDR array in ascending order.</td>
</tr>
<tr>
<td>IAL</td>
<td></td>
<td>Subscript used in ordering linear absorption path for interior radiation.</td>
</tr>
<tr>
<td>IOPT 1</td>
<td></td>
<td>Option for printing on A6 - save tape used in printer.</td>
</tr>
<tr>
<td>IP 1</td>
<td></td>
<td>Lower limit of I2 index.</td>
</tr>
<tr>
<td>IPST</td>
<td></td>
<td>Adjustment value used in selecting linear absorption coefficients from proper input records.</td>
</tr>
<tr>
<td>J</td>
<td></td>
<td>Subscript used to find annulus position - used in determining AKDR array for interior radiation.</td>
</tr>
<tr>
<td>JAL</td>
<td></td>
<td>Upper limit for II limit.</td>
</tr>
<tr>
<td>K</td>
<td></td>
<td>Index used for reading record of files of input tape.</td>
</tr>
<tr>
<td>LAL</td>
<td></td>
<td>Index for reordering entire TRYKDR array.</td>
</tr>
<tr>
<td>MAL</td>
<td></td>
<td>Lower limit of II index.</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td>Index for annuli.</td>
</tr>
<tr>
<td>NA</td>
<td></td>
<td>Index for ALPHA array.</td>
</tr>
<tr>
<td>NAH</td>
<td></td>
<td>Subscript used in calculating EXTRMN.</td>
</tr>
<tr>
<td>Fortran Name</td>
<td>Formula Name</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>NAL</td>
<td></td>
<td>Upper limit of IZ index.</td>
</tr>
<tr>
<td>NALPHA</td>
<td></td>
<td>Number of members in ALPHA array.</td>
</tr>
<tr>
<td>NANGLE</td>
<td></td>
<td>Number of members in ANGLE array.</td>
</tr>
<tr>
<td>NAVE</td>
<td></td>
<td>Index for ANGLE array.</td>
</tr>
<tr>
<td>NCASE</td>
<td></td>
<td>Number of cases of data to be used for a computer run.</td>
</tr>
<tr>
<td>NDIV</td>
<td></td>
<td>Number of sectors of half cylinder.</td>
</tr>
<tr>
<td>NFAC</td>
<td></td>
<td>NTOUCH+1 - the first annulus counting from core outward that the linear absorption path of interior radiation intersects.</td>
</tr>
<tr>
<td>NFILE</td>
<td></td>
<td>Counter for file number used during read in process.</td>
</tr>
<tr>
<td>NH</td>
<td></td>
<td>Value used as part of subscript in calculation of EXTRMN.</td>
</tr>
<tr>
<td>NJ</td>
<td></td>
<td>Subscript used in ordering and summing the components of linear absorption path of interior radiation.</td>
</tr>
<tr>
<td>NPP</td>
<td></td>
<td>Upper limit of K index.</td>
</tr>
<tr>
<td>NQ</td>
<td></td>
<td>Index used in calculation of R along linear absorption path of both interior and exterior radiation - also used in interior radiation.</td>
</tr>
<tr>
<td>NRAVE</td>
<td>s</td>
<td>Number of divisions of the sectors of half cylinder.</td>
</tr>
<tr>
<td>Fortran Name</td>
<td>Formula Name</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>C2T(23)</td>
<td>σ / T</td>
<td>Intermediate array used in calculation of V.</td>
</tr>
<tr>
<td>CORMN(121)</td>
<td></td>
<td>Minimum radiation heat flux of core - corresponds to one wave number.</td>
</tr>
<tr>
<td>CORMX (121)</td>
<td></td>
<td>Maximum radiation heat flux of core.</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>Intermediate value used in calculation of RI array-$RI(NQ, 2)$</td>
</tr>
<tr>
<td>DALPHA</td>
<td>$\pi / 2s$</td>
<td>Angle difference in degrees of the elements of $ALPHA$ array.</td>
</tr>
<tr>
<td>DELTA</td>
<td>δ</td>
<td>Radius of arc column.</td>
</tr>
<tr>
<td>DK</td>
<td></td>
<td>Absorption length along diameter of arc column.</td>
</tr>
<tr>
<td>DR(23)</td>
<td></td>
<td>Annulus thickness - outermost inward.</td>
</tr>
<tr>
<td>DRK</td>
<td></td>
<td>Absorption length at 0° used in exterior radiation.</td>
</tr>
<tr>
<td>DSINA(20)</td>
<td></td>
<td>Sine of angles of $ALPHA$ array.</td>
</tr>
<tr>
<td>DV(23)</td>
<td></td>
<td>Intermediate value in calculation of ETA array.</td>
</tr>
<tr>
<td>EIN</td>
<td>ϵ_l</td>
<td>Emissivity inward.</td>
</tr>
<tr>
<td>EKDR(10)</td>
<td></td>
<td>Absorption length used in calculation of EIN.</td>
</tr>
<tr>
<td>ENSNA(20)</td>
<td></td>
<td>Sine of angles of $ANGLE$ array.</td>
</tr>
<tr>
<td>ENSNRQ(23, 20)</td>
<td></td>
<td>Intermediate array used in calculation of RI array.</td>
</tr>
<tr>
<td>ENRQSN(23, 20)</td>
<td></td>
<td>Intermediate array used in calculation of RI array.</td>
</tr>
<tr>
<td>Fortran Name</td>
<td>Formula Name</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>NR</td>
<td></td>
<td>NT+1 number of annuli plus one.</td>
</tr>
<tr>
<td>NTEST</td>
<td></td>
<td>Number of annuli (depending on position of radiating annulus) including core and going outward which may be intersected in two positions - used in calculation of RI for interior linear absorption path.</td>
</tr>
<tr>
<td>NTOUCH</td>
<td></td>
<td>Last annulus (considering core as annuli one) not intersected by interior linear absorption path.</td>
</tr>
<tr>
<td>NT</td>
<td>m</td>
<td>Number of annuli of constant temperature of the cylinder.</td>
</tr>
<tr>
<td>NTR</td>
<td></td>
<td>NT-1 number of annuli minus one.</td>
</tr>
<tr>
<td>NUMDR</td>
<td></td>
<td>Number of components of interior linear absorption path.</td>
</tr>
<tr>
<td>NWBIN</td>
<td></td>
<td>Control parameter = 0 to read in entire binary word.</td>
</tr>
<tr>
<td>NWBCD</td>
<td></td>
<td>Control parameter = 0 to read in entire BCD record.</td>
</tr>
<tr>
<td>NW</td>
<td></td>
<td>Number of wave numbers.</td>
</tr>
<tr>
<td>OPT</td>
<td></td>
<td>Running sum of radiation heat flux from all annuli (not including core) - assuming gas non-self absorbing.</td>
</tr>
<tr>
<td>OPTCOR(121)</td>
<td></td>
<td>Radiation from core assuming gas non-self absorbing.</td>
</tr>
<tr>
<td>QMAX(121)</td>
<td>(W_{UL})</td>
<td>Radiation heat flux per wave number at boundary of cylinder considering maximum transmissivity.</td>
</tr>
<tr>
<td>Fortran Name</td>
<td>Formula Name</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>QMIN(121)</td>
<td>(W_{LL})</td>
<td>Radiation heat flux per wave number at boundary of cylinder - considering minimum transmissivity.</td>
</tr>
<tr>
<td>QOPT(121)</td>
<td>(W_{OP})</td>
<td>Radiation heat flux per wave number at boundary of cylinder - assuming gas non-self absorbing.</td>
</tr>
<tr>
<td>QOPTSM</td>
<td></td>
<td>Radiant heat flux QOPT(I) summed over all wave numbers.</td>
</tr>
<tr>
<td>QSUMMN</td>
<td></td>
<td>Minimum radiant heat flux QMIN(I) summed over all wave numbers.</td>
</tr>
<tr>
<td>QSUMMX</td>
<td></td>
<td>Maximum radiant heat flux QMAX(I) summed over all wave numbers.</td>
</tr>
<tr>
<td>RAD(23)</td>
<td>(r)</td>
<td>Array of radii ordered from outermost annulus in to core.</td>
</tr>
<tr>
<td>RADQ(23)</td>
<td></td>
<td>Array of radii order from core to outermost annulus.</td>
</tr>
<tr>
<td>RAVE</td>
<td>(s)</td>
<td>Floating NRAVE.</td>
</tr>
<tr>
<td>RADLPH</td>
<td></td>
<td>Increment in radians of elements of ALPHA array.</td>
</tr>
<tr>
<td>RDELT A(23)</td>
<td></td>
<td>Array of radii of annuli over radius of cylinder - from outermost annulus in to core.</td>
</tr>
<tr>
<td>REC(700)</td>
<td></td>
<td>Storage for reading in binary words.</td>
</tr>
<tr>
<td>RHO (23)</td>
<td>(\log P/P_0)</td>
<td>Log of density of annuli from outermost annuli in to core.</td>
</tr>
<tr>
<td>RI(23, 2)</td>
<td>(R^+) (R^-)</td>
<td>Sector radii array along path of interior radiation.</td>
</tr>
<tr>
<td>Fortran Name</td>
<td>Formula Name</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>R(22)</td>
<td>R</td>
<td>Sector radii along path of exterior radiation.</td>
</tr>
<tr>
<td>SIGMA</td>
<td></td>
<td>Intermediate value in calculation of RI array.</td>
</tr>
<tr>
<td>SINA</td>
<td>KR</td>
<td>Sine of ALPHA array.</td>
</tr>
<tr>
<td>SKDR</td>
<td></td>
<td>Dimensional absorption length used in calculation of transmissivity.</td>
</tr>
<tr>
<td>SMCRMN</td>
<td></td>
<td>Sum over all wave numbers of minimum radiant heat flux core (CORMN(I)).</td>
</tr>
<tr>
<td>SMCRMX</td>
<td></td>
<td>Sum over all wave numbers of maximum radiant heat flux from core (CORMX(I)).</td>
</tr>
<tr>
<td>SMOPTC</td>
<td></td>
<td>Sum over all wave numbers of radiant heat flux from core (OPTCOR(I)) - assuming gas is non self-absorbing.</td>
</tr>
<tr>
<td>SUM</td>
<td></td>
<td>Intermediate value used in summing.</td>
</tr>
<tr>
<td>TEMP(23)</td>
<td>T</td>
<td>Temperature array - corresponding to outermost annulus in to core.</td>
</tr>
<tr>
<td>TEMPL</td>
<td></td>
<td>Temporary storage used in reordering of TRYKDR array.</td>
</tr>
<tr>
<td>TEMPRW(23)</td>
<td></td>
<td>Intermediate array used in calculation - σT^4.</td>
</tr>
<tr>
<td>TEMPS</td>
<td></td>
<td>Temporary storage used in reordering TRYKDR array.</td>
</tr>
<tr>
<td>V</td>
<td>v</td>
<td>Parameter using Plank radiation function for the calculation of ETA array.</td>
</tr>
<tr>
<td>Fortran Name</td>
<td>Formula Name</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>V2</td>
<td>Y(4)</td>
<td>Second power of V.</td>
</tr>
<tr>
<td>V3</td>
<td></td>
<td>Third power of V.</td>
</tr>
<tr>
<td>V4</td>
<td></td>
<td>Fourth power of V.</td>
</tr>
<tr>
<td>V6</td>
<td></td>
<td>Sixth power of V.</td>
</tr>
<tr>
<td>WBB</td>
<td></td>
<td>Intermediate value in calculation of WIN and WOUT.</td>
</tr>
<tr>
<td>WIN</td>
<td></td>
<td>Radiation inward - gas non self-absorbing.</td>
</tr>
<tr>
<td>WINMN</td>
<td></td>
<td>Radiation inward - considering minimum transmissivity.</td>
</tr>
<tr>
<td>WINMX</td>
<td></td>
<td>Radiation inward - considering maximum transmissivity.</td>
</tr>
<tr>
<td>WNA</td>
<td></td>
<td>Highest wave number plus AINC.</td>
</tr>
<tr>
<td>WN(121)</td>
<td>λ</td>
<td>Wave number array.</td>
</tr>
<tr>
<td>WOUT</td>
<td></td>
<td>Radiation outward - gas non self-absorbing.</td>
</tr>
<tr>
<td>WOUTMN</td>
<td></td>
<td>Radiation outward considering minimum transmissivity.</td>
</tr>
<tr>
<td>WOUTMX</td>
<td></td>
<td>Radiation outward considering maximum transmissivity.</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>Intermediate value in calculation of ETA.</td>
</tr>
<tr>
<td>Y(4)</td>
<td></td>
<td>Array used in printing on save tape A6.</td>
</tr>
<tr>
<td>Z</td>
<td></td>
<td>Intermediate value in calculation of ETA.</td>
</tr>
</tbody>
</table>
B.3 INITIALIZATION AND INPUT, PROGRAM NOTES

B.3.1 Initialization

1. General Initialization

 The Initial sequence sets aside 86 locations in the BUFFT array for the I-O buffer. Input requires 39 locations - output 47 locations.

2. Input Initialization

 Call ABUF1 sets up input buffer on A5. To read BCD, decimal tape number is 645. To read BIN, decimal tape number is 661. Logical tape number is 15.

3. Output Initialization

 BUFFS sets up output buffer on A6 to write labeled and blocked tape. To read BIN, decimal tape number is 662. Logical tape number is 16.

4. Header for File of LBT on A6

 Call LBID, specifies a BCD file name for label of a labeled and blocker tape to be written on A6. Call LBID for each file.

5. Identification of Case

 Call SPGHDR (FMT): page header is written with 12 BCD words of array FMT. Call SPGHDR for every case.

6. Error Initialization

 ERTRP allows printout and transfer to next case

B.3.2 Input

1. Tape

 Binary tape data is input for temperature $3000^\circ{K}$-25000$^\circ{K}$. This is a tape with 23 files, one file per temperature. A description of tape will be given in B.3.3.
2. Cards

a. number of cases (fixed point)

b. Cards per case

1) identification card

2) Radius of cylinder, decrease in wave number, highest wave number - AINC, angle difference in degrees of array ALPHA, divisions of original sectors (ALPHA array) of half cylinder (floating point)

3) number of wave numbers, number of annuli or temperatures, option for writing output tape, NT-1, NT+1, number of angles in ALPHA array, divisions of original sectors of half cylinder (fixed point)

4) temperature array: temperatures of annuli from outermost temperatures must be multiples of thousands in ascending order into core (floating point).

5) radius array: radii of annuli from outermost into core+1 (floating point)

6) radius array: radii of annuli from core to outermost (floating point)

7) log of density ratio array - log of density ratio of annuli from outermost into core (floating point)

B.3.3 Read in Process

Read in linear absorption coefficients for each case, interpolating as necessary.

1. General

A table of absorption coefficient data is interpolated with density selected from input tape and set up as a function of temperature and wave number, f (TEMP, WN)
2. Format

Data is stored in files. Each file corresponds to a temperature. File temperatures range from 3000°K to 25000°K in 1000°K increments. The first file (3000°K) is made up of 5 records. Record 1 is a BCD label. Record 2 is main table heading. The main table headings are: NT, TEMP(1), TEMP(2)... TEMP(23). Record 3 contains the number of words in the data subtable, plus heading: NW, ND, FMIC(1) FMIC(2)...FMIC(NW) DENS(1), DENS(2)...DENS(ND).

Note: NT is number of files

NW is number of wave numbers (21)
ND is the number of densities (5)
FMIC(1) is micron value of WN(1) = 10/WN(1)
FMIC(NW) is micron value of WN(NW)=10/WN(NW)
DENS(1) = -3 (RHO/RHOO)
DENS(ND) = 1 (RHO/RHOO)

Record 4 consists of one word, the temperature of the file. The last record, record 5, is the data subtable and contains linear absorption coefficients for the temperature of the file for all wave numbers for each of the 5 log density ratios. The remaining 22 files are composed of 3 records, corresponding to the format of the last 3 records of file 1: a subtable record, a temperature record, and a data record.

Temperatures (multiples of 1000°K) in array TEMP are stored in ascending order as are the file temperatures. Reading of files is controlled by DO N=1, NT (number of temperatures). Records of files are read up to and including temperature record. If the first and only word of the temperature record is not equal to the indexed TEMP(N), the file is closed and the next file is then read.
in a similar manner. If TEMP(N) and the one word of the temperature record are equal, the following record is read and processed for all wave numbers (61500-1500) to obtain the absorption coefficients. PROP(N, 1) through PROP(N, 121) for TEMP(N) with its associated log of density ratio (RHO(N)). The file is closed, the index for TEMP(N) is increased by 1 and the reading process continued to obtain linear absorption coefficients for all the indexed temperatures. The first file is read as a special case. The BCD record is read by a special instruction and then the 3 following records must be read to include the temperature record. The remaining 22 files are similar in read instructions; 2 records are read, the second being temperature record.

Records are all read in REC(700) which is large enough to include the largest record (the last) of the files.

The data for TEMP(N) is stored as a function of density and wavenumber in the following order: f(d1, NW1), f(d2, NW1), ..., f(d5, NW1), f(d1, NW2), f(d2, NW2), ..., f(d5, NW2), ..., f(d5, NW121). Where d is density and NW is wave number. Thus the data record (last record of each file) can be treated as 121 groups of 5. Each group corresponding to one wave number. The 5 linear absorption coefficients in each group are arranged in ascending order of log density ratio -3, -2, -1, 0, 1.

If the RHO(N) corresponding to TEMP(N) is an integer value between -3 and 1, the value IPST, which is the subscript of array REC is assigned as follows:

IPST = 1 if RHO(N) = -3
IPST = 2 if RHO(N) = -2
IPST = 3 if RHO(N) = -1
IPST = 4 if RHO(N) = 0
IPST = 5 if RHO(N) = -1
Control is then transferred to DO loop - DO I = 1, NW(121). The value REC(IPST) is read directly for linear absorption coefficient for first wave number. IPST is increased by 5 in last step of DO loop. When the DO is satisfied the linear absorption coefficients PROP(N, 1) through PROP(N, 121) are obtained for TEMP(N) with its corresponding RHO(N).

If RHO(N) is not an integer value but within the integer range, the linear absorption coefficient is obtained by logarithmic interpolation between tabulated values. IPST is set corresponding to the next lower RHO(N), e.g. RHO(N) = -2.5, IPST=1, PCNT is the fractional difference between tabulated values, REC(IPST) and REC(IPST+1). PCNT is equal to RHO(N) minus integer values less than RHO(N). Control is then transferred to a DO loop - DO I = 1, NW(121). Linear absorption coefficient for first wave numbers equals antilog of PCNT \(\{\log [\text{REC}(\text{IPST} + 1)] - \log [\text{REC}(\text{IPST})]\} + \log [\text{REC}(\text{IPST})] \). IPST is increased by 5 in last step of DO loop. When the DO is satisfied the linear absorption coefficients to PROP(N, 1) through PROP(N, 121) are obtained for TEMP(N) with its corresponding RHO(N).

If RHO(N) is greater than 1, PCNT is calculated as previously stated, and IPST is set equal to 5. Absorption coefficient is logarithmically extrapolated based on values of REC(IPST) and REC(IPST - 1).

The log difference of REC(IPST) and REC(IPST - 1) is added to REC(IPST) and an antilog is taken to obtain in DO loop similar to the one previously described PROP(N, 1) through PROP(N, 121) for TEMP(N) with its corresponding RHO(N).

This concludes the read in part of the program. Notes related to the remainder of the program are incorporated in the block diagram, section B. 4.
B.4 BLOCK DIAGRAM AND PROGRAM NOTES

1. Initialize for I-O buffer
 IF(INIT)

2. Initialize for error return
 IF(ERTRP(5))

3. Set up input buffer
 ABUFL

4. Read numbers cases
 NCASE

5. Set up buffer for labeled and blocked output tape
 IF(BUFEES)

6. Read case identification card

7. Set page header
 CALL SPGHDR

8. Read input for 1 case

9. Set label on files of output tape
 CALL LBID

READ IN PROCESS OF TAPE AND STORE LINEAR ABSORPTION COEFFICIENTS IN ARRAY PROP

\[\text{NFILE}=1 \]

\[\text{DO 180 N=1, NT} \]

\[\text{YES} \]
read BCD record for this file on A5
set NWBCD=0 to read entire record

IF(RREAD(645, BCDREC, NWBCD))

NPP=3

EOF

YES

CALL ERROR

K=1, NPP
set NWBIN=0
IF(RREAD(661, REC, NWBIN))

close file
CALL CLOSE(661)
NFILE=NFILE+1
NPP=2

IF(RREAD(661, REC, NWBIN))

EOF

YES

CALL ERROR

IPST

1=1.
NW
PROP(N, I)=REC(IPST)
IPST = IPST+5

MO
YES
PCNT=RHO(N)+3.
IPST=1

PROF(N, I)=antilog PCNT of log difference REC(IPST+1) and
REC(IPST)+log REC(IPST)
IPST=IPST+5

I=1, NW
PROF(N,I)=antilog of PCNT of log difference of REC(IPST) and REC(IPST-1)+log REC(IPST)

180 CONTINUE

CALL CLOSE(661)

I=I, NW
INTERMEDIATE CALCULATIONS

RDALPH=DALPHA*1.7453292E-2 angle difference in radians of ALPHA(NA) angle array (angles of half cylinder used to determine absorption lengths for exterior radiation)

NH=NDIV-1 value used as part of subscript in picking largest absorption paths of each sectors of half cylinder to calculate interior minimum transmissivity

NALPHA=NA*(NAlpha-1)+1 number of angles used in calculating absorption length for interior radiation

ALPHA(1)=0, SINA(1)=0,

calculate
NA=2, ALPHA(NA) - angle array
NAlpha SINA(NA) - sine of ALPHA array
190 DSINA(NA) - consecutive difference of elements of SINA array

calculate intermediate arrays used in calculation of absorption length of exterior radiation
NQ=1, NA=2, NTR EXRQSN(NQ,NA)

NALPHA 210 EXSNRQ(NQ,NA)

ANGLE(1)=0
calculate angle difference ANGADD in radians of ANGLE (NAVE) angle array (segments of half cylinder used to determine absorption lengths for interior radiation.)

calculate
ANGLE(NAVE) - angle array
ENSNA(NAVE) - sine of angle array

calculate intermediate arrays used in calculation of absorption lengths of exterior radiation
NAVE=2, NANGLE ENRQSN(NQ,NAVE)
ENSNRQ(NQ,NAVE)
AEDC-TR-65-11

N=1, NTR (NT-1)
calculate intermediate array used in calculations of exterior emissivity of annuli ABEMIS(N)

calculate intermediate array using temperature and radii, both dependent only on annuli
TEMPSW(N)
RDELTA(N)
DR(N)
C2T(N)
DV(N)

ERASE ETA clears whole array

DO 700 I=1, NW
calculate wave number WNA=WNA - AINC
put in wave number array WN(I)=WNA

ERASE AMIN, AMAX, OPT, SUM, DRK

N=1, NT
calculate absorption path along radius
SUM=SUM + DR(N) * PROP(N,I)

calculate absorption path along diameter
DK = 2.6SUM

set EXTRM, EXTRMX=1. exterior transmissivity used for outermost annulus

DO 650 N=1, NT

calculate at ALPHA(1)=0., the absorption length
EKDR(1) used for emissivity and DRK used for exterior transmissivity
EKDR(1) = DR(N) * PROP(N,I)
DRK=DRK+EKDR(1)
calculate $V = WN^2C2T(N)$ Calculations are limited to the wavenumber range which includes all but 0.1% of black body energy at each frequency extreme by transferring to end of do loop when v falls outside the range (.278,13). Whether $V < 1$ or > 1 determines the equation for calculating $\eta(N,I)$, the fraction of total energy flux radiated by black body at a given temperature within a wave number interval.

ETA(N,I) according to 1st term of Taylor Expansion

ETA(N,I) according to power series in v and Δv

CALL ERROR

CALCULATION OF ABSORPTION LENGTH FOR EXTERIOR TRANSMISSIVITY AND INTERIOR EMISSIVITY

calculate sector radii $R(NQ)=...$

CALL ERROR $N<1$ $N=1$
NA designates angle of which subscript NQ is used counting inward to denote the annulus absorbing radiation from the Nth annulus.

NA=2, NALPHA

AKDR(N) = R(N)×PROP(N, I)
EKDR(NA) = AKDR(N)

EKDR are absorption lengths associated with TEMP(N) for all ALPHA(NA) for the calculation of emissivity inward

AKDR are components of the absorption path

SKDR(NA) = SKDR(NA) + AKDR(NQ)

SKDR are absorption length associated with TEMP(N+1) for all ALPHA(NA) for calculation of transmissivity (exterior)

SKDR(1) = DRK
absorption length at ALPHA(1)
CALCULATION OF INTERIOR EMISSIVITY

FKR(NA) is an empirical approximation to the transmissivity integral; the solution of FKR(NA) varies if EKDR(NA) ≤ 1, or >16.

Interior emissivity of a single annulus is identical to transmissivity of that annulus alone relative to the next interior annulus.

Transmissivity is sum of products of 2 integrals, one being DSINA(NA) the other approximated by FKR(NA).

The lower limit of transmissivity corresponds to sector-segment coincidence at NA=2, ⋯ NALPHA - upper limit at NA=1, ⋯ NALPHA - 1.

Prior to the Do statement EXTRMN and EXTRMX are set equal to 1, and this is the value used when the Do loop index has its initial value (N=1). Later in the loop EXTRMN and EXTRMX are calculated for use when the index is increased by one.

EOUT = 1 - EXPF(•••)

interior emissivity is the average of upper and lower limit

Finally, emissivity exterior to annulus

Prior to the Do statement EXTRMN and EXTRMX are set equal to 1, and this is the value used when the Do loop index has its initial value (N=1). Later in the loop EXTRMN and EXTRMX are calculated for use when the index is increased by one.
CALCULATION OF EXTERIOR TRANSMISSIVITY

NA = 1, NALPHA

FKR(NA) = ...

CONTINUE

ERASE EXTRMN, EXTRMX

exterior transmissivity to be used with TEMP(N+1)

NA = 2, NALPHA

EXTRMN = EXTRMN + FKR(NA) * DSINA(NA)

EXTRMX = EXTRMX + FKR(NA-1) * DSINA(NA)

ERASE TRYKDR array of absorption length (for annulus N) associated with ANGLE array

NTEST = NT - N - 1
NTEST = # of sector radii less than RAD(N+1)
annulus NTEST+1 and all succeeding annuli can be intersected by radiation path only once

Because absorption coefficients are not monotonically increasing function of temperature, the extremals of absorption length within a sector do not always correspond to the value at sector boundaries ALPHA(NA) and ALPHA(NA+1).

An absorption coefficient is also calculated within each sector and the smallest and largest of the 3 are used in computing maximum and minimum transmissivity respectively. The ANGLE array includes the angles of the ALPHA array and those angles midway between successive elements of the ALPHA array.
ERASE RI sector radii associated with interior absorption.

ERASE NTOUCH annuli number that does not intersect radiation path replaces NTOUCH.

\[\Sigma = \text{RAD}(N+1) \times \text{ENSNOQ}(NQ, NAVE) \]

518

\[NTOUCH = NQ \]

YES

519

\[B = \arcsin(\Sigma) \]

\[NQ = \text{NTTEST} \]

NO

YES

solution for sector radii less than radius \((\text{RAD}(N+1))\) which is associated with interior transmissivity for annulus \(NQ\) of \(\text{TEMP}(N)\)

\[\text{RI}(NQ,1) \]

solution for sector radii equal or larger than radius \((\text{RAD}(N+1))\)

CONTINUE

\[\text{NFAC} = \text{NTOUCH} - 1 \]

first annulus that radiation path intersects

\[\text{NJ} = 0 \]

subscript for components of absorption length

\[\text{NAVE} = 2, \text{NANGLE} \]

\[\text{NFAC} \leq \text{NTTEST} \]

NO

YES

no sector radius less than \(\text{RAD}(N+1)\)
\[NQ = \text{NFAC}, \quad N_{\text{TEST}} \]

\[NJ = NJ + 1 \]

\[J = NT - NQ \]

\[\text{AKDR}(NJ) = |RI(NQ, 2) - RI(NQ + 1, 2)| \cdot \text{PROP}(J, I) \]

\[NJ = NJ + 1 \]

\[J = NT - \text{NOTOUCH} \]

\[\text{AKDR}(NJ) = |RI(\text{NFAC}, 1) - RI(\text{NFAC}, 2)| \cdot \text{PROP}(J, I) \]

\[\text{NFAC} \leq NTR \quad \text{NO} \]

\[\text{YES} \]

\[NQ = \text{NFAC}, \quad N_{\text{TR}} \]

\[NJ = NJ + 1 \]

\[J = NT - NQ \]

\[\text{AKDR}(NJ) = |RI(NQ + 1, 1) - RI(NQ, 1)| \cdot \text{PROP}(J, I) \]

\[\text{NUMDR} = NJ \]

\[\text{number of components of absorption length} \]

\[N_{\text{TR}}, \quad \text{NUMDR} \]

\[\text{TRYKDR}(\text{NAVE}) = \text{TRYKDR}(\text{NAVE}) + \text{AKDR}(NJ) \]

\[\text{TRYKDR}(1) = \text{DK-DRK} \]

\[\text{interior absorption path at NANGLE(1)=0} \]

\[\text{REORDERING OF TRYKDR TO CHOOSE THE LARGEST AND SMALLEST INTERIOR ABSORPTION PATH BETWEEN ALPHA(NA) AND ALPHA(NA+1) ORDERING OF TRYKDR (1), (2), (3) TRYKDR (3), (4), (5), etc.} \]

\[\text{MAL=1 subscript corresponding to interior absorption path at ALPHA (1) to ALPHA(NALPHA-1)} \]

\[\text{NAL=1 subscript corresponding to interior absorption path at ALPHA(2) to ALPHA(NALPHA)} \]
NAL = NAL - NRAVE
NRAVE read in as 2 (division of original angle difference used for exterior radiation)

TEMPL = TRYKDR(NAL)
store the absorption path corresponding to ALPHA(2) to ALPHA(NALPHA)-upper boundary of sector

JAL = NAL - 1
upper limit of index reordering

DO I = IAL, NDIV

I = I + 1

DO I1 = MAL, JAL

TRYKDR(I1) < TRYKDR(I2)

DO I2 = IP1, NAL

When the DO has been satisfied, TRYKDR(MAL) to TRYKDR(NAL) has been rearranged so that the smallest absorption path is in TRYKDR(MAL).

(first element is compared with second and third and interchanged when necessary)

Yes

TEMPS = TRYKDR(I2)
TRYKDR(I1) = TRYKDR(I2)
TRYKDR(I2) = TEMPS

This DO governs the reordering from TRYKDR(MAL) to TRYKDR(NAL) in ascending order: TRYKDR(NAL) is largest absorption path.

First half of SKDR array SKDR(1) to SKDR(NDIV) will be stored with smallest of interior absorption path between ALPHA(NA) and ALPHA(NA+1); the remaining half SKDR(NDIV+1) to SKDR(NDIV+NDIV) with largest interior absorption path between ALPHA(NA) and ALPHA(NA+1).
AEDC-TR-65-11

CALCULATE INTERIOR TRANSMISSIVITY

DO NA=1, IAL
IAL at this point corresponds to subscript of the last member of SKDR array

IF SKDR(NA) ≤ 1. THEN YES
 FKR(NA) = ...
 CONTINUE
ELSE
 IF SKDR(NA) ≤ 16. THEN YES
 FKR(NA) = ...
 CONTINUE
 ELSE
 FKR(NA) = 0.
 END IF
END IF

ERASE EXTRMN, EXTRMX
radiant heat flux W_{MN} (minimum) and W_{MX} (maximum) for annulus N considers only transmissivity and emissivity interior

radiant flux density interior and exterior to annulus is kept as a running sum over all the annuli excluding core-minimum and maximum transmissivity considered separately - case of no absorption is considered in a similar manner
arrange data in special format to be written on tape
wave number and radiation heat flux as function of wave number written in separate records

go to EOF on output tape after writing data for each case

WRITE VALUES IN BCD ON A3

write headers

WOT 10,1
WOT 10,8
WOT 10,7

I=1, NT
WOT 10,9, TEMP(I), RHO(I), RAD(I)

write headers

WOT 10,1
WOT 10,4

I=1, NW
WOT 10,5, WN(I), QMAX(I), QMIN(I), QOPT(I)

sumilation of radiation minimum, maximum and optically thin - summation of radiation from core in same manner

YES

ERASE Y
Y(1)=WN(I)
Y(2)=QMAX(I)
Y(3)=QMIN(I)
Y(4)=QOPT(I)
CALL RITE (662, Y, 4)

CALL CLOSE(662)

ERASE QSUMMN, QSUMMX, QOPTSM,
SMCRMN, SMCRMX, SMOPTC

QSUMMN=QSUMMN+QMIN(I)
QSUMMX=QSUMMX+QMAX(I)
QOPTSM=QOPTSM+QOPT(I)
SMCRMN=SMCRMN+COR MN(I)
SMCRMX=SMCRMX+COR MX(I)
SMOPTC=SMOPTC+OPTCOR(I)
fraction of total energy flux radiation by black body within wave number interval WN(I) to WN(NW)

\[\text{ERASE ETASM} \]

\[\text{N} = 1, \text{NT} \]
\[\text{I} = 1, \text{NW} \]
\[\text{ETASM}(N) = \text{ETA}(N,I) + \text{ETASM}(N) \]

\[\text{WOT 10, 10} \]

\[\text{I} = 1, \text{NT} \]
\[\text{WOT 10, 11, TEMP}(I), \text{ETASM}(I) \]

\[\text{NCASE} = \text{NCASE} - 1 \]
remainder of data cases to be executed

\[\text{ZERO} \]
\[\text{NCASE} \]
\[\text{MINUS} \]
\[\text{CALL DUMP} \]

\[\text{PLUS} \]
\[\text{CONTINUE} \]

\[\text{H} \]
\[\	ext{PZE 661, 32384} \]
rewind input tape on A2

go to 71 to read in data for next case

\[\text{CONTINUE} \]

\[\text{H} \]
\[\text{MZE 661, 32384} \]
\[\text{H} \]
\[\text{MZE 662, 32384} \]
rewind and unload tape

\[\text{CALL EXIT} \]
B.5 PROGRAM LISTING

STUDY OF RADIATION HEAT FLUX FROM HIGH PRESSURE AIR AKCS AT LCH F09/11/64

C

COMMON ADEKIS12(22),AINC,AKDR(45),ALPHA(10),ANGLE(20)
COMMON CDCN12C25)
COMMON BUFF2(525),BUFFT(86),CORMA(121),CORMX(121),C2T(23)
COMMON DALPHA,DELTAA,CPF
COMMON DR(23),DSNAI10),DV(23),EKDR(10),ENSNA(20)
COMMON ENSRQ(23,20),EXRCSN(23,20),ETAI(23,121)
COMMON ETASHI(23)
COMMON EXSRQ(22,20),EXRDSN(22,20),FMTN(20),FMT(12),IT(23)
COMMON ICPT1, NALPHA,NDIV
COMMON NHAVE,NTHAN,NWANOPTCUR121)
COMMON PKCP(23,121),QMAX(121),QMIN(121)
COMMON UCPT(121),RAQG(23),RAD(23),RAVE,RDALPHA,REDTA(23),REC(700)
COMMON RHO(23)
COMMON R1(23,2),R2(22),SINA20),SKDR(20),TEMP(23),TENRMW23)
COMMON TRYKDRI0,20),WNAM,N12I),Y(4)
1 FORMAT(111)
2 FORMAT(12A6)
4 FORMAT(1H3X8HCMAX,11X4HQMIN,13X4HQGPT1)
5 FORMAT(IHI,1PE14.7,3X1)
6 FORMAT(1HI1O8HSQMAX = 1PE14.7,3X8HSQMIN = 1PE14.7,3X8HSQGPT = 1PE14.7)
7 FORMAT(1HI1O8HTEMPATURE,5X12HLOG RHU/RHCO,8X6HRADIUS)
8 FORMAT(1HI03XI9TEMPATURE PROFILE)
9 FORMAT(1HI,31PE14.7,3X1)
1C FORMAT(1HI03XI9TEMPATURE,8X6HETASLM)
11 FORMAT(1HI,21PE14.7,3X1)
12 FORMAT(1HI1O8HSCORMX = 1PE14.7,1X1O8HSCORMN = 1PE14.7,1X1O8HSCN
1PE14.7)
C INITIALIZE FOR INPUT OUTPUT
5C IF(IN1(642,643),BUFFT(86),39,47)60,55,60
5C CALL DUMP
C INITIALIZE FOR ERROR ROUTINE
60 IF(CRIKP(51)70,726,726
C INITIALIZE FOR BUFFERS
C ABUF1 IS FOR INPUT ON A5
7C CALL ABUF1
RIT 2,2,NCASE
IF(BUFFS(662,BUFF2(525),525,0,1,1,1))71,55,71
C REAC IDENTIFICATION CAC
C REAC IN CARDS CN A2
7R R1P12,2,(FMTT),I=1,122
CALL SGFDR(FMT)
C INPUT
RIT 2,2,CELT,AINC,WNA,ALPHA,RAVE
RIT 2,2, Nk,NT,ICPT1,NTK,NK,NALPHA,NRAVE,NDIV
RIT 2,2, (TEMP),I=1,NT
RIT 2,2, RAD(I),I=1,1
RIT 2,2, RACQ(I),I=1,NT
RIT 2,2, RHO(I),I=1,NT
CALL LB1D(662,AKC,RAD)
C READ IN AND STORE DATA ONE FILE PER TEMPERATURE
72 AFILL=1
CU 180 N=1,NT

108
STUDY OF RADIATION HEAT FLUX FROM HIGH PRESSURE AIR ARCS AT LCW F09/11/64

IF (N-U.73C.73,83)
READ BCCREC FOR FIRST FILE ON AS
NWBCD IS SET TO ZERO TO READ ENTIRE RECORD
73 ERASE NWBCD
IF (RREAD(645,BCCREC,NWBCO))75,74,75
74 CALL ERROR (99H08BCCREC SHOULD START NEW FILE)
75 NWP=3
76 GO 77 K=1,NWP
ERASE NWBIN
IF (RREAD(661,REC,NWBIN))77,78,77
77 CONTINUE
GO TO 85
78 IF(10,79, NFILE,K
79 FORMAT(13H0FILE NO. IS 12,2XI1HREC NO. IS 12)
CALL ERROR (18HE0WHILE READ REC)
83 CALL CLOSE (661)
KFILE = NFILE +1
NWP=2
GO TC 76
85 IF(ABS(FTEMP(N)-REC(1))-1.E-6)90,9C,E3
90 K=NWP+1
ERASE NWBIN
IF (RREAD(661,REC,NWBIN))94,78,94
94 IF (ABS(FRHO(N)+2.)-1.E-6) 110,110,95
95 IF (RHO(N)*2.196,110,97
96 PCNT =RHO(N)+3.
IPST = 1
GO TC 108
97 IF(ABSFRHC(N))<1.E-6)14C,14C,98
98 IF (RHC(N))100,140,105
100 IF (ABSFRHC(N)+1.)1.E-6)12S,12S,101
101 IF(RH(N)+1.)102,12S,1C3
102 PCNT = RHD(N) +2.
IPST = 2
GO TO 108
103 PCNT = RHO(N) +1.
IPST = 3
GO TC 108
105 IF (ABS(FRHC(N)-1.1)-1.E-6)15S,155,106
106 IF (RHC(N)-1.)107,155,17C
107 PCNT = RHD(N)
IPST = 4
108 IF (109 I =1,NW
PROP(N,I) = EXPF((LOGF(REC(IPST+1))/REC(IPST)))*PCNT+LOGF(REC(IPST+1))
109 IPST = IPST+5
GO TC 180
110 IPST = 2
GO TC 160
125 IPST = 3
GO TC 160
14C IPST = 4
GO TC 16C
155 IPST = 5
16D GO 165 I=1,NW
PROP(N,I) = REC(IPST)
STUDY OF RADIATION HEAT FLUX FROM HIGH PRESSURE AIR ARCS AT LCM F09/11/64

165 IPST = IPST + 5
GO TO 180

170 PCNT = W(D(N) - 1)
IPST = 5
GO TO 175

175 IPST = IPST + 5
CONTINUE

CALL CLOSE (661)
RDALPH = DALPHA * 1.7453292E-2
AH = NCIV - 1
NANGLE = NAVE * (N(ALPHA - 1) + 1)
ALPHA(1) = 0.
SINA(N) = 0.,
CO 190 NA = 2, NALPHA
ALPHA(NA) = ALPHA(NA - 1) + RDALPH
SINA(NA) = SINC(ALPHA(NA))

190 CSINA(NA) = SINA(NA) - SINA(NA - 1)
CO 210 NC = I, NT
CO 210 NA = 2, NALPHA
EXRGSN(NA) = RAD(NA)/SINA(NA)

210 EXSNRG(NA) = 1./EXRGSN(NA) + 1.

220 ENSN(NA) = SINC(ANGLE(NA))
CO 230 NO = 1, NT
CO 230 NA = 2, NALPHA
ENRGSN(NA, NA) = RAD(NA)/ENSN(NA)

230 ENSNRC(NA, NA) = 1./ENRGSN(NA, NA)

240 ABEC(N) = -1.9((1. - 1. RAC(N) + 1)/RAD(N) + * 2/) - (ARSIN(RAD(N) + 1)/RAD(N) + 1) - SINC(2. - A(SIN(RAD(N) + 1))/RAD(N) + 1)/3.1415926)
CO 241 N = 1, NT
TEMPKN(N) = TEMP(N) * 4 * 5.6686E-12
RDELTA(N) = RAD(N)/DELT
CR(N) = RAD(N) - RAD(N + 1)
C2T(N) = 1.0/TEMP(K(N))

241 EV(N) = AINC * C2T(N)
EKASE ETA
CO 270 I = 1, NW
WN = W(N) - AINC
WK(I) = WN
EKRASE AMIN, AMAX, DPT, SUM, CRK
CO 245 N = 1, NT

245 SUM = SUM + DR(N) * PROP(N, 1)
CK = 2. * SUM
EXTRPN = 1.
EXTPX = 1.
CO 650 N = 1, NT
EKDK(I) = DR(N) * PROP(N, 1)
CK = CRK * EKCR(I)
V = W(N) * 1.1 * C2T(N)
IF (V < 278) GO TO 278

110
STUDY OF RADIATION HEAT FLUX FROM HIGH PRESSURE AIR ARCS AT LOW FO9/11/64

250 IF (V-1.3)251,252,255
251 IF (V-1.2)253,255,252
252 ETA(N)=-1.5399*DV(N)*(V**3)/(EXP(V)-1.)
GO TO 255

253 V2=V*V
V3=V2*V
V4=V3*V
V6=V4*V2
ETA(N,1)=-1.5399*DV(N)*((X+2)

255 IF (N-N)256,256,73C
256 ERASE SKDR
CD 275 NA=1,NALPHA
CD 27C NQ=1,N
N(NQ)=EKKQS(NINO,NA)*SINF(ALPHA(NA)-ARSI(RAD(N+1)*
EXSARQNQ,NA)))
IF (N N-1)730,265,257
257 IF (NQ-1)740,270,26C
258 AKCR(NQ-1)750,270,26C
259 IF (NQ N)270,265,730
265 AKCR(N)760,270,26C
EKK(NA)=AKCR(N)
270 CONTINUE
CD 275 NQ=N
275 SKDR(NA)=SKDR(INA)+AKCR(N)
SKUK(N)=CMK
CD 30S NA=1,NALPHA
IF (EKKINA)1.1295,295,300
295 FKK(INA)=EXP(-1.206*EKKR(INA))
CD TC 305
300 IF (EKKR(INA)-1.1301,3C,302
302 FKK(INA)=0.
305 CONTINUE
ERASE EPSMN,EP SX
CD 310 NA=2,NALPHA
EPSPI=EPSMN+FKK(INA)*CSINA(NA)
310 EP SX=EPSMN+FKK(INA)*CSINA(NA)
EOUT=1.-EXPFP(ABCMN(SA)*PROB(N-1)*RAD(N))
EIN=1.-EPSMN*EP SX)/2.
WBB=ETA(N,1)*TEMPPR(N)
WIN=WBB*FIN+RDELTA(N-1)
WOUT=WBB*ECUT*RDELTA(N)
WOUTM=OUT*EXTRMN
WOUTM=NGOUT*EXTRMX
CG 340 NA=1,NALPHA
IF (SKCRINA)1.320,32C,325
320 FKKR(INA)=EXP(-1.206*SKCRINA)
GO TO 340
325 IF (SKCRINA)1.330,33C,335
330 FKKR(INA)=EXP(-1.206*SKCRINA)1.0774-.09539*EKKR(INA)+
1.05577*(EKKR(INA)**2-4.29143E-3*(EKKR(INA)**3+2.082602E-4*
2*(EKKR(INA))*4)
GO TO 340
AEDC-TR-65-11

STUDY OF RADIATION HEAT FLUX FROM HIGH PRESSURE AIR ARCS AT LGW F09/11/64

21SKDN(NA)=*4)
GO TC 340
335 FKR(NA)=0.
34C CONTINUE
ERASE EXTRMN, EXTRMX
CD 350 NA=2,NALPHA
EXTRMN=EXTRMN+FKR(NA)*COSINA(NA)
35C EXTRMX=EXTRMX+FKR(NA-1)*COSINA(NA)
ERASE TRYKCR
NTST=NT-N-1
CD 600 NAVE=2, NANGLE
ERASE NTOUCH
CD 530 NC=1,NT
SIGMA=RAD(N+1)*ENSRQ(NQ,NAVE)
IF (SIGMA-1.1519, 519, 518)
518 NTOUCH =NQ
GO TC 530
519 B=ARCSIN(SIGMA)
IF (NQ-NTST) 520, 520, 523
520 C=ANGL EA(NAVE)-8.31415926
IF-ID=1.5707963) 522, 522, 524
521 C=3.1415926-D
522 RI(NQ,2)=ENRCSN(NQ,NAVE)*SINF(D)
523 C=ANGL EA(NAVE)+B
IF (C=1.5707963) 525, 525, 527
524 C=3.1415926-C
525 RI(NQ,1)=ENRCSN(NQ,NAVE)*SINF(C)
530 CONTINUE
NFAC=NTOUCH+1
NJ=0
IF (NFAC-NTST) 545, 545, 565
545 CD 540 NQ=NFAC, NTST
NJ=NJ+1
J=NT-NC
56C AKDR(NJ)=RI(NQ,2)-RI(NQ+1,2)*PROPIJ,1)
565 NJ=NJ+1
J=NT-TOUCH
AKDR(NJ)=RI(NFAC,1)-RI(NFAC,2)*PROPIJ,1)
IF (NFAC-NTR) 580, 585, 585
58C CD 590 NQ=NFAC, NTR
NJ=NJ+1
J=NI-NC
59C AKDR(NJ)=RI(NQ+1,1)-RI(NQ,1)*PROPIJ,1)
595 NUMDR=NJ
CD 600 NJ=1, NUMDR
66C TRYKDR(NAVE)=TRYKDR(NAVE)+AKDR(NJ)
606 TRYKCR(1)=CK-DRK
PAL=1
NAL=1
CD 635 LAL=1, NDIV
NAL=NAL+NAVE
TEMP=TRYKCR(NAL)
JAL=NAL-1
CD 620 [1=PAL, JAL
IP1=11+1
STUDY OF RADIATION HEAT FLUX FROM HIGH PRESSURE AIR ARCS AT LCW F09/11/64

CO 630 I2=[P1,NAL
IF (TRYKDR I11-TRYKDR I12)630,630,627
627 TEMPS=TRYKDR I11
TRYKDR I11=TRYKDR I12
TRYKDR I12=TEMP
630 CONTINUE
SKDR IAL=TRYKDR IAL
IAL=LAL-NDIV
SKDR IAL=TRYKDR NAL
PAL=MAL+AL
635 TRYKDR IAL=TEMP
CO 640 NA=1, IAL
IF (SKDR (NA)=1.1)636,636,637
636 FKR I1NA)=EXP FI-1.206*SKCR I1NA)
GO TO 640
637 IF (SKCR (NA)=16.) 638,638,639
638 FKR I1NA)=EXP FI-1.206*SKDR (NA))* (1.07748995939*SKDR (NA)+
1.035171*SKDR (NA))*2-4.29143E-2* (SKCR I1NA)*3+2.082602E-4*
21*SKCR I1NA)*4)
GO TO 640
635 FKR I1NA)=0.
640 CONTINUE
ERASE ENTRMX, ENTRMX
CO 645 NA=2, NALP=A
NAH=NA+N
ENTRNX=ENTRNX+FKR (NAH)*CSINA(NA)
655 ENTRMX=ENTRNX+FKR I1NA-1)*CSINA I1NA)
WINM=WIN*ENTRNX
WINM=WIN*ENTRNX
AMIN=AMIN+WINM+WOUT(N)
AMAX=AMAX+WINM+WOUT(N)
CPT=CPT+WINM+WOUT
65C CONTINUE
FPR I1=TEMPS I1*RDelta I1*ETA I1*(1-EXP F(-1.9+EKDR I1))
CWWM I1=OPTCOR I1*ENTRNX
CWWM I1=OPTCOR I1*ENTRNX
CMIN I1=AMIN+CMN I1
CMAX I1=AMAX+CMAX I1
705 CO 704 I1=0,NW
ERASE Y
Y1(1)=W1[1]
Y1(2)=W1[2]
Y1(3)=W1[3]
Y1(4)=OPT I1
704 CALL KITE 1662,Y,4)
CALL CLOSE 1662)
705 WOT 10,1
WOT 10,8
WOTC I62
CC 707 I1=1, NT
707 WOT 10,9, TEMP I1, RHO I1, RAD I1
WOT 10,1
WOT 10,4
CO 710 I1=1,NW
STUDY OF RADIATION HEAT FLUX FROM HIGH PRESSURE AIR ARCS AT LGM F09/11/6'

710 WOT 10,5, WMIN(I), QMAX(I), QMIN(I), QOPT(I)
 ERASE QSUMMN, QSUMMX, QOPTSM, SMCRMN, SMCRMX, SMOPTC
 DO 711 I=1, NW
 CSUMMN=QSUMMN+QMIN(I)
 CSUMMX=QSUMMX+QMAX(I)
 QOPTSM=QOPTSM+QOPT(I)
 SMCRMN=SMCRMN+GORMN(I)
 SMCRMX=SMCRMX+GORMX(I)
711 SMOPTC=SMOPTC+OPTG0(I)
 WOT 10, 13, SMCRMX, SMCRMN, SMOPTC
 WDT 10, 6, QSUMMX, QSUMMN, QOPTSM
 ERASE ETASM
 DO 722 N=1, NT
 CO 722 I=1, NW
722 ETASK(K)=ETAIN(I)+ETASM(K)
 WOT 10, 10
 CO 725 I=1, NT
725 WOT 10, 11, TEMP(I), ETASM(I)
726 NCASE=NCASE-1
 IF (NCASE).EQ.55, 740, 727
727 CONTINUE
H PZE 661,32384
 GO TO 71
730 CALL ERROR (18HINDEX OUT OF LIMIT)
740 CONTINUE
H MZE 661,32384
H MZE 662,32384
 CALL EXIT
END
STUDY OF RADIATION HEAT FLUX FROM HIGH PRESSURE AIR ARCS AT HIGH FRE9/11/64

C
COMM CN ABEMIS(22), AINC, AKDR(45), ALPHA(10), ANGLE(20)
COMM CN BC DREC(25)
COMM CN BU FF2(525), B U FF T(86), CORMN(121), COR MX(121), C2T(23)
COMM CN DALPHA, DELTA, DPHI
COMM CN DR123, DSINA(10), E KDR(10), ENSNA(20)
COMM CN ENSHRQ(23, 20), ENSQSN(23, 20), ETA(23, 121)
COMM CN ETA SH(23)
COMM CN EXSNRQ(22, 2C), E XSRQSN(22, 20), FKR(20), FMT(12), IT(23)
COMM CN OPT1, NALPHA, NDIV
COMM CN NRAVE, NTR, NT, NW, OPTCOR(121)
COMM CN PRCP(23, 121), QMAX(121), QMIN(121)
COMM CN QOPT(121), RADQ(23), RAVEl, RAVE, RDALPH, RDELTA(23), REC(700)
COMM CN RHO(23)
COMM CN R1(23, 21), R1(22), SIN(20), SKDR(20), TEMP(23), TEMPRW(23)
COMM CN TRYKDR(20), WNA, WNI(121), Y(14)
1 FORMAT(1HI1)
2 FORMAT (12A6)
4 FORMAT (1HO3X8HWAVE NO., 11X4HQMAX, 13X4HQMIN, 13X4HQDOP)
5 FORMAT (1H 41PE14.7, 3X)
6 FORMAT (1HO3X8HSQMAX = 1PE14.7, 3X8HSQMIN = 1PE14.7, 3X8HSQDOP = 1PE14.7)
7 FORMAT (1HC2X11HTEMPERATURE, 5X12HLOG RHD/RHOO, 8X6HRADIUS)
8 FORMAT (1H03X19HTEMPERATURE PROFILE)
9 FORMAT (1H 31PE14.7, 3X)
1C FORMAT (1HC2X11HTEMPERATURE, 8X6HETASUM)
1I FORMAT (1H 21PE14.7, 3X)
13 FORMAT (1HO1X10HSQCMX = 1PE14.7, 1X1OHSQCMN = 1PE14.7, 1X1IHSQCCORPT = 1PE14.7)
C
INITIALIZE FOR INPUT OUTPUT
5C IF (INIT(642, 643, BU FF T(86), 39, 47)) 60, 55, 60
55 CALL DUMP
C
INITIALIZE FOR ERR OR ROUTINE
6C IF (ERRP(5)) 170, 726, 726
C
INITIALIZE FOR BUFFERS
C ABU FI IS FOR INPUT ON A5
70 CALL ABUFI
RIT 2, 2, NCASE
IF (BUFFS(1662, BU FF 2(525), 525, 0, 1, 1, 11)) 71, 55, 71
C
READ IDENTIFICATION CARD
C
READ IN CARDS CN A2
71 R I PT2, 2, (FMT(), I = 1, 12)
CALL SPGRDR (FMT)
C
INPUT
RIT 2, 2, DELTA, WNA, WNL, CALPHA, RAVE
RIT 2, 2, NT, I OPT1, I OPT2, NTR, NR, NALPHA, NRAVE, NDIV
RIT 2, 2, (TEM P(), I = 1, NTR)
RIT 2, 2, (RAO(), I = 1, NR)
RIT 2, 2, (RAQ(), I = 1, NT)
RIT 2, 2, (RHO(), I = 1, NTR)
EREASE PRGP
NFIE = 0
EREASE NWBC
IF (IRREAD(645, BCDREC, NWBC)) 75, 74, 75
74 CALL ERROR (2SH BCDREC SHOULD START TAPE)
STUDY OF RADIATION HEAT FLUX FROM HIGH PRESSURE AIR ARCS AT HIGH FRE09/11/64

75 ERASE NWBIN
 IF(RREAD(661,REC,NWBIN))76,74,76
76 CO 18C N=1,NTR
77 AFILE =NFILE+1
 K=1
 ERASE NWBIN
 IF(RREAD(661,REC,NWBIN))83,78,83
78 HOT N=1,79,NFILE,K
79 FORMAT(I3HFILE NO. IS I2,2X11HREC NO. IS I2)
 CALL ERROR (18HEOF WHILE READ REC)
83 IF(ABS(F(TEMP(N)-REC(1))-1.E-6)90,90,85
85 CALL CLOSE (661)
 GO TO 77
90 K=K+1
 ERASE NWBIN
 IF IRREAD(661,REC,NWBIN)194,78,94
94 NW=REC(1)
 IF(N-NTR)192,1190,192
119C CO 191 I=1,NW
191 NW[I]=REC([+2]
 NW[I]+[1]=WNL
192 K=K+1
 ERASE NWBIN
 IF IRREAD(661,REC,NWBIN)194,78,194
194 IF (ABS(RHO(IN)+2.)-1.E-6)110,110,95
95 IF (RHO(H)+2.)96,110,97
96 PCNT =RHO(IN)+3.
 IPST = 1
 GO TO 108
97 IF(ABS(RHC(N))-1.E-6)140,140,98
98 IF (RHC(N))100,140,105
100 IF (ABS(RHO(N)+2.)-1.E-6)125,125,101
101 IF(RHO(N)+2.)102,125,1C3
102 PCNT = RHO(N) +2.
 IPST = 2
 GO TO 108
103 PCNT = RHO(N) +1.
 IPST = 3
 GO TO 108
105 IF (ABS(RHO(N)-1.)-1.E-6)155,155,106
106 IF (RHO(N)-1.)107,155,170
107 PCNT = RHO(N)
 IPST = 4
108 CO 109 I =1,NW
 PROPIN(I) = EXPF((LOGF(REC(IPST+1)/REC(IPST))))*PCNT+LOGF(REC(IPST+1))
109 IPST* = [IPST+5
 GO TO 180
11C IPST = 2
 GO TO 160
125 IPST = 3
 GO TO 160
140 IPST = 4
 GO TO 160
155 IPST = 5
160 CO 165 I=1,NW
STUDY OF RADIATION HEAT FLUX FROM HIGH PRESSURE AIR ARCS AT HIGH FRE09/11/64

PROP(N,I) = REC(IPST)
165 IPST = IPST + 5
GO TO 180
170 PCNT = RHOD(N)-1.
IPST = 5
CO 175 I=1,NW
PROP(N,I) = EXPF((LOGF(REC(IPST)/REC(IPST-I)))*PCNT).
LOGF(REC(IPST))
175 IPST = IPST + 5
180 CALL CLUSE (661)
IF (OPT2) I84,183,184
183 NTA=NTR+1
NTB=NTH
GO TO 185
184 NTA=NTR
NTB=NTR-1
185 NTP=NT-1
RDALPH=DALPHA=1.7453292E-2
NH=NDIV-1
NANGLE =NRAVE=(NALPHA-1)+1
ALPHA(1)=0.
SINA(1)=0.
CO 190 NA=2,NALPHA
ALPHA(NA)=ALPHA(NA-1)+RDALPH
SINA(NA)=SINFA(LPHA(NA))
190 COSNA(NA)=SINA(NA)-SINA(NA-1)
CO 210 NO=1,NTH
CO 210 NA=2,NALPHA
EXRSNQN,NA=RAD(NQ)/SINA(NA)
210 EXRSNRD(NQ,NA)=1./EEXRSNQN,NA)
ANGLE(1)=0.
ANGADD=RDALPH/RAVE
CO 220 NAVE=2,NANGLE
CO 220 NA=2,NALPHA
ENRQSN(NQ,NA)=RADQ(NA)/ENSNA(NA)
220 ENSNA(NAVE)=SINF(ANGLE(NAVE))
CO 230 NO=1,NTH
CO 230 NAVE=2,NANGLE
ENSNRD(NQ,NAVE)=RADQ(NQ)/ENSNA(NAVE)
230 ENSNRD(NQ,NAVE)=1./ENSRSNQN,NAVE)
CO 240 N=1,NTR
GBEMIS(N)=-1.911-(RAD(N+1)/RAD(N))**(1.0)+ARSIN(RAD(N+1)/RAD(N)))/3.1415926
TEMPRN(N)={TEMP(N)**4+5.6686E-12
RDELTA(N)=RAD(N)/DELT
CH(N)=RAD(N)-RAD(N+1)
241 C2TN=1.438/(TEMP(N)**4.)
ERASE ETA
CO 240 I=1,NW
ERASE AMIN,AMAX,OPT,SUM,DRK
CO 245 N=1,NTR
245 SUM=SUM+CRIN*PROP(N,I)
CK=2.*SUM
EXTPRN=1.
EXPKMN=1.
CO 650 N=1,NIA
CV=(WN(I+1)-WNA)*2.*C2TN(N)
STUDY OF RADIATION HEAT FLUX FROM HIGH PRESSURE AIR ARCS AT HIGH FREQUENCIES

```
EKDR(1)=DR(N)*PROP(N,1)
CRK=CRK+EKDR(1)
V=C2(T(N)+(2.*W(N)+W(N)+W(N+1))
IF (V<13.) 252, 252, 650
252 ETA(1)=.15399*DV *(V>.3)/(EXP(V)-1.)
255 IF (N=NT(N)) 256, 650, 730
256 ERASE SKCR
    CO 275 NA=2, NALPHA
    CO 270 NQ=1, N
    R(NQ)=EXKRNQ(NQ,NA)*/(SINF(ALPHA(NA)-ARSIN(RAD(N+1))
       /EXSNRQ(NQ,NA)))
    IF (N-1) 730, 265, 257
257 IF (NQ-1) 730, 270, 260
260 AKDR(NQ-1)=(R(NQ-1)-R(NQ))*PROP(NQ-1, 1)
    IF (NQ-1) 1270, 265, 730
265 AKDR(N=1)=R(1)*PROP(1, 1)
    EXKRNA=AKDR(N)
270 CONTINUE
    CO 275 NQ=1, N
275 SKDR(NA)=SKDR(NA)+AKDR(NQ)
280 SKDR(1)=DRK
    CO 305 NA=1, NALPHA
    IF (EKDR(NA)-1.) 296, 296, 300
295 FKKR(NA)=EXP(-1.206*EKDR(NA))
    GO TO 305
300 IF (EKDR(NA)-1.) 301, 301, 302
301 FKKR(NA)=EXP(-1.206*EKDR(NA)) */(1.0774-.09539*EKDR(NA)+
    1.05577*EKDR(NA))**2-4.2914*3*(EKDR(NA))**3+2.0826*4
    2(EKDR(NA))**4
    GO TO 305
302 FKKR(NA)=0.
305 CONTINUE
    ERASE EPSMN, EPSMX
    CO 306 NA=2, NALPHA
    EPSMN=EPSMN+FKKR(NA)*CSINA(NA)
310 EPSMX=EPSMX+FKKR(NA-1)*CSINA(NA)
    EOUT=1.-EXP(ASTEMIS(N)*PROP(N,1)*RAD(N))
    EIN=1.-EPSMN/EPSMX/2.
    WBB=ETA(N,1)*TEMP(N)
    WIN=WBB*EIN*RDELTA(N+1)
    WOUT=WBB*ECUT*RDELTA(N)
    WOUTMN=WOUT*EXTMNX
    WOUTMX=WOUT*EXTMX
    CO 340 NA=1, NALPHA
    IF (SKDR(NA)-1.) 320, 320, 325
320 FKKR(NA)=EXP(-1.206*SKCR(NA))
    GO TO 340
325 IF (SKDR(NA)-1.) 330, 330, 335
330 FKKR(NA)=EXP(-1.206*SKCR(NA))*/(1.0774-.09539*SKCR(NA)+
    1.05577*(SKCR(NA))**2-4.2914*3*(SKCR(NA))**3+2.0826*4
    2(KSKCR(NA))**4)
    GO TO 340
335 FKKR(NA)=0.
340 CONTINUE
    ERASE EXTMX, EXTMN
    CO 350 NA=2, NALPHA
```

STUDY OF RADIATION HEAT FLUX FROM HIGH PRESSURE AIR ARCS AT HIGH FRE09/11/64

350 EXTRMX=EXTRMX*FRKRNA-1)*CSINA(NA)
 ERASE TRYKDR
 NXTST=NT-N-1
 CD 600 NAVE=2,NANGLE
 ERASE RI
 ERASE NTOUCH
 CD 530 NQ=1,NT
 SIGMA=RADIN+1)*ENSNRQ(NQ,NAVE)
 IF (SIGMA<1.)1519,519,518
518 NTOUCH = NQ
 GO TO 530
519 9=ARSN(SIGMA)
 IF (NQ-NTEST)520,520,523
520 C=ANGLE(INAVE)=-3.1415926
 IF(D-1.5707963) 522,522,521
521 C=3.1415926-D
522 RI(NQ,2)=ENRQSN(NQ,NAVE)*SINF(D)
523 C=ANGLE(INAVE)+B
 IF(C-1.5707963) 525,525,524
524 C=3.1415926-C
525 RI(NQ,1)=ENRQSN(NQ,NAVE)*SINF(C)
530 CONTINUE
 NFAC=NTOUCH+1
 IF(NFAC-NTEST)545,545,565
545 CO 560 NQ=NFAC,NTEST
 AJ=NJ+1
 J=NT-NC
560 AKDR(NJ)=(RI(NQ,2)-RI(NQ+1,2))*PROP(J,1)
565 NJ=AJ+1
 J=AJ-NTOUCH
 AKDR(NJ)=(RI(INFAC,1)-RI(INFAC,2))*PROP(J,1)
 IF (NFAC-NTP)580,580,555
580 CO 590 NQ=NFAC,NTP
 AJ=AJ+1
 J=AJ-NC
590 AKDR(NJ)=(RI(NQ+1,1)-RI(NQ,1))*PROP(J,1)
595 NJM=AJ
700 TRYKCKR(INAVE)=TRYKCKR(INAVE+AKDR(NJ))
606 TRYKCKR(I)=CK-DRK
 PAL=1
 NAL=1
 CD 635 LAL=1,NDIV
 NAL=NAL+NRAVE
 TEMPL=TRYKDR(NAL)
 JAL=NAL-1
 CD 630 1=PAL,JAL
 IP1=I+1
 CD 630 12=IP1,NAL
 IF(TRYKDR(11)-TRYKCKR(11))630,630,627
627 TEMPS=TRYKCKR(11)
 TRYKCKR(11)=TRYKDR(12)
 TRYKCKR(12)=TEMPS
630 CONTINUE

119
STUDY OF RADIATION HEAT FLUX FROM HIGH PRESSURE AIR ARCS AT HIGH FRE09/11/64

SKDR(LAL)=TRYKDR(NAL)
[LAL=LAL*NDIV
SKDR(LAL)=TRYKDR(NAL)
MAL=MAL*NRAVE

635 TRYKDR(NAL)=TEMPL
CD 640 NA=1,1AL
IF (SKCR(NA)=1.1636,636,637
636 FKR(NA)=EXP(-1.206*SKCR(NA))
GO TC 640
637 IF (SKCR(NA)=16.1 638,638,639
638 FKR(NA)=(EXP(-1.206*SKCR(NA)))*1.0774-0.09539*SKCR(NA)+
1.05577*(SKCR(NA))*2-4.29143E-3*(SKCR(NA))*3+2.082602E-4+
2*(SKCR(NA))*4)
GO TC 640
635 FKR(NA)=0.
64C CONTINUE
ERASE ENTRMN,ENTRMX
CD 645 NA=2*NA
ENTRN=ENTRMX+FKR(NA)=DSINA(NA)

645 ENTRMN=ENTRMX+FKR(NA-1)*DSINA(NA)
WINMN=WIN*ENTRMN
WINMN=WIN*ENTRMX
AMIN=AMIN+WINMN+WOUTMN
AMAX=AMAX+WINMN+WOUTMN
CPT=OPT+WIN+WOUT

65C CONTINUE
WNA=WNI(1)
IF (IOPTRI)
660 CPTCORI=TEMPL*INTR*RDELTA*ETA*ETAINTR*1+(1-EXP(-1.9*EKCR(1)))*
1.9*EKCR(1))
C0MN(1)=C0TCA(1)*ENTRMN
C0M(1)=C0TCA(1)*ENTRMX
68C C0MIN(1)=AMIN+C0RMN(1)
C0MAX(1)=AMAX+C0RM(1)
70C C0PM(1)=OPT+C0PDM(1)
IF (IOPTRI)
703 CD 704 (=1, NW
ERASE Y
Y(1)=WN(1)
Y(2)=QMAX(1)
Y(3)=QMIN(1)
Y(4)=QCPT(1)

704 CALL RITE (662,Y,4)
CALL CLOSE (662)
705 WOT 10,1
WOT 10,8
WUT 5,7
CD 707 I=1,1TR
707 WOT 10,9, TEMPI, RHC(1), RAD(1)
WOT 10,1
WOT 10,4
CD 710 I=1, NW
71C WUT 10,5, WN(1), QMAX(1), QMIN(1), QOPT(1)
ERASE QSUMMN, QSUMMX, QOPTMN, QSUMRMN, QSUMRMX, QOPTNC
IF (IOPTRI)
1710,1712,171C
STUDY OF RADIATION HEAT FLUX FROM HIGH PRESSURE AIR ARCS AT HIGH FRE 09/11/64

1710 CO 711 I=1,NW
 SMCRMN=SMCRMN+CORMN(I)
 SMCRMX=SMCRMX+CORMX(I)
711 SMOPTC=SMOPTC+OPTCOR(I)
712 CO 715 I=1,NW
 CSUMMN=QSUMMN+QMIN(I)
 CSUMMX=QSUMMX+QMAX(I)
715 QOPTSM=QOPTSM+QOPT(I)
 WOT ITG,13,SMCRMX,SMCRMN,SMOPTC
 WOT ITG,6, CSUMMX, QSUMMN, QOPTSM
 ERASE ETASM
 CO 722 N=1,NTR
 CO 722 I=1,NW
722 ETASM(N)=ETA(N,1)+ETASM(N)
 WOT ITG,10
 CO 725 I=1,NTR
725 WOT ITG,11, TEMP(I),ETASM(I)
726 NCASE=NCASE-1
 IF (NCASE) 55,740,727
727 CONTINUE

H MZE 661,,32384
 CO TC 71
730 CALL ERROR (18HINDEX OUT OF LIMIT)
740 CONTINUE
H MZE 661,,32384
H MZE 662,,32384
 CALL EXIT
END(1,1,0,0,1,1,1,C,1,C,0,C,0,0)
APPENDIX C
CALCULATION OF ANNULUS RADII

C.1 ANALYSIS

If one assumes that an individual annulus is optically thin, then there exists a mean value J of total spectral radiance (watts/cm3-steradian) such that

$$4\pi J \left[\pi (r_j^2 - r_{j+1}^2) \right] = \int_{r_{j+1}}^{r_j} 2\pi r (4\pi J) \, dr$$

(C-1)

where Eq. (C-1) is written for a unit length of arc column. Further assuming that J is proportional to T^4 and knowing T as a function of r, Eq. (C-1) can be rewritten

$$T_j = \left\{ \frac{2}{r_j^2 - r_{j+1}^2} \int_{r_{j+1}}^{r_j} [T(r)]^4 \, r \, dr \right\}^{1/4}$$

(C-2)

For measured profiles, the function T(r) was approximated as a polynomial using a standard "least squares" curve fit computer program (Appendix D). Starting at the outer boundary of the arc column, successive values of r_{j+1} were determined such that T_j was a temperature at which absorption data were tabulated (multiples of 1000$^\circ$K).

Since r_{j+1} appears both explicitly and as an integration limit, the following computerized iteration scheme was used. The outside and inside radii of the jth annulus are r_j and r_{j+1} respectively and the radius at which $T = T_j$ is $r(T_j)$ (see sketch). The radii $r(T_j)$ and $r(T_{j+1})$ were chosen as trial values of r_{j+1} and the weighted average temperature computed from Eq. (C-2). Additional successive trial values of r_{j+1} were obtained by linear interpolation from the two preceding trials. Typically four trials were needed to match the weighted average temperature to the tabulated T_j within one degree Kelvin.
C.2 DESCRIPTION OF ANALYTIC TEMPERATURE PROFILE COMPUTER PROGRAM

A FORTRAN program called ANALYTIC TEMPERATURE PROFILE was written for the IBM 1620 Digital Computer and used to calculate the successive values of \(r_{j+1} \) satisfying Eq. (C.2). It requires as input data the constants of the polynomial describing the profile (see Appendix D) and a list of the \(T_j \).

Profiles derived from experimental data generally were incomplete. That is, the data extended neither to the centerline nor to the outer boundary. This program therefore automatically completed the profiles with parabolas which joined the curve fit polynomial smoothly and also satisfied the conditions of zero tem-

*From 10,000\(^\circ\)K up, increments of 1000\(^\circ\)K in \(T \); were used to make maximum use of available data. Below 10,000\(^\circ\)K increments were usually 2000\(^\circ\)K because in this temperature range the temperature gradient was generally very steep and the 1000\(^\circ\)K increment would result in annuli unnecessarily thin compared to the higher temperature ones.
temperature gradient at the centerline and a given outer boundary temperature. Next, a calculation of the values of \(r(T_j) \) was necessary. Since the curve fit polynomial was usually at least 3rd order the Newton-Raphson iteration method was used.

Arbitrary profiles of the form of Eq. 3.3 were complete without end parabolas and could be solved exactly for the \(r(T_j) \). A simplified version of the Analytic Temperature Profile program was used with these profiles. The statements in the program listing, Section C. 5, which are bracketed were deleted and four statements were added to compute the \(r(T_j) \).
C.3 DEFINITION OF SYMBOLS FOR COMPUTER PROGRAM

A(N) Constants associated with curve fit polynomial
B, B2 Constants associated with inner parabola
C, Cl Constants associated with interpolation of RLLIM
COEF Coefficient used in calculation of R(N) by Newton-Raphson Method
DELT Number of intervals for numerical integration
DRAD Radius increment
E, E1, E2 Constants associated with outer parabola
F(I) Function of radius \(F(I) = \left[T(R) \right]^4 \times R \)
FINTG \(\int FdR \)
FPOW After some calculation steps FPOW = T(R)
I Index for integration
UMAX Maximum value of I
K Index
L Index for computing R(N) and for computing \([RLLIM(L), TAVG(L)] \)
N Index for temperature
NCST Number of constants in curve fit polynomial
NORD Order of curve fit polynomial
NT Number of temperatures
PRNUM Profile number
R(N) Radius associated with Nth temperature
RAD Radius
RB Intermediate variable in computing $R(N)$
RD, RE Radii at which inner and outer parabolas, respectively, join the curve fit polynomial
RDIF Error in Newton-Raphson calculation of $R(N)$
RJ(N) Inside radius of annulus having a weighted average temperature $T(N)$
RPOWER Intermediate variable in computing $R(N)$
RLLIM(L) Lower limit radius for $TAVG(L)$ integration
RTOL Tolerance on Newton Raphson calculation of $R(N)$
RULIM Upper limit radius for $TAVG(L)$ integration
SUM1, SUM2, SUM3 Intermediate variables in $TAVG$ integration
T(N) N^{th} temperature
TAVG(L) Weighted average temperature
TD Temperature at $R = RD$
TDIF Difference between $TAVG(3)$ and $T(N)$
TDIFA Absolute value of TDIF
TDP Slope of temperature profile at $R = RD$
TE Slope of temperature at $R = RE$
TEP Slope of temperature profile at $R = RE$
TNR Temperature as used in Newton-Raphson calculation
TPNR Slope of temperature profile as used in Newton-Raphson calculation of $R(N)$
TTOL Tolerance on TDIF
C.4 BLOCK DIAGRAM

1. Read Special Data:
 RD, RE, NT, NCRD, PRNUM, DELT, IMAX, RTOL, TTOL

10. Read constants from Curve Fit

16. Read Temperatures

26. Compute: TD, TDP, TE, TEP

29. Compute coefficients for end parabolas

30. Print: Title, special data, TD, TDP, TE, TEP, and coefficients for parabolas

36. Compute radius R(N) associated with each T(N):
 1. T(N) ≤ TE: Compute R(N) directly from "E" parabola
 2. TE < T(N) < TD solve for R(N) by Newton-Raphson method
 3. TD ≤ T(N) compute R(N) directly from "B" parabola

100. Bφ ≤ T(N) No

101. Yes
 NT = N
 T(NT) = Bφ
 R(NT) = 0
 To 190
From after 101

190

N = 2
RULIM = 1, = R(1) = RJ(1)
L = 0

205

L = L + 1

RLLIM(L) = R(N)

214

\[
TAVG(L) = \left\{ \frac{1}{(RULIM)^2 - (RLLIM(L))^2} \right\}^{1/4}
\int_{RLLIM(L)}^{RULIM} \left[T(R) \right]^4 RdR
\]

NOTE: \(T(R) \) is given by the curve fit polynomial or by one of the end point parabolas, depending on \(R \)

On Switch 2 Off

228

Print L, RLLIM(L), TAVG

To 229
From 229

250

Yes

RLLIM(3) = 0

No

254

TAVG(3) < T(N)

Yes

No

258

TAVG(3) - T(N) ≤ TTOL

No

Yes

255

Set RJ(N) = 0
for current value of N and for all higher N through N = NT-1

260

TAVG(2) → TAVG(1)
RLLIM(2) → RLLIM(1)
TAVG(3) → TAVG(2)
RLLIM(3) → RLLIM(3)

To 240

270

Yes

RLLIM(3) ≤ R(N + 1)

No

272

RJ(N) = 0
N = N + 1

271

RJ(N) = RLLIM(3)

No

N < NT - 1

Yes

No

N = N + 1

To 280

To 205
From after 227

229

L = 1

L = 3

L = 2

230

RLLIM(2) = R(N + 1)

To 205

240

Interpolate RLLIM(3)

RLLIM(3) = \frac{T(N) - C0}{C1}

Where C0 and C1 are the constants of the straight line determined by the two previous values of [RLLIM(L), TAVC(L)]

241

RLLIM(3) = 0

To 205

To 250
From 255 or from after 271

280

\[RJ(NT) = 0 \]

282

Print \(N\), \(T(N)\), \(R(N)\), \(RJ(N)\), \(RJ(N - 1)\)
For \(N = 1\) through \(N = NT\)

Return to 1 for next case
C.5 PROGRAM LISTING

```fortran
&030 C  ANALYTIC TEMPERATURE PROFILE 22 MARCH 1964
&030 20 FORMAT(2F10.5,2X13,2X12,2X14)
&0376 DIMENSION T(24), R(24), A(7), RJ(24), RLL1M(3), TAVG(3), F(17)
&0376 22 FORMAT(F5.1)
&0398 23 FORMAT(F5.0,15,2F10.5)
&0436 24 FORMAT(E14.5)
&0458 151 FORMAT(8X22HARC RAD  PROFILE NUMBER ,14)
&0554 152 FORMAT(8X5HNORD=,12,3X3HRD=,F6.3,3X3HRE=,F6.3)
&0678 153 FORMAT(8X5HRTOL=,F8.6,3X5HTTOL=,F8.6)
&0776 275 FORMAT(9X49HIN  TEMP  RADIUS RI  RO)
&0906 281 FORMAT(7X13,3XF6.2,4XF7.4,3XF8.5,3XF8.5)
&0924 300 FORMAT(5X12,3XF8.5,3XF9.5)
&0940 530 FORMAT(5X8HTHAX=BO=,F11.5,3X3H2=,F11.5)
&0994 531 FORMAT(5X3HEO=,F11.5,3X3HE1=,F11.5,3X3HE2=,F11.5)
&0908 532 FORMAT(5X3HT0=,F9.5,3X4HTDP=,F10.5,3X3HTE=,F9.5,3X4HTEP=,F10.5)
&0458 1 READ 20, RD, RE, NT, NORD, PRNUM
&0530  NCST=NORD+1
&0578  N=1
&0614  10 READ 24, A(N)
&0662  N=N+1
&0710  IF(NCST-N) 15, 10, 10
&0778  15 N=1
&0814  16 READ 22, T(N)
&0862  N=N+1
&0910  IF(NT-N) 25, 16, 16
&0978  25 READ 23, DELT, IMAX, RTOL, TTOL
T0038 5025 L=1
T0074  RD=RD
T0110  26 RPW=1.
```

Note: Bracketed statements deleted for arbitrary profiles, Eq. 3.2.
THR=A(1)
TPHR=0.
COEF=0.
DO 27 K=2, MCST
COEF =COEF+1.
TPHR=TPHR+A(K)*RPOW*COEF
RPOW=RPOW*RD
27 THR=THR+RPOW*A(K)
IF(L=1) 1000, 28, 29
28 TD=THR
TDP=TPHR
RD=RE
L=2
GO TO 26
29 TE=THR
TE=TPHR
DO=TD-TDP*RD/2.
D2=TDP/2.*RD
E2=((TEP*(RE-1.))-(TE-T(1)))/(RE-1.)**2
E1=TEP-2.*E2*RE
E0=T(1)-E2-E1
30 PRINT 151, PRNUM
31 PRINT 152, NORD, RD, RE
32 PRINT 153, RTOL, TTOLE
33 IF(SENSE SWITCH 3) 36, 35
35 PRINT 530, DO, B2
PRINT 531, E0, E1, E2
PRINT 532, TD, TDP, TE, TEP
36 H=1
37 H=2
40 H=H+1
IF(TE-T(H)) 60, 45, 45
R(H)=E1/2./E2+SQRTF((E1/2./E2)**2+(T(H)-E0)/E2)
GO TO 40
60 R(N)=RE
61 IF(TD-T(N)) 100, 81, 62
62 TNR=A(1)-T(N)
TPNR=0.
RPOW=1.
COEF=0.
DO 63 K=2, NCST
COEF=COEF+1.
TPNR=TPNR+A(K)*RPOW*COEF
RPOW=RPOW*R(H)
63 TNR=TNR+RPOW*A(K)
RDIF=TNR/TPNR
R(N)=R(H)-RDIF
RDIF=SQRRTF(RDIF*RDIF)
70 IF(RDIF-RTOL) 90, 90, 62
81 R(N)=RD
II=II+1
GO TO 100
90 N=II+1
R(N)=R(N-1)
GO TO 61
100 IF(B0-T(N)) 101, 101, 110
101 NT=II
T(NT)=B0
R(N)=0.
GO TO 190
110 R(N)=SQRRTF((B0-T(N))/B2)
II=II+1
GO TO 100
190 DO 200 I=1, 17
200 F(L)=FL.
DO 110, N=1, NT
U00 R(N) = (I. - (T(N)-2.)/Q)*Q(1./P)
IF(RDIF-RTOL) 90, 90, 62
81 R(N)=RD
II=II+1
GO TO 100
190 DO 200 I=1, 17
200 F(L)=FL.
DO 110, N=1, NT
U00 R(N) = (I. - (T(N)-2.)/Q)*Q(1./P)
RJ(1)=R(1)
T3890 N=2
T3926 L=0
T3962 RULIM=RJ(N-1)
T4022 RLLIM(1)=R(N)
T4082 L=L+1
T4138 DRAD=(RULIM-RLLIM(L))/DELT
T4214 RAD=RLLIM(L)
T4274 DO 220 I=1, IMAX
T4286 IF(RAD-RD) 217, 217, 215
T4354 IF(RAD-RE) 216, 218, 218
T4422 FP0W=A(1)
T4458 RPOW=1.
T4494 DO 2161 K=2, NCST
T4506 RPOW=RPOW*RAD
T4554 FP0W=FP0W+RPOW*A(K)
T4674 F(1)=FP0W**4*RAD
T4758 GO TO 220
T4766 F(1)=((D0+B2*RAD**2)**0.5)*RAD
T4806 GO TO 220
T4894 F(1)=((E0+E1*RAD+E2*RAD**2)**0.5)*RAD
T5062 RAD =RAD+DRAD
T5144 SUM1=F(1)+F(IMAX)
T5218 SUM2=F(2)+F(4)+F(6)+F(8)+F(10)+F(12)+F(14)+F(16)
T5338 SUM3=0.
T5374 L=3
T5410 SUM3=SUM3+F(1)
T5482 L=I+2
T5530 IF(1-I)MAX) 226, 227, 227
T5598 FINTG=66666667*DRAD*(SUM1**2+SUM2**2+SUM3**2)
T5754 TAVG(L)=(FINTG/(RULIM**2-RLLIM(L)**2))*0.25
T5934 IF(SENSE SWITCH 2) 228, 229
T5954 PRINT 300,L, RLLIM(L), TAVG(L)
T6050 IF(L-2) 234, 240, 250

135
T6118 230 RLLIM(2)=R(N+1)
T6178 GO TO 205
T6186 240 C1=(TAVG(L-1)-TAVG(L))/(RLLIM(L-1)-RLLIM(L))
T6378 C0=TAVG(L-1)-C1*RLLIM(L-1)
T6498 RLLIM(3)=(T(N)-C0)/C1
T6582 IF(RLLIM(3)) 241, 205, 205
T6638 241 RLLIM(3)=0.
T6674 GO TO 205
T6682 250 TDIF=TAVG(L)-T(N)
T6778 253 IF(RLLIM(3)) 1000, 254, 258
T6834 254 IF(TDIF) 255, 258, 258
T6890 255 RJ(N)=0.
T6950 IF(NH=N-1) 280, 280, 256
T7030 256 N=N+1
T7078 GO TO 255
T7086 258 TDIFA=SQRIF(TDIF*TDIF)
T7146 IF(TDIFA-ITOL) 270, 270, 270
T7214 260 DO265 K=1,2
T7226 TAVG(K)=TAVG(K+1)
T7310 265 RLLIM(K)=RLLIM(K+1)
T7430 L=L-1
T7478 GO TO 240
T7486 270 IF(RLLIM(3)-N(N+1)) 272, 271, 271
T7578 271 RJ(N)=RLLIM(3)
T7638 IF(NH=N-1) 280, 280, 273
T7718 272 RJ(N)=0.
T7778 N=N+1
T7826 GO TO 270
T7834 273 N=N+1
T7882 GO TO 202
T7990 280 RJ(NH)=0.
T7950 PRINT 275
T7974 N=1

136
T8010 PRINT 281, N, T(N), R(N)
T8106 N=2
T8142 282 PRINT 281, N, T(N), R(N), RJ(N), RJ(N-1)
T8310 N=N+1
T8358 IF(NT-H) 1, 282, 282
T8426 1000 STOP
T8474 END

PROG SW 1 ON FOR SYMBOL TABLE, PUSH START
SW 1 OFF TO IGNORE SUBROUTINES, PUSH START

PROCESSING COMPLETE
APPENDIX D

CURVE FIT FOR TEMPERATURE PROFILE DATA

D.1 ARCRAD CURVE FIT PROGRAM DESCRIPTION

Reduction of temperature profile data to analytic form was accomplished by making use of a modification of a standard computer program by W. R. Greaves (Ref. 19) entitled POLYNOMIAL CURVE FITTING, NO CONSTRAINTS.

The following changes were made in Greaves' program.

1. Format statements were added to change from "No Format" FORTRAN to FORTRAN I.

2. The maximum order polynomial was reduced from 50 to 7.

3. Provision for weighting data was eliminated.

4. Control statements were rewritten to the form shown in the accompanying block diagram.

The ARCRAD CURVE FIT program fits a straight line and successively higher order curves to the input data on a "least squares" basis. For each order curve the polynomial constants and the standard error are printed. As the order of the fitted curve increases the standard error at first decreases, then levels off and either increases or oscillates. A curve which is the best compromise between minimum order and minimum standard error is selected as most representative of the data. The program automatically causes a card to be punched for each constant in the polynomial for use as input to the ANALYTIC TEMPERATURE PROFILE program. Finally, for the order selected, the value of the polynomial at each input data point is printed, along with the input data value and the difference.

The number of data points must be at least 2 greater than the order of the maximum order polynomial. The program can handle up to 50 sets of data and computes polynomials up to seventh order but these limits can easily be changed by appropriate changes in the DIMENSION statement.
D.2 SENSE SWITCH SETTINGS

Flexibility in program utilization is made possible by the Sense Switches. Switch 1 OFF causes automatic selection of the 3rd order polynomial. Switch 1 ON causes the computer to pause after printing the constants and the standard error for the preselected maximum order. The desired order polynomial can then be selected and inserted in the machine by on-line typewriter (ACCEPT statement).

Switch 2 ON eliminates automatic card punching of the polynomial constants.

D.3 ARCRAD CURVE FIT DEFINITION SYMBOLS

AM (I, J) Matrix of coefficients of normal equations
DIF Difference between Y(I) and YFLEX(I)
LAST Highest order polynomial to be fitted
NDATA Number of data points
PRNUM Serial number of temperature profile

\[
\begin{align*}
\text{SUMX}(J) & = \sum_{i=1}^{N} (X_i)^{J-1} \\
\text{SUMY}(J) & = \sum_{i=1}^{N} (Y_i)(X_i)^{J-1}
\end{align*}
\]

S1 Same as YFLEX(I)

\[
S2 = \sqrt{\frac{N}{NDATA-NORD-1} \sum_{i=1}^{N} (Y_i - YFLEX_i)^2}
\]

S3 Same as DIF

X(I) \(i^{th}\) value of independent variable (radius)

Y(I) \(i^{th}\) value of dependent variable (temperature)

YFLEX(I) Value of the polynomial at X(I)
D.4 BLOCK DIAGRAM

2001 Read
LAST, NDATA, PRNUM

2020 Read input data

2070 Preliminary calculations for least squares curve fit

2093 Calculate least squares curve fit

NORD = 1
from 2093

Which time through
the program?

first

2163
Print: NORD,
Sigma, Curve
constants

NORD = LAST

No

Yes

2165

2166
Switch 1
Off
On

Pause to allow
entry of new value
of LAST via on-
line typewriter

To 2070

2167
Preliminary least
squares calculations

2171
NORD = NORD + 1

2161
NORD = Last

No

Yes

2168
Print input data,
corresponding
values on fitted
curve and differ-
ences, for
each value of the
independent
variable

2201 Switch 2
Off
On

Punch
curve
constants

2202

To 2093

Return to 2001 for next case
AEDC-TR-65-11

D.5 PROGRAM LISTING

08300 C ARCRAD CURVE FIT 10 MARCH 1964
08300 DIMENSION X(52), Y(52), AM(9,9), SUMX(15), SUMY(17)
08300

08300 2501 FORMAT(12,2X13,2X14)
08300 2502 FORMAT(F6.2,2XE14.7)
08300 2503 FORMAT()
08300 2504 FORMAT(5X5HNORD=,12,3X6HSIGMA=,F7.4)
08300 2505 FORMAT(5X12,3XF11.5)
08300 2506 FORMAT(8X11HCASE NUMBER=,14,3X6HNDDATA=,13)
08300 2507 FORMAT(5XF7.4,3XF6.2,3XF8.4,3XF7.4)
08300 2508 FORMAT(5X47HSW1 OFF LAST=3, SW1 ON ACCEPT, LAST, PUSH START)
08300 2509 FORMAT(7X34HX(I) Y(I) YFLEX(I) DIF)
08300 2510 FORMAT(E14.5)
08300

09000 2001 READ 2501, LAST, NDATA, PRNUM
09000 PRINT 2506, PRNUM, NDATA
09000 NRPT=0
09000 1=0
09000 2020 1=1+1
09000 2030 READ 2502, X(I), Y(I)
09000 2029 IF(1-NDATA) 2029, 2070, 2070
09000 2070 SUMX(1)=0.
09000 2074 SUMX(2)=0.
09000 2078 SUMX(3)=0.
09000 2082 SUMY(1)=0.
SUMY(2) = 0.

DO 2090 I = 1, NDATA

SUMX(1) = SUMX(1) + 1;

SUMX(2) = SUMX(2) + X(I)

SUMX(3) = SUMX(3) + X(I) * X(I)

SUMY(1) = SUMY(1) + Y(I)

2090 SUMY(2) = SUMY(2) + X(I) * Y(I)

NORD = 1

DO 2093 L = NORD + 1

DO 2094 J = 1, L

IK = J - 1 + 1

2100 AN(I, J) = SUMX(I)

2101 AN(I, KK) = SUMY(I)

2102 DO 2150 J = KK + 1, KK

2120 AM(I, J) = AM(I, J) - AM(I, J) * C

2130 DO 2150_J = 1, HORD

2150 S1 = S1 + AM(I, KK) * X(J) ** |
T1700 2168 S2=S2+(S1-Y(J))*(S1-Y(J))
T1880 B=NDATA-L
T1928 S2=(S2/B)**1.5
T1976 IF(NRPT) 2163, 2163, 2161
T2032 2161 IF(NORD-LAST) 2171, 2167, 2167
T2100 2163 PRINT 2503
T2124 PRINT 2504, NORD, S2
T2160 I=0
T2184 2164 I=I+1
T2220 J=I-1
T2256 PRINT 2505, J, AM(I,KK)
T2352 IF(I-L) 2164, 2165, 2165
T2420 2165 IF(NORD-LAST) 2171, 2166, 2166
T2488 2166 IF(SENSE SWITCH 1) 2173, 2167
T2508 2167 PRINT 2504, NORD, S2
T2544 PRINT 2509
T2568 IF(SENSE SWITCH 2) 2203, 2201
T2588 2201 I=0
T2612 2202 I=I+1
T2648 PUNCH 2510, AM(I, KK)
T2732 IF(I-L) 2202, 2203, 2203
T2800 2203 I=0
T2824 2204 I=I+1
T2860 S1=0.
T2884 S1= AM(I, KK)
T2956 DO 2168 J=1, NORD
T2968 2168 S1=S1+AM(J+1, KK)*X(I)**J
T3148 S3=Y(I)-S1
T3208 PRINT 2507, X(I), Y(I), S1, S3
T3316 IF(1-NDATA) 2204, 2001, 2001
T3384 2171 NORD=NORD+1
T3420 J=2*NORD
T3456 SUMX(J)=0.
T3504 \quad \text{SUMX}(J+1)=0.

T3552 \quad \text{SUMY}((NORD+1)=0.

T3600 \quad \text{DO 2172 I=1, HDATA}

T3612 \quad \text{SUMX}(J)=\text{SUMX}(J)+X(I)^{(J-1)}

T3768 \quad \text{SUMX}(J+1)=\text{SUMX}(J+1)+X(I)^{J}

T3888 \quad \text{2172 SUMY}(NORD+1)=\text{SUMY}(NORD+1)+Y(I)*X(I)^{NORD}

T4080 \quad \text{GO TO 2093}

T4088 \quad \text{2173 NRPT}=NRPT+1

T4124 \quad \text{PRINT 2508}

T4148 \quad \text{PAUSE}

T4160 \quad \text{IF (SENSE SWITCH 1) 2175, 2176}

T4180 \quad \text{2175 ACCEPT 2501, LAST}

T4204 \quad \text{GO TO 2070}

T4212 \quad \text{2176 LAST=3}

T4236 \quad \text{GO TO 2070}

T4244 \quad \text{END}

\text{PROG SW 1 ON FOR SYMBOL TABLE, PUSH START}

\text{SW 1 OFF TO IGNORE SUBROUTINES, PUSH START}

\text{PROCESSING COMPLETE}
APPENDIX E
MEASUREMENT OF TEMPERATURE PROFILES

Conditions required for application of the intensity ratio technique are: (1) steady symmetric source, (2) Boltzmann distribution of the atomic energy levels (i.e., local thermal equilibrium of the plasma particles) and (3) optically thin plasma at the frequency of the emission line. The first condition was checked photographically with a Fastax camera operating at 3000 to 5000 frames per second. In this speed range, which was of the same order as the spectrograph exposures of 1/1000 sec, the source appeared steady and uniform. The existence of local thermal equilibrium is discussed in Section 2.1. Optical thinness is one of the factors governing the choice of suitable lines. At one atmosphere several lines can be used, but at 2 atmospheres only the oxygen pair 7774 A - 7947 A is suitable and it is near marginal. Relative intensity at a given wavelength is related to transition probability A, atom number density N and photon energy $h\nu$ by

$$\frac{I_{\lambda 1}}{I_{\lambda 2}} = \frac{A_1 N_1 (h\nu)_1}{A_2 N_2 (h\nu)_2}$$ \hspace{1cm} (E-1)

For spectral lines of the same species, assuming a Boltzmann distribution of energy states

$$\frac{I_{\lambda 1}}{I_{\lambda 2}} = \frac{g_1 A_1 \lambda_1 e^{-\frac{(E_1 - E_2)}{kT}}}{g_2 A_2 \lambda_2}$$ \hspace{1cm} (E-2)

where g is the statistical weight of an energy state and E is the excitation energy of the upper state energy level. Solving for T

$$T = \frac{(E_1 - E_2) (1/k)}{\ln(g_1 A_1 \nu_1 / g_2 A_2 \nu_2) - \ln(I_{\lambda 2}/I_{\lambda 1})}$$ \hspace{1cm} (E-3)
The excitation energies and transition probabilities are known, so spectrographic measurement of the intensity ratios establishes an "average" temperature of the column. To determine the temperature distribution the true intensity distribution must be calculated from the "average" observed intensity using Abel's integral equation

\[I(x) = 2 \int_0^\delta \frac{n(r) \, r \, dx}{\sqrt{r^2 - x^2}} \]

(E-4)

where \(I(x) \) is observed intensity over radius \(x \) and \(n(r) \) is the number density of emitters in particular radial bands of radius \(r \). This function has been tabulated by Pearce (Ref. 20).

Temperature level can be established because the spectral line intensity goes through a maximum at a unique temperature for a given pressure. This maximum, the so called peaking function, results from the counter-balancing effects of increased excitation of the upper states, which increases the number of emitters per unit volume, and increased ionization which reduces the number of emitters per unit volume. The technique has been described in detail by Sadjian (Ref. 21). For this study the oxygen atom pair, \(\lambda = 7947 \, \text{Å} \) and 7774 \, \text{Å} \) were used as well as the nitrogen atom/ion pair, \(\lambda = 4137 \, \text{Å} \) and 3995 \, \text{Å} \).
STUDY OF RADIATION HEAT FLUX FROM HIGH PRESSURE AIR ARCS

This document has been approved for public release and its distribution is unlimited.

A computational model has been developed and applied for calculating radiant heat flux from an electric arc using real gas properties and taking into account both self absorption and space varying temperature. The model requires knowledge of the temperature profile as an input. Temperature profiles were measured spectrographically using an air arc at one and 2.4 atmospheres. These measured profiles plus some simple analytic ones which satisfied boundary conditions were used to calculate radiant heat flux at pressures from 1 to 300 atmospheres. The experimental program also included measurements of radiant flux density at 2.2 and 5.7 atmospheres for comparison with calculations based on the measured profiles. Estimates were made of radiation losses in the AEDC 20-megawatt arc air heater now under development.
Heat Flux
Radiant Heat Flux
Air Arcs