COMPARISONS OF EXPERIMENTAL AND
THEORETICAL HEAT TRANSFER TO A
YAWED SPHERE-CONE MODEL AT
SUPersonic SPEEDS

6 DECEMBER 1963

UNITED STATES NAVAL ORDNANCE LABORATORY, WHITE OAK, MARYLAND
Enclosure is forwarded for distribution subject to limitations checked below. Request AD number be inserted in space above; one copy of this letter be returned to originating activity if shown below; and two copies be sent to Chief, Bureau of Naval Weapons.

Qualified requesters may obtain copies of this report direct from DDC. U.S. Military Agencies may obtain copies of this report direct from DDC. Other qualified DDC users should request through the Chief, Bureau of Naval Weapons, Washington 25, D.C. All distribution of this report is controlled. Qualified DDC users should request through the Chief, Bureau of Naval Weapons, Washington 25, D.C.
COMPARISONS OF EXPERIMENTAL AND THEORETICAL HEAT TRANSFER TO A YAWED SPHERE-CONE MODEL AT SUPersonic SPEEDS

by
Lionel Pasiuk

ABSTRACT: Theoretical laminar heat transfer rates to a sphere-cone model at angles of yaw up to 180° are compared with wind tunnel data measured at Mach numbers of 3.2 and 4.8. Two methods of heat transfer prediction have been chosen—the methods of Beckwith and Vaglio-Laurin. These require that the inviscid streamline pattern on the surface of the yawed sphere-cone model be known. These streamlines have been calculated from measured surface pressure distributions. The theory of Beckwith agrees reasonably well with the experimental data.

PUBLISHED OCTOBER 1964

U. S. NAVAL ORDNANCE LABORATORY
WHITE OAK, MARYLAND
Comparisons of the Experimental and Theoretical Heat Transfer to a Yawed Sphere-Cone Model at Supersonic Speeds

This report contains the results of a project undertaken at NOL to obtain a more complete understanding of the heat transfer to blunt bodies at angles of yaw. Theoretical calculations of the compressible laminar heat transfer rates to a yawed sphere-cone model have been made, and the results are compared with experimental measurements.

The author is indebted to Dr. E. L. Harris for his solution of the streamline problem and also for his helpful comments and recommendations in the preparation of the heat transfer calculations. He also wishes to acknowledge the efforts of J. Lichter and J. R. Powers for writing the program used for the streamline and heat transfer calculations.

This work was sponsored by the Bureau of Naval Weapons under Task No. RMGA-81-034/212-1/F009-10-01.

R. E. ODENING
Captain, USN
Commander

K. R. ENKEMHUS
By direction
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CALCULATIONS</td>
<td>2</td>
</tr>
<tr>
<td>Streamlines</td>
<td>2</td>
</tr>
<tr>
<td>Heat Transfer</td>
<td>4</td>
</tr>
<tr>
<td>RESULTS</td>
<td>6</td>
</tr>
<tr>
<td>Streamlines</td>
<td>6</td>
</tr>
<tr>
<td>Heat Transfer</td>
<td>7</td>
</tr>
<tr>
<td>Cross Flow</td>
<td>8</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>10</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>11</td>
</tr>
</tbody>
</table>
ILLUSTRATIONS

Figure 1 The Coordinate System of the Model and Streamlines

Figure 2 Calculated Streamline Pattern on the Conical Section of the Sphere-Cone Model

Figure 3 Comparison Between the Calculated and Experimental Heat Transfer Versus S/R at α=0°

Figure 4 Comparison Between the Calculated and Experimental Heat Transfer Versus S/R at α=6°, θ=0°

Figure 5 Comparison Between the Calculated and Experimental Heat Transfer Versus S/R at α=18°, θ=0°

Figure 6 Comparison Between the Calculated and Experimental Heat Transfer Versus S/R at α=6°, θ=45°

Figure 7 Comparison Between the Calculated and Experimental Heat Transfer Versus S/R at α=18°, θ=45°

Figure 8 Comparison Between the Calculated and Experimental Heat Transfer Versus θ at α=6°, S/R=1.018

Figure 9 Comparison Between the Calculated and Experimental Heat Transfer Versus θ at α=18°, S/R=1.018

Figure 10 Comparison Between the Calculated and Experimental Heat Transfer Versus θ at α=6°, S/R=1.516

Figure 11 Comparison Between the Calculated and Experimental Heat Transfer Versus θ at α=18°, S/R=1.516

Figure 12 The Maximum Cross Flow to Streamwise Velocity Ratio Along Two Given Streamlines at α=6° and α=18°

Figure 13 Comparison Between the Calculated and Experimental Heat Transfer Versus θ
SYMBOLS

\(a_* \) speed of sound at M-1
\(C_p \) specific heat at constant pressure
\(C_v \) specific heat at constant volume
\(H \) stagnation enthalpy
\(h \) static enthalpy
\(\overline{H} \) heat transfer coefficient, \(\frac{q_w}{T_{aw} - T_w} \)
\(k \) thermal conductivity
\(M \) Mach number
\(\Delta n \) distance between streamlines
\(p \) static pressure
\(Pr \) Prandtl number
\(q \) heat transfer rate per unit area
\(R \) model base radius
\(R_s \) radius of spherical section of the model
\(S \) distance along a meridian on the surface of the model measured from the point where the axis of symmetry intersects the surface of the spherical nose
\(S_c \) value of S to the sphere-cone junction
\(T \) temperature
\(u \) velocity in the streamwise direction
\(v \) cross flow velocity
\(w \) defined by equation (3)
\(x, y, z \) coordinates of orthogonal streamline coordinate system
\(\alpha \) angle of yaw
\(\alpha_c \) cone half angle
\(\beta \) similarity parameter (Eq. (7))

\(\gamma \) specific heat ratio, \(C_p/C_v \)

\(n \) parameter in equation (1b)

\(\theta_w' \) enthalpy gradient parameter which is a function of \(\beta \) and \(T_w \) and is tabulated in reference (8)

\(\theta_w', \beta=1 \) value of the enthalpy gradient parameter when \(\beta=1 \)

\(\mu \) viscosity coefficient

\(\xi \) defined in equation (1a)

\(\rho \) density

\(\tau \) distance along a streamline measured from the aero-
dynamic stagnation point

\(\psi \) roll angle, measured from the most windward streamline

Subscripts

\(aw \) adiabatic wall condition

\(c \) at the sphere-cone junction

\(e \) conditions external to the boundary layer

\(o \) stagnation value

\(r \) some reference condition

\(sp \) stagnation point condition

\(w \) conditions at the wall

\(\infty \) free stream conditions
INTRODUCTION

During atmospheric flight, high speed missiles may fly at angles of yaw. Since the aerodynamic heat transfer is an important factor, it is necessary to know the effects of yaw on the heat transfer rates. These effects may be determined by experimental or theoretical means. The purpose of this report is to compare the results of calculated and measured values of the laminar heat transfer distribution on a yawed sphere-cone model.

The experimental data used for the present comparison were obtained from measurements made at the U. S. Naval Ordnance Laboratory. Measurements were made at Mach numbers of 3.2 and 4.8, at angles of yaw of 0°, 60°, and 180°. The results appear in references (1) and (2).

Two theoretical solutions have been used for comparison with the experimental data. They have been developed by Beckwith (ref. (3)) and Vaglio-Laurin (ref. (4)). Essentially, Beckwith has demonstrated that for small but finite cross flows in the boundary layer the continuity equation, the streamwise momentum equation, and the energy equation are independent of the cross-flow velocity component when these are written in the inviscid streamline coordinate system. These equations are similar to the usual boundary layer equations for an axisymmetric body. Therefore, once the streamlines external to the boundary layer are known, any method applicable to a body of revolution can be used to calculate the heat transfer and skin friction over an axisymmetric body at yaw. Vaglio-Laurin used the same considerations as Beckwith except that he made two assumptions which simplified the calculation of the heat transfer. First, he assumed a cold wall and used Lees' argument of reference (5) to neglect the pressure gradient term in the boundary layer equation. Second, he took the Mach number external to the boundary layer to be small enough so that the recovery temperature could be approximated by the stagnation temperature.

Now it is stated above that the inviscid streamlines are needed in order to calculate the heat transfer. These streamlines were found using a method devised by Harris (ref. (6)). This method uses the static pressure distributions on the model's surface as input data in the solution of four differential equations which describe the inviscid flow on the surface of the yawed model.

Presented in this report are the results of the streamline calculations, the heat transfer calculations, and the comparison between the calculated and experimental heat transfer distributions.
CALCULATIONS

Streamlines

In calculating the aerodynamic heat transfer rates to the yawed sphere-cone model, one first determines the inviscid streamline pattern on the surface of the model and then calculates the heat transfer along each streamline. The orthogonal streamline coordinate system is shown in figure 1. It is generated so that the x axis is the inviscid streamline velocity vector projected on a plane tangent to the body's surface. The y axis lies in the tangent plane. The quantity ξ is the distance measured along a streamline from the aerodynamic stagnation point.

The inviscid streamline pattern is found by the numerical solution of four differential equations derived by Harris (ref. (6)). For the spherical section of the model these are:

$$\frac{dS}{d\xi} = 5$$ \hspace{2cm} (1a)

$$\frac{d\eta}{d\xi} = \frac{\eta}{(RS \sin ES)^2}$$ \hspace{2cm} (1b)

$$\frac{d\xi}{d\xi} = \frac{\eta \cos \frac{S}{RS}}{(RS \sin ES)^3} - \frac{1}{\rho e \mu e^2} \left[\frac{\partial p}{\partial \xi} - \eta \left(\frac{\partial p}{\partial S} + \frac{\eta}{(RS \sin ES)^2} \frac{\partial \eta}{\partial \eta} \right) \right]$$ \hspace{2cm} (1c)

$$\frac{d\eta}{d\eta} = -\frac{\eta}{\rho e \mu e^2} \frac{\partial p}{\partial \eta} - \eta \left(\frac{\partial p}{\partial S} + \frac{\eta}{(RS \sin ES)^2} \frac{\partial \eta}{\partial \eta} \right)$$ \hspace{2cm} (1d)

On the surface of the cone the equations are:

$$\frac{dS}{d\eta} = 5$$ \hspace{2cm} (2a)
\[
\frac{d\eta}{d\tau} = - \frac{1}{\rho_e u_e} \left[\frac{\partial p}{\partial \tau} - \eta \left(\frac{\partial p}{\partial S} + \frac{n}{w} \frac{\partial p}{\partial \tau} \right) \right]
\]

where

\[
w = (S - S_C) \sin \alpha_C + R_S \cos \alpha_C
\]

Equations (1) and (2) are derived from the inviscid momentum equations. For a given streamline, the four dependent variables \(S, \), \(\psi, \), \(\xi, \) and \(\eta \) are obtained as a function of \(\tau \) from the numerical solution of equations (1) and (2) on the IBM 7090 computer. The computer program used is described in reference (7).

As can be seen in equations (1) and (2), the values for \(\partial p/\partial S \) and \(\partial p/\partial \xi \) must be known. These are found by differentiating curve fits to the experimental pressure data found in references (1) and (2). Other flow properties are calculated from this static pressure data assuming an isentropic expansion of the flow from the aerodynamic stagnation point.

The calculation for each streamline is started at some point on a small initial circle, the center of which is at the aerodynamic stagnation point (see fig. 1). It is assumed that the streamline flow is radial from the stagnation point to the initial circle. Each streamline is defined by the angle the streamline makes with the most windward streamline at the stagnation point.
Heat Transfer

The laminar heat transfer rates are calculated from the theories of Beckwith (ref. (3)) and Vaglio-Laurin (ref. (4)). The equation for the heat transfer distribution given by Beckwith is

\[
\frac{\bar{h}}{h_r} = \left[\frac{\rho_e u_e}{P_e} \right] \frac{\beta_r}{\beta} \frac{\partial u_e}{\partial r} \frac{1}{(\partial u_e/\partial r)_r} \left(\frac{\theta_w'}{\theta_w, \beta=1} \right)^{\frac{\beta}{\beta_w, \beta=1}} \left(\frac{\theta_w}{\theta_w'} \right) r
\]

where \(\bar{h} \) is the heat transfer coefficient. Because \(C_p \) varies only about 0.3 percent for the temperature range of the experimental data, it is taken as a constant in equation (4). The reference point, \(r \), of the body is taken to be the stagnation point, \(s_p \). Since it is assumed that the flow is adiabatic along the external streamlines, \(H_e \) is also constant and equation (4) becomes

\[
\frac{\bar{h}}{h_{s_p}} = \left[\frac{\rho_e u_e}{P_e s_p} \right] \frac{\beta_{s_p}}{\beta} \frac{1}{(\partial u_e/\partial r)_{s_p}} \left(\frac{\theta_w'}{\theta_w, \beta=1} \right)^{\frac{\beta}{\beta_w, \beta=1}} \left(\frac{\theta_w}{\theta_w'} \right)_{s_p}
\]

The terms in this equation are as follows:

\[
T_{aw} = T_e + Pr \frac{1}{2} (T_o - T_e)
\]

The equation for \(\theta \) is

\[
\beta = \frac{2 \frac{\partial u_e}{\partial \tau}}{\frac{\rho_e u_e}{P_e s_p} T_o (\Delta n)^2} \int_0^\tau \frac{\rho_e}{P_s} u_e (\Delta n)^2 \, d\tau
\]

At the aerodynamic stagnation point, \(\beta_{s_p} = 0.5 \). The velocity and velocity gradient are calculated from the inviscid momentum equation in the streamline direction, and the resulting equations are

\[
\frac{\partial u_e}{\partial \tau} = - \frac{1}{\rho_e u_e} \frac{\partial \rho_e}{\partial \tau}
\]
and

\[u_e = a_s \left\{ \frac{\gamma + 1}{\gamma - 1} \left[1 - \left(\frac{P_{e_{sp}}}{P_{sp}} \right)^{\frac{\gamma - 1}{\gamma}} \right] \right\}^{\frac{1}{2}} \]

(9)

At the aerodynamic stagnation point, equation (8) is indeterminate, and the expression for the velocity gradient which is obtained from modified Newtonian flow is

\[\left(\frac{du_e}{d\tau} \right)_{sp} = \frac{a_s}{R_s} \left(\frac{1 + \nu}{\nu} \right) \left[1 - \frac{P_{e_{sp}}}{P_{sp}} \right]^{\frac{1}{2}} \]

(10)

The parameter \(\theta_w' / \theta_{w1} \) is a function of \(\beta \) and \(h_w/H_e \) and can be found in reference (8). Finally, the term \(\Delta n \) describes the spreading of the streamlines, and on the spherical section of the body is taken as

\[\Delta n = R_s \sin^{1/2} \left(\frac{1}{R_s} \theta_{w1} \right) \]

(11)

On the conical section of the body, \(\Delta n \) at a given point on a given streamline may be found from the numerical solution to equations (2a) to (2d). The value of \(\Delta n \) was approximated by the normal distance from the given point to an adjacent streamline.

As suggested by Beckwith, the absolute level of heating was established by using the heat transfer equation for a three-dimensional stagnation point derived by Reshotko (ref. (9)). For \(C_p = \) constant the equation is

\[\bar{h}_{sp} = k_w \theta_w' Pr^{0.4} \left[\frac{\rho_{w} du_e}{\mu_{w} d\tau} \right]_{sp} \]

(12)

The equation for the laminar compressible heat transfer rates as given by Vaglio-Laurin in reference (4) is

\[q_w = 0.47 Pr^{-2/3} (H_{0,e} - H_w) \frac{\rho e u_e u_e \Delta n}{[2 \int_{0}^{\Delta n} e u_e (\Delta n)^2 d\tau]^{1/2}} \]

(13)
At the stagnation point, the limiting value of equation (13) is

\[(q_w)_{sp} = 0.47Pr^{-2/3}(H_0,e - H_w)_{sp}\left(2\rho_{sp}\mu_{sp}(du_e/d\tau)_{sp}\right)^{3/2}\] (14)

For \(C_p\) = constant,

\[\frac{h}{h_{sp}} = \frac{(T_o - T_w)}{(T_{aw} - T_w)} \left(\frac{\rho_e}{\rho_{sp}}\frac{\mu_e}{\mu_{sp}}\frac{u_e\Delta n}{2(du_e/d\tau)_{sp}}\right)^{3/2}\] (15)

The viscosity ratio from Sutherland's viscosity law is

\[\frac{\mu_e}{\mu_{sp}} = \left(\frac{T_e}{T_o}\right)^{3/2}\left(\frac{T_o + 110.4}{T_e + 110.4}\right)\] (16)

where the temperatures are in degrees Kelvin.

Equations (5) and (15) were solved on the IBM 7090 digital computer.

RESULTS

Streamlines

Calculations of the streamlines and heat transfer have been made for the following six conditions:

<table>
<thead>
<tr>
<th>M</th>
<th>(\alpha)</th>
<th>(\rho_o)</th>
<th>(T_o)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.2</td>
<td>0°</td>
<td>1210 mm Hg</td>
</tr>
<tr>
<td>2</td>
<td>3.2</td>
<td>6°</td>
<td>980 mm Hg</td>
</tr>
<tr>
<td>3</td>
<td>3.2</td>
<td>18°</td>
<td>980 mm Hg</td>
</tr>
<tr>
<td>4</td>
<td>4.8</td>
<td>0°</td>
<td>2220 mm Hg</td>
</tr>
<tr>
<td>5</td>
<td>4.8</td>
<td>6°</td>
<td>2090 mm Hg</td>
</tr>
<tr>
<td>6</td>
<td>4.8</td>
<td>18°</td>
<td>2090 mm Hg</td>
</tr>
</tbody>
</table>

These are the conditions for which the experimental heat transfer data are available \((T_w/T_o\) varies from 0.7 to 0.8). The experimental pressure and heat transfer data of conditions 1, 4, and 5 were taken from reference (1), whereas the experimental pressure and heat transfer data of conditions 2, 3, and 6 were taken from reference (2).
Each streamline calculation was started on an initial circle with \(\gamma/R = 0.205 \). From the initial circle to the sphere-cone junction, the streamline follows a great circle path.

The inviscid streamline pattern over the conical section of the sphere-cone model is plotted on figures 2a, b, c, and d for \(\alpha = 6^\circ \) and \(18^\circ \), and \(M = 3.2 \) and 4.8. Pressure gradients along the surface and normal to the streamline velocity vector cause the streamlines to curve toward the low pressures. There appears to be very little difference in the pattern of the external streamlines between the \(M = 3.23 \) and \(M = 4.83 \) at the same yaw angle. The curvature of the streamlines at \(\alpha = 18^\circ \) is somewhat greater than at \(\alpha = 6^\circ \).

Heat Transfer

The theoretical stagnation point heat transfer coefficient, \(h_{sp} \), has been calculated from equations (12) and (14), and compared with corresponding experimental values in Table 2 for the six conditions listed in Table 1. The figures in parentheses in Table 2 give the deviations from the experimental value.

Table 2

<table>
<thead>
<tr>
<th></th>
<th>Eq. 12</th>
<th>Eq. 14</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.0257 (-13%)</td>
<td>.0236 (-20%)</td>
<td>.0295</td>
</tr>
<tr>
<td>2</td>
<td>.0228 (-10%)</td>
<td>.0209 (-18%)</td>
<td>.0254</td>
</tr>
<tr>
<td>3</td>
<td>.0228 (-13%)</td>
<td>.0209 (-20%)</td>
<td>.0263</td>
</tr>
<tr>
<td>4</td>
<td>.0176 (+17%)</td>
<td>.0161 (+7%)</td>
<td>.0151</td>
</tr>
<tr>
<td>5</td>
<td>.0170</td>
<td>.0156</td>
<td>not available</td>
</tr>
<tr>
<td>6</td>
<td>.0163 (-17%)</td>
<td>.0150 (-23%)</td>
<td>.0196</td>
</tr>
</tbody>
</table>

In general, the predictions of equations (12) and (14) are somewhat lower than the experimental values. In the presentation of the data in figures 3 through 11, the experimental stagnation point heat transfer coefficient was used to normalize the experimental data.

Figures 3 through 11 show the comparison between the calculated and experimental heat transfer data. In general, the heat transfer distributions calculated using the theory of Beckwith (ref. (3)) are in good agreement with the experimental ones. In the region of the stagnation point (0 < \(S/R < 0.3 \)), there are some variations of the experimental heat transfer from the
theory. For example, on figures 3 through 4 in the region $0.3^{<}S^{<}R$, the experimental heat transfer data are from 0 percent to 20 percent lower than predicted by Beckwith's theory. The experimental heat transfer distributions on the conical section of the body for $\alpha=0^{\circ}$ and on the most windward streamline ($\beta=0^{\circ}$) of the angle of yaw data are in good agreement with the theory of Beckwith.

Figures 6 and 7 are plots of heat transfer versus S/R for $\beta=45^{\circ}$. The experimental heat transfer data are from 0 percent to 20 percent lower than the theory of Beckwith on the spherical section of the model, and on the conical section the experimental data are from 20 percent higher to 50 percent lower than the Beckwith theory.

Heat transfer versus β for constant values of $S/R=1.018$ and 1.516 are shown on figures 8 through 11. Figures 8a, 9a, and 9b show good agreement between the experimental heat transfer rates and those given by Beckwith’s theory. The experimental heat transfer rates are 13 to 20 percent lower in figure 8b, 20 percent higher in figure 10a, 20 to 35 percent lower in 9b, up to 30 percent higher in figure 11a and up to 20 percent higher in figure 11b than Beckwith’s theory.

As can be seen in figures 3 through 11, the heat transfer coefficients predicted by Vaglio-Laurin are as much as 70 percent higher than Beckwith’s values. It should be stated that the experimental data were not obtained under the conditions of a cold wall and low Mach numbers outside the boundary layer as required in his theory. The experimental data were measured with values of T_w/T_0 between 0.7 and 0.8, and the local Mach numbers reached values as high as 3.0. In the equation which Vaglio-Laurin gives for the heat transfer rate, the term (T_0-T_w) is used instead of the term $(Taw-T_w)$ used in the Beckwith heat transfer equation. This is responsible for approximately 70 percent of the difference between the two theories. However, the other 30 percent of the difference is due to the omission of the effect of the pressure gradient in the Vaglio-Laurin heat transfer equation.

Cross Flow

The factor that makes a laminar boundary layer on a yawed sphere-cone body different than on an axisymmetric body at zero yaw is the cross flow velocity components that exist. A schematic diagram illustrating how the streamwise and cross-flow velocity components in a three-dimensional laminar boundary layer might look is given in figure 1.
Since the theory of Beckwith is applicable when the cross-flow velocities are small, it would be of interest to know what the criterion for small cross-flow velocities is, whether they exist under the conditions at which these calculations were made, and how large an effect they may have on the heat transfer.

The criterion for small cross flow which is given in reference (3) is \(\left(\frac{v}{u_{\text{max}}} \right)^2 \ll 1 \). At any particular point along the streamline, \(\left(\frac{v}{u_{\text{max}}} \right) \) is the maximum value of the ratio of the cross-flow velocity to the streamwise velocity within the boundary layer. Calculations of \(\left(\frac{v}{u_{\text{max}}} \right)^2 \) along two different streamlines have been made using the equations in reference (3). The results are plotted in figure 12a as \(\left(\frac{v}{u_{\text{max}}} \right)^2 \) versus \(\tau/R \) for a streamline on the sphere-cone model at \(M=4.8 \), \(\alpha=60^\circ \) and at \(M=4.8 \), \(\alpha=180^\circ \). The locations of the two streamlines is plotted in figure 12b and are shown as broken lines in figures 2b and 2d.

As can be seen in figure 12a, the value of \(\left(\frac{v}{u_{\text{max}}} \right)^2 \) reaches a maximum value of 0.3 for \(\alpha=60^\circ \), whereas for \(\alpha=180^\circ \), \(\left(\frac{v}{u_{\text{max}}} \right)^2 \) reaches a maximum value of 4.0. Even though the conditions for small cross flow are exceeded for these particular calculations, the heat transfer rates calculated using reference (3) may not necessarily be too much in error. For example, in reference (3), heat transfer calculations were made for a yawed infinite cylinder, and even though the parameter \(\left(\frac{v}{u_{\text{max}}} \right)^2 \) went from 0 to 4, there was no error greater than 15 percent between the small cross-flow results and the exact heat transfer rates. In order to determine whether the experimental data show any increase in heat transfer rates in the regions of high cross-flow velocities, figure 13 is presented. This figure gives a plot of the ratio of experimental heat transfer coefficients and those from the theory of Beckwith versus \(\tau \) for constant values of \(S/R \). The data are for the case where \(M=4.8 \), \(\alpha=180^\circ \). As can be seen in this figure, at \(S/R=0.65 \), the experimental data are slightly lower than the theory. At \(S/R=1.018 \) and 1.267, the theory and experiment agree rather well. But when \(S/R>1.267 \) and \(\tau>0^\circ \), the experimental heat transfer coefficients are higher than the theory. Now the cross-flow velocities are zero on the windward streamline (\(\tau=0^\circ \)) and on the spherical section (\(S/R<0.52 \)) of the body, whereas on the conical section, where \(\tau>0^\circ \) and \(S/R>0.52 \), the cross-flow velocities are no longer zero. Since the scatter of the experimental heat transfer coefficients is rather high on the conical section of the body (approximately + 15 percent), it is difficult to obtain qualitatively what the
effect of cross flow is on the experimental data. Nevertheless, it is apparent from the data of figure 13 that the small cross-flow theory of Beckwith predicts heat transfer coefficients that are within 15 percent of the experimental values, even though the criterion of small cross flow is not met everywhere on the cone.

CONCLUSIONS

A comparison has been made between the experimental and theoretical compressible laminar heat transfer rates to a yawed sphere-cone body. It has been demonstrated that the streamlines on the surface of this sphere-cone body can be calculated if the static pressure distribution on the surface of the body is known. Heat transfer distributions along the streamlines were calculated by applying methods given by Beckwith and Vaglio-Laurin.

The method of Beckwith predicts compressible laminar heat transfer distributions that are in good agreement with the experimental values in the region of zero cross-flow velocities and to within approximately 15 percent in the region of high cross-flow velocities for the range of conditions for which experimental data were available.
REFERENCES

(6) Harris, E. L., "Determination of the Streamlines on a Sphere-Cone at Angle of Attack from the Measured Surface Pressure Distribution," NOLTR 63-37, February 18, 1963

FIGURE 1 THE COORDINATE SYSTEM OF THE MODEL AND STREAMLINES

X-Y PLANE TANGENT TO BODY SURFACE AT POINT P
Z AXIS PERPENDICULAR TO X-Y PLANE
u - STREAMWISE VELOCITY
v - CROSS FLOW VELOCITY
τ - STREAMLINE LENGTH
$\psi = 0$ IS WINDWARD STREAMLINE

FIGURE 2(a) CALCULATED STREAMLINE PATTERN ON THE CONICAL SECTION OF THE SPHERE-CONE MODEL
M = 4.8
\(\alpha = 6^\circ \)
\(P_0 = 2090 \text{ MM HG} \)
\(T_0 = 320^\circ \text{ K} \)

--- STREAMLINE REFERRED TO IN FIG. 12

\(\psi = 0 \) IS WINDWARD STREAMLINE

FIGURE 2(b)
$M = 3.2$
$\alpha = 18^\circ$
$P_0 = 980 \text{ MM HG}$
$T_0 = 318^\circ \text{ K}$

$\psi = 0$ IS WINDWARD STREAMLINE

FIGURE 2 (c)
$M = 4.8$
$\alpha = 18^\circ$
$P_0 = 2090 \text{ MM HG}$
$T_0 = 320^\circ \text{ K}$

STREAMLINE REFERRED TO IN FIG. 12

$\psi = 0$ IS WINDWARD STREAMLINE

FIGURE 2 (d)
FIGURE 3(a) - COMPARISON BETWEEN THE CALCULATED AND EXPERIMENTAL HEAT TRANSFER VERSUS S/R AT $\alpha = 0^\circ$
Figure 4(a)—Comparison between the calculated and experimental heat transfer versus S/R at $\alpha=6^\circ$, $\psi=0^\circ$.

- M = 3.2
- $\alpha = 6^\circ$
- $\psi = 0^\circ$
- $P_0 = 980$ MMHG
- $T_0 = 318^\circ$ K

- Experimental (Ref. 2)
- Beckwith (Ref. 3)
- Vaglio-Laurin (Ref. 4)

The graph shows the dimensionless heat transfer versus the dimensionless contour length, S/R. The graph includes data points representing experimental measurements and theoretical predictions by different authors.
M = 4.8
α = 6°
V = 0°
P₀ = 2090 mm Hg
T₀ = 3200°K

BECKWITH (REF. 3)
VAGLIO-LAURIN (REF. 4)

EXPERIMENTAL (REF. 1)

DIMENSIONLESS HEAT TRANSFER, h'/hₚ₀

DIMENSIONLESS CONTOUR LENGTH, S/R

FIGURE 4(b)
FIGURE 5 (a)—COMPARISON BETWEEN THE CALCULATED AND EXPERIMENTAL HEAT TRANSFER VERSUS S/R AT $\alpha=18^\circ, \psi=0^\circ$
FIGURE 6(a)—COMPARISON BETWEEN THE CALCULATED AND EXPERIMENTAL HEAT TRANSFER VERSUS S/R AT $\alpha=6^\circ$, $\psi=45^\circ$
M = 4.8
α = 6°
ψ = 45°
P₀ = 2090 MM HG
T₀ = 320° K
- EXPERIMENTAL (REF. 1)
- BECKWITH (REF. 3)
- VAGLIO-LAURIN (REF. 4)

THEORY

DIMENSIONLESS HEAT TRANSFER, \(\frac{h}{h_{sp}} \)

DIMENSIONLESS CONTOUR LENGTH, \(\frac{S}{R} \)

FIGURE 6(b)
Figure 8(a) - Comparison between the calculated and experimental heat transfer versus ψ at $\alpha = 6^\circ$, $S/R = 1.018$.

- $M = 3.2$
- $\alpha = 6^\circ$
- $S/R = 1.018$
- $P_o = 980 \text{ MM HG}$
- $T_o = 318^\circ \text{K}$

- Experimental (Ref. 2)
- Beckwith (Ref. 3)
- Vaglio-Laurin (Ref. 4)

Theory
M = 4.8
α = 6°
S/R = 1.018
P_o = 2090 MM HG
T_o = 320°K

O EXPERIMENTAL (REF.1)
BECKWITH (REF.3)
VAGLIO-LAURIN (REF.4)

DIMENSIONLESS HEAT TRANSFER, h/\bar{h}_p

ROLL ANGLE, ψ

FIGURE 8(b)
FIGURE 9(a)-COMPARISON BETWEEN THE CALCULATED AND EXPERIMENTAL HEAT TRANSFER VERSUS ψ AT $\alpha = 18^\circ$, $S/R = 1.018$

- Beckwith (Ref. 3)
- Vaglio-Laurin (Ref. 4)

M = 3.2
$\alpha = 18^\circ$
S/R = 1.018
Po = 980 MM Hg
To = 318° K

Dimensionsless Heat Transfer h_{dim}
M = 4.8
\(\alpha = 18^\circ \)
S/R = 1.018
Po = 2090 MM HG
To = 320 K

- EXPERIMENTAL (REF. 2)
- BECKWITH (REF. 3)
- VAGLIO-LAURIN (REF. 4)

THEORY

Figure 9(b)

- Dimensionless heat transfer, \(\frac{\dot{h}}{\dot{h}_p} \)
- Roll angle, \(\psi \)
M = 3.2
α = 6°
S/R = 1.516
P₀ = 960 MM HG
T₀ = 318° K

- EXPERIMENTAL (REF.2)
- BECKWITH (REF.3)
- VAGLIO-LAURIN (REF.4)

THEORY

FIGURE 10 (a)-COMPARISON BETWEEN THE CALCULATED AND EXPERIMENTAL HEAT TRANSFER VERSUS ψ AT α = 6°, S/R = 1.516
M = 4.8
α = 6°
S/R = 1.516
Po = 2090 MM HG
To = 320°K

- EXPERIMENTAL (REF. 1)
- BECKWITH (REF. 3)
- VAGLIO-LAURIN (REF. 4)

THEORY

DIMENSIONLESS HEAT TRANSFER, \(\frac{h}{h_{sep}} \)

ROLL ANGLE, \(\psi \)

FIGURE 10(b)
M = 3.2
α = 18°
S/R = 1.516
P₀ = 980 MM HG
T₀ = 318° K

- EXPERIMENTAL (REF. 2)
- BECKWITH (REF. 3)
- VAGLIO-LAURIN (REF. 4)

THEORY

DIMENSIONLESS HEAT TRANSFER, \(\dot{h}/\dot{h}_{hp} \)

ROLL ANGLE, \(\psi \)

FIGURE II(a) - COMPARISON BETWEEN THE CALCULATED AND EXPERIMENTAL HEAT TRANSFER VERSUS

\(\psi \) AT \(\alpha = 18°; S/R = 1.516 \)
FIGURE 12 - THE MAXIMUM CROSS FLOW TO STREAMWISE VELOCITY RATIO ALONG TWO GIVEN STREAMLINES AT $\alpha = 6^\circ$ AND $\alpha = 18^\circ$
$M = 4.8$
$\alpha = 18^\circ$
$Po = 2090 \text{ MM HG}$
$To = 320^\circ \text{K}$

EXPERIMENTAL

BECKWITH (REF. 3)

THEORY

Figure 13—Comparison between the Calculated and Experimental Heat Transfer vs. ψ
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Chief, Bureau of Naval Weapons
Department of the Navy
Washington, D.C. 20360
Attn: DLI-3
Attn: R-14
Attn: RRR-4
Attn: RMGA-811
Attn: RMMO-42

Office of Naval Research
T3
Washington, D.C.
Attn: Head, Structural Mechanics Branch
Attn: Head, Fluid Dynamics Branch

Director, David Taylor Model Basin
Aerodynamics Laboratory
Washington, D.C.
Attn: Library

Commander, U.S. Naval Ordnance Test Station
China Lake, California
Attn: Technical Library
Attn: Code 406

Director, Naval Research Laboratory
Washington, D.C.
Attn: Code 2027

Commanding Officer
Office of Naval Research
Branch Office
Box 39, Navy 100
Fleet Post Office
New York, New York

NASA
High Speed Flight Station
Box 273
Edwards Air Force Base, California

NASA
Ames Research Center
Moffett Field, California
Attn: Librarian
AERODYNAMICS DEPARTMENT
EXTERNAL DISTRIBUTION LIST (A1)

No. of
Copies

NASA
Langley Research Center
Langley Station, Hampton, Virginia
Attn: (Mrs.) Elizabeth R. Gilman, Librarian, Bldg. 1244
Attn: C. H. McLellan
Attn: Adolph Busemann
Attn: Theoretical Aerodynamics Division

NASA
Lewis Research Center
21000 Brookpark Road
Cleveland 11, Ohio
Attn: Librarian
Attn: Chief, Propulsion Aerodynamics Division

NASA
600 Independence Ave., S. W.
Washington, D. C.
Attn: Chief, Division of Research Information
Attn: Dr. H. H. Kurzweg, Director of Research

Office of the Assistant Secretary of Defense (R&D)
Room 3E1065, The Pentagon
Washington 25, D. C.
Attn: Technical Library

Research and Development Board
Room 3D1041, The Pentagon
Washington 25, D. C.
Attn: Library

Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314

Commander, Pacific Missile Range
Point Mugu, California
Attn: Technical Library

Commanding General
Aberdeen Proving Ground, Maryland
Attn: Technical Information Branch
Attn: Ballistic Research Laboratories
AERODYNAMICS DEPARTMENT
EXTERNAL DISTRIBUTION LIST (A1)

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Commander, Naval Weapons Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dahlgren, Virginia Attn: Library</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Director, Special Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Department of the Navy</td>
</tr>
<tr>
<td></td>
<td>Washington 25, D. C. Attn: SP-2722</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Director of Intelligence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Headquarters, USAF</td>
</tr>
<tr>
<td></td>
<td>Washington 25, D. C. Attn: AFOIN-3B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Headquarters - Aero. Systems Division</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wright-Patterson Air Force Base</td>
</tr>
<tr>
<td></td>
<td>Dayton, Ohio Attn: WWAD Attn: RRLA-Library</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Commander</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Air Force Ballistic Systems Division</td>
</tr>
<tr>
<td></td>
<td>Norton Air Force Base</td>
</tr>
<tr>
<td></td>
<td>San Bernardino, California Attn: BSRVA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Chief, Defense Atomic Support Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Washington 25, D. C. Attn: Document Library</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Headquarters, Arnold Engineering Development Center</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARO, Inc. Arnold Air Force Station, Tennessee</td>
</tr>
<tr>
<td></td>
<td>Attn: Technical Library Attn: AEOR Attn: AEOIM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Commanding Officer, Harry Diamond Laboratories</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Washington 25, D. C. Attn: Library, Room 211, Bldg. 92</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Commanding General</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U. S. Army Missile Command</td>
</tr>
<tr>
<td></td>
<td>Redstone Arsenal, Alabama Attn: AMSMI-RR (Mr. N. Shapiro)</td>
</tr>
<tr>
<td></td>
<td>Attn: AMSMI-RB (Redstone Scientific Information Center)</td>
</tr>
</tbody>
</table>
AKRODYNAMICS DEPARTMENT
EXTERNAL DISTRIBUTION LIST (AI)

NASA
George C. Marshall Space Flight Center
Huntsville, Alabama
 Attn: Dr. E. Geissler
 Attn: Mr. T. Reed
 Attn: Mr. H. Paul
 Attn: Mr. W. Dahm
 Attn: Mr. H. A. Connell
 Attn: Mr. J. Kingsbury
 Attn: ARDAB-DA

APL/JHU (NOW 7386)
8621 Georgia Avenue
Silver Spring, Maryland
 Attn: Technical Reports Group
 Attn: Mr. D. Fox
 Attn: Dr. F. Hill
 Attn: Dr. L. L. Cronvich

Air Force Systems Command
Scientific & Technical Liaison Office
Department of the Navy
Washington, D.C.
 Attn: Alonzo P. Mercier

Scientific & Technical Information Facility
P. O. Box 5700
Bethesda, Maryland
 Attn: NASA Representative (S-AK/DL)

Commander
Air Force Flight Test Center
Edwards Air Force Base
Muroc, California
 Attn: FTOTL

Air Force Office of Scientific Research
Holloman Air Force Base
Alamogordo, New Mexico
 Attn: SRLTL

U.S. Army Engineer Research & Development Laboratories
Fort Belvoir, Virginia
 Attn: STINFO Branch
University of Minnesota
Minneapolis 14, Minnesota
Attn: Dr. E. R. G. Eckert
Attn: Heat Transfer Laboratory
Attn: Technical Library

Rensselaer Polytechnic Institute
Troy, New York
Attn: Dept. of Aeronautical Engineering

Dr. James P. Hartnett
Department of Mechanical Engineering
University of Delaware
Newark, Delaware

Princeton University
James Forrestal Research Center
Gas Dynamics Laboratory
Princeton, New Jersey
Attn: Prof. S. Bogdonoff
Attn: Dept. of Aeronautical Engineering Library

Defense Research Laboratory
The University of Texas
P. O. Box 8029
Austin 12, Texas
Attn: Assistant Director

Ohio State University
Columbus 10, Ohio
Attn: Security Officer
Attn: Aerodynamics Laboratory
Attn: Dr. J. Lee
Attn: Chairman, Dept. of Aero. Engineering

California Institute of Technology
Pasadena, California
Attn: Guggenheim Aero. Laboratory,
Aeronautics Library
Attn: Jet Propulsion Laboratory
Attn: Dr. H. Liepmann
Attn: Dr. L. Lees
Attn: Dr. D. Coles
Attn: Dr. A. Roshko
Attn: Dr. J. Laufer

Case Institute of Technology
Cleveland 6, Ohio
Attn: G. Kuerti

1
<table>
<thead>
<tr>
<th>Institution</th>
<th>Address</th>
<th>Attentions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Mechanical Engineering</td>
<td>Department of Mechanical Engineering</td>
<td>Missle Division (Library)</td>
</tr>
<tr>
<td>Yale University</td>
<td>Yale University</td>
<td>Dr. P. P. Wegener</td>
</tr>
<tr>
<td>400 Temple Street</td>
<td>400 Temple Street</td>
<td>Dr. P. P. Wegener</td>
</tr>
<tr>
<td>New Haven, Connecticut</td>
<td>New Haven, Connecticut</td>
<td>Dr. P. P. Wegener</td>
</tr>
<tr>
<td>MIT Lincoln Laboratory</td>
<td>MIT Lincoln Laboratory</td>
<td>Library, USAF Project RAND</td>
</tr>
<tr>
<td>RAND Corporation</td>
<td>RAND Corporation</td>
<td>Technical Communications</td>
</tr>
<tr>
<td>Santa Monica, California</td>
<td>Santa Monica, California</td>
<td>Library, USAF Project RAND</td>
</tr>
<tr>
<td>ARO, Incorporated</td>
<td>ARO, Incorporated</td>
<td>Technical Communications</td>
</tr>
<tr>
<td>Mr. J. Lukasiewicz, Chief</td>
<td>Mr. J. Lukasiewicz, Chief</td>
<td></td>
</tr>
<tr>
<td>Gas Dynamics Facility</td>
<td>Gas Dynamics Facility</td>
<td></td>
</tr>
<tr>
<td>Massachusetts Institute of Technology</td>
<td>Massachusetts Institute of Technology</td>
<td></td>
</tr>
<tr>
<td>Cambridge 39, Massachusetts</td>
<td>Cambridge 39, Massachusetts</td>
<td></td>
</tr>
<tr>
<td>Attn: Prof. J. Kaye</td>
<td>Attn: Prof. J. Kaye</td>
<td></td>
</tr>
<tr>
<td>Attn: Prof. M. Finston</td>
<td>Attn: Prof. M. Finston</td>
<td></td>
</tr>
<tr>
<td>Attn: Mr. J. Baron</td>
<td>Attn: Mr. J. Baron</td>
<td></td>
</tr>
<tr>
<td>Attn: Prof. A. H. Shapiro</td>
<td>Attn: Prof. A. H. Shapiro</td>
<td></td>
</tr>
<tr>
<td>Attn: Prof. Ronald F. Probstein</td>
<td>Attn: Naval Supersonic Laboratory</td>
<td></td>
</tr>
<tr>
<td>Attn: Naval Supersonic Laboratory</td>
<td>Attn: AERO. Engineering Library</td>
<td></td>
</tr>
<tr>
<td>Attn: Prof. Ronald F. Probstein</td>
<td>Attn: Prof. Ronald F. Probstein</td>
<td></td>
</tr>
<tr>
<td>Attn: Prof. C. C. Lin</td>
<td>Attn: Prof. C. C. Lin</td>
<td></td>
</tr>
<tr>
<td>Polytechnic Institute of Brooklyn</td>
<td>Polytechnic Institute of Brooklyn</td>
<td></td>
</tr>
<tr>
<td>527 Atlantic Avenue</td>
<td>527 Atlantic Avenue</td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. M. Bloom</td>
<td>Attn: Dr. M. Bloom</td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. P. Libby</td>
<td>Attn: Dr. P. Libby</td>
<td></td>
</tr>
<tr>
<td>Attn: Aerodynamics Laboratory</td>
<td>Attn: Aerodynamics Laboratory</td>
<td></td>
</tr>
<tr>
<td>Brown University</td>
<td>Brown University</td>
<td></td>
</tr>
<tr>
<td>Division of Engineering</td>
<td>Division of Engineering</td>
<td></td>
</tr>
<tr>
<td>Providence, Rhode Island</td>
<td>Providence, Rhode Island</td>
<td></td>
</tr>
<tr>
<td>Attn: Librarian</td>
<td>Attn: Librarian</td>
<td></td>
</tr>
</tbody>
</table>

No. of
Copies

2
AERODYNAMICS DEPARTMENT
EXTERNAL DISTRIBUTION LIST (A2)

Air Ballistics Laboratory
Army Ballistic Missile Agency
Huntsville, Alabama

Applied Mechanics Reviews
Southwest Research Institute
8500 Culebra Road
San Antonio, Texas

BUWEPS Representative
Aerojet-General Corporation
6352 N. Irwindale Avenue
Azusa, California

The Boeing Company
Seattle, Washington
 Attn: J. H. Russell, Aero-Space Division
 Attn: Research Library

United Aircraft Corporation
400 Main Street
East Hartford 8, Connecticut
 Attn: Chief Librarian
 Attn: Mr. W. Kuhrt, Research Department
 Attn: Mr. J. G. Lee

Hughes Aircraft Company
Florence Avenue at Teale Streets
Culver City, California
 Attn: Mr. D. J. Johnson
 R&D Technical Library

McDonnell Aircraft Corporation
P. O. Box 516
St. Louis 3, Missouri

Lockheed Missiles and Space Company
P. O. Box 504
Sunnyvale, California
 Attn: Dr. L. H. Wilson
 Attn: Mr. M. Tucker
 Attn: Dr. R. Smelt

Martin Company
Baltimore, Maryland
 Attn: Library
 Attn: Chief Aerodynamicist
 Attn: Dr. W. Morkovin, Aerophysics Division
AERODYNAMICS DEPARTMENT
EXTERNAL DISTRIBUTION LIST (A2)

CONVAIR
A Division of General Dynamics Corporation
Fort Worth, Texas
Attn: Library
Attn: Theoretical Aerodynamics Group

Purdue University
School of Aeronautical & Engineering Sciences
LaFayette, Indiana
Attn: R. L. Taggart, Library

University of Maryland
College Park, Maryland
Attn: Director
Attn: Dr. J. Burgers
Attn: Librarian, Engr. & Physical Sciences
Attn: Librarian, Institute for Fluid Dynamics and Applied Mathematics
Attn: Prof. S. I. Pai

University of Michigan
Ann Arbor, Michigan
Attn: Dr. A. Kuether
Attn: Dr. A. Laporte
Attn: Department of Aeronautical Engineering

Stanford University
Palo Alto, California

Cornell University
Graduate School of Aeronautical Engineering
Ithaca, New York
Attn: Prof. W. R. Sears

The Johns Hopkins University
Charles and 34th Streets
Baltimore, Maryland
Attn: Dr. F. H. Clauser

University of California
Berkeley 4, California
Attn: G. Maslach
Attn: Dr. S. A. Schaaf
Attn: Dr. Holt
Attn: Institute of Engineering Research

No. of Copies

<table>
<thead>
<tr>
<th>Institution</th>
<th>Attn: Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONVAIR</td>
<td>Library, Theoretical Aerodynamics Group</td>
</tr>
<tr>
<td>Purdue University</td>
<td>R. L. Taggart, Library</td>
</tr>
<tr>
<td>University of Maryland</td>
<td>Director, Dr. J. Burgers, Librarian, Institute for Fluid Dynamics</td>
</tr>
<tr>
<td>University of Michigan</td>
<td>Dr. A. Kuether, Dr. A. Laporte, Department of Aeronautical Engineering</td>
</tr>
<tr>
<td>Stanford University</td>
<td>Applied Mathematics & Statistics Lab., Prof. D. Bershader</td>
</tr>
<tr>
<td>Cornell University</td>
<td>Prof. W. R. Sears</td>
</tr>
<tr>
<td>The Johns Hopkins University</td>
<td>Dr. F. H. Clauser</td>
</tr>
<tr>
<td>University of California</td>
<td>Institute of Engineering Research</td>
</tr>
</tbody>
</table>
AERODYNAMICS DEPARTMENT
EXTERNAL DISTRIBUTION LIST (A2)

| No. of Copies | Cornell Aeronautical Laboratory, Inc.
| Attn: Librarian
| Attn: Dr. Franklin Moore
| Attn: Dr. J. G. Hall
| Attn: Mr. A. Hertzberg |
| --- | --- |
| Attn: Librarian
| Attn: Dr. J. G. Hall
| Attn: Mr. A. Hertzberg |
| University of Minnesota
| Rosemount Research Laboratories
| Attn: Technical Library |
| Director, Air University Library
| Maxwell Air Force Base, Alabama |
| Douglas Aircraft Company, Inc.
| Santa Monica Division
| 3000 Ocean Park Boulevard
| Santa Monica, California
| Attn: Chief Missiles Engineer
| Attn: Aerodynamics Section |
| CONVAIR
| A Division of General Dynamics Corporation
| Daingerfield, Texas |
| CONVAIR
| Scientific Research Laboratory
| 5001 Kearney Villa Road
| San Diego, California
| Attn: Asst. to the Director of Scientific Research
| Attn: Dr. B. W. Leadon
| Attn: Library |
| Republic Aviation Corporation
| Farmingdale, New York
| Attn: Technical Library |
| General Applied Science Laboratories, Inc.
| Merrick and Stewart Avenues
| Westbury, L. I., New York
| Attn: Mr. Walter Daskin
| Attn: Mr. R. W. Byrne |
AERODYNAMICS DEPARTMENT
EXTERNAL DISTRIBUTION LIST (A2)

Arnold Research Organization, Inc.
Tullahoma, Tennessee
 Attn: Technical Library
 Attn: Chief, Propulsion Wind Tunnel
 Attn: Dr. J. L. Potter

General Electric Company
Missile Space Division
3198 Chestnut Street
Philadelphia, Pennsylvania
 Attn: Larry Chasen, Mgr. Library
 Attn: Mr. R. Kirby
 Attn: Dr. J. Farber
 Attn: Dr. G. Sutton
 Attn: Dr. J. D. Stewart
 Attn: Dr. S. M. Scala
 Attn: Dr. H. Lew
 Attn: Mr. J. Persh

Eastman Kodak Company
Navy Ordnance Division
50 West Main Street
Rochester 14, New York
 Attn: W. B. Forman

Library
AVCO-Everett Research Laboratory
2385 Revere Beach Parkway
Everett 49, Massachusetts

Chance-Vought Corp.
Post Office Box 3907
Dallas, Texas
 Library 1-6310/3L-2884

National Science Foundation
1951 Constitution Avenue, N. W.
Washington 25, D. C.
 Attn: Engineering Sciences Division

New York University
University Heights
New York 53, New York
 Attn: Department of Aeronautical Engineering
AERODYNAMICS LABORATORY
EXTERNAL DISTRIBUTION LIST (A2)

<table>
<thead>
<tr>
<th>New York University</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 Waverly Place</td>
<td>25</td>
</tr>
<tr>
<td>New York, New York</td>
<td></td>
</tr>
<tr>
<td>Attn: Library, Institute of Math. Sciences</td>
<td></td>
</tr>
</tbody>
</table>

NORAIR	
A Division of Northrop Corporation	
Hawthorne, California	
Attn: Library	

Northrop Aircraft, Inc.	
Hawthorne, California	
Attn: Library	

Gas Dynamics Laboratory	
Technological Institute	
Northwestern University	
Evanston, Illinois	
Attn: Library	

Pennsylvania State University	
University Park, Pennsylvania	
Attn: Library, Dept. of Aero. Engineering	

The Ramo-Wooldridge Corporation	
8820 Bellanca Avenue	
Los Angeles 45, California	

Gifts and Exchanges	
Fondren Library	
Rice Institute	
P. O. Box 1892	
Houston, Texas	

University of Southern California	
Engineering Center	
Los Angeles 7, California	
Attn: Librarian	

The Editor	
Battelle Technical Review	
Battelle Memorial Institute	
505 King Avenue	
Columbus, Ohio	

<p>| Douglas Aircraft Company, Inc. | |
| Long Beach, California | |
| Attn: Library | |</p>
<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Company Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluidyne Engineering Corporation</td>
</tr>
<tr>
<td>5740 Wayzata Boulevard Golden Valley Minneapolis, Minnesota</td>
</tr>
<tr>
<td>Grumman Aircraft Engineering Corporation Bethpage, Long Island, New York</td>
</tr>
<tr>
<td>Lockheed Missiles and Space Company P.O. Box 551 Burbank, California Attn: Library</td>
</tr>
<tr>
<td>Marquardt Aircraft Corporation 7801 Havenhurst Van Nuys, California</td>
</tr>
<tr>
<td>Martin Company Denver, Colorado</td>
</tr>
<tr>
<td>Martin Company Orlando, Florida Attn: J. Mayer</td>
</tr>
<tr>
<td>Mississippi State College Engineering and Industrial Research Station Aerophysics Department P.O. Box 248 State College, Mississippi</td>
</tr>
<tr>
<td>Lockheed Missiles and Space Company 3251 Hanover Street Palo Alto, California Attn: Library</td>
</tr>
<tr>
<td>General Electric Company Research Laboratory Schenectady, New York Attn: Dr. H. T. Nagamatsu Attn: Library</td>
</tr>
<tr>
<td>Fluid Dynamics Laboratory Mechanical Engineering Department Stevens Institute of Technology Hoboken, New Jersey Attn: Dr. R. H. Page, Director</td>
</tr>
<tr>
<td>No. of Copies</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

9
Daniel Guggenheim School of Aeronautics
Georgia Institute of Technology
Atlanta, Georgia
 Attn: Prof. A. L. Ducoffe

University of Cincinnati
Cincinnati, Ohio
 Attn: Prof. R. P. Harrington, Head
 Dept. of Aeronautical Engineering
 Attn: Prof. Ting Yi Li, Aerospace Engineering Dept.

Virginia Polytechnic Institute
Dept. of Aerospace Engineering
Blacksburg, Virginia
 Attn: Dr. R. T. Keefe
 Attn: Dr. J. B. Eades, Jr.
 Attn: Library

IBM Federal System Division
7220 Wisconsin Avenue
Bethesda, Maryland
 Attn: Dr. I. Korobkin

Superintendent
U. S. Naval Postgraduate School
Monterey, California
 Attn: Technical Reports Section Library

National Bureau of Standards
Washington 25, D. C.
 Attn: Chief, Fluid Mechanics Section

North Carolina State College
Raleigh, North Carolina
 Attn: Division of Engineering Research
 Technical Library

Defense Research Corporation
P. O. Box No. 3587
Santa Barbara, California
 Attn: Dr. J. A. Laurmann

Aerojet-General Corporation
6352 North Irwindale Avenue
Box 296
Azusa, California
AERODYNAMICS DEPARTMENT
EXTERNAL DISTRIBUTION LIST (A2)

No. of
Copies

Apollo - DDCS
General Electric Company
A&E Building, Room 204
Daytona Beach, Florida
Attn: Dave Hovis

University of Minnesota
Institute of Technology
Minneapolis, Minnesota
Attn: Prof. J. D. Akerman

Guggenheim Laboratory
Stanford University
Stanford, California
Attn: Prof. D. Bershader, Department of Aero.
Engineering

Space Technology Laboratory, Inc.
1 Space Park
Redondo Beach, California 90200
Attn: STL Tech. Lib. Doc. Acquisitions

University of Illinois
Department of Aeronautical and Astronautical Engineering
Urbana, Illinois
Attn: Prof. H. S. Stilwell

Armour Research Foundation
Illinois Institute of Technology
10 West 35th Street
Chicago, Illinois
Attn: Dr. L. N. Wilson

Institute of the Aeronautical Sciences
Pacific Aeronautical Library
7600 Beverly Boulevard
Los Angeles, California

University of California
Department of Mathematics
Los Angeles, California
Attn: Prof. A. Robinson

Louisiana State University
Department of Aeronautical Engineering
College of Engineering
Baton Rouge, Louisiana
AERODYNAMICS DEPARTMENT
EXTERNAL DISTRIBUTION LIST (A2)

<table>
<thead>
<tr>
<th>Mathematical Reviews</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Mathematical Society</td>
</tr>
<tr>
<td>80 Waterman Street</td>
</tr>
<tr>
<td>Providence, Rhode Island</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stanford University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Aeronautical Engineering</td>
</tr>
<tr>
<td>Stanford, California</td>
</tr>
<tr>
<td>Attn: Library</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>University of California</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeronautical Sciences Laboratory</td>
</tr>
<tr>
<td>Richmond Field Station</td>
</tr>
<tr>
<td>1301 South 46th Street</td>
</tr>
<tr>
<td>Richmond, California</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>University of Denver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Aeronautical Engineering</td>
</tr>
<tr>
<td>Denver 10, Colorado</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>University of Chicago</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratories for Applied Sciences</td>
</tr>
<tr>
<td>Museum of Science and Industry</td>
</tr>
<tr>
<td>Chicago, Illinois</td>
</tr>
<tr>
<td>Attn: Librarian</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>University of Colorado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Aeronautical Engineering</td>
</tr>
<tr>
<td>Boulder, Colorado</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>University of Illinois</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeronautical Department</td>
</tr>
<tr>
<td>Champaign, Illinois</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>University of Kentucky</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Aeronautical Engineering</td>
</tr>
<tr>
<td>College of Engineering</td>
</tr>
<tr>
<td>Lexington, Kentucky</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>University of Toledo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Aeronautical Engineering</td>
</tr>
<tr>
<td>Research Foundation</td>
</tr>
<tr>
<td>Toledo, Ohio</td>
</tr>
</tbody>
</table>

No. of Copies: 12
AERODYNAMICS DEPARTMENT
EXTERNAL DISTRIBUTION LIST (A2)

No. of Copies

Aerospace Corporation
P. O. Box 95085
Los Angeles, California
Attn: Advanced Propulsion & Fluid Mechanics Department
Attn: Gas Dynamics Department

Boeing Scientific Research Laboratory
P. O. Box 3981
Seattle, Washington
Attn: Dr. A. K. Sreekanth
Attn: G. J. Appenheimer

Vidya, Inc.
2626 Hanover
Palo Alto, California
Attn: Mr. J. R. Stalder
Attn: Library

General Electric Company
FPD Technical Information Center F-22
Cincinnati, Ohio

Northwestern University
Technological Institute
Evanston, Illinois
Attn: Department of Mechanical Engineering

Harvard University
Cambridge, Massachusetts
Attn: Prof. of Engineering Sciences & Applied Physics
Attn: Library

University of Wisconsin
P. O. Box 2127
Madison, Wisconsin
Attn: Prof. J. O. Hirschfelder

Dr. Antonio Ferri, Director
Guggenheim Aerospace Laboratories
New York University
181st St. and University Ave.
Bronx, New York
CATALOGING INFORMATION FOR LIBRARY USE

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>NOL technical report</th>
<th>NOLTR</th>
<th>SECURITY CLASSIFICATION AND CODE COUNT</th>
<th>Unclassified - 33</th>
<th>U033</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPORT NUMBER</td>
<td>63-208</td>
<td>63208</td>
<td>CIRCULATION LIMITATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REPORT DATE</td>
<td>6 December 1963</td>
<td>1263</td>
<td>CIRCULATION LIMITATION OR BIBLIOGRAPHIC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BIBLIOGRAPHIC (SUPPL., VOL., ETC.)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SUBJECT ANALYSIS OF REPORT

<table>
<thead>
<tr>
<th>DESCRIPTORS</th>
<th>CODES</th>
<th>DESCRIPTORS</th>
<th>CODES</th>
<th>DESCRIPTORS</th>
<th>CODES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat transfer</td>
<td>HEAF</td>
<td>Angle</td>
<td>ANCL</td>
<td>Surface</td>
<td>SURA</td>
</tr>
<tr>
<td>Yawed</td>
<td>YAWE</td>
<td>Wind-tunnel</td>
<td>WINU</td>
<td>Calculation</td>
<td>COMA</td>
</tr>
<tr>
<td>Sphere</td>
<td>SPHE</td>
<td>Tests</td>
<td>TEST</td>
<td>Measured</td>
<td>MEAU</td>
</tr>
<tr>
<td>Cone</td>
<td>CONE</td>
<td>Mach</td>
<td>MACH</td>
<td>Pressure</td>
<td>PRES</td>
</tr>
<tr>
<td>Model</td>
<td>MODE</td>
<td>3.2</td>
<td>3X06</td>
<td>Distribution</td>
<td>DISR</td>
</tr>
<tr>
<td>Supersonic</td>
<td>SUPR</td>
<td>1.8</td>
<td>hX75</td>
<td>Blunt</td>
<td>BLUN</td>
</tr>
<tr>
<td>Speeds</td>
<td>VELC</td>
<td>Methods</td>
<td>METD</td>
<td>Bodies</td>
<td>BODY</td>
</tr>
<tr>
<td>Comparison</td>
<td>CMRI</td>
<td>Prediction</td>
<td>PRED</td>
<td>Aerodynamics</td>
<td>AERD</td>
</tr>
<tr>
<td>Experiment</td>
<td>EXPE</td>
<td>Inviscid</td>
<td>VISCI</td>
<td>Gross flow</td>
<td>CRSF</td>
</tr>
<tr>
<td>Theory</td>
<td>THEY</td>
<td>Streamline</td>
<td>TAPR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theory</td>
<td></td>
<td>Pattern</td>
<td>FATT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLOW</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>