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ABSTRACT: NOL's Hypersonic Tunnel No. 4 is a continuous blow-
down hypersonic tunnel designed for research and development
testing of models, instrumentation, and wind tunnel components,
It can operate at Mach nuwbers from 5 to 10 with supply pressures
up to 52 atmospheres and supply temperatures up to 1700°R.

This report summarizes the pertinent aerodynamic design criteria
and operating experience compiled during its first eleven years
of operation, Included are descriptions of the major components
and their performance along with the flight simulation capability
0f the facility and a bibliograsphy of previously published
reports.
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KOL HYPERSONIC TUNNEL NO, 4

The present report summarizes 311 available information on
design and operation of the NOL Hypersonic Tunnel No. 4, which
hasg bean used during the past eleven years for development
tegting &8 well as for basic research. This report completes
the documentation on the firat hypersonic wind tunnel in the
United States.

The authorgs of this report wish to acknowledge that they
genersted only a small part of the information contained herein
and wish to give credit to the personnel from the design, ressarch,
and developmental groups within the NOL Aerodynamics Department.
Unfortunately, a compiete list of the people responsible for this
successful project would be very difficult to compile and, there-~
fore, names will not be mentioned. In addition to the super-
visors, project leaders, and their assistants, credit has been
degervedly given in all the source matorial to the tunnel
operators and the operating and maintenance personnel who
contributed to the success of the project.
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SYMBOLS
& area
c velocity of sound
cp specific heat at constant pressure
D diameter
g acceleration of gravity
H totai heating rate
L nozzle length (throat to exit)
M Mach number
PO supply pressure
R gas constant
Re Reynolds pnumber
To supply temperature
t time
U velocity
w weight of stored air
w weight flow rate
Y ratio of specific heats
5 total boundary-~layer thickness
B%* boundary-layer displacement thickness
) absolute viscosity
0 mass density
Superscripts
* sonic throat conditions
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Subscripts

e effective exit conditions
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INTRODUCTION i

Hypersonic wind tunnels are highly advanccd research and )
development facilities which are found in nearly every major §
perospace research establishment. In the late 1940's there
yere few supersonic tunnels, and these were not, in most cases,
the sophisticated instruments of today. During this period, the
U, 8. Naval Ordrance Laboratory's Aercballistic Department had
in operation a well-equipped supersonic wind-tunnel laboratory
with an experienced staff based in part on the equipment and
personnel from Peenemuende and Kochel, Germany. The familiarity
of these personnel with compressible flow aerodynamics at super-
sonic velocities and their understanding of the coming requirements
of missile technclogy led naturally to the proposal and design of
a wind tunnel capable of exploring the range above Mach number 5.
As a result, in May 1950, a 12 x 12 cm hypersonic tunnel called
NOL Hypersonic Tunnel No. 4, was placed in operation, being the
first practical tunnel of this kind in the United States.

From the very beginning of operation, this tunnel was used
to obtain data and to establish criteria for the design and
operation of future hypersonic tunnels, Little information |
existed, for example, on such phenomena as air liquefaction, :
boundary layver development in the nczzles, diffuser performance,
aerodynamic heating, etc. Each of these areas and others were
investigated, and through these efforts much of the design
information on which many present-day tunnels are based was
obtained. New instruments were developed for these investiga-
tions and conventional techniques were adapted to the new con-
ditions., A bibliography of NOL reports pertaining to the
Hypersonic Tunnel No., 4 results is given in Appendix A, Other
reports of related work are included in the list of references.

As a consequence of the knowledge gained in the development
and operation, the tunnel has been improved and enlarged to its
present state. This report describes the current highly success-
ful and reliable system as wel: as its operating conditions and
limitationg. The operational region of the hypersonic tunnel is
shown in figure 1 together with the region covered by NOL's
supersonic wind tunnels. Even though relatively high altitude
conditions can be simulated in the hypersonic wind tunnel, it
still operates completely in the continuum flow regime, The
trajectories of glide vehicles and ballistic missiles are shown
to i1llustrate the tunnel's suitability for the study of parameters
and phenomena of interest to the designer of such vehicles. The
upper boundary of the regime corresponds to operation with a
supply air pressure of 5 atmospher2s, and the lower boundary to
52 atmospheres.
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For operation at any of the conditions within the indicated
regime, it is necessary to preheat the supply gas to avoid air
liquefaction in the test section. Early experiments (ref, (1))
had shown that liquefaction begins at the equilibrium condensa-
tion point. 'The supply texperatures needed to prevent equilibrium
condensationr in the teat section are shown in figure 2 for
vajrious Mach numbers,

MAJOR COMPONENTS OF TAE HYPERSONIC TUNNEL

A functional schematic layout of Hypersonic Tunnel No, 4
and its auxiliary equipment iz shown in figure 3. As now
constituted, it is a Mach 5«10 tunnel which is blow~down
opernted from a maximum stagnation pressure of 52 atmospheres
t0 a low pressure reservoir of 4 mm Hg minimum. The size, as
defined by the maximum nozzle exit area, ls three guarters of a
square foot. An artist's concepiion of the existing tunnel is
gshown in figure 4, and a photograph of the working section
within view of the operator can be seen in figure 5. Figure 6
is n drawing showing the general arrangement of the principal
components and their significant dimensions.

The tunnel operates from a 3000 and 5000 psi supply of
stored air which has been filtered and dried. Pressure-
regulating valves control the prassure of the air supplied to
the tunnel in the range from 5 to 52 atwmospheres. A gas-fired
indirect heat exchanger and an 80 KW alectric resistanc® heater
control the supply temperature in the range from room tempera-
ture to 1700°%R.

The tunnel iz started by opening & quick-acting slide valve
immediately upstream of the nozzle inlet section., The resulting
flow of air is expanded in two~dimensional fixed block or
axially symmetric nozzles to the desired Mach number. Down-
siream of the test section the air is decelerated in a convergent-
divergent, adjustable area diffuser, All tunnel components
axposed to the air flow are water cooled to minimize thermal
stresses and maintzin constant tunnel geometries, Low diffuser
exlit pressures are maintained by either of two available low
preasure pumping systems - a rotary vane pumping plant or a
centrifugal compressor plant. The following sections describe
in greater detail the components and their mode of operation.

Air Supply

The compressed air storage system consists of 1420 cubic
feet of air contained in 3000 psi gas bottles and 900 cubic feet
of air contained in 5000 psi gas bottles. The 3000 pxi and 5000
pai bottleg have an average unit capacity of 22 cubic feet and
28 cubic feet, respectively. Altogether they have a groas

2
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capacity of about 42,000 pounds of air. Figure 7 shows the
weight of air stored in the combined bottie field as a function
of the storage pressure.

Air is supplied to the storage system by twelve four-stage,
reciprocating compressors having a combined delivery rate of
2.4 pounds per second at their maximum design output pressure of
3000 psi. It is further compressed te 5000 psi by a single
stage, reciprocating boostey upnit having a capacity which nearly
matches the 3000 psi units. The 3000 psi machines are the hori-
zontal type employing inter~stage and after-stage coeling. The
booster unit is vertically configured and employs after-cooling
also.

Dehumidification of the air is accomplished partially in
the compressor after-cooclers but primarily in dryers containing
an alumina~type desiccant, These dryers are capable of main-~
taining a dew point of ~72°F, The reactivating cycle of the
dryers consists of passing electrically heated air at 350°F
through the saturated desiccant bed followed by a cooling cycle
utilizing cool dry air.

Air Storage Recovery

The time required to recover or pump up the air storage
field can be computed from the combined compressor recovery
rate. Figure 8 is a plot of the time reguired to add a given
number of pounds of air to the storage field. 1f the field is
completely empty, 4.75 hours are required to fill it to 42,000
pounds. Since the storage field pressure is monitored on the
tunnel coontrol panel, figures 7 and 8 can be used to estimate
recovery times between any given pressure conditions in the
field.

Pressure Regulation

The supply air pressure is regulated by elther one of two
pneumatically controlled, contoured plug valves., The valves
have body sizes of 4 inches and 2 inches, trimmed down to 2
inches and 0.75 inch, respectively. They are connacted in
parallel and sequentially operated to handle the mass flow and
pressure requirements. Valve selection is such that weight
flows between approximately 0.4 lb/sec to 30 lbs/sec can be
easily controlled. Automatic controllers maintain the tunnel
stagnation pressure at any desired control point within the
range from 5 %o 52 atmospheres within + 1.5 psi. The control
pressure is sensed at the s&ir supply section immediately in
front of the nozzle inlet section. The controllers, together
with the various gauges and recorders which provide coarse and

5 A e
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fine indications as well as records of the supply pressure
and air storage pressure, are mounted in two instrument racks
adjoining the operator’s console (see fig. 9).

Primary Air Heater

The indirect gas~fired heater is installed outdoors (fig. 10)
and vertically above the wind tunnel. JIncluding the accessory
equipment, such as the combustion blower, control valves, and
control devices, and instruments which must be locaily mounted,
the installation is unsheltered. The exterior casing is 12 feet

in height and 6 feet in diameter. The heater itself weighs less
than 5 tone,

Designed for a maximum pressure of 100 atmospheres, the
heater has wide load handling capability. At the maximum
heating rate of 1400 Btu/sec, the unit will process air weight
flows between 4 and 28 lbs/sec, the corresponding air delivery
temperatures beirg 1200°F and 200°F, respectively. These two
performance extremes correspond very nearly to Mach 10 and
Mach 5 at stagnation pressures of 100 atmospheres and 25
atmospheres, respectively. At lower output the hezter will
process air weight flows extending down to about 0.4 1h/sec
and still produce delivery temperatures between 750"F and
1200°F. See figure 11 for the complete performance envelope.
Pressure drop through the heater is limited to a maximum of
10 percent of the inlet pressure. A 10 percent pressure drop
is considered to be tolerable for the vast majority of operating
situations and at the same time is a sufficiently generous
allowance to enable a highly compact and efficient heat exchanger
design to be achieved. Throughout most of the operating region
the pressure loss is considerably less than 10 percent.

Temperature fluctuation in the heater discharge is designed
not to exceed + 1 percent over the entire load range. At
moderate weight flows and pressures the temperature stabilization
is considerably better than + 1 percent. Variations of not more
than + 4°F at temperatures ranging up to 1200°F have been
consistently observed.

Supply temperature control is performed manually or auto-
metically from the control center using proportioning controller-
recorders equipped with automatic reset and rate action. The
controller output is applied to pneumatically activated valves
which modulate the burner combugtion sir, fuel gas, and dilution
air. Temperature sensing for control purposes is made in the
8-inch diameter heater discharge pipe. A drop of 50 to 100
degraes Fahrenheit is commonly experlienced between the control
point and the nozzle inlet depending on the load and temperature
level. As this drop is invariant after reaching the operating

4
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state, its magnitude is only important insofar as it diminishes
the maximum achievable stagnation temperature. The relatively
larze temperature drop is the result of convective losses
occurring along the length of the large expansion loop in the
hot piping, a construction that was necessary to limit the
thermal stroesses to an acceptable level. o

The heat exchanger itself is basically a two-pass, counter-
flow unit. A refractory~lined baffle separates the passes.
Process air enters a toroidal manifold at the top of the heater,
tlows downward through the outer pass, and then upwards through
the inner pass where it is convectively and radiantly heated by 3
the incoming combustion gases. The heat exchanger is designed
on the basis of a stress to rupture in 10,000 hours at maximum
conditions. Response rates of 60°F per minute are typical for |
initial warm-up, whereas rates several times greater are attain- !
able for subsequent load excursions of moderate span. The s
respanse characteristics of the entire installation have been §
improved by lining the interior of the pressure piping connecting 5
the heater to the tunnel with thin-walled stainless steel pipe
covered with insulating blanket. -

i

A top mounted, forced draft, downward firing burner con- :
suming propane gas provides the hot combustion gases for heat
transfer. Rated thermal efficiency of the burner-heat exchanger
combination is 60 percent at 4.5 pounds per second of process &
air and 1200°F outlet temperature. At higher weight flows the ‘g
efficiency improves, approaching 70 percent as a maximum value.

Electric Heater

An electric resistance heater, contained in a pressure
vessel suspended from roof framing above the tunnel room, supple~
ments the ocutput of the primary heater. Approximately 80 Btu/sec
can be transferred to the air stream at optimum conditions. The
resistance elements are nichrome wire coils wound on ceramic
cores placed in cross flow, The maximum electric power input
is 80 Xw, derived frocm 400 volt, a.c., source. A part of the
original instalilation, this unit has a s3afe working pressure
rating at room temperature slightly in excess of 1000 psia.

At elevated temperatures, it is reduced to 930 psia at 750°F
and 750 psia at Y00°F. A loose fill, refractory base, fibrous
insulation possessing a continuocus service temperature above
1200°F, maintains the temperature of the pressure vessel below
400°F at the maximum condition. For practical purposes, there-
fore, the heater, together «ith the tunnel in its present form,
is pressure limited at 1000 psia. Temperature control is more
rudimentary than in the case of a number of equal resistance
banks, an integral number of which are energized to meet the
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tpproximate load requirements, A separate bank, equipped for
gimple un-off regulation, then provides the fiue control.

By~Pass System

Inserted between the electric heater and the slide valve is
a by-pass line containing a manually operated throttling valve,
¥hen the vglve is open high pressure air can be exhaustad
directly to the atmosphere prior to establishing flow in the
tunnel, thus permitting preheating of the heater and other
urstream equipwent. Also, when the tunnel is stopped for short
durations, the heater can be maintained at relatively high tem-
peratures, In both instances, diversion of the hot air through
the by-pass diminishes substantially the time to establish or
re-establish operating conditions while sustaining only a com-
paratively small loss of stored air. A further function of the
by-pass system is to provide a forced air flow over the heat
exchange surfaces and other high temperature parts during the
immediate post shut-down period. This prevents the overheating
of critical comporents in the heater that would occur if the
air flow were suddenly stopped. For preheating, by-pass pres-
sures in the range of 50-150 psi and heating outlet temperatures
in the region around 1000°F are highly effective.

Tunnel Operating Valve

The final event in the tunnel flow starting sequence is
the opening of the tunnel operating valve located between the
Il :aters and the nozzle section (see fig, 5). The valve is a
quick-acting device, having a pneumatically driven horizontal
slide with a 4-inch x 6.25~inch rectangular opening. Sealing
is effected by metal-to-metal contact tetween the stainless
steel slide and the cast, low-alioy carbon steel oody. The
latter is water cooled. Valve stem cooling 18 achieved through
extended surface bonnet construction. An air cylinder type
actuator, using a low pressure (75-95 psia) supply, strokes the

valve in approximately 0.5 seconds. The valve assembly possesses

a temperature-pressure rating nearly identical to the electric
topping heater, and, therefore, imposea the same operational
limitation.

Valve operation is controlled »% the main control console.
Electrical permissive circuits funciioning to prevent energizing
of the valve actuator accidentally or under improper operating
conditions must be satisfied before the vaulve can be operated.
In addition, a manvally engaged mechanical lock on the valve
stem ensures personnel safety while test preparations are made
inside the tunnel.

— e A
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Settling Chamber

Situated between the tunnel operating valve and the nozzle
is a chamber which functions both as an air stagnating and
filtering unit. Figure 12 shows side and bottom views of this
section. It is also in this unit that the stagnation pressure
and temperature are measured.

The upper portion of this section contains the filtering
unit which consists of a box-shaped particle-trap surmounted by
a solid pyramidal fasiring to redirect and distribute the oncoming
flow and to absorb the flow impact. This construction can be
seen in figure 12, A 325 mesh, 0.00l4~inch stainless steel wire
cloth reinforced by 6 mesh, 0.025-inch stainless steel wire
cloth stops particles larger than about 30 microns. Filtering
action i3 further promoted by the relatively large frontal area
presented to the flow and the oblique impingement induced by the
severe change in the flow velocity vector. A rectangular access
port is provided to allow rapid removal of the filter for
servicing and cleaning purposes. A pressure monitoring system
is used to detect the build-up of dirt on the filter element.
Cleaning and inspection of the filter take place whenever the
pressure monitor indicates a pressure drop of & psi.

The filter is followed by a large duct sized to reduce the
flow velocity to less than a Mach number cf 0.015. Turbulence
is reduced to a practical minimum by a cascade of four screens
ranging from 20 mesh to 100 mesh in the direction of flow. The
effactiveness of these and other measures designed to produce
high quality flow is treated in the section on performance.

The filter and turbuleunce reducing elements are contained
within a stainless steel duct which, in turn, is housed within a
forged stainless steel pressure chamber, jacketed with rigid
sheet insulation. The entire assembly has a working rating of
100 atmospheres at 1300°F, Uncooled metal gaskets are used in
the side access port whereas water-cooled silicone rubber
gaskets seal the end flanges,

Egzzles

The aerodynamic design procedure for the two-dimensional
flow (block type) nozzles is described in reference (2).
Reference (3) treats the aerodynamic design of the axially
symmetric nozzles and more fully describes their mechanical
design and construction, Nozzles used in this tunnel are of
the fixed contour type; both two-dimensional, rigid block, and
axially symmetric nozzles are avallable, The rigid block noz-
zles have given satisfactory service in the medium Mach number
~ange; axislly symmetric nozzles have found almost exclusive

7
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service at Mach 8 znd above. The problems associated with high
and low pressure sealing, elevated temperatures, dimensiconal
instability, surface precision, and contour tolerances are more
difticult at the higher Mach numbers, making the axially sym~
metric nozzle an attractive design for these conditions.

Table 1 lists the nozzles which are available for this tunnel,

o
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The nozzles are suspunded trom the air stagnation chamber,
and in the case nf the block-type nozzle they serve as the
structural link between that sgsection and the test section. A
separate tunnel suspension is used with the axially symmetric
nozzles in order to minimize loading of the comparatively
fragile contoured shell,

e e e
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Each rigid block nozzle is composed of identically formed
and contoured blocks mounted between plane, diverygent sidewalls
to form Laval-type nozzles which will generate a two-dimensional
uniform parallel flow., Divergence of the sidewalls compensates
for the sidewall bcundary laver growth,

mem bt N e e A 2 2 g £

The nozzle blocks are stainless stesi weldments, precision .
machired and polished to produce the desired aerodynamic profile, !
To improve the dimensional stability of the Mach number 8 twn- E
dimensional nozzle in the sonic throat region, a high purity ;
nickel throat insert, in which cooling channeia were machined,
was joined to the prircipal block by welding. Figure 13 is a
cutaway view of the throat insert and the adjoining portions of
thé main block for this nozzle. Since cooling requirements in
the expansior region of the nozzl=2 are several orders of mnagnitude
lower than at the throat, a more conventional design has been
applied to the main block. A series of holea drilled crosswise
tc the flow and parallel to the profile, suitably manifolded,
serve asg the cooling passages.

The Mach number 6.7 two-dimcnsional nozzle, operating at a
lower temperature,has n¢ throat insert. The entire cooling
arcangenent is similar tc the expansion sect:on of the Mach
number 8 two-diwensional nozzle, The sidewalls are stainless
steel weldments into which cooling passages have been milled
and a welded stainless steel cladding overlaid to form the flow
gide surface, Coolant velocities and total pressures are in
the same range as those for the coolant circulated through the
main block. An assembled block type nozzle, set in place in
the tunnel, is shown in figure 5.

The axially symmetric nozzles were formed by electrolytically
depositing high purity nickel on a precisely machined mandrel. -
¥ith this method, wall contour accuracies of + ,0002-inch and
surface finishes ss fine as 4-8 micro~inches are commonly
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obtainable. The electrolytic depositing process affords

excellent control over the wall convective cooling system K
geometry. By interrupting the process at an appropriate time, i
cooling channels can be formed by conventional machining opera- Y
tions. The comnstruction of the Mach 8 axially symmetric nozzle

is schematically represented in figure 14, Shown also are the

nozzle and mandrel. The cooling channel depicted in figure 14

is a simple annulus having the inlet and outlet 180° apart.

Test Section ?

The main design criteria were spaciousness, freedom from
internal ohstruction insofar as practiczble, generous provision
of precisely aligned mounting surfaces, and a high degree of
acceasibility. These criteria weres in conaonance with the aero-~
dynamic requirements to accommodate a large variety of models
and test instrumentation.

The test section (fig. 15) is a ruggedly constructed re-
inforced box weldment. Two of the opposing sidawalls are fitted
with large rectangular hinged access doors, which can be quickly
unlatched to permit ready and convenient access to the interior.
Circular ports are provided in each dcor to receive s variety of
ll-inch diameter, interchangeable utility panels. The other <two
sides of the chamber are closed by light weight, bolted cover
plates which facilitate the installation and servicing of the
bulky apparatus and instrumentation, such as the model attitude
and support mechanism,

B D

4180 interchangeable with the utility panels are the
schlieren optical windows. The windows are l-inch nominal thick~
ness prime schlieren quality, fuzed milica, yielding am ll-inch
diameter field of view., A cushioned mounting, illustrated in
figure 16, provides the necessary restraint to obtain a close
fitting, flush, aerodynamically acceptable internal surface
Joint without inducing edge moments and stresses of sufficient
magnitude to cause spalling.

The chamber interior can be modified for a completely open,
half-open, or closed~jet configuration. The last configuration
is difficult to produce from the practicszl standpoint because
of the many irregular penetrations normally required for instru-
mentation. Coolsnt passages in the test section walls are formed
by welding st=inlcss ate~]l sheets over pre-machined channels ip
the base structure. In addition to reducing the thermal satress
and distortion in the structure, the cooling system affords
protection of the elastomeric meals. Seal cooling is far more
critical than general structure cooiing and for this reason
separate cooling circuits are employed for each seal, the pas-

sages being formed ax clome to the zsal itseif am fabrication
methods permit,

9
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Diffuser

The type of diffuser developed for this tunnel is a two-
dimensional flow duct incorporating hinged plates which cau be
positioned to produce a single throated, converging-diverging
duct. The diffuser can assume a large range of area ratios,
Openings at the inlet, throat, and exit can be adjusted from
13 inches to 14 inches, O inch to 11 inches, and 1 inch to 12
inches, respectively. Total diffuser length is 7 feet, the

supersonic~to~-subsonic diffuser duct length ratio being about
1 to 2.5.

In the Hypersonic Tunnel No. 4 installiation, the greater
portion of the diffugser is situated below the main floor level
as is i1llustrated in figure 3. A full length externzl view of
the unit is shown in figure 17. The electric motor powered
drives for the adjusting screw jacks at the throat and discharge
are prominently projecting from the sides. In figure 18 a
sidewall has beezn removed to reveal the variable area flow duct.

The diffuser throat is constrained to open and close in a
fixed horizontal piane whereas the inlet and discharge upenings
shift as necessary to accommodate the resulting axial movement.
The motorized drives can procduce changes in the diffuser config-
uration at the total rate of 10 inches per minute at the throat
and 8 inches per minute at the discharge. Manual adjustment is
provided at the inlet inasmuch as this station does not require
frequent nor rapid change of the opening. In contrast to the
other stations where the duct dimensions may be altered during
tunnel operation, the inlet opening is set prior to starting
the flow and invariably remains fixed during a test. Adjusting
the diffuser area is a function which can be performed simul tane-
ously at any or all of the three pairs of position-setting jacks
under static or dynamic air loading. The plates and adjusting
mechanisms are both mechanically and electrically protected from
over-travel at either extreme. The inlet and the throat joints
are matched and contoured to present faired surfaces to the
flow through the normal range of motion. A solid teflon insert
installed in the throat "knuckle" joint prevents back flow
through the jcint. A oair of flexible seals block the back-
streaming of air from the diffuser exhaust through the void
betweenr the movable plates and the external casing. Undesirable
leaks along the length of the ducts are prevented by solid round
cord packings set into the edges of the movable plates.

Two service panels, approximately 2 feet square, are installed
in each fixed sidewall of the diffuser structural casing. The
one installed in the general area of the inlet and throat sta-
tions iz to faciliitate the in-place malintenance and repair of
the kinemstic ard sealing systems which otherwise would reqguive
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the removal and complete dismantling of the entire unit. Each
of the panels contzins a 10-inch diameter utility port, through
which special instrumentation, probes, and models can be
inserted. The other panel is located in the extreme downstream
portion of the sidewall. The sidewalls shown in figure 17 are
an earlier design which did not specify the large service panels.
This latter feature was added when new walls were constructed.
In the new walls, coolant passage construction is based on a
design approach that is different from the criteria adopted for
equipment of earlier design. In the more recent design all
welding, for structural as well as for coolant purposes, is per-
formed on the exterior of the weldment so as to prevent any
leaks along the flow side surface.

Installed in one of the 10-~inch panels at the diffuser
entrance is an over-pressure relief valve set to open automatically
at 1 psi above ambient pressure. Its function is to protect
personnel and the tunnel equipment against high pressure which
might occur under emergency vacuum pump shutdown conditions.
Under moat emergency shutdown conditions, however, there is
sufficient time to secure the high pressure system because of
the relatively large volume in the downstream piping. Struc-
turally the diffuser will withstand much higher pressures but
there are a number of somewhat delicate items, notably the
schlieren windows, certain internal seals, and instrumentation,
which would be irreparably damaged by over-pressure.

Gate Valve

The tunnel may be isolated from the main vacuum marifold by
means of a 16-inch diameter motor-driven wedge~type gate valva,
This valve is electrically interlocked with the upstream slide
valve g0 that it cannot be closed while the tunnel is operating.
By closing first the slide valve and then the isolating gate
valve, the tunnel working section can be isolated from both the
high pressure and low pressure system. The gate valve design
and construction materials are standard for low pressure, moderate
temperature, gas service. Water coocling has not been found
necessary.

Aftercooler

The aftercooler is m shell and tube cross-flow heat exchanger.
The two extreme design conditions for this unit are (1) inlet
air temperature of 1250°F, inlet pressure of 0.89 psia, and
weight flow of 2.4 lbs/sec, and (2) 190°F inlet temperature, 7.73
psia inlet pressure at weight flow of 28 1lbs/sec. In all cases
the exit temperature is 150°F, and the pressure drop through
the coils does not exceed 10 percent of the inlet pressure,

11




NOLR 62-47

Maximum coolant requirements are 300 gpm o! water at 85%. maxi-
mum and 70 psia minimum through the tubes plus a nominal tlow
in the shell water jacket.

Vacuum Punps

The primary plant which provides the pumping capacity for
Hypersonic Tunnel No. 4 as well as the other continuous tunnels
of the Naval Ordnance Laboratory testing complex consists of
four multi-stage centrifugal compressors. Each of the four
coxpressors has a separate electric motor drive. The total
available power is nearly 9,000 XW, but the normal power con-
sumption for this tunnei is only 2,200 KW. Figure 19 shows
the measured overall performance of all four compressors
operating in series. This is the principal operating configura-
tion. Reference (4) fully describes the plant and discusses its
operation and performance.

PERFORMANCE

Discharge Rates

The discharge rate of weight flow varies considerably in
the range of conditions of interest for Hypersonic Tunnel MNo. 4.
One of the important factors is the exit area of the nozzles
available., Although the tunnel is considered to have a nominal
exit area of 10 x 10 inches, the available nozzles have the
physical dimensions given in Table L. In order to compute
approximately the discharge rate, the effective area of the
nozzlie exit must be calculated, i.e., the boundary layer dis-
placement thickness must be taken into account. The latter
can be obtained from measured values of the total boundary layer
thickness and the tabulated data of §*/5 (ref. (6)).

Discharge rates can be calculnted from

n A%
W= go"URA® = o ¢ Yo A (1)
°© "o o, TO e ©
The term %:J;E is a constant and is equal to 0,579,
ol’o

¥Yith Po in atmospheres, To in degrees Rankine, and w in lb/sec.
equation (1) can be written as

P A
w = 1125 4~ 2_° (2)
VT
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Figure 20 shows the resulting mass flow computed using minimum
temperatures to avoid equilikrium condensation, The limits of
operation are indicated on the figure. The lower limits and
the upper limit at M = 6.7 are associated with heater control
limitations.

Figure 21 shows the entire envelope of operating conditions
for three of the nozzles. The reason for each operating limita-
tion is indicated on the figura. ‘

Calibration Dats

Figures 22 through 24 are detailed calibration curves for
three of the nozzles. For each nozzle, the M = 6.7 two-
dimensional and the M = 8 and M =~ 10 axisymmetrical nozzles,
two curves are presenied showing the axial Pitot pressure
distribution and the Pitot pressure in a plane normal to the
flow direction near the nozzle exit. The supply conditions
indicated on these figures represent the design conditions for
these nozzles.

The curves themselves best illustrate the high quality of
these nozzles. Meany similar curves are available for off-design
conditions. However, it is possibie to calculate the change in
Mach number near the nozzle exit due to off-design operation by
the following approximate method. The local Mach number is
obtained from standard isentropic flow tables corresponding to
an effective area ratio

A
=~ ) (3)

The throat area, A*, is assumed to remain equal to the geometric
area (see Table 1 for nozzle dimensions) iudepnendent of supply
conditions. The effective exit area (Ae) is the geometric area

at a given station near the exit less the area between the
physical wall and the average displacement thickness (5*). The
average displacement thickness can be calculated from tha
following empirical formula, which is suitable for the available
nozzles (see figure 25}

— = -33 Re -7 (4)
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Blockg&g

Tests have been conducted with five representative model
configurations to determine maximum model dimensions permissible
for three of the nozzles. In these tests each model was
mounted near the nozzle exit and the tunnel diffuser was in the
fully-open position., The test was started at the normal condi-
tion of 9 to 10 atmospheres suppl; pressure and 4 mm Hg end
pressure. The establishment of hypersonic flow was determined
from Pitot pressure measurements.

There are two techniques for starting the tunnel: 'fast
starting” and "slow starting”. Fast starting is the normal
method of establishing flow by means of the quick-acting slide
valve. Slow starting describes the situation where flow through
the nozzle is permitted but with insufficient pressure ratio.
The supply and end pressures are then manually regulated so as
to increase the »ressure ratio until proper flow is achieved.

The results describing the maximum model size permissible
for starting flow by the fast starting method are shown in
Table 2. 1t is evident from this table that blunt bodies have
a smaller maximum starting diameter than more streamlined shapes,
In some cases, if the body is initially put at an angle of attack,
the tunnel may be started with a blunt body whose diameter exceeds
the value given in Table 2.

The basic limitation on the angle of attack range possible
with a given model is that at some angle the tunnel boundary
layer will separate. The specific angle will, in general, depend
on model configuration and thickness of the wall boundary layer.
With moderately blunt mcdels, tests have been run at angles of
attack up to 13°. VWith smaller models, damping tests involving
complete rotation of the model have been successfuily performed.

Diffuser Recovery

The efficiency of the diffuser has been investigated thor-
oughly for the early configurations of Hypersonic Tunnel No. 4.
These results were reported in NAVORD Report 2376. The earlier
regults indicate a maximum operating end-pressure, without causing
flow breakdown, of about twice the test section Pitot pressure.
These studies were made with a two~dimensional wedge nozzle
exhausting directly into the diffuser inlet (i.e., a closed jet),
Since its modification, operation of the tunnel can optionally
be in an open-jet, partially closed-jet, and completely closed
jet configuration with correspondingly varying diffuser efficiency.
Partially clused or completely closed-jet operation is most con-
veniently arranged with the two~dimensional nozzles. Jet plates
which extend the noxzzle contour can be instaliled whenever

14
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instrumentation permits it and a high recovery is needed, With
partial closing, an operating end pressure of 1,1 times the Pitot
pressure is maintained. With the axially symmetric Mach number 8
and 10 nozzles, and the flow exhausting into the two-dimensional
test section and diffuser as a more or less open jet, the per-
missible end pressure ratios are 0,55 and 0.72, respectively.
Since the present compressor plant has sufficient low pressure
pumping capacity the tunnel is very often operated with a
straight duct diffuser without concern for the end pressure value.
Only for the most severe blockage conditions is it necessary to
adjust the diffuser for optimum pressuvre recovery.

Simulation Capability of Hypersonic Tunnel No. 4

The Reynolds and Mach pumber capability of Hypersonic o
Tunnel No. 4 are shown in figure 26. This figure was obtained A
by compuiing the maximum and minimum Reynolds number which may
be obtained in each of the three nozzles - the Mach number 6.7,

8 and 10 nozzles.

INSTRUMENTATION

Four types of tests are carried out in Hypersonic Tunnel No. 4.
They are:?

a. Model pressure, temperature, and heat-transfer
distributions.

b. Force and moments.
¢. Probing flow fields.
d. Optical. i.
In the following sections the major instrumentation that is |
available for performing the above tests is described along with

the data recording facilities at NOL,

Model Pressure, Temperature, and Heat-Transfer Distributions

An important part of the testing of scaie mondels at high
Mach numbers is concerned with measuring the pressure and tem-~ v
perature distribution on the surfaces of models and heat-transfer '
distributions. Heat~transfer data may ba obtained with transient
techniques or because of the lorg blowing time possible for mcst
Hypersonic Tunnel No. 4 conditions, steady-state methods may be
used.

A water-cooled sector mechanism is available for mounting
models in the tunnel with an angle of attack range of + 20°,

15
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Detachable sections are available to give other ranges of angle
of attack with respect to the flow. The center of rotation is

on the tunnel centerline at the nozzle exit. The distance from
the angular position is detected by a syncro-system, the output

of which is displayed continuously and can be automatically
recorded.

Force and Moments

Normal force and plitching moment measurements also represent
2 considerable part of the development testing performed in
Hypersonic Tunnel No. 4. This type of testing is performed using
water-cooled strain-gage balances developed for use in the hyper-~
sonic tunnel. Reference (8) describes their characteristics.

Prching of Flow Field

Flow research data in the hypersonic tunnel are gathered
largely with probes, i.e., small instruments designed to detect
local pressure (static or Pitot), total temperature (ref. (9)),
equilibrium temperature (ref. (10)), mass flow (ref. (1ll1l)) or
gas concentration. These probes are used to investigate the
principal flow fields such as the nozzle and diffuser flow, or
instruments can be constructed which are suitable for surveying

the boundary layer on the tunnel walls or on specially constructed
models,

Mechanical drive systems have been developed to support and
position the probes. These include 2 two-directional traverse
mechanism for nozzle-diffuser calibration as well as automatic
and hand-operated micrometer traverse mechanisms for more accurate
cross~-flow measurements such as in the boundary layer. The two-
directional traverse mechanism can be installed in the access
ports of the test section and diffuser. It has a maximum travel

of 26 inches in the flow direction and 6 inches perpendicular to
the flow.

The manually operated micro-traverse is a water-cooled
micrometer with a one-directional travel of 2.6 inches. A
vernier readcut allows positioning accuracy of better than + L001°
inch. The automatic traversing mechanism is a motor driven
micrometer permitting a one-directional movement of 3 inches with
an accuracy of + .001 inch. A manually operated lead screw can
be used to move the automatically driven arm unit perpendicular
to the direction of the automatic drive. A maximum travel of
10 inches is possible in this direction.

Data Handling

Two automatic data recording systemg are currently in use
at NOL. Tbe older system known as "PADRE" (Portable Automatic
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Data Recording Equiprent, (ref. (12)) is suitabie for recording
any gquantity represented by an a.c. or d.c. voltage, Seven
channels with servo-systems and digital convectors are provided.
The output is punched onto IBM cards. The new system is the
Epsco Data Processing System which records up to 80 voltage
inputs per second on magnetic tape. Both systems can be used
as inputs for NOL's IBM 7090 computer for programmed data re~-
duction.

Optical Instrumentation

A two-mirror, color, or black~and-white schlieren system is
available for general studies of the flow field. To eliminate
the disturbing effects of room air convection, the system is
completely enclosed and can be tightly sealed to the tunnel
windows. Light sources of various intensities including an
8 KV spark source of 0,6 microsecond duration are available
either for single exposure or normal speed motion pictures.

SUMMARY AND CONCLUDING REMARKS

NOL's Hypersonic Tunnel No. 4 is designed for aerodynamic
research and development testing. It operates in the Mach
number range from 5 to 10 with supply pressures up to 52 atmos-
pheres and at supply temperatures up to 1700°R.

Major components of the tunnel system that are described
include the air stcorage, pressure and temperature regulators,
nozzles, test section, diffuser, and the vacuum pumping system.
Four contoured nozzlées are currently available for this tunnel.
Two are Mach numbers 6.7 and 8 two-~dimensional nozzles, and two
are Mach numbers 8 and 10 axisymmetric nozzles.

Performance of the main components is described from the
point of view of the user of the tunnel. The limiting factors
on the flow conditions obtainable in the test section (e.g.,
air liquefaction, mass flow, running time, and blockage, as well
as the uniformity of the usable flow) are discussed.

Perhaps the outstanding features of this tunnel have been
the complete absence of s~rious mechanical difficulties, high
quality nozzles and instrumentation, large air storage capacity,
low pressure pumping capability and a highly reliable and easily
controlled heat source. Tt is notable that its modification was
accomplished in approximately six months with testing begiuning
immediately,

Because of this, the Hypersonic Tunnel No. 4 has been used
extensively for detalled studies of turbulent boundary lavers,
with emphasis on the effects of heat and mass transfer on

17
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boundary layer characteristics, the investigation of heat
transfer to various blunt-nosed bodies, and related studies
requiring a close control of operating conditions for
extended periods,

It is also significant that this tunnel which pioneered
the field in hypersonic flow is again being modified to
extend its range. A graphite resistance heater has recently
been added to increase its range to Mach 17.5. Because 0
oxidation problems at the reqrired temperatures (45000R),
nitrogen is being used as the test gas.

18
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