NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
ANALOG COMPUTERS FOR THE EVALUATION OF AERODYNAMIC COEFFICIENTS

RELEASED TO DDC
BY THE NAVAL ORDNANCE LABORATORY
☐ Without restrictions
☐ For Release to Military and Government Agencies Only.
☐ Approval by NOL required for release to contractors.
☐ Approval by BuWeps required for all subsequent release.

21 APRIL 1964

NOL
UNITED STATES NAVAL ORDNANCE LABORATORY, WHITE OAK, MARYLAND
ABSTRACT: During static-stability tests in the U. S. Naval Ordnance Laboratory's wind tunnels, it is desirable to have the six aerodynamic coefficients computed on-line. This report describes the special-purpose analog computers designed to make these computations and display the results.
ANALOG COMPUTERS FOR THE EVALUATION OF AERODYNAMIC COEFFICIENTS

This report has been prepared under Task Number RMMO-42-009/212-1/F008-09-01 and describes for reference purposes the aerodynamic coefficient computers employed with the U. S. Naval Ordnance Laboratory's wind tunnels.

R. E. OДЕNING
Captain, USN
Commander

By direction

K. R. ЕNKENHUS
CONTENTS

Introduction .. 1
Test Procedures .. 1
Coefficient Equations 1
Computer Design .. 2
Circuit Details ..
 Filters ... 3
 C_N and C_Y Circuits 3
 C_m and C_n Circuits 4
 C_l and C_d Circuits 5
 α and ϕ Circuits 5
 qA Controls .. 6
Program Patchpanel .. 6
Computer Use ... 7
References ... 8

ILLUSTRATIONS

Figure Title
 1 Coefficient Computer Basic Circuit
 2 Low-Pass Active Filters
 3 Normal Force Circuit (Simplified)
 4 Pitching Moment Circuit (Simplified)
 5 Rolling Moment Circuits
 6 Analog Computer, HT No. 8
 7 Analog Computer, ST No. 1

TABLE

Table Title
 1 Equations for Aerodynamic Coefficients
INTRODUCTION

Results of static-stability tests in the NOL wind tunnels are usually given in the form of the six dimensionless aerodynamic coefficients. Fully corrected evaluation of these coefficients is made by the IBM 7090 computer from raw data recorded on the DARE System (Data Acquisition and Recording Equipment) (see ref. (1)).

During a test it is desirable to be able to monitor results in coefficient form; therefore, it has been the practice to compute these coefficients on-line by means of special-purpose analog computers connected in parallel with DARE. Each coefficient is then displayed as a continuous curve on an X-Y plotter as the model under test is moved through a range of angle of attack or roll angle.

This report describes the present-generation computers in detail and some of the operating procedures which are employed in static-stability tests.

TEST PROCEDURES

During a static-stability test, the various wind forces acting on a model are continuously measured as the model is swept through a range of angle of attack (or roll angle). The "balance" upon which the model is mounted is instrumented with resistance strain gages whose outputs are direct analogs of the forces acting upon them - two gages indicate forces in the pitch plane, two in the yaw plane and one each for roll and drag. It is the output from these six gages, together with positional information, that is recorded digitally by the data system.

COEFFICIENT EQUATIONS

The aerodynamic coefficient equations which are to be evaluated by the analog computer are listed in Table 1. Standard terminology, as prescribed by reference (2), is used. The mathematical derivations of these equations are given in reference (3).
In these equations the "H" terms are variables representing the outputs from each of the gages and are assumed to be corrected for "zero." The terms A, B, P, R, S, and T represent constants established by the gage factors and physical geometry of the balance, while the qAD terms are functions of model shape and tunnel operating conditions.

The expression for α, the angle of attack, is given in the Table because it is the independent variable against which the six coefficients are plotted.

In the equations for C_T, C_A, and α, the last four terms of each are corrections to take care of interaction effects and balance deflection. Interactions among the pitch and yaw gages are compensated for electrically by the data system and thus do not enter these equations. Correction for bending of the balance under air load is normally not necessary in the analog computer but is provided for in case extremely light-load balances are used.

Note that the signs associated with each equation are mathematically correct in accordance with the conventions of reference (2). Electrically, however, this may not be the case. In fact the proper polarity for some terms, such as the interactions, can vary from balance to balance and may not be known. The computer then must incorporate means for reversing polarity of each term as well as of the final coefficient.

COMPUTER DESIGN

The major design requirements for implementing a computer to solve the coefficient equations are satisfied by a circuit such as shown in Figure 1. This represents a third-generation design based upon the general approach detailed in reference (4). The present computers, however, overcome the deficiencies of earlier versions and provide greater capabilities and versatility.

In addition to the circuits required for computing the six coefficients, two channels are included for indicating model position. Active low-pass filters are incorporated in each channel to suppress transients and pickup noise.
A patchpanel arrangement, together with uncommitted switches and pots, permits a wide choice of output connections to the X-Y plotters. The computer components and operating controls are physically arranged to facilitate accurate set up and operation as well as rapid maintenance and trouble shooting.

CIRCUIT DETAILS

Filters

Each transducer signal to the computer is fed through a filter to eliminate any transients or pickup noise. These filters are active second-order low-pass circuits having natural frequencies of either 2 cps or 20 cps, gains of 1 and damping of 0.6. A panel switch is used to select either frequency or to give flat response if desired. Figure 2 shows two configurations of this type filter which give similar transmission characteristics.

For single-input amplifiers the circuit of Figure 2 (b) is employed. As can be seen, this circuit requires more components and gives a phase reversal at its output. A vacuum-tube amplifier is used and resistor R_1 chosen to give sufficiently high input impedance at dc. The feedback resistor, R_0, is made equal to R_1 so that an overall gain of 1 results.

For both filter configurations, one pair of capacitors is used and frequency selection is made by switching different values of resistors. A damping factor of 0.6 was chosen to give a sharp corner at the cutoff frequency with good response uniformity within the passband.

C_N and C_Y Circuits

Figure 3 shows a somewhat simplified circuit for computing normal-force coefficients - the circuit for side force is identical. By letting the two segments of the pot represent $1/A_N$ and $1/E_N$, respectively, and the feedback resistor represent $1/qA$, it can be seen that the output of the summing
amplifier will be a direct representation of C_N; i.e.,

$$C_N = \frac{1}{qA} \left[\frac{-H_1}{1/A_N} + \frac{H_2}{1/B_N} \right]$$

$$= \frac{1}{qA} \left[-A_N H_1 + B_N H_2 \right]$$

The negative sign for the output of the forward pitch gage (H_1) is obtained by use of an inverter, while the output of the aft pitch gage (H_2) is supplied directly. In the event the two gages are not wired to give the same electrical polarity, a switch allows the inverter to be bypassed. An additional inverter at the output is provided to establish proper polarity of C_N for plotting and for use in setting interaction constants. The output pot provides for a scaling factor to match the grid lines on the plotter paper.

The constants A_N and B_N are determined by the sensitivity of the two pitch gages and the spacing between their electrical centers. Since similar gages are used at the two locations, the constants will normally be almost equal and the pot will be very close to center. This is an aid in setting up the computer for use before a test. In the actual circuit, padding resistors are used at each end of the pot. These serve the dual purpose of providing greater resolution in setting the $A_N - B_N$ control and of limiting the maximum gain of the summing amplifier.

C_m and C_n Circuits

The equations for pitching and yawing moments are similar in form to the force equations and could, within limits, be solved by the same type of circuit. A severe restriction arises, however, from the nature of the constants A_m and B_m or A_n and B_n. In addition to gage sensitivity and spacing, these constants are functions of the spacing between each gage and the point about which the moment is to be computed (c.g.). Thus, if the c.g. is located directly over the aft
pitch gage \((H_2)\) the constant \(A_m\) becomes zero (and \(B_m = "1"").

It can be readily appreciated that the circuit of Figure 3 will not permit setting a factor of "0" without driving the amplifier into overload.

To permit unlimited choice of c.g. location, then, the circuit of Figure 4 was developed. Here the constants are determined by taking proportions of the input signals \(H_1\) and \(H_2\) rather than by series resistors. By ganging the two pots it is seen that as one constant approaches "0" the other approaches "1." Note that it is the ratio of the two constants that is of more significance than the absolute value of either.

Polarity reversing and scaling controls are employed similar to those in the force circuits. The factor "d" which appears in the moment equations is a constant determined by model dimensions and is implicit in the scaling established by the output pot.

\(C_\ell\) and \(C_A\) Circuits

Two circuits for computing the rolling-moment coefficient are shown in Figure 5 - similar configurations are used to compute the axial-force coefficient. In circuit 5(a) the \(1/qA\) control is actually a form of Kelvin-Varley circuit modified to work into the lower impedances encountered with transistor amplifiers. It has the advantage of requiring one less amplifier than circuit 5(b).

In both circuits shown the interaction terms of the equations, \(TC\) (or \(SC\)), are summed in the proper mathematical polarity. These factors are obtained from pots across the outputs of the force and moment circuits as shown in Figure 1. The scaled values and electrical polarities are established experimentally for each balance when the computer is set up.

\(\alpha\) and \(\phi\) Circuits

The indicated angle of attack, \(\alpha_4\), is obtained from a servo driven pot as the model is swept over a prescribed range. In the computer this signal is fed through a filter, driver
amplifier and scaling pot, as shown in Figure 1, and then patched to the X-axis of all plotters in parallel.

As shown in Table 1 the indicated angle of attack can be corrected for bending effects by summing in factors proportional to the pitch coefficients. In addition, if the balance is to be rotated also factors proportional to the yaw coefficients are included. For most balances this bending is small enough to be ignored in the plotted results. The corrections are available in the computer, however, if needed.

The roll angle, ϕ, is also fed through the computer but needs no correction factors. Having both positional signals available from independent channels permits different plotter scales to be set up and rapid switching when a test program includes both α and ϕ cuts.

qA Controls

From Table 1 it can be seen that the term $1/qA$ is a common factor in all six coefficient equations. The "A" is the cross-section area of the model, while "q" represents a pressure term that is dependent only upon the Mach number for an atmospheric supply tunnel. Once the computer is initially set up for a particular test it is necessary only to change the "$1/qA$" factor when Mach number is changed.

In both computers the $1/qA$ factor for all six coefficients is simultaneously set by means of ganged controls. These are arranged to give three decades of adjustment. Where $1/qA$ is determined by feedback the circuit takes the form of a simple variable resistance - where it is achieved by potentiometer a modified Kelvin-Varley circuit is used to give the necessary three decades.

It should be noted that $1/qA$ is an arbitrarily scaled quantity in the actual computer set up. The major requirement for such a control is to permit rapid change of scale when more than one Mach number is to be used in a test.

PROGRAM PATCHPANEL

Although the computers are special purpose units, they incorporate a degree of operational flexibility through use of
program patchpanels. The patchpanel wiring allows free choice of input and output connections and optional utilization of uncommitted pots and switches. This allows switching between different plotter scales, plotting one coefficient against another, independent use of the filter amplifiers, etc.

COMPUTER USE

The two coefficient computers currently in use at the NOL wind tunnels are shown in Figures 6 and 7. The computer associated with Hypersonic Tunnel No. 8, Figure 6, has been completely rebuilt around the vacuum-tube amplifiers of an earlier model. These amplifiers have only single inputs and the circuits were developed accordingly, as described earlier. The computer shown in Figure 7, which serves Supersonic Tunnels Numbers 1 and 2, was designed around transistorized-operational amplifiers, having differential inputs. Both computers normally operate on single-ended signals supplied from the input amplifiers of the main data systems. The outputs normally drive Moseley X-Y plotters.

Detailed instructions for setting up a computer for static-stability tests are beyond the scope of this report. In general, this procedure involves the experimental adjustment of machine constants and scale factors to establish outputs in agreement with previously calculated values. Signals from each of the strain-gage transducers are generated by applying known forces and moments to the balance by means of weights. Scaling is established on the X-Y plots in accordance with the expected variation of the coefficient and the range of model movement. During the actual tunnel blow operation, the computer is fully automatic, the plotters are continuously supplied, the computer outputs and the pens are lowered for plotting by command of the main data systems.

The method of establishing the computer constants from known forces and moments results in extremely accurate computation, and the use of high-quality amplifiers and components insures that the initial adjustments are maintained throughout a test program. The on-line computation capability provided by these computers has proved extremely useful during static-stability tests in the NOL wind tunnels.
REFERENCES

(1) Willis, J. W., "DARE II Data Acquisition and Recording Equipment," NOLTR 63-281, Unclass (being published)

FIG. 1 COEFFICIENT COMPUTER BASIC CIRCUIT
(a) FOR DIFFERENTIAL AMPLIFIER

(b) FOR SINGLE-ENDED AMPLIFIER

FIG. 2 LOW-PASS ACTIVE FILTERS
FIG. 3 NORMAL FORCE CIRCUIT (SIMPLIFIED)
FIG. 4 PITCHING MOMENT CIRCUIT (SIMPLIFIED)
FIG. 5 ROLLING MOMENT CIRCUITS
FIG. 6 ANALOG COMPUTER, H.T. NO. 8
FIG. 7 ANALOG COMPUTER, S.T. NO. 1
TABLE 1
EQUATIONS FOR AERODYNAMIC COEFFICIENTS

NORMAL FORCE:

\[C_N = \frac{1}{qA} \left[-A_N H_1 + B_N H_2 \right] \]

PITCHING MOMENT:

\[C_m = \frac{1}{qAd} \left[+A_m H_1 + B_m H_2 \right] \]

SIDE FORCE:

\[C_Y = \frac{1}{qA} \left[-A_Y H_3 + B_Y H_4 \right] \]

YAWING MOMENT:

\[C_n = \frac{1}{qAd} \left[+A_n H_3 + B_n H_4 \right] \]

ROLLING MOMENT:

\[C_\ell = \frac{1}{qAd} \left[+A_\ell H_5 \right] -T_N C_N - T_m C_m - T_Y C_Y - T_n C_n \]

AXIAL FORCE:

\[C_A = \frac{1}{qA} \left[+A_A H_6 \right] -S_N C_N - S_m C_m - S_Y C_Y - S_n C_n \]

ANGLE OF ATTACK:

\[\alpha = \alpha_1 + R_N C_N + R_m C_m + R_Y C_Y + R_n C_n \]
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Address</th>
</tr>
</thead>
</table>
| | Chief, Bureau of Naval Weapons
Department of the Navy
Washington 25, D. C.
Attn: DLI-30
Attn: RA-14
Attn: RRR-4
Attn: RMGA-811
Attn: RMMO-42 |
| | Office of Naval Research
Room 2709, T-3
Washington 25, D. C.
Attn: Head, Mechanics Branch
Attn: Head, Fluid Dynamics Branch |
| | Director, David Taylor Model Basin
Aerodynamics Laboratory
Washington 7, D. C.
Attn: Library |
| | Commander, U. S. Naval Ordnance Test Station
China Lake, California
Attn: Technical Library
Attn: Code 406 |
| | Director, Naval Research Laboratory
Washington 25, D. C.
Attn: Code 2027 |
| | Commanding Officer
Officer of Naval Research
Branch Office
Box 39, Navy 100
Fleet Post Office
New York, New York |
| | NASA
High Speed Flight Station
Box 273
Edwards Air Force Base, California
Attn: W. C. Williams |
| | NASA
Ames Research Center
Moffett Field, California
Attn: Librarian |
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>NASA Langley Research Center, Langley Field, Virginia Attn: Librarian</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: C. H. McLellan</td>
</tr>
<tr>
<td></td>
<td>Attn: Adolf Busemann</td>
</tr>
<tr>
<td></td>
<td>Attn: Theoretical Aerodynamics Division</td>
</tr>
<tr>
<td></td>
<td>NASA Lewis Research Center, 21000 Brookpark Road, Cleveland, Ohio</td>
</tr>
<tr>
<td></td>
<td>Attn: Librarian</td>
</tr>
<tr>
<td></td>
<td>Attn: Chief, Propulsion Aerodynamics Div.</td>
</tr>
<tr>
<td></td>
<td>NASA 600 Independence Avenue, S.W., Washington 25, D.C.</td>
</tr>
<tr>
<td></td>
<td>Attn: Chief, Division of Research Information</td>
</tr>
<tr>
<td></td>
<td>Attn: Dr. H. H. Kurzweg, Asst. Director of Research</td>
</tr>
<tr>
<td></td>
<td>Office of the Assistant Secretary of Defense (R&D)</td>
</tr>
<tr>
<td></td>
<td>Room 3E1065, The Pentagon</td>
</tr>
<tr>
<td></td>
<td>Washington 25, D.C.</td>
</tr>
<tr>
<td></td>
<td>Attn: Technical Library</td>
</tr>
<tr>
<td></td>
<td>Research and Development Board</td>
</tr>
<tr>
<td></td>
<td>Room 3D1041, The Pentagon</td>
</tr>
<tr>
<td></td>
<td>Washington 25, D.C.</td>
</tr>
<tr>
<td></td>
<td>Attn: Library</td>
</tr>
<tr>
<td></td>
<td>Defense Documentation Center, Cameron Station, Alexandria Va 22314</td>
</tr>
<tr>
<td></td>
<td>Commander, Pacific Missile Range, Point Mugu, California</td>
</tr>
<tr>
<td></td>
<td>Attn: Technical Library</td>
</tr>
<tr>
<td>10</td>
<td>Commanding General, Aberdeen Proving Ground, Maryland</td>
</tr>
<tr>
<td></td>
<td>Attn: Technical Information Branch</td>
</tr>
<tr>
<td></td>
<td>Attn: Ballistic Research Laboratory</td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>
Commander, Naval Weapons Laboratory
Dahlgren, Virginia
Attn: Library

Director, Special Projects
Department of the Navy
Washington 25, D. C.
Attn: SP-2722

Director of Intelligence
Headquarters, USAF
Washington 25, D. C.
Attn: APOIN-3B

Headquarters - Aero. Systems Division
Wright-Patterson Air Force Base
Dayton, Ohio
Attn: WWAD
Attn: RRLA-Library

Commander
Air Force Ballistic Systems Division
Norton Air Force Base
San Bernardino, California
Attn: BSRVA

Chief, Defense Atomic Support Agency
Washington 25, D. C.
Attn: Document Library

Headquarters, Arnold Engineering Development Center
Air Research and Development Center
Arnold Air Force Station, Tennessee
Attn: Technical Library
Attn: AEOR
Attn: AEOR1M

Commanding Officer, Harry Diamond Laboratories
Washington 25, D. C.
Attn: Library, Room 211, Bldg. 92

Commanding General
U. S. Army Missile Command
Redstone Arsenal
Redstone Arsenal, Alabama
Attn: Mr. N. Shapiro (AMSMI-RR)
Attn: Redstone Scientific Information Center (AMSMI-RB)

No. of Copies

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>
NOLTR 64-74

AERODYNAMICS DEPARTMENT

EXTERNAL DISTRIBUTION LIST (A1)

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

NASA

George C. Marshall Space Flight Center
Huntsville, Alabama
Attn: Dr. E. Geissler
Attn: Mr. T. Reed
Attn: Mr. H. Paul
Attn: Mr. W. Dahm
Attn: Mr. H. A. Connell
Attn: Mr. J. Kingsbury
Attn: ORDAB-DA

APL/JHU (C/NOw 7386)

8621 Georgia Avenue
Silver Spring, Maryland
Attn: Technical Reports Group
Attn: Mr. D. Fox
Attn: Dr. F. Hill
Via: INSORD

Air Force Systems Command

Scientific & Technical Liaison Office
Room 3710, Main Navy
Department of the Navy
Washington 25, D. C.
Attn: Alonzo P. Mercier
Aeronautical Research Laboratories
Wright-Patterson Air Force Base
Ohio
Attn: E. G. Johnson, ARF,
Fluid Dynamics Facilities Laboratory
Building 450

ARO, Inc.
Arnold Air Force Station
Tennessee
Attn: Rudolph W. Hensel, Chief
Propulsion Wind Tunnel

ARO, Inc.
von Karman Gas Dynamics Facility
Arnold Air Force Station,
Tennessee
Attn: J. Lukasiewicz, Chief

Aeronautical Systems Division
Air Force Systems Command
United States Air Force
Wright-Patterson Air Force Base
Ohio
Attn: ASD/D. Zonars

Ames Research Center
NASA
Moffett Field, California
Attn: Victor I. Stevens

Astro
The Marquardt Corporation
16555 Saticoy
Van Nuys, California
Attn: R. C. Miller

Ballistic Research Laboratories
United States Army
Aberdeen Proving Ground, Maryland
Attn: C. C. Bush, Chief, Operations Section
Supersonic Wind Tunnels Branch
Exterior Ballistic Laboratory
The Boeing Company
Aero-Space Division
P. O. Box 3707
Seattle 24, Washington
Attn: J. H. Russell (58-82)
 Chief Wind Tunnel Engineer

California Institute of Technology
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena 3, California
Attn: Robert E. Covey, Chief
 Aerodynamic Facilities

Chance Vought Corporation
P. O. Box 5907
Dallas 22, Texas
Attn: R. C. McWherter, Chief
 Wind Tunnel Laboratories

Cornell Aeronautical Laboratory, Inc.
4455 Genesee Street
P. O. Box 235
Buffalo 21, New York
Attn: J. Martin
 Applied Hypersonic Research Department

David Taylor Model Basin
Department of the Navy
Aerodynamics Laboratory
Washington 7, D. C.
Attn: Dr. S. De Los Santos
 Head, Gas Dynamics Division

Douglas Aircraft Company, Inc.
Aerophysics Laboratory (Loc. A-10)
3000 Ocean Park Boulevard
Santa Monica, California
Attn: J. F. L. Aldrich, Branch Chief
 Aerophysics Laboratory
General Dynamics/Fort Worth
P. O. Box 748
Fort Worth 1, Texas
Attn: R. A. Stevens
Aerothermodynamics Group Engineer
Mail Zone E-62

General Dynamics/Convair
P. O. Box 1950
San Diego, California (92112)
Attn: D. P. Cumming, Group Engineer
High Speed Wind Tunnel
Mail Zone 61-10

Grumman Aircraft Engineering Corporation
Bethpage, Long Island
New York
Attn: W. Gander, Head
Aero Test Operations Group

Lockheed-California Company
A Division of Lockheed Aircraft Corporation
P. O. Box 551
Burbank, California
Attn: G. Sim, Division Engineer
Fluid Dynamics Laboratory

Lockheed-Georgia Company
A Division of Lockheed Aircraft Corporation
Marietta, Georgia
Attn: J. B. Cumming, Manager
Experimental Fluid Dynamics
Department 72-07, Building B-2

Lockheed Missiles and Space Company
3251 Hanover Street
Palo Alto, California
Attn: Dr. Daniel Bershader
Department 52-10
Marshall Space Flight Center
NASA
Huntsville, Alabama
Attn: A. R. Felix
M-AERO-E

The Martin Company
Space Systems Division
Baltimore 3, Maryland
Attn: L. G. Cooper, Supervisor
Experimental Fluid Mechanics

Massachusetts Institute of Technology
Department of Aeronautics and Astronautics
Naval Supersonic Facility
560 Memorial Drive
Cambridge 39, Massachusetts
Attn: Mr. William F. Byrne

McDonnell Aircraft Corporation
P. O. Box 516
St. Louis 66, Missouri
Attn: F. M. Keyes, Group Manager
Polysonic Wind Tunnel

Northrop Norair Division
3901 W. Broadway
Hawthorne, California (90250)
Attn: P. F. Jensen, Chief
Research Laboratories Group 3740-64

North American Aviation, Inc.
Los Angeles Division
International Airport
Los Angeles, California (90009)
Attn: G. M. Stone, Jr.
Chief, Aero Thermo Laboratories

The Ohio State University
Aerodynamics Laboratory
Department of Aeronautical and Astronautical Engineering
Columbus 10, Ohio
Attn: Dr. J. D. Lee, Director
Polytechnic Institute of Brooklyn
Aerodynamics Laboratory
527 Atlantic Avenue
Freeport, Long Island
New York
 Attn: R. Cresci

Princeton University
The James Forrestal Research Center
Gas Dynamics Laboratory
Princeton, New Jersey
 Attn: Prof. Seymour M. Bogdonoff

Republic Aviation Corporation
Farmingdale, Long Island
New York
 Attn: A. Cravero, Assistant to Chief
 Hyper-Aerodynamics
 Paul Moore Research Center

Sandia Corporation
Sandia Base
Albuquerque, New Mexico
 Attn: Alan Pope, Head
 Aero-Thermodynamics Department - 7420

Department of Aeronautics and Astronautics
Stanford University
Stanford, California
 Attn: James B. Kyser

United Aircraft Corporation
Research Laboratories
400 Main Street
East Hartford 8, Connecticut
 Attn: George D. Dickie, Jr., Head,
 Test Facilities
University of Michigan
Aeronautical Engineering Laboratories
Aircraft Propulsion Laboratory
North Campus
Ann Arbor, Michigan
Attn: Prof. P. Sherman

University of Southern California
Engineering Center
Aeronautic Laboratories Department
P. O. Box 1001
Oxnard, California
Attn: J. H. Carrington
Chief Engineer
Cataloging Information for Library Use

<table>
<thead>
<tr>
<th>Source</th>
<th>NOL technical report</th>
<th>Codes</th>
<th>NOLTR</th>
<th>Security Classification and Code Count</th>
<th>Unclassified - 16</th>
<th>Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Number</td>
<td>64-74</td>
<td>Codes</td>
<td>64-74</td>
<td>CIRCULATION LIMITATION</td>
<td></td>
<td>Codes</td>
</tr>
<tr>
<td>Report Date</td>
<td>21 April 1964</td>
<td>Codes</td>
<td>64-64</td>
<td>CIRCULATION LIMITATION OR BIBLIOGRAPHIC</td>
<td>BIBLIOGRAPHIC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SUPPL., VOL., ETC.</td>
<td></td>
</tr>
</tbody>
</table>

Subject Analysis of Report

<table>
<thead>
<tr>
<th>Descriptors</th>
<th>Codes</th>
<th>Descriptors</th>
<th>Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computers</td>
<td>COMP</td>
<td>Equations</td>
<td>EQUA</td>
</tr>
<tr>
<td>Evaluation</td>
<td>EVAL</td>
<td>Computer (Design)</td>
<td>COMPD</td>
</tr>
<tr>
<td>Aerodynamic</td>
<td>AERD</td>
<td>Circuit</td>
<td>CIRC</td>
</tr>
<tr>
<td>Coefficients</td>
<td>COEF</td>
<td>Filters</td>
<td>FILT</td>
</tr>
<tr>
<td>Analog</td>
<td>ANAG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computations</td>
<td>COMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Displays</td>
<td>DISL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static</td>
<td>STAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stability</td>
<td>STB1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testing</td>
<td>TEST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind tunnels</td>
<td>WINU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test procedures</td>
<td>TESI</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FRNC-NOL-5070/28 (5-62)
Naval Ordnance Laboratory, White Oak, Md. (NOL technical report 64-74)

UNCLASSIFIED

During static-stability tests in the U. S. Naval Ordnance Laboratory's wind tunnels, it is desirable to have the six aerodynamic coefficients computed on-line. This report describes the special-purpose analog computers designed to make these computations and display the results.

Abstract card is unclassified.

Naval Ordnance Laboratory, White Oak, Md. (NOL technical report 64-74)

UNCLASSIFIED

During static-stability tests in the U. S. Naval Ordnance Laboratory's wind tunnels, it is desirable to have the six aerodynamic coefficients computed on-line. This report describes the special-purpose analog computers designed to make these computations and display the results.

Abstract card is unclassified.
Naval Ordinance Laboratory, White Oak, Md.
(NOL technical report 64-74)
ANALOG COMPUTERS FOR THE EVALUATION OF AERODYNAMIC COEFFICIENTS (U), by Joseph W. Willis.

UNCLASSIFIED

During static-stability tests in the U.S. Naval Ordinance Laboratory's wind tunnels, it is desirable to have the six aerodynamic coefficients computed on-line. This report describes the special-purpose analog computers designed to make these computations and display the results.

Abstract card is unclassified.

Naval Ordinance Laboratory, White Oak, Md.
(NOL technical report 64-74)
ANALOG COMPUTERS FOR THE EVALUATION OF AERODYNAMIC COEFFICIENTS (U), by Joseph W. Willis.

UNCLASSIFIED

During static-stability tests in the U.S. Naval Ordinance Laboratory's wind tunnels, it is desirable to have the six aerodynamic coefficients computed on-line. This report describes the special-purpose analog computers designed to make these computations and display the results.

Abstract card is unclassified.